CGroup Caching @ Graalvisor

DAVID NUNES, Instituto Superior Técnico, Portugal

Cloud computing is a transformative technology that delivers a wide range
of on-demand services and resources over the internet. It enables businesses
and individuals to access, scale, and pay for computing capabilities as needed.
This flexible and cost-effective approach supports digital transformation,
innovation, and efficiency in various sectors.

Serverless computing streamlines application development by abstracting
infrastructure management. Developers concentrate on code, while the cloud
provider handles scaling and maintenance. It offers agility and an even better
cost-efficiency, making it suitable for contemporary applications.

This paper presents a study of the utilization of control groups (cgroups)
in serverless environments, specifically in the context of Function as a Ser-
vice (FaaS). The use of cgroups for function invocation in FaaS has been
known to have performance issues during start-up, resulting in latency and
initialization difficulties. To address this problem, we propose a caching
mechanism for cgroups, which is implemented using the GraalVM platform.
We evaluate the effectiveness of this approach using four representative
workloads, including Hello World, Fibonacci, File Hashing, and Video Trans-
formation. Our evaluation results will show if our proposed caching solution
has the potential to significantly improve the performance and initialization
of cgroups in FaaS environments.

CCS Concepts: « Computer systems organization — Cloud computing;
« Software and its engineering — Virtual machines.

Additional Key Words and Phrases: Serverless, GraalVM, Control Groups,
Function-as-a-Service, Graalvisor

1 INTRODUCTION

Serverless[4] technology is a relatively recent development in the
field of cloud computing, which has gained significant popularity
in recent years. At its core, serverless is a paradigm shift in the way
applications are built and deployed, where the focus is on breaking
down applications into small, modular logic units called functions.
These functions are executed in response to specific triggers or
events and are fully managed by the underlying cloud platform (e.g.
FaaS).

One of the major advantages of serverless is its ability to provide
automated scalability and elasticity, without the need for infras-
tructure management on the part of the developer. With serverless,
applications are able to automatically scale up or down in response
to changing usage patterns, and can even scale to zero when not
in use, thus reducing costs. Additionally, serverless also offers a
pay-as-you-use billing model, which can significantly reduce costs
and improve the economics of application deployment.

This is a stark contrast to traditional service offerings, where
developers have more responsibilities and less flexibility in terms
of scalability and elasticity. Serverless technology eliminates much
of the operational overhead and provides developers with a more
efficient, cost-effective, and easy-to-use platform for building and
deploying their applications. This makes it a highly attractive option
for developers who are looking for a more streamlined and efficient
development experience.

Author’s address: David Nunes, david.j.s.nunes@tecnico.ulisboa.pt, Instituto Superior
Técnico, Lisboa, Portugal.

In a serverless architecture, the ability to quickly and efficiently
allocate new execution environments, such as containers or virtual
machines, is critical for keeping up with high rates of function
invocations. To achieve this, the virtualization stack must have low
overhead and efficient resource management, allowing for smooth
and speedy scaling. Recent works have attempted to host multiple
function invocations in the same language runtime to minimize
resource consumption[5] and avoid runtime initialization latency.

The problem arises when executing a large number of function
invocations simultaneously in the same runtime, which leads to
scheduling issues, particularly in terms of creating resource iso-
lation through Linux control groups (cgroups). Current cgroup
implementations in Linux are not well-suited to handle the high
volume of predominantly short invocations present in serverless
platforms, resulting in a decrease in performance and scalability.
Another research work proposed a mechanism for allocating CPU re-
sources among co-located functions in a Function as a Service (FaaS)
environment [8], which enables cloud computing clients to spec-
ify CPU requirements for their functions. However, this approach
does not address the challenges associated with the initialization
of cgroups, which are known to result in latency and performance
issues.

The scalability limitations of current operating systems in regard
to the number of concurrent function invocations and expected
latency in serverless infrastructure operations have been widely
acknowledged. Traditional operating systems and their associated
resource isolation mechanisms, such as cgroups, have been opti-
mized for a limited number of concurrently executing tasks. How-
ever, the scalability requirements of modern serverless platforms
exceed those of traditional operating systems, needing further re-
search and development of optimized resource isolation methods
and operating system design.

For our solution, we study the performance of cgroup operations
with the aim of identifying scalability bottlenecks. Based on the
findings of this analysis, we will then investigate potential methods
of optimizing cgroup management. These may include the imple-
mentation of a caching layer that reduces the need for the frequent
creation and destruction of cgroups upon task termination, among
other potential optimization techniques.

This paper makes two significant contributions to serverless com-
puting. Firstly, it identifies and analyzes the performance bottleneck
associated with cgroup management in serverless infrastructures,
shedding light on the challenges that lead to inefficiencies and perfor-
mance degradation. Secondly, it proposes and implements a caching
layer designed to address this scalability bottleneck, optimizing
resource management, minimizing overhead, and enhancing the
efficiency of serverless functions within cgroups.

2« David Nunes

2 BACKGROUND
2.1 Evolution of Cloud Architectures

The evolution of cloud architecture [6] [9] represents a dynamic
journey that reflects the ever-growing demands of the digital age.
It encompasses a transformation from monolithic structures to the
emergence of microservices and the contemporary Function as a Ser-
vice (FaaS). Throughout this evolution, the service models, known
as Software as a Service (SaaS), Platform as a Service (PaaS), Infras-
tructure as a Service (IaaS), and Function as a Service (FaaS), have
played instrumental roles in shaping the cloud ecosystem.

2.1.1 The Monolith. The early days of cloud computing were marked
by the monolithic architecture. In this model, applications were

constructed as a single, unified unit that was self-contained and

independent from other applications. The monolithic approach sim-
plified development but came with challenges related to scalability

and adaptability. Monolithic applications often relied on Infrastruc-
ture as a Service (IaaS) for their foundational infrastructure, with

some integration of Platform as a Service (PaaS) and Software as a

Service (SaaS) components.

2.1.2 Microservices. In response to the limitations of monolithic ar-
chitecture, microservices emerged as a transformative paradigm [7].
Microservices architecture involves decomposing complex applica-
tions into smaller, independent components. Each of these microser-
vices is designed to perform specific procedures and is developed,
deployed, and maintained separately. During this phase, Platform
as a Service (PaaS) played a crucial role in providing specialized
environments tailored to microservices architecture. Additionally,
Software as a Service (SaaS) applications began to leverage microser-
vices to gain greater agility and scalability.

2.1.3 Serverless and FaaS. The relentless pursuit of efficiency and
developer productivity led to the rise of Serverless Computing[2],
exemplified by Function as a Service (FaaS). In the FaaS model,
infrastructure management is abstracted to an unprecedented level,
enabling developers to focus solely on writing code in the form of
stateless functions which must also be lightweight, and executed in
response to specific events or triggers. This allows the parallel run
of a great number of those functions and also the resource sharing
among them.

Serverless and Functions as a Service (FaaS) are often conflated
with one another but the truth is that Faa$ is actually a subset of
serverless. Faa$ is focused on the event-driven computing paradigm
in which application code, or containers, only run in response to
events or requests. On the other hand, serverless computing focuses
on providing a wide range of services, including but not limited
to computing, storage, and database services. The configuration,
management, and billing of servers are invisible to the end user,
providing increased scalability and cost efficiency, as well as reduced
operational complexity.

Today, the cloud architecture landscape continues to evolve. FaaS
and Serverless Computing remain at the forefront, reshaping how
applications are developed and deployed.

2.2 CGroups

Control groups, commonly referred to as cgroups, represent a key
and well-established feature within the Linux kernel architecture.
This feature facilitates the systematic organization of processes into
hierarchical groups, enabling precise control over their consumption
and monitoring of diverse resource types. The cgroup filesystem,
intricately incorporated within the kernel, serves as the keystone of
this resource management framework. It empowers administrators
and system operators with a potent toolset to effectively throttle,
allocate, and oversee the utilization of critical computing resources
within the Linux environment.

Subsystems, also known as resource controllers (or simply, con-
trollers), are kernel components that modify the behavior of the
processes in a group and enforce resource management. A sub-
system represents a single resource, such as CPU, memory, or I/O
devices. In this work, we are interested in studying the ones related
to CPU.

The cgroups for a controller are arranged in a hierarchy. This
hierarchy is defined by creating, removing, and renaming subdirec-
tories within the cgroup filesystem. At each level of the hierarchy,
attributes (e.g., limits) can be defined. The limits, control, and ac-
counting provided by cgroups generally have an effect throughout
the subhierarchy underneath the cgroup where the attributes are
defined.

2.2.1 CGroups Structure. The hierarchy of cgroups is depicted
in the form of a directory structure, with its foundational direc-
tory rooted at ’/sys/fs/cgroup/’. Every directory, regardless of its
placement within this hierarchy, constitutes a cgroup. It’s impor-
tant to note that even the root directory itself serves as a cgroup,
meaning it is part of the grouping structure.

2.2.2 CGroup Operations. To gain a comprehensive understanding
of cgroup operations, let’s first emphasize the significance of ad-
ministrative privileges in the management of these resource control
groups, i.e., for any alterations to cgroups, it is imperative to have
root permissions, highlighting the essential need for administrative
access in managing these resource control groups. Cgroups, in their
operations, leverages a virtual file system, entailing that their func-
tionalities are accessed through interactions with the file system’s
API. The process of creating a cgroup is quite straightforward [1]
- one simply employs the ‘mkdir’ command within the hierarchy
structure. Conversely, when it comes to removing a cgroup, a cru-
cial requirement is that no active processes or threads should exist
within it. Under these conditions, the removal can be achieved by
using the ’rmdir’ command.

2.2.3 CGroup CPU Controller. Within each cgroup, you’ll encounter
files and, in some cases, even directories that represent other cgroups.
These files can be categorized into two main types: core files, which
consistently commence with *cgroup.’, and controller files, which
begin with the name of the respective controller they pertain to.
Inside the framework of CPU control, various files provide distinct
mechanisms for management. In our particular approach, we focus
on the utilization of ’cpu.max’. This file serves as the conduit for
defining the desired CPU quota, which regulates the proportion of
CPU time a cgroup can utilize relative to a specified period. Notably,

the configuration of this file involves a specific format where the
CPU quota and the associated time period are specified in the form
’quota period’. The initial value indicates the total time allowance
in microseconds for all processes within a child group to execute
during a single period, while the second value defines the duration
of that period. For example, to allocate 10% of the CPU resources,
you can represent this as *100 1000’, which means using 100 us out
of a 1000 us window. This representation offers multiple options
for achieving fine-grained control over CPU utilization within a
cgroup.

To enable granular control over CPU resource allocation within
cgroups, an initial step involves the configuration of the top-level
or "main" cgroup within the hierarchy. This configuration process
entails specifying the cgroup’s controllers that the cgroup will use
and associating the desired process with it. To effect these changes,
the 'cpu’ and ’cpuset’ designations are inscribed within all the
‘cgroup. subtree_control’ files up the hierarchy, while the pro-
cess ID is recorded within the cgroup.procs’ file.

Subsequently, within the main cgroup, the creation of the worker
cgroups for executing threads with specific CPU allocations can
be undertaken. This involves the execution of several steps. First,
a new worker cgroup is generated using the 'mkdir’ command
within the main cgroup directory. Next, the threaded’ designation
is inscribed within the ’cgroup.type’ file, and the desired thread
is assigned to this newly created worker cgroup, signified by the
inclusion of its thread ID within the ’cgroup. threads’ file. Lastly,
the CPU allocation for the worker cgroup is defined by configuring
the ’cpu.max’ file in accordance with the desired CPU parameters,
as elaborated upon earlier.

3 RELATED WORK

We identified previous research that has addressed topics similar to
those tackled in this project. We analyze these previous studies to
illuminate their relevance in the context of our research.

3.1 Photons

Photons[5] identifies the inefficiencies in today’s serverless plat-
forms when invoking the same function concurrently, like the big
number of cold starts due to the single concurrent invocation per
container policy and the large memory usage due to containers
requiring some application state.

The authors observed that the extensive number of concurrent
invocations of the same function code replicates large amounts of
state, including the language runtime, libraries, and shared state
such as machine learning models. Therefore, they presented Pho-
tons, a framework that exploits this redundancy and allows the
execution of concurrent serverless functions to be co-located in a
single docker container, with the opportunity to share the applica-
tion state.

3.2 Performance Isolation in GraalVM Native Image
Isolates

In the domain of Cloud Computing and the Function-as-a-Service
(FaaS) model, the common practice of co-locating functions in the

CGroup Caching @ Graalvisor « 3

same runtime to minimize startup delays and reduce memory con-
sumption is well-recognized. Effective resource management is es-
sential to ensure equitable treatment among co-located functions.
The core objective of this project was to devise a mechanism for
dynamic CPU resource management when functions share the same
runtime, addressing a deficiency in existing solutions like Docker,
which primarily relies on cgroups for CPU control.

This work[8] is the most relevant to our study, since we want
to implement their suggested future work, focusing on optimizing
latency overhead by implementing strategies for caching cgroups,
thereby mitigating latency associated with their creation.

3.3 Graalvisor

The research presents a solution to address the challenge of virtual-
ization stack bloat in Serverless computing. Graalvisor[3] consists of
a virtualized polyglot language runtime designed for the efficient ex-
ecution of lightweight and short-lived Serverless functions. Graalvi-
sor optimizes performance by running each function in a compact
execution environment, with a fast launch time of under 500 mi-
croseconds. This approach significantly reduces the redundancy in
virtualization stacks, leading to lower memory consumption and
fewer cold starts.

Graalvisor offers a user-friendly endpoint for registering and
invoking functions. When functions are invoked, Graalvisor intelli-
gently schedules them for execution within specific cluster nodes
and lambda executors (virtual machines).

3.4 Analysis and Discussion

As our exploration has revealed, the extensive body of research
within this field has addressed a range of issues and challenges
that bear similarity to those addressed in our work. While these
prior studies offer valuable insights, they present opportunities for
synergistic integration with our proposed solution. However, it
is essential to note that none of these existing studies effectively
tackle the primary challenge we confront head-on: the mitigation of
latency and initialization complexities inherent in the management
operations of cgroups within serverless environments.

In this context, we are poised to leverage the findings and method-
ologies put forth in the research discussed in Section 3.2. This refer-
enced work provides a promising baseline for delving deeper into
our primary challenge. We integrated the insights and techniques
from 'Performance Isolation in GraalVM Native Image Isolates’ into
Graalvisor, mentioned in Section 3.3, and explored innovative ap-
proaches that address the intricacies of mitigating latency and mini-
mizing initialization complexities when managing cgroups within
the dynamic realm of serverless environments.

4 SOLUTION ARCHITECTURE

This section details the design of the architecture for our solution.
The organization of our solution will be discussed in detail in Sec-
tion 4.1, where we will present an overview of how the different
components are structured and interact with each other.

4« David Nunes

4.1 Overview

Our objective in this project is to improve the performance of
cgroup management operations and to apply them in the context
of large-scale, serverless computing environments. Therefore, we
propose a pre-populated cache of cgroups with different sizes in
memory. Initially, the entire cache would be populated during the
system’s startup process (it should be noted that the cache is never-
theless dynamic and can be expanded as necessary after initializa-
tion).

In our system, whenever a function invocation is initiated, we
employ a mechanism to carefully select an empty cgroup from the
cache that is capable of fulfilling the resource requirements of the
incoming function invocation. This cgroup allocation algorithm
is crucial as it ensures that the system is utilizing its resources
efficiently and that the chosen empty cgroup is appropriate for the
task at hand. Once the function invocation is completed, the cgroup
is returned to the cache in an empty state, ready to be utilized
again for future function invocations. This process of selecting and
returning cgroups from and to the cache is ongoing and enables the
system to operate at optimal performance levels while maintaining
a high degree of resource utilization efficiency.

/ \ function invocation

Application

Common Runtime

Isolate 1 Isolate 2

Caching Layer

Choice of
cgroup

Cgroup 1

2

Cgroup 2 Cgroup 3 Cgroup 4

/

Fig. 1. Architectural diagram with cache layer.

4.2 Cgroup cache integration

The caching mechanism will operate within the main runtime, while
individual functions will execute in isolates inside a specific control
group (cgroup). Upon the arrival of a function invocation, our sys-
tem performs a check to determine if there is an available cgroup
in the cache with the required CPU quota. If such cgroup is present,

the task is allocated to it by writing the task’s thread ID into the
cgroup’s ’cgroup. threads’ file. Once allocated, it becomes unavail-
able for future invocations.

The cache works lazily, populating and emptying the Java caching
structure to indicate cgroup availability and unavailability. Threads
are removed from the cgroup file system only when a new, different
thread requires the cgroup. This way, a thread will be automatically
removed from a cgroup by the operating system when it termi-
nates or when another thread needs to be inserted into an available
cgroup, that earlier had a thread running.

In the event that a cgroup of the required CPU quota is not
present in the cache, a new cgroup is created, as mentioned in
Section 2.2, to accommodate the function’s needs. Regardless of the
outcome of this check, upon the termination of the task, the cgroup
is marked as available in the cache data structure, thus making
it eligible for future function invocations. Figure 1 illustrates the
architectural configuration of the solution with the inclusion of the
newly added caching layer.

Algorithm 1: Cgroup Caching pseudo-code.

new function invocation with Q quota:
begin
if cgroupCache.ContainsQuota(Q) then
L cgroupID «— RemoveCgroupFromCache(Q)

else
L cgroupID «— createNewCgroup(Q)

if isCacheLazy then
if !threadInCgroup then
RemovePreviousThreadFromCgroup
L InsertThreadInCgroup(cgroupID)

else
L InsertThreadInCgroup(cgroupID)

function ends execution:
begin
AddCgroupToCache()
if lisCacheLazy then
L RemovePreviousThreadFromCgroup

4.3 Cgroup data structure

Our proposed caching solution utilizes a key-value store data struc-
ture, which allows for efficient storage and retrieval of data through
the use of unique keys. Given the programming language in which
the solution is implemented, Java, the specific key-value store data
structure utilized is a concurrent hashmap, which offers a high
level of efficiency and performance for lookups, making it well-
suited for our caching requirements. The hashmap is designed such
that the keys represent the quota of the cgroups, relative to a pe-
riod of 100000 microseconds, and the values are a concurrent list,
CopyOnWritelList in the Java language case, where each element
is a cgroup Id. The use of a concurrent hashmap allows for fast and

safe access to the stored cgroups, even in a multi-threaded envi-
ronment. The CopyOnWriteList guarantees that all the elements
within it can be accessed simultaneously without any contention
among threads. This allows for highly concurrent and scalable op-
erations, making our solution suitable for large-scale environments.
The combination of a concurrent hashmap with a concurrent list
enables us to achieve high performance and efficiency, making it an
ideal data structure for our solution. Figure 2 represents an example
of a fully populated cache.

4.3.1 Complexity. In the context of the ConcurrentHashMap stor-
ing the association between CPU quotas and corresponding lists of
cgroup IDs, the insertion and removal operations exhibit constant
time complexity, denoted as O(1). Similarly, the lookup operation
also demonstrates a constant time complexity of O(1) on average.
These complexities affirm the efficiency and swiftness of all opera-
tions conducted on this data structure.

On the other hand, the CopyOnWriteList exhibits specific time
complexities for various operations. Read operations are highly
efficient, with a constant time complexity of O(1). This makes it
well-suited for scenarios where reads significantly outnumber writes
since the copy-on-write strategy ensures thread safety during up-
dates. However, the insert and remove operations, which involve
copying the list, result in potentially higher time complexity. The
time complexity for these insert and remove operations can become
O(n), where 'n’ represents the number of elements in the list being
copied. In practice, this means that while the CopyOnWritelList
provides an excellent level of safety for concurrent operations, it
is most efficient when the reads significantly dominate over the
writes.

Nevertheless, it’s worth highlighting that the CopyOnWriteList
is the sole thread-safe List implementation in the Java language.
By practicing caution and ensuring that the size of a specific list
(representing the number of cgroups for a given quota) doesn’t
grow excessively, we can maintain good performance.

Key Value Cgroup ID list A
10000 quota Cgroup ID list A / Cgroup 11D
25000 quota Cgroup ID list B Cgroup 2 ID
75000 quota Cgroup ID list C Cgroup 3 ID
100000 quota Cgroup ID list D Cgroup 4 ID

Fig. 2. Example of a populated cgroup cache.

5 IMPLEMENTATION

To implement our proposed architecture, we leveraged Graalvisor,
described in Section 3.3, as the base of our code. We also incorpo-
rated the insights gained from "Performance Isolation in GraalVM
Native Image Isolates" [8] described in Section 3.2, adapting these
findings to our specific objectives. Throughout the implementation

CGroup Caching @ Graalvisor « 5

process, we encountered unique challenges and developed innova-
tive solutions to bridge the gap between theory and practice.

5.1 C Modifications

The outset of our project involved the intricate process of incor-
porating the code pertaining to cgroup management operations,
composed in the C programming language, with Graalvisor’s exist-
ing codebase, which is mainly Java but is prepared to run C code.
This integration necessitated more than a mere merge; it entailed
thoughtful additions and alterations to ensure the seamless coexis-
tence of these code components.

In the initial phase of the integration, we primarily replicated the
code without substantial modifications. This approach was under-
taken to facilitate the commencement of testing procedures, specifi-
cally focusing on the creation, updating, and deletion of cgroups.
Additionally, it was essential to ascertain the precise execution of
the function registered within Graalvisor, thereby confirming its
confinement within the designated cgroup and exclusive utilization
of the allocated CPU resources.

After encountering certain challenges during the integration pro-
cess, we reinforced the integrated code to bolster resilience. This
entailed a comprehensive review of the foundational C code. Rather
than a superficial examination of each C instruction, we systemati-
cally introduced code segments designed to validate system calls,
proactively identifying and mitigating potential issues. This rig-
orous approach was employed to prevent latent errors that could
compromise the reliability and stability of the integrated codebase,
since these errors occurred silently, without any apparent error
messages to alert us.

Moreover, a significant transformation was introduced in the
code responsible for allocating CPU resources to newly created
cgroups. In contrast to the previous methodology, which relied on
’cpu.weight’, our approach introduced the utilization of cpu.max’.

From a technical perspective, it would have been possible to re-
implement the instructions and system calls originally written in C
using Java. However, in the interest of code efficiency and pragmatic
simplicity, we chose to maintain the original C code, thus preserving
the majority of the existing code.

5.2 Java Modifications

In the context of the modifications within the main Graalvisor code-
base, the initial step involved the implementation of a straightfor-
ward extension. This extension facilitated the testing of the C de-
velopments, as discussed in Section 5.1, by enabling the invocation
of the new methods responsible for executing the C code. During
this stage, we conducted a comprehensive verification process to
ensure that both the main cgroup and the worker cgroups were
successfully generated and that they possessed the desired config-
urations. This validation process was critical for confirming the
seamless interaction between the Java code and the C code, as well
as the interaction between the C code and the underlying system.

5.2.1 Caching CGroups. The next phase of our implementation
journey involved the detailed development of cgroup cache logic, a
critical component in enhancing the efficiency of cgroup operations.
To meet this objective, we introduced a novel class, ’CgroupCache’,

6 « David Nunes

meticulously crafted to take on the multifaceted role of managing
various cgroup operations while placing a special emphasis on
cgroup caching mechanisms. This class contains the Java code that
calls the C code which we discussed in Section 5.1. CgroupCache
is responsible for managing various essential aspects of cgroup
operations. It orchestrates the entire life cycle of cgroups, which
encompasses the creation of the primary cgroup (as explained in
Section 2.2), and the subsequent creation, updating, and removal of
worker cgroups.

In addition, the constructor of this class incorporated a boolean
parameter, which was made configurable through the environment
variable use_cgroup_cache’. Graalvisor leveraged this parameter
to enable or disable the cache as needed. This flexibility was instru-
mental in facilitating the succeeding performance comparisons be-
tween the cached and uncached versions, enabling us to discern and
quantify the extent of any potential improvements achieved through
caching. Graalvisor underwent a specific modification where we
introduced an additional query parameter for function invocation."
This parameter represents the CPU quota required for the function’s
execution. This change ensured that during function registration,
the CPU quota information was associated and preserved for subse-
quent use.

To enable the deletion of cgroups following each function invo-
cation (in the uncached version), we established a tracking mecha-
nism to monitor which cgroups were handling specific threads. To
achieve this, we used a ConcurrentHashMap, utilizing thread IDs as
keys and cgroup IDs as corresponding values. This implementation
ensured that as threads were inserted into cgroups, this data struc-
ture was updated accordingly. When threads were subsequently
removed from cgroups, the associated key-value pairs were efli-
ciently removed from the structure. Finally, as mentioned in Section
4.3, we established another ConcurrentHashMap in which the CPU
quota of the cgroup served as the key. The corresponding value
was a CopyOnWriteArray that contained multiple cgroup IDs with
the same CPU quota.

5.3 Graalvisor Extension

As Graalvisor bootstraps, it is configured to consider the environ-
ment variable introduced in Section 5.2.1. This variable assumes bi-
nary values, where ’true’ signifies the activation of cgroup caching,
and ’false’ designates its deactivation, thereby dictating Graalvisor’s
behavior accordingly.

5.3.1 Uncached Version. The CgroupCache class will invoke the
C code responsible for creating the main cgroup structure, which
envelops the worker cgroups that are going to be created later
on. When a function is registered and invoked in Graalvisor, the
platform reads the CPU quota query parameter, creating a corre-
sponding cgroup, with the specified CPU quota, for that function,
and adding an entry to the structure that maps thread IDs to cgroup
IDs. When a function execution concludes, Graalvisor automatically
deletes the corresponding cgroup, removes the entry from the map,
and any new function invocations follow the same pattern, creating
and removing their respective cgroup.

5.3.2 Cached Version. This variant, which supports cgroup caching,
operates in a manner very similar to the uncached version previ-
ously discussed, but it introduces some key differences:

e After initializing and establishing the main cgroup structure
during startup, the CgroupCache class preloads the cache
by creating cgroups with frequently used CPU quotas. This
preloading prevents on-the-fly cgroup creation when func-
tion invocations occur.

e When a function execution occurs, it will operate within a
cached cgroup with a corresponding CPU quota, if such a
cgroup is present. Furthermore, this cached cgroup will be
removed from the cache while the function is in progress,
marking it as unavailable. This approach minimizes the need
to create new cgroups by reusing previously created ones.

e Regarding the deletion of the cgroups, contrary to the ver-
sion lacking cached cgroups, the cached variant follows a
different strategy. Instead of deleting the cgroup upon the
completion of a function’s execution, it is preserved and
reincorporated into our caching structure, as elucidated in
Section 4.3. As a result, forthcoming invocations that de-
mand an identical CPU quota can efficiently reutilize these
pre-existing cgroups, thus minimizing the need for creating
new ones and consequent delay.

Our cache operates with a lazy approach. To efficiently man-
age cgroup utilization, we’ve implemented a structure that maps
cgroups to thread IDs. When a function concludes its execution,
the cgroup it utilized is marked as available in the cache, but the
associated thread isn’t immediately removed. Instead, this informa-
tion is retained. When a new function execution requires a cgroup,
two scenarios arise:

o If the new function is running on the same thread that previ-
ously occupied the selected cgroup, the cgroup is promptly
marked as unavailable and removed from the cache.

e In cases where the new function is executed on a different
thread, the old thread is removed from the cgroup at this
point, allowing the new thread to be added to the cgroup
filesystem.

This strategy minimizes the need for unnecessary cgroup opera-
tions, resulting in more efficient cgroup utilization.

6 EVALUATION

In this section, we aim to provide an evidence-based analysis of how
well our system works and the extent to which it meets its intended
objectives, namely, maintaining consistently low latency for cgroup
management operations.

6.1 Benchmarks

To evaluate the performance of our proposed solution, we utilized a
set of four benchmarks, present in Section 3.3, three of which were
originally introduced in the Photons[5] paper. These benchmarks
have been subsequently employed in the Performance Isolation in
GraalVM Native Image Isolates[8] and will provide an appropriate
benchmark for our proposed caching approach. These benchmarks
provide a comprehensive and representative sample of the func-
tions commonly employed in current serverless technologies. They

include Hello World, Fibonacci, File Hashing, and Video Process-
ing, and represent both IO-intensive, mixed, and CPU-intensive
benchmarks. Each of these functions is registered as an HTTP re-
quest to the Graalvisor API, which, upon completion of the function
execution, returns a response to the client.

e Hello world: This benchmark exemplifies the most elemen-
tary and expedient type of function one can envision. In
this scenario, a basic program prints the iconic "Hello World’
string, and this string is subsequently returned to the user
as a response.

o Fibonacci: This benchmark demonstrates a CPU-bound
function tailored to calculate Fibonacci numbers. It receives
an integer representing the nth term of the Fibonacci se-
quence, specifically the 150th number, and calculates its
value. It serves as a model for applications with high com-
putational demands typically encountered in mathematical
and computational contexts

o File Hashing: This benchmark emulates data processing
tasks that often encompass file downloads and the simultane-
ous processing of data chunks. This benchmark is designed
to replicate the operations commonly encountered in diverse
applications where data is divided into smaller segments and
processed concurrently. Specifically, it simulates the process
of downloading a file, with the file used in this case having
a size of 41KB, from a local server. Following the download,
the benchmark proceeds to execute a hashing operation on
the acquired file.

e Video Processing: This benchmark mimics video process-
ing, simulating the process of downloading a portion of a
video and subsequently reducing its resolution. It effectively
represents the types of video processing and transformations
that are frequently implemented using serverless technolo-
gies in contemporary applications.

6.2 Evaluation environment

The experiments were conducted using a virtual machine hosted on
a computer running the Windows 11 Pro N operating system. The
host machine is equipped with an AMD Ryzen 5 3600 processor,
operating at 3.80GHz, comprising 6 cores (12 Logical Processors).
The virtual machine itself runs the Linux Ubuntu 22.04.3 LTS oper-
ating system. The virtualization was achieved through the Oracle
VM VirtualBox hypervisor, providing the virtual machine access to
4 out of the 12 logical CPU cores, and 12GB of memory out of the
32GB available in the host. However, it’s important to note that, as
our experiments were conducted within a virtualized environment,
there are certain factors related to the host operating system and
virtualization technology that are beyond our control and under-
standing. These factors may introduce overhead, variability, and
limitations that, albeit vastly limited, could impact the experimental
results such as CPU Fluctuations, Network Performance, Disk 1/O,
Memory Allocation, Hypervisor Overheads, or Clock Drift.

6.3 Metrics

The performance metrics that are of relevance to our research are
the utilization of CPU and the function execution times, which

CGroup Caching @ Graalvisor « 7

contain the latency of cgroup management operations, such as the
creation, deletion, and updating of cgroups:

e CPU Usage At first, we experimented with various CPU
quotas to verify that the functions executed within their
designated cgroups while utilizing only the allocated CPU
resources. Subsequently, we standardized these CPU quo-
tas to one full core for all functions in both the cached
and uncached variants. Our primary objective was to eval-
uate whether running Graalvisor with cached cgroups re-
sulted in reduced execution times compared to the uncached
cgroups version. Note that not all of the functions need a
full core of CPU, and we were able to see that only the
necessary amount was used.

e Function Execution Times The total processing time in
Graalvisor encompasses both function execution within a
cgroup and the time required for any essential cgroup man-
agement operations. In the warmup phase of the Graalvisor’s
cached version, the cache is populated with a set of cgroups.
Therefore, the sole additional overhead during function exe-
cution relates to the cgroup management operations when
they are necessary. On the other hand, the uncached ver-
sion dynamically generates and deletes a cgroup for each
function while simultaneously inserting a thread into the
respective cgroup. These factors ensure that the disparity
in execution times between the two variants primarily con-
sists of the cgroup management operations. Consequently,
our measurements exclusively account for the function’s
processing time on the server side.

6.4 CGroup Management Costs

To gain a comprehensive understanding of the costs associated with
cgroup management operations, we needed to measure the time
required for each of the operations. In that sense, we conducted
an experiment using a script that replicates and measures all the
essential cgroup operations performed by our solution to execute
a function within a cgroup, described in Section 2.2. The script
involves the following actions:

(1) Creating a cgroup

(2) Updating the cgroup’s allowed CPU

(3) Launching a dummy thread ("sleep 1")

(4) Inserting the formerly created thread into the cgroup
(5) Removing the cgroup once the thread ended executing

These steps were executed repeatedly, at various levels of concur-
rency, and using the collected timing data, we generated the graph
depicted in Figure 3.

Based on these findings, we can infer that the major cost fac-
tors in cgroup management operations lie within ’Cgroup adding;
which involves adding a thread to the cgroup, and ’Cgroup creation,
which pertains to the creation of the cgroup itself. Therefore, we can
expect to achieve improved function execution results by strategi-
cally mitigating or eliminating the impact of these time-consuming
operations.

8 « David Nunes

80000 - Wl Cgroup creation
m Cgroup setup
B Cgroup adding
EE Cgroup removing

70000 -

60000 -

50000 1

40000

Time (us)

300001

20000 -

10000

1 2 4 8
Concurrent invocations

Fig. 3. CGroup Management Operations Times.

6.5 Lazy Reclamation Results

The different types of functions were executed consecutively for
a specific number of tests, enabling the execution times to stabi-
lize and provide reliable values. Functions that had lower resource
consumption and quicker execution were subjected to a larger num-
ber of tests for accuracy, specifically 500 invocations for the "Hello
World’ and "Fibonacci’ functions, and 100 invocations for 'File Hash-
ing’ and "Video Processing’ functions. To enhance the quality of the
results and to evaluate the system during typical execution, we ex-
cluded the initial 10% of function executions, which can be affected
by system warm-up and may yield longer times. Subsequently, we
identified and removed any outliers from the dataset, resulting in
the data used for the plotted results below.

It is important to highlight that the subsequent plots for the
cached versions of the system are based on a lazy caching strategy.
This strategy optimizes resource utilization and updates cgroup
threads only when necessary, thereby minimizing overhead and
ensuring efficient operation.

Hello World Create Times Hello World Create Times

2000 2000
—— Cached CGroups —— No Cached CGroups
1750 - average: 217 1750 -~ average: 138
1500 max: 657 1500 max: 1010
- min: 84 ---- min: 108
1250 1250
7 7
El El
2 1000 2 1000
E E
= 750 = 750
500 500
0 =0 H.l”l i
o 0 I
i H 3 3 5 6 [100 200 300 400

Test number Test number

(a) Cached Version. (b) Uncached Version.

Fig. 4. Hello World CGroup Creation Times.

The graphs present in Figure 4 illustrate the cgroup creation
times for the "Hello World” function. We can see that performance
doesn’t change much, and that makes sense since the only thing
we are doing is creating the cgroups. One interesting observation
is that these times are considerably lower than those measured in

Section 6.4. While we lack concrete evidence, it’s plausible that
creating cgroups consecutively might make the latter ones more
efficient than the initial ones.

The graphs displayed in Figures 5, 6, 7 and 8 represent the process-
ing times of each function. The Y scale was adjusted, accordingly,
to contain the minimum and maximum values for each of them,
allowing an enhanced visualization and comparison.

Hello World Execution Times

Hello World Execution Times

70000 70000 T
—— Cached CGroups —— No Cached CGroups
60000 --=- average: 4347 60000 -- average: 10032
max: 7039 max: 71631
50000 --=- min: 3736 50000 ---- min: 3169
7 7
2 40000 2 40000
P o
E E
5 30000 5 30000
20000 20000
10000 10000 1t
Loaais i i "
0 100 200 300 400 [100 200 300 400

Test number Test number

(a) Cached Version. (b) Uncached Version.

Fig. 5. Hello World Execution Times.

Fibonacci Execution Times

90000 90000
—— Cached CGroups

Fibonacci Execution Times

—— No Cached CGroups

80000 ---- average: 4579 80000 -- average: 9595
70000 max: 6894 70000 max: 85983
- min: 3896 -- min: 3313
__ 60000 __ 60000
g Bl
< 50000 < 50000
o o

E 40000 E 40000
30000 30000
20000 20000

10000 10000 -

] 100 200 300 400 0 100 200 300
Test number Test number

(a) Cached Version. (b) Uncached Version.

Fig. 6. Fibonacci Execution Times.

Given the inherently swift execution of the "Hello World’ and
’Fibonacci’ functions, the benefits of avoiding cgroup creation and
deletion are more significantly noticeable. As illustrated in Figures 5
and 6, functions that operate with cached cgroups exhibit a notably
enhanced speed, experiencing, respectively, an improvement of
approximately 70% and 50% on average, compared to their uncached
counterparts.

Conversely, for functions with substantially prolonged execution
times, such as ’File Hashing’ and *Video Processing, as depicted in
Figures 7 and 8, the obtained benefits of bypassing cgroup creation
and deletion are notably less apparent, culminating in a relatively
minor speed increase of approximately 1.5% on average.

Despite the functions that are more time-consuming yielding
a less pronounced improvement in performance, it is essential to
acknowledge that they still derive advantages from utilizing cached
cgroups. The less apparent results are predominantly attributable
to the relatively minimal overhead incurred by cgroup management
operations. In essence, the time taken for these functions to execute
significantly surpasses the duration of the cgroup management
operations. Consequently, the marginal gains in execution time are
rendered less discernible.

515 166 File Hashing Execution Times 515 166 File Hashing Execution Times
—— Cached CGroups —— No Cached CGroups
5.16 5.16
---- average: 5010170 ---- average: 5075794
5.14 max: 5070374 5.14 max: 5134141
512 ---- min: 5004973 512 - min: 5037368
5510 5510
o o
E 5.08 E 5.08
5.06 5.06
5.04 AA 5.04
5.02 A A A i 5.02
NN
5.00 5.00
0 20 40 60 80 0 20 40 60 80
Test number Test number

(a) Cached Version. (b) Uncached Version.

Fig. 7. File Hashing Execution Times.

1e7 Video Processing Execution Times 1e7 Video Processing Execution Times
13 —— Cached CGroups 13 —— No Cached CGroups
---- average: 8025685 ---- average: 8171525
12 max: 8996042 12 max: 13462757
---- min: 7553411 ---- min: 7660681

time (us)

NI . .

A A "
08 IVl LD E AR AVAAS AN VAV AVAVAVANATS
o 20 40 60 80 0 20 40 60 80
Test number Test number

(a) Cached Version. (b) Uncached Version.

Fig. 8. Video Processing Execution Times.

6.6 Non-Lazy Reclamation Results

Figures 9, 10, 11 and 12 display graphs containing data from similar
experiments to the previous set, running under the same conditions
and for the same number of tests, but without utilizing the lazy
caching reclamation. In this non-lazy approach, after each thread
completes its execution, not only the associated cgroup with the
finished thread is removed from the cache but also the thread itself
is removed from the cgroup file, which adds two additional steps
to every function execution in the cached variant: removal and
re-addition of the thread to the cgroups.

Hello World Execution Times

50000
—— Cached CGroups
---- average: 4537
40000 max: 7200
---- min: 3903
g 30000
o
E
= 20000
10000
INEVSUFTRE VIR N 00 I U Lhewrk

0 100 200 300 400
Test number

Fig. 9. Hello World Execution Times.

In this experimental scenario, we can meticulously observe, as
evidenced in Figure 9, that the performance of the "Hello World’
function exhibited only marginal alterations when the lazy cache
reclamation was omitted from the equation.

CGroup Caching @ Graalvisor « 9

Fibonacci Execution Times

90000 '
—— Cached CGroups
80000 1 ——-- average: 10206
70000 max: 91157
---- min: 2876
__ 60000
E}
= 50000
£
£ 40000
30000
20000
10000 1 -
0 100 200 300 B 400

Test number

Fig. 10. Fibonacci Execution Times.

1e6 File Hashing Execution Times

5.18

5.16

5.14

5.12
5510 fofbes ALY —
o
E£5.08

5.06 1 —— cached CGroups

5.04 1 ~~~- average: 5097169 __

max: 5165694
5021 ____ min: 5038181
5.00
0 20 40 60 80

Test number

Fig. 11. File Hashing Execution Times.

1e7 Video Processing Execution Times

1.3 —— Cached CGroups
---- average: 7790887
1.2 max: 8258612
---- min: 7592060
a1l
3
£10
0.9
0.8 A il
0 20 40 60 80

Test number

Fig. 12. Video Processing Execution Times.

In contrast, when scrutinizing the execution times of the remain-
ing functions, specifically "Fibonacci’, ’File Hashing’, and "Video
Processing’, as illustrated in Figures 10, 11, and 12, a noteworthy de-
terioration in performance was detected when compared to the lazy
caching approach. In fact, these functions exhibited performance
levels similar to those of the uncached version. The precise cause
for this observation remains somewhat enigmatic. However, our
investigation pinpointed the issue, establishing a clear correlation
between the extended execution times and the process of inserting
and removing threads from the cgroups. Furthermore, it is plausi-
ble that the intricacies of the underlying evaluation environment,
characterized by virtual machine settings detailed in Section 6.2,
may have also influenced the results. To provide a comprehensive
explanation, we have deffer a more detailed analysis of this aspect
to forthcoming research efforts.

10 « David Nunes

6.7 Discussion

The evaluation of our cgroup caching solution demonstrates its
potential benefits, particularly the advantages of employing a lazy
caching approach. The results indicate significant performance im-
provements, with functions that have shorter execution times (ex-
pectably the majority of invocations) exhibiting the most noticeable
gains. The overall findings support the viability of cgroup caching
in optimizing resource management and reducing overhead, mak-
ing it a promising option for enhancing the efficiency and scalabil-
ity of serverless infrastructures. The lazy approach, in particular,
stands out as an effective strategy for reducing the impact of cgroup
management operations and improving function execution times.
However, it’s important to note that in contrast, the non-lazy cache
approach did not yield the same level of performance improvement.
These results suggest that the lazy cache reclamation strategy plays
a crucial role in achieving superior execution times. This approach
presents a promising direction for future optimization efforts, allow-
ing for more efficient and resource-conscious execution of serverless
functions within cgroups.

In a nutshell, a cgroup cache appears to be a strategy worth
considering as an addition to serverless infrastructure, with the po-
tential to significantly enhance performance and resource efficiency.

7 CONCLUSION

In this paper, we have delved deep into the realm of serverless
computing and its resource management challenges, particularly
focusing on cgroups and their associated management operations.
The overarching objective of this paper was to enhance the scalabil-
ity and performance of serverless infrastructures, specifically in the
context of cgroup management.

7.1 System Limitations and Future Work

It is vital to address the system’s limitations and implications for
future research. While the cgroup caching approach, particularly
the lazy variant, showed substantial advantages, it is important
to acknowledge that not all functions benefited equally. Functions
with longer execution times exhibited a less significant performance
boost, indicating that there is room for further optimization. The pri-
mary bottleneck appears to be related to the insertion and deletion
of threads from cgroups.

In light of these limitations, several promising avenues for future
research and optimization efforts present themselves. The following
areas deserve special consideration:

(1) Fine-tuning Caching Strategies: Future work could focus
on refining and tailoring the caching strategy to be more ef-
fective for functions with longer execution times. Strategies
to mitigate the performance impact associated with cgroup
management operations could be explored to ensure that all
functions, regardless of their runtime and resource usage,
derive benefits from the caching system.

(2) Evaluation in Diverse Environments: Our evaluations
were conducted within a specific virtualized environment,
which may not be entirely representative of real-world server-
less infrastructure. Future research should include diverse

environments, including cloud-based and on-premises se-
tups, to better understand how our caching solution per-
forms in various contexts.

(3) Comprehensive Benchmarks: Extending benchmark tests
to cover a wider range of functions and use cases will provide
more comprehensive insights into the effectiveness of the
caching approach.

(4) Resource Monitoring and Allocation: Exploring resource
monitoring and allocation mechanisms within the cgroup
hierarchy, especially in response to varying workloads and
the dynamic creation and deletion of cgroups, could help
improve the overall efficiency of cgroup caching.

7.2 Concluding remarks

Our findings strongly suggest that a cgroup cache is a valuable
strategy for enhancing the performance and resource efficiency
of serverless infrastructures. While the lazy caching approach has
shown substantial benefits, there remains room for optimization and
further research to address the limitations observed in our study.
By embracing these future directions, we can look forward to a
more resource-efficient and high-performing serverless computing
environment.

ACKNOWLEDGMENTS

I'want to express my deep gratitude to my parents and my brother for
their unwavering support, constant encouragement, and boundless
care throughout the years. Their enduring presence and belief in
me have been instrumental in making this project a reality.

I'd like to extend my appreciation to my dissertation supervisors,
Professor Luis Veiga and Professor Rodrigo Bruno, for their invalu-
able guidance, relentless support, the wealth of knowledge they’ve
shared, and for never giving up on me, providing me with all the
tools necessary for the completion of this thesis.

I'm compelled to offer my heartfelt gratitude to my girlfriend,
Bea, whose relentless presence and support have been the driving
force behind my ability to give my best effort in these recent months.
Her encouragement and help in overcoming personal life obstacles
have not only been a source of strength but have also contributed
to me becoming the best version of myself. I'm profoundly thankful
for her presence in my life.

Lastly, I want to convey my serious appreciation to my friends
and colleagues who have played a pivotal role in my personal devel-
opment and remained steadfast in their support over the past few
years.

I want to express my profound appreciation to all of you for being
a part of my journey as I complete this significant phase of my life.
Your presence and support have meant the world to me. Thank you
sincerely from the depths of my heart.

REFERENCES

[1] [n.d.]. RedHat - Resource Management Guide. https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_
guide/index

[2] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slominski,
and Philippe Suter. 2017. Serverless Computing: Current Trends and Open Problems.
Springer Singapore, 1-20. https://doi.org/10.1007/978-981-10-5026-8_1

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/index
https://doi.org/10.1007/978-981-10-5026-8_1

et

Rodrigo Bruno, Serhii Ivanenko, Sutao Wang, Jovan Stevanovic, and Vojin Jo-
vanovic. 2022. Graalvisor: Virtualized Polyglot Runtime for Serverless Applications.
arXiv:2212.10131 [cs.DC]

Karim Djemame, Matthew Parker, and Daniel Datsev. 2020. Open-source Server-
less Architectures: an Evaluation of Apache OpenWhisk. In 2020 IEEE/ACM
13th International Conference on Utility and Cloud Computing (UCC). 329-335.
https://doi.org/10.1109/UCC48980.2020.00052

V. Dukic, R. Bruno, Ankit Singla, and G. Alonso. 2020. Photons: lambdas on a
diet. Proceedings of the 11th ACM Symposium on Cloud Computing (2020). https:
//doi.org/10.1145/3419111.3421297

Nane Kratzke. 2018. A Brief History of Cloud Application Architectures. Applied
Sciences 8, 8 (2018). https://doi.org/10.3390/app8081368

Shanshan Li, He Zhang, Zijia Jia, Chenxing Zhong, Cheng Zhang, Zhihao Shan,
Jinfeng Shen, and Muhammad Ali Babar. 2021. Understanding and addressing

CGroup Caching @ Graalvisor « 11

quality attributes of microservices architecture: A Systematic literature review.
Information and Software Technology 131 (2021), 106449. https://doi.org/10.1016/j.
infsof.2020.106449

[8] Filipe Sousa. 2022. Performance Isolation in GraalVM Native Image Isolates. Master
Thesis. Instituto Superior Técnico. https://rodrigo-bruno.github.io/mentoring/
81120-Filipe- Sousa-dissertacao.pdf

[9] Jayachander Surbiryala and Chunming Rong. 2019. Cloud Computing: His-
tory and Overview. In 2019 IEEE Cloud Summit. 1-7. https://doi.org/10.1109/
CloudSummit47114.2019.00007

Received 31 November 2023; revised 31 November 2023; accepted 31 Novem-
ber 2023

https://arxiv.org/abs/2212.10131
https://doi.org/10.1109/UCC48980.2020.00052
https://doi.org/10.1145/3419111.3421297
https://doi.org/10.1145/3419111.3421297
https://doi.org/10.3390/app8081368
https://doi.org/10.1016/j.infsof.2020.106449
https://doi.org/10.1016/j.infsof.2020.106449
https://rodrigo-bruno.github.io/mentoring/81120-Filipe-Sousa-dissertacao.pdf
https://rodrigo-bruno.github.io/mentoring/81120-Filipe-Sousa-dissertacao.pdf
https://doi.org/10.1109/CloudSummit47114.2019.00007
https://doi.org/10.1109/CloudSummit47114.2019.00007

	Abstract
	1 Introduction
	2 Background
	2.1 Evolution of Cloud Architectures
	2.2 CGroups

	3 Related Work
	3.1 Photons
	3.2 Performance Isolation in GraalVM Native Image Isolates
	3.3 Graalvisor
	3.4 Analysis and Discussion

	4 Solution Architecture
	4.1 Overview
	4.2 Cgroup cache integration
	4.3 Cgroup data structure

	5 Implementation
	5.1 C Modifications
	5.2 Java Modifications
	5.3 Graalvisor Extension

	6 Evaluation
	6.1 Benchmarks
	6.2 Evaluation environment
	6.3 Metrics
	6.4 CGroup Management Costs
	6.5 Lazy Reclamation Results
	6.6 Non-Lazy Reclamation Results
	6.7 Discussion

	7 Conclusion
	7.1 System Limitations and Future Work
	7.2 Concluding remarks

	Acknowledgments
	References

