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Abstract

As institutions scale in size and operational complexity, the need for responsive, targeted, and config-
urable communication systems becomes increasingly critical. The CERN Notifications System was de-
signed to fulfill this role across CERN'’s diverse and high-demand environment, enabling multichannel,
user-customizable notifications. However, performance limitations, particularly in scenarios involving
large-scale message dissemination, threaten the system’s responsiveness and scalability. This dis-
sertation addresses these limitations through a focused performance analysis of the system’s routing
component, the segment responsible for message expansion, targeting logic, and delivery preparation.

To support this work, a detailed tracing-based performance analysis was conducted. Using Open-
Telemetry for instrumentation and Jaeger as a backend, the system was profiled under controlled work-
loads simulating real-world notification patterns. This empirical evaluation provided insight into the sys-
tem’s runtime behavior, revealing areas of inefficiency and informing targeted optimization strategies.

Informed by the trace data, a set of prototype code-level optimization proposals was put forth. These
include the introduction of caching mechanisms, parallel execution via thread pools, and the adoption
of set data structures to replace list-based operations. Additionally, an outdated external API integration
was modernized and parallelized to further reduce latency during group resolution.

The combined improvements were discussed for their expected impact on system performance and
latency. This work strengthens the CERN Notifications System’s ability to meet future demand and of-
fers practical guidance on trace-driven optimization and instrumentation strategies in distributed, event-

driven architectures.
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1.1 Context and Motivation

The CERN Notifications System was initially developed as part of the MALT project [1], which aimed
to reduce CERN’s dependency on commercial software and promote internally developed, flexible, and
maintainable services. Within this context, the need arose for a unified, extensible platform to manage

the dissemination of information across CERN'’s vast and diverse organizational landscape.

What began as a component initiative soon matured into a standalone service, CERN Notifications,
dedicated to enabling structured, targeted communication across the institution. The service provides
a centralized and programmable notification infrastructure that allows internal services and teams to
deliver messages to individuals or groups through multiple channels, such as email, SMS, push, and

messaging platforms.

CERN's large, dynamic, and heterogeneous community, comprising researchers, technical staff, sup-
port services, and external collaborators, generates a continuous and high-volume flow of information.
Managing this information effectively is essential for productivity, coordination, and operational respon-
siveness. Traditional communication mechanisms, such as global emails or ad-hoc messaging, often
suffer from a lack of targeting refinement, configurability, and overload control, which can result in mes-

sages being ignored, relevant information becoming buried, taking a toll on user focus.

The CERN Notifications System addresses this gap by offering a user-configurable interface where
individuals can choose how, when, and through which devices they receive messages. This design not
only improves user agency but also reduces information fatigue and facilitates organizational coordina-

tion.

The service exposes a documented and public APl and empowers other internal applications and
workflows to integrate the notification capabilities without the need to replicate core logic, streamlining

development and promoting consistency across the ecosystem.

This has led to widespread adoption across CERN, with several teams relying on it for operational
and user-facing communication. It has also effectively taken over duties from older systems which have
been decommissioned, such as the CERN Alerter, positioning itself as the de facto standard for event-

based messaging at the institution.

As its usage and importance continue to grow, so do the performance and scalability demands placed
on it, particularly under scenarios that involve delivering time-sensitive messages to large user popula-
tions. This dissertation is motivated by the need to enhance the responsiveness and performance of the
CERN Notifications system as a whole, particularly in scenarios requiring fast, large-scale message dis-
semination. Through analysis, a key contributor to system latency was identified, the routing component,

making it the primary focus for performance analysis and design of optimizations in this work.



1.2 Problem Statement

While the CERN Notifications System has matured into a widely adopted and operationally critical ser-
vice, the increasing volume, complexity, and urgency of communication use cases have revealed perfor-
mance limitations that must be addressed to maintain responsiveness and reliability.

The architecture of the system is event-driven and modular, but one of its key components, the router,
has become a bottleneck in scenarios involving large-scale message expansion and delivery. This layer
is responsible for determining which users should receive a given notification. As usage patterns evolve
to include high fan-out notifications and increasingly complex targeting logic, the current implementation
begins to show signs of strain.

These issues do not manifest uniformly but become particularly problematic in time-sensitive events,
such as safety alerts, system incidents, or emergency broadcasts, where delivery delays can undermine
the purpose of the communication.

Thus, the core problem addressed in this dissertation is the routing component’s inability, in its cur-
rent form, to meet the system’s evolving performance requirements, especially under critical workloads.
Assessing the sources of bottlenecks in this layer and designing optimizations to address them is nec-
essary to ensure that CERN Notifications remains scalable, responsive, and reliable as its operational

footprint continues to expand.

1.3 Proposed Solution

This work proposes a structured, data-driven approach to designing performance optimization avenues
for the CERN Notifications System, with a focus on optimizing the routing component, the most latency-
sensitive part of the pipeline in large-scale notification scenarios.

Central to this effort is a comprehensive performance analysis, which forms the foundation of the
proposed improvements. Leveraging distributed tracing, in particular through OpenTelemetry instru-
mentation and Jaeger-based visualization, detailed execution traces were collected across a range of
test cases simulating real-world workloads. This process enabled the identification of key bottlenecks,
such as expensive group resolution calls, redundant per-user operations, and serial execution paths that
could be parallelized.

The proposed solution designs are not a redesign of the system architecture, but rather targeted
optimizations of code paths based on empirical evidence. The core interventions include: instrumented
trace collection and analysis, caching mechanism implementation, thread-based parallelization, switch
to set-based operations, and reworking external service API endpoint usage.

These strategies were selected because they directly address the dominant contributors to latency



observed in the trace data. The optimizations are designed to preserve system correctness and compat-

ibility while significantly improving the system’s ability to handle time-sensitive, large fan-out notifications.

1.4 Contributions

This dissertation makes several contributions across analysis, optimization, and methodology, aimed at

improving the performance and scalability of the CERN Notifications System:

+ Tracing Technology Evaluation - This work includes an evaluation of tracing technologies suited
for integration into the CERN Notifications System. Several distributed tracing frameworks and
backends were taken into consideration, such as Jaeger, Zipkin, SigNoz, and others, alongside
the OpenTelemetry standard. The decision to adopt OpenTelemetry and Jaeger was grounded in
technical fit, openness, and alignment with CERN'’s broader ecosystem. This selection process

serves as a reusable reference for similar instrumentation efforts.

« Controlled Tests for Execution Profiling - A series of structured test cases was developed to simu-
late different routing execution scenarios and workloads. These controlled tests enabled system-
atic profiling, supporting the identification of latency hotspots, such as those triggered by wide-

reaching information dissemination.

» Code-Level Performance Optimization - Prototype solution proposals were designed to address
several performance bottlenecks identified through trace analysis. Optimization techniques in-
cluded caching (e.g., memoized group resolution), parallelism using threaded pools, and replacing
inefficient data structures (e.g., sets over lists). These interventions directly targeted critical per-

formance paths in the routing logic.

 Impact Analysis - Theoretical and practical performance implications were analyzed, particularly
in the context of 1/0-bound and multithreaded workloads. The discussion is framed around the
demands of latency-sensitive systems, such as large-scale notification delivery under tight time

constraints.

+ Guidance for Future Work - This work exemplifies a structured approach to performance engi-
neering in message-oriented systems. It also outlines considerations and directions for continuing
performance-focused development.

1.5 Document Structure

The remainder of this document is organized as follows:



Chapter 2 - Related Work surveys prior research relevant to this dissertation, focusing on notifica-

tion delivery architectures and performance analysis techniques such as tracing and profiling.

Chapter 3 - Current Architecture - CERN Notifications describes the CERN Notifications System
with a focus on its component layout, data flow, and architectural considerations relevant to perfor-

mance under high load.

Chapter 4 - Performance Assessment and Analysis presents the experimental methodology and
the assessment of tracing-based profiling under different workload scenarios. It identifies key
latency contributors and behavioral patterns, and presents prototype solution proposals for each

of the key issues identified.

Chapter 5 - Conclusion and Future Work summarizes the key findings and contributions, and

outlines opportunities for further optimization and research.
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Understanding the foundations and context of this work requires examining both the evolution of
systems for information distribution and the methods available for analyzing and improving their per-
formance. This chapter reviews previous efforts in the design of notification and publish-subscribe ar-
chitectures, highlighting their strengths and limitations in supporting real-time, scalable delivery. It also
surveys relevant research on how profiling and tracing tools can be used to assess system behavior
and guide optimization. Together, these areas inform the technical choices and strategies applied in this

project.

2.1 Web Syndication and Information Distribution

Web syndication refers to the practice of making digital content available for reuse and redistribution
across different platforms or services. It enables the decentralized dissemination of information from a
central source to multiple consumers, allowing users or applications to receive updates without manual
intervention. This model is foundational for scalable content delivery on the internet and is commonly
used in contexts such as news delivery, blogs, software updates, and notifications. Syndication protocols
provide standardized formats for describing and exchanging content, forming the conceptual basis for

technologies like RSS.

RSS

RSS (Really Simple Syndication) [2] emerged as one of the earliest methods for automated content
distribution across the web. Designed primarily for syndicating blog updates and news headlines, RSS
offered a lightweight and decentralized mechanism for publishing and consuming information. In the
context of institutions like CERN, RSS was initially adopted due to its simplicity, open standards, and
wide client support across operating systems and browsers. It required minimal infrastructure to im-
plement, making it an attractive option for early-stage dissemination of institutional updates, alerts, and
announcements.

CERN’s first dedicated notification system, CERN Alerter, was built upon this model by leveraging
structured polling mechanisms to notify users of updates. Although effective in its time, this approach
soon revealed substantial limitations, particularly as the scale and complexity of communication needs
at CERN grew.

Fundamentally, RSS operates on a pull-based architecture. Clients must periodically poll the server
to check for updates, introducing latency and inefficiency. This polling interval is fixed on the client side
and cannot adapt dynamically based on urgency or priority of information. As a result, time-sensitive
notifications may be delayed until the client performs its next fetch cycle. This makes RSS poorly suited

for real-time communication or alerting systems, where immediate delivery is critical.



Moreover, the polling model leads to wasteful resource usage; even in the absence of new updates,
clients continue to query servers at regular intervals, consuming unnecessary bandwidth and compute
resources on both the client and server side. This becomes increasingly problematic at scale, where
thousands of clients may be checking the same feed repeatedly, creating artificial load on backend
services.

RSS is also stateless and broadcast-oriented, meaning it does not provide built-in support for per-
sonalization, access control, or selective targeting of recipients. It lacks any mechanism to differentiate
delivery based on user preferences, device types, or notification priorities. Every subscriber receives the
same payload, regardless of relevance or context. In a heterogeneous institution like CERN, composed
of various teams, hierarchies, and user roles, such a one-size-fits-all model quickly becomes inadequate.

Another limitation lies in platform integration. While initially implemented with a Windows-centric
design, CERN Alerter [3] eventually encountered challenges adapting to a modern, cross-platform com-
puting environment. As Linux, macOS, and mobile platforms became more prevalent among CERN
personnel, maintaining compatibility and consistent behavior across systems became increasingly com-
plex.

Together, these shortcomings underscore the need for a more reactive, scalable, and user-configurable
notification framework [4]. The shift away from RSS-based polling towards push-based, event-driven
mechanisms reflects a broader industry trend that prioritizes responsiveness, precision, and flexibility,

attributes that have become essential in modern messaging and alerting systems.

Publish-Subscribe Systems and Event-Driven Architectures

As communication requirements within large-scale, dynamic environments like CERN outgrew the limi-
tations of polling-based approaches, publish-subscribe (pub/sub) systems emerged as a more scalable
and flexible alternative for distributing information [5]. Unlike RSS, which relies on periodic client-side
polling, pub/sub architectures support push-based messaging, where publishers emit messages that
are immediately propagated to interested subscribers. This decoupling of producers and consumers of
data is a defining characteristic that makes pub/sub systems inherently more scalable and responsive.
In the topic-based pub/sub model, which is the most widely adopted variant, messages are cate-
gorized under named topics. Subscribers express interest in specific topics, and the system ensures
that only messages related to those topics are delivered to them. This model is exemplified by sys-
tems such as MQTT, Apache Kafka, and Google Cloud Pub/Sub [6]. These systems are optimized for
high-throughput event streaming and offer features such as message retention, delivery guarantees,
and consumer group coordination. While highly performant, topic-based systems are limited in their
expressiveness, they require the publisher and subscriber to agree a priori on the topic structure and

cannot perform dynamic, context-aware content filtering.
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To address this, content-based pub/sub systems were proposed [7]. In this model, subscribers
specify conditions over message content itself, rather than subscribing to predefined topics. The system
evaluates these conditions at runtime and delivers only messages that satisfy them. Content-based
pub/sub introduces significantly more computational overhead, particularly at the broker, which must
evaluate each message against potentially complex subscriber predicates. As a result, while more
flexible, content-based systems often suffer from reduced throughput and increased latency, especially

in high-volume environments.

More advanced implementations, such as distributed event notification services, take these models
further by distributing the pub/sub infrastructure across nodes to enhance fault tolerance, scalability,
and locality. Google Pub/Sub, for example, offers a globally distributed messaging system that supports

event-driven architectures with at-least-once delivery semantics and high availability guarantees.

In the context of CERN, pub/sub architectures offer clear advantages for systems like CERN Notifica-
tions. They allow decoupled services to interact asynchronously, enabling modular design and improved
resilience. The system can support diverse publishers, ranging from internal applications to monitoring
agents, without requiring explicit knowledge of downstream subscribers. Similarly, multiple consumers
(e.g., email delivery agents, SMS services, push notification modules) can independently subscribe to

notification events without impacting core logic.

However, it is also important to recognize the limitations of off-the-shelf pub/sub models when applied
to more complex routing and user-preference scenarios. For example, CERN Notifications incorporates
rich routing logic that takes into account user preferences, mutes, group membership intersections, and
delivery context (e.g., device type priority). Such decisions often require stateful access to user metadata

and context-aware processing that is difficult to express purely through pub/sub semantics.

Moreover, pub/sub systems typically treat all messages equally and do not inherently provide sup-
port for priority-based delivery, rate-limiting, auditing, or replay semantics that may be required in high-
assurance notification systems. Queue-based or workflow-based processing layers are often required

to fill this gap.

Consequently, while pub/sub architectures form a conceptual backbone for the notification delivery
flow at CERN, they are complemented by custom routing components that interpret and act on mes-
sage content, user state, and delivery policies in ways that exceed what is supported by traditional
pub/sub infrastructure. This hybrid design reflects a pragmatic engineering approach: leveraging proven
paradigms like pub/sub for transport and decoupling, while retaining flexibility through domain-specific

routing logic.
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WebSub: A Modern Push-Based Alternative

WebSub, formerly known as PubSubHubbub, is a standardized protocol developed by the W3C to enable
real-time content delivery on the web using a push-based model [8]. It was introduced as a more modern
alternative to RSS and Atom feeds, addressing the primary shortcomings of polling, namely latency,
server load, and inefficiency. Instead of relying on clients to repeatedly check for new content, WebSub
introduces a publish-subscribe mechanism using webhooks to notify subscribers as soon as new data
is available.

The protocol operates with three core roles: the publisher, who owns the content (e.g., a website
or service), the subscriber, who wants to be notified of updates, and the hub, which acts as a mediator
between the two. When content changes, the publisher notifies the hub, which then send HTTP POST
requests to all registered subscribers, delivering content directly to their endpoints. This architecture
ensures timely delivery and significantly reduces redundant polling traffic, making WebSub an efficient
and lightweight solution for real-time content syndication.

Despite its advantages, WebSub is not a viable candidate for addressing the requirements of a
complex, institution-wide notification infrastructure like CERN Notifications. The system at CERN is
designed not merely to push content, but to route messages intelligently, based on a rich set of user-
defined rules, delivery contexts, group intersections, and dynamic filtering. WebSub provides no built-in
support for such intermediate decision-making logic. Once the publisher emits an update, it is blindly
delivered to all subscribers by the hub, with no opportunity for fine-grained control over who should
receive the notification, how, or under what circumstances.

Another limitation of WebSub is its heavy reliance on HTTP endpoints as delivery channels. CERN
Notifications must support a diverse range of delivery mechanisms, including SMS, email, push no-
tifications, and message services (e.g., Mattermost), each with its protocol, failure behavior, and de-
livery guarantees. WebSub’s webhook-only design is inherently for supporting non-HTTP clients or
low-connectivity delivery contexts. For instance, delivering critical alerts via SMS to a subset of users
requires access to specialized gateways, prioritization, and user-preference logic that falls far outside
WebSub’s design scope.

Additionally, security and access control are critical in enterprise-grade notification systems. While
WebSub supports some verification mechanisms, it lacks the robust identity, permission, and auditing
models required in environments like CERN, where group membership and channel ownership must be
enforced rigorously. Integrating WebSub into such an ecosystem would necessitate extensive additional
infrastructure to replicate these access checks.

From an engineering and deployment standpoint, WebSub also introduces centralization through its
hub dependency, which can become a bottleneck or single point of failure. For systems aiming at high

reliability, auditability, and fault isolation, this introduces operational risks that must be carefully mitigated.
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CERN Notifications favors a pipeline-based architecture built around decoupled services and internal
queues, which offer more flexible error handling and buffering capabilities than the direct webhook push
model used in WebSub.

While WebSub represents a notable evolution in real-time web communication and addresses many
of the inefficiencies of RSS, its simplified architecture and HTTP-centric delivery model make it poorly
suited for high-complexity, multi-protocol, user-configurable notification systems like that in use at CERN.

The progression from early polling-based systems like RSS to modern publish-subscribe and push-
based architectures reflects an industry-wide push toward real-time, scalable, and user-responsive com-
munication models. RSS provided a simple entry point but lacked efficiency and adaptability for dynamic
environments. Publish-subscribe models improved scalability and decoupling but often did not meet ad-
vanced delivery and routing needs. Similarly, WebSub introduced a real-time delivery via webhooks but
fell short in supporting protocol diversity and dynamic user-side control. The CERN Notifications Sys-
tem draws inspiration from these foundational models, adopting the decoupling and scalability principles
of pub/sub and the responsiveness of push-based architectures, while layering additional routing logic,
user configurability, and protocol-specific handling to meet the institution’s unique operational and tech-
nical requirements. In doing so, it bridges the gap between general-purpose messaging infrastructure

and domain-specific platform tailored to CERN’s communication demands.

2.2 System Profiling and Performance Optimization

Publish-subscribe systems must balance functionality with performance. While topic-based architec-
tures [5] avoid the computational overhead of content-based filtering, advanced features like priority
handling and multiprotocol delivery introduce additional broker-side logic. This work focuses on optimiz-
ing these routing mechanisms to reduce latency while maintaining system flexibility.

Effective optimization requires a structured approach:

+ Performance characterization through instrumentation to identify critical paths

* Bottleneck analysis to distinguish essential operations from incidental overhead
» Targeted intervention using appropriate optimization techniques

Tracing is a widely adopted mechanism in modern systems for performance analysis. It enables
developers to collect fine-grained temporal data about system behavior across services. The feasibility
and benefits of distributed tracing in production environments have been recognized for some time, with
foundational systems like Google’s Dapper [9] laying the groundwork for modern tracing architectures.

Building upon this model, the OpenTelemetry project has emerged as the de facto industry stan-

dard for observability instrumentation. It is an open-source project under the Cloud Native Computing
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Foundation (CNCF) and is actively maintained and adopted by a broad range of organizations, includ-
ing Google, Microsoft, Amazon, and many others [10]. OpenTelemetry [11] provides vendor-agnostic
APls and SDKs for capturing metrics, logs, and traces, enabling comprehensive insight into system
performance with minimal vendor lock-in.

To make use of tracing data, observability platforms provide storage, indexing, visualization, and
query capabilities for distributed traces. These platforms allow developers to analyze the flow of execu-
tion across services, detect performance bottlenecks, and diagnose issues.

Commercial and managed observability solutions such as Splunk, Datadog, and Grafana Tempo of-
fer integrated platforms combining tracing, logging, metrics, alerting, and automated anomaly detection.
However, these solutions are not aligned with the open-source, interoperable, and vendor-neutral phi-
losophy followed by this project and many initiatives at CERN. Consequently, commercial tools are not
considered viable candidates for integration.

Instead, attention is given to open-source distributed tracing systems, which allow full control over
deployment and integration. Numerous open-source options have been developed in recent years,
varying in architecture, features, and maturity. A recent comparative study [12] reviews over 30 such

tools and highlights the diversity in tracing capabilities and implementations.

Jaeger

Originally developed at Uber, Jaeger is a distributed tracing platform now maintained under the Cloud
Native Computing Foundation (CNCF) [13]. It was created to support high-scale, production-grade
tracing for microservices and event-driven systems. Jaeger offers a full set of features for trace ingestion,
storage, visualization, and querying, along with built-in support for service dependency graphs and
latency breakdowns. Jaeger’s architecture is modular and flexible; it can operate with various backends
(e.g., Elasticsearch, Kafka) and can scale horizontally, making it well-suited for large-scale environments.
Jaeger’s native support for OpenTelemetry instrumentation is a critical asset. As OpenTelemetry
becomes the standard for observability APls and SDKs, Jaeger is designed to seamlessly ingest and
visualize these traces. This compatibility reduces integration overhead and promotes future-proofing.
Its maturity, active community, and alignment with open standards made Jaeger a leading choice
for integration into CERN’s infrastructure, especially considering the existing familiarity and compatibility

with other CNCF tools already deployed in the ecosystem.

Zipkin

Zipkin is one of the earliest distributed tracing systems, inspired by Google’s Dapper and originally devel-

oped by Twitter [14]. It implements the core concepts of tracing, including span collection, propagation,
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and visualization, using a simple architecture. While Zipkin is effective for tracing latency across mi-
croservices, its development has slowed relative to newer tools. lts support for OpenTelemetry is partial
and not as comprehensive as that of Jaeger or SigNoz.

Zipkin excels in simplicity and low overhead, and can be easily deployed with minimal configuration.
However, it lacks advanced features such as built-in support for high-cardinality tagging, dynamic sam-
pling strategies, and flexible backend integrations. These limitations make it less suitable for high-scale
or feature-rich observability pipelines, especially in heterogeneous infrastructures like CERN’s.

Zipkin may still be useful for lightweight systems or development environments where overhead is
a primary concern. However, for production-grade usage and advanced trace analytics, more modern

systems offer richer functionality.

SigNoz

SigNoz is a relatively new open-source observability platform [15] built natively around OpenTelemetry.
It positions itself as a full-stack solution for logs, metrics, and traces, aiming to be a drop-in alternative
to proprietary platforms like Datadog or New Relic. SigNoz offers an integrated Ul, supports structured
logs and time-series metrics, and features a modern query language for trace analysis.

One of SigNoz’s main advantages is its developer-oriented dashboard, which provides out-of-the-box
insights into system performance. It simplifies the correlation of traces, metrics, and logs in one place,
which can be helpful for unified observability workflows.

However, the platform is still maturing. Its community, while growing, is smaller than that of Jaeger,
and certain features, such as alerting granularity, plugin support, may not yet be as robust. Given
CERN'’s production reliability needs and the importance of long-term maintainability, SigNoz was con-

sidered promising but not yet stable enough for critical integration.

Among these solutions, Jaeger was evaluated as a strong candidate for integration within CERN’s mon-
itoring infrastructure [16]. lts scalability, open-source nature, and native support for OpenTelemetry
make it well-suited for large-scale, distributed environments such as those at CERN. The choice of
OpenTelemetry + Jaeger aligns with the engineering principles and pragmatic practices followed by
this project and many others at CERN, namely, leveraging vendor-neutral, open technologies that are
already present in the ecosystem. This not only reduces integration overhead but also facilitates long-
term maintainability and adoption, as it builds upon technologies that are familiar and supported within
the organization’s infrastructure landscape.

Moreover, this evaluation and adoption process contributes to advancing the observability capabilities
of the system, an increasingly critical attribute for operating reliable, complex infrastructures. Observ-

ability is more than just monitoring, it is about designing systems that enable engineers to understand
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internal states through external outputs [17] [18]. By integrating tracing at the core of the routing logic’s
optimization workflow, this work reinforces observability as a first-class concern, supporting maintain-

ability, ease of debugging, and future scalability.

The tracing-analysis methodology is further validated by recent studies that demonstrate how trace
data can be used to gain actionable insights into system performance. Shahedi et al. (2024) [19] explore
statistical models for profiling and regression detection using trace-based instrumentation, showing that
performance-critical sections can be isolated without needing to analyze the entire trace corpus. Ezzati-
Jivan et al. (2021) [20] introduce DepGraph, which uses software traces and dependency graphs to
identify waiting dependencies and thread-level bottlenecks in multicore systems. It exemplifies how
trace-based control flow analysis can expose concurrency bottlenecks and local performance issues

within larger systems.

In microservices settings, Ibidunmoye et al. (2022) [21] applied NLP to distributed trace data to detect
anomalies and performance outliers, reinforcing the analytical value of this telemetry stream. Techniques
such as critical path tracing, as described by Alizadeh et al. (2022) [22], aggregate repeated trace pat-
terns to identify the most impactful execution paths—those contributing most to latency across multiple
transactions. Similarly, in data stream processing contexts, Ostermann et al. (2019) [23] demonstrate
how adaptive tuning of execution behavior based on trace insights leads to meaningful performance
gains.

Basing performance improvement efforts on tracing or profiling has become a recurring approach
across both research and practice. By analyzing these traces, it becomes possible to identify hot
paths—sections of code that consistently account for a disproportionate share of total execution time.
Distributed tracing makes it possible to correlate latency spikes with specific inputs, decisions, or interac-
tions across the stack, including synchronous blocking calls, external queues, databases, or APIs. This

enables precise bottleneck identification and provides a principled foundation for optimization decisions.

This work follows that model, using trace data not only to observe behavior but also to guide and

justify targeted optimization efforts.

Profiling and tracing have become indispensable for understanding performance in complex dis-
tributed systems. Modern approaches have moved beyond basic metric collection to embrace distributed
tracing, which provides visibility into inter-service interactions, latency sources, and resource bottle-
necks. Tools like OpenTelemetry and Jaeger offer vendor-neutral, extensible observability pipelines
well-aligned with open infrastructure principles such as those followed at CERN. The shift toward trace-
based performance analysis is supported by research demonstrating how detailed execution paths en-
able more accurate optimization efforts, especially in systems where performance variability can have
critical consequences. This perspective positions tracing not as an ancillary monitoring concern, but as a

core part of the engineering process. For CERN’s Notifications System, integrating tracing into the rout-
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ing pipeline allows the system to be understood, measured, and improved in a principled, data-driven

way, aligning with both operational requirements and modern observability best practices.
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Figure 3.1: Existing Architecture

This chapter presents the architecture of the CERN Notifications system [24], outlining its core com-
ponents, their roles, and how they interact to fulfill the service’s objectives. Designed as a modular,
event-driven system, it spans from the user-facing web interface to the backend logic, routing and de-
livery pipeline, and supporting services such as identity management, message queues, storage, and
auditing. The architecture prioritizes reliability, scalability, and configurability, with clear separation of
responsibilities across components. The following sections describe the high-level structure with the aid

of a diagram, and then focus on the most relevant elements and design considerations.

3.1 Architecture Overview

The CERN Notifications service is built as a modular and decoupled platform for delivering targeted
messages to users and systems. Its architecture aims for flexibility, maintainability, and scalability. The
system is composed of several components that interact over a message-oriented middleware infras-
tructure. Figure 3.1 is an architecture overview.

At the user-facing layer, a web interface provides the main point of interaction, allowing users to

interact with the service and perform a suite of actions such as: configure channels, their preferences
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and devices, send notifications, etc. The web portal communicates with the backend via a RESTful API.

The backend server, illustrated as the "REST API” component in the figure 3.1, serves an API that
users and systems can consume. The backend is responsible for checking the authorization on the
request and validating it before fulfilling it. It handles all interactions with the system’s database when
applying operations on channels, notifications, preferences, devices, etc. When a request to send a
notification is received, the backend carries out any logical processing, audits any relevant changes,
and adds a message to the router message queue.

The router is the component that carries out a very logic-intensive part of the processing pipeline. It
is responsible for taking the notification message and its targets and applying multiple types of filtering
logic. This includes expanding groups to users, resolving memberships, applying preferences, and
taking mutes into account to arrive at the final user target list. The routing logic can transform a single
notification into thousands of individualized messages, each of which is handed off for delivery by the
dedicated consumer component via their respective message queues.

Each consumer component is tailored to a specific delivery medium such as email, SMS, push noti-
fications, or chat platforms. The consumers retrieve messages from their queues, prepare the payload,
and execute delivery to the respective endpoints.

Persistent state is stored in a PostgreSQL database, which is managed by CERN’s storage infras-
tructure. It holds all information regarding user and channel definitions, user preferences and mutes,
notifications, and other metadata required for the proper functioning of the system. An etcd-based
key-value store is used both to maintain an auditable trace of operations and to provide deduplication
functionality, ensuring that no operation is unintentionally repeated during error recovery.

At CERN, identity and group management is handled by a centralized identity service that maintains
authoritative records for all accounts, their associated identities, and their group memberships. This
service plays a fundamental role in enforcing access control and resolving group-based permissions
across the infrastructure. It plays an essential role in determining which users belong to a given group
or channel, and therefore, who should receive specific communications. As an external component, this
identity service is accessed programmatically through a dedicated API, which enables system compo-

nents, most notably the backend and routing, to query account and group information.

3.2 Architecture Considerations

While the overall system architecture is designed to be modular and scalable, specific performance
considerations apply to each component. The backend server is built using Node.js [25] and benefits
from its event-driven, non-blocking 1/0 model, allowing it to efficiently handle large volumes of concurrent

requests. Most operations initiated at this level, such as database queries or queue insertions, are
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lightweight and asynchronous, which keeps the response latency low even under significant load.

The consumer components, responsible for the final delivery of notifications to end devices, are
designed in such a way that horizontal scaling is possible. Since each message item in their input
queues is independent, multiple consumer instances can be deployed to parallelize the processing load.
This is particularly effective in high-traffic situations, where increasing the number of workers directly

improves throughput without introducing complexity or inconsistency.

In contrast, the Python-based routing component presents unique performance challenges. Although
it also consumes from a queue, its processing workload is logic-intensive and may involve expanding
group memberships into thousands of individual recipients, applying filtering rules, and making network
requests. These operations are inherently stateful and tightly coupled. Horizontal scaling would help in
dealing with situations with a high amount of notifications being sent. In the case that a notification is sent
to a large or deeply nested group (i.e, one notification targeting a large portion of the community), the
router becomes a bottleneck. As such, this component requires more targeted optimization strategies,

which are explored in the following chapters.

To better understand the internal mechanics of the system and the expansion process involved, con-
sider the flow of a notification targeting a group, as represented on 3.2. The backend server received
a request to send a notification. It handles the request by validating the input, checking permissions,
recording an audit entry, and making the relevant changes in the database. It then inserts a single
message into the router message queue. This message is picked up by the router, it expands the
group into its individual members. To do so, it queries the external identity service to resolve the group
memberships and retrieve the relevant user accounts. For each user, the system determines the ap-
plicable delivery preferences and associated devices. This can lead to multiple delivery methods per
user, such as email, SMS, or other supported channels, resulting in several distinct message objects
per user. These messages are then individually enqueued in the appropriate queues corresponding to
each consumer type. Each consumer processes and delivers the messages according to its specific
mechanism. From a single input notification, this process can result in a substantial number of final

delivery messages, highlighting the expansion in workload introduced by group-based targeting.

This architectural analysis reinforces the rationale for focusing optimization efforts on the router com-
ponent, particularly in light of the broader goal of improving the system’s responsiveness in critical
communication scenarios. As established in the problem statement in Chapter 1, the main concern
addressed in this work is performance, specifically, overcoming bottlenecks that may prevent the ser-
vice from meeting the community’s growing need for fast and reliable information delivery. Unlike the
backend or consumer components, which benefit from straightforward scaling strategies, the router’s
logic-heavy operations and dynamic group resolution mechanisms make it more susceptible to delays.

To enable a focused analysis of this component, a Jaeger all-in-one [26] container is deployed alongside
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Figure 3.2: Notification Flow

it. The all-in-one configuration bundles the collector, query engine, Ul, and storage backend, offering
a self-contained environment that is especially suitable for instrumentation and diagnostics in develop-
ment and evaluation stages. With this setup, it becomes possible to gather precise execution data from
the router, supporting a trace-based investigation into possible issues and how those can be effectively

addressed to improve the system’s capacity to reach a large portion of CERN’s personnel in as little time
as possible.
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This section will outline the overall methodology adopted to profile the system. The selected test
cases represent different types of effective workload for the system. It also addresses how the system
is set up during the testing phase. An analysis of how the system responds to each test and possible

problems that can be pinpointed.

4.1 Experimental Setup and Methodology

To support a consistent and isolated testing environment, the system was deployed on a dedicated ma-
chine running Ubuntu. This ensures minimal interference from external processes and provides a repro-
ducible baseline for performance analysis. The router component, which is the focus of the performance
investigation, is deployed alongside a Jaeger all-in-one instance. Jaeger serves as the distributed trac-
ing infrastructure, allowing detailed insight into the internal operation of the router through trace spans
and timing breakdowns. For the router to function correctly and reflect production-like behavior, support-
ing components such as the database and etcd key-value store are also deployed locally. This setup
mirrors the key architectural elements that are relevant for the test conditions.

Before describing the performance tests, it is useful to clarify the key concepts used across the

system and in the analysis. The system defines several core abstractions:

 User - Represents an individual identity.

» Group - A collection of users or groups.

* Device - An endpoint associated with a user through which notifications can be delivered.

» Preference - Set by the user regarding when and which devices to be used as the delivery endpoint.

* Mute - Set by the user regarding whether or not notifications from a certain channel should be

received during a certain period.

» Channel - A channel is a grouping construct. It is through a channel that a notification is sent.
That notification aims to be delivered to that channel’s members through some form or another. A

channel is managed by one or more users.

+ Notification - Fundamental object transmitted through the system, which encapsulates content and

targeting information.

In addition to these core constructs, the system supports a more advanced targeting mechanism
based on intersections. In certain scenarios, a notification is not intended for the entire membership of
a channel but only for those who are members of both the channel and an explicitly defined group. This

allows for precise targeting within a large or broadly defined channel, ensuring that only users meeting
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specific criteria receive a given message. Implementing this form of conditional targeting adds another
layer of complexity to the routing process, as the system must efficiently compute the intersection be-
tween potentially large and deeply nested group structures during the message expansion phase.

The testing methodology is built around controlled workload scenarios designed to stress the router
logic in different manners. Tests are carried out by initiating notification delivery requests either through
the front-end interface or directly via API to the backend, both of which result in the insertion of a
message into the router message queue. Variations in the test inputs include the number of users
and/or groups that are members of the channel, and the characteristics user for filtering or matching.
These dimensions are chosen to surface the performance limits of the router under diverse operational
conditions. Each test scenario corresponds to a specific combination of these variables. A summary

table that illustrates the variety of the test scenarios is provided in Table 4.1.

Test | Users | Groups Intersection
1 multiple 1 No
2 multiple | multiple No
3 multiple 0 Yes - large group
4 multiple 0 Yes - small group
5 0 1 -large | Yes - large group
6 multiple 0 Yes - large group

Table 4.1: Test Cases

4.2 Performance Baseline and Timing Results

This section presents the empirical performance baseline of the system as observed through a series
of benchmark test cases, each designed to simulate realistic notification delivery scenarios with varying
user and group configurations. The goal is to establish a quantitative understanding of runtime behav-
ior under different conditions, including direct user targeting, group-based resolution, and combinations
thereof. Subsection 4.2.1 provides an overview of all test cases, highlighting their structural characteris-
tics and summarizing observed execution times. Subsequent subsections (4.2.2 through 4.2.7) provide
a detailed breakdown of each test case individually, analyzing control flow, performance implications,

and points of inefficiency that motivated later optimization designs.

4.2.1 Total Execution Time

To contextualize the performance of the current system implementation, this section presents the total
execution time observed for each of the defined test cases. The execution time measured corresponds
to the duration taken by the router from the reception of a notification to the point where all targeted

users have been processed for delivery. The results are shown in Table 4.2.
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Table 4.2: Total execution time per test case

Test Case | Total Execution Time
1.89s
5.86s
4510 s
2.64 s
207.00 s
206.00 s

DO W N —

The total execution times across the different tests can already provide some clues as to what might
influence performance. Test cases 1 and 2, which use direct user and group membership, result in
relatively low execution times, increasing for test 2, consistent with the greater number of groups and
users, implying that execution time increases with the number of distinct entities being resolved.

Test case 3 introduces intersection targeting with a large group and results in a sharp rise in execution
time. This suggests performance might be hindered by intersection logic when applied to a large user
base. Test case 4 also uses intersection but with a much smaller target group; however, it has a much
shorter execution time, supporting the conclusion that the group’s size, rather than the intersection logic
itself, plays a more impactful role in execution time.

Test cases 5 and 6 show the highest execution times. Both involve targeting a large group, but differ
in their channel composition: test case 5 includes a large member-group, whereas test 6 includes many
member-users. The nearly identical execution times suggest that the scale of the group could dominate
the performance cost, more than how the channel is structured.

This preliminary look at execution times in relation to test characteristics offers valuable insight for
guiding the more detailed performance analysis that follows.

To gain deeper insight into the causes behind the observed execution times, we now turn to a closer

examination of the tracing data collected during each test.

4.2.2 Test case 1 - multiple users

When analyzing the trace execution for this test, there is a segment that stands out and dominates
the overall elapsed time. The portion regarding fetching and expanding any involved groups into their
members. Figure 4.1 shows a part of the tracing visualized on what can be called a span tree, regarding

that particular section.

Vl routing_automatic add_users_from_oroups

Vl routing_automatic for

Vl routing_automatic get_group_users

| routing_automatic +r7e posT

| routing_automatic HTTP GET O

Figure 4.1: Test 1 - Getting group
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Following the most lengthy spans, it is plain to see the most time-consuming section to be an HTTP
POST request. This request is made to the CERN Auth Service, and corresponds to approximately 73%

of total execution time.

Another section of note is further along, where a sequence of spans displaying a section where a list

of retrieved users is iterated over to perform other actions. It is illustrated in Figure 4.2.

| routing_automatic

| routing_automatic

| routing_automatic
| routing_automatic
| routing_automatic 1::.
| routing_automatic 1.
| routing_automatic
| routing_automatic
| routing_automatic

| routing_automatic

Figure 4.2: Test 1 - lterating Users

4.2.3 Test case 2 - multiple users and groups

This test differs from test 1 by introducing multiple groups, causing the time to grow linearly with the

number of groups.

routing_automat

———
| routing_autor —
-

| routing_autor
——

> | routing_automatic o

> | ® routing_automatic et group_user —

Figure 4.3: Test 2 - Getting Groups

For each of the groups, the system must also iterate through each of the members that it has ex-

panded to and perform queries on them to build an appropriate user object.
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| routing_automatic for_each_user [ ]
> I Orouting_automatic get_system_user q

> I routing_automatic get_system_user i

| routing_automatic append_user |
I routing_automatic append_unique_username | |
> I routing_automatic get_system_user | i
| routing_automatic append_user | |
I routing_automatic append_unique_username | |
> I routing_automatic get_system_user | {
| routing_automatic append_user | |
I routing_automatic append_unique_username | |

Figure 4.4: Test 2 - Building Users

The final section of note is iterating over the final user list and performing checks for each of the

users regarding mutes, preferences, and delivery methods.

> | routing_automatic nas_not_logged_in =
> | routing_automatic has_not_logged_in -
> | routing_automatic has_not_logged_in —

| routing_automatic has_not_logged_in |
| routing_automatic critical_bypass [
> I routing_automatic check_user_mute =
> I routing_automatic get_user_preferences ' _—
> | routing_automatic get_celivery_methods |
> I routing_automatic zpply_user_preferences -
> | routing_automatic has_not_logged_in -

> I routing_automatic has_not_logged_in -

Figure 4.5: Final User list check

It is already easy to draw as a preliminary conclusion that even slightly scaling the number of groups

or users can have a meaningful impact on total execution times.
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4.2.4 Test case 3 - multiple users intersect large group

This test case is the first one to make use of the intersection capabilities of the system. This trace
confirms yet again that a substantial portion of execution time is spent in resolving group members via
CERN’s authorization service API. Several consecutive HTTP GET spans accessing

https://authorization-service-api.web.cern.ch/. Each request spans from 600 ms to over 1100
ms, repeated multiple times as the group’s user list is returned in paginated slices, illustrated in Figure
4.6. This results in a cumulative delay of several seconds, emphasizing the cost of external group

resolution for large groups.

VI routing_automatic get_group_users . ]
| routing_automatic HTTP POST [
| routing_automatic HTTP GET [ ]
| routing_automatic HTTP GET o
| routing_automatic HTTP GET [ ]
| routing_automatic HTTP GET an
| routing_automatic HTTP GET [ ]
| routing_automatic HTTP GET o
| routing_automatic HTTP GET [ ]
| routing_automatic HTTP GET a
| routing_automatic HTTP GET -
| routing_automatic HTTP GET a

| routing_automatic HTTP GET [ ]

Figure 4.6: Test 3 - Paginated Group Return

Right after that, a series of database operations occur where user-level lookups are performed,
iterating over all of the previously expanded users. While individual queries are fast (in the 1-3 ms
range), their accumulated cost is non-trivial due to the large number of users, adding up to 34 s. The
remainder of the execution time is spent on gathering channel groups and users, which is negligible
since, in this test case, there are no member groups, the targeted intersection is calculated, and then

the same iteration checking and applying preferences and mutes for each user before ending.

4.2.5 Test case 4 - multiple users intersect small group

Test case 4 features only a small group, hence a much smaller execution time. Yet the
get_target_users_router span lasted 1.42 s, which is still over half the total run time for this test case

4.7. Group resolution still emerges as a significant contributor to overall latency. In this span,
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add_users_from_groups specifically consumed approximately 947 ms, clearly indicating that resolving

group memberships represents a substantial performance bottleneck.

Throughout the rest of the execution, the system conducts multiple database queries to validate

channel subscriptions, user preferences, and mute statuses.

VI routing_automatic on_message e
I routing_automatic read_message &
VI routing_automatic process_message . ________________________________________________________________________________|
VI routing_automatic process_users —
v I routing_automatic get_target_users_router G
> I routing_automatic get_target_users_data... _————
> I routing_automatic get_target_groups L]
> I routing_automatic get_channel_unsubsc... -

I routing_automatic calculate_subcribed_tar... ]
VI routing_automatic add_users_from_groups . ]
> I routing_automatic for_each_group ]

Figure 4.7: Test 4 - Starting Segment

This trace analysis already reveals a predominantly sequential execution model where critical path

operations, including group resolution, preference validation, and delivery, are executed in series.

4.2.6 Test case 5 - large group intersect large group

Test Case 5 is the first of the two high-latency benchmark scenarios and was constructed to simulate
a stress condition combining both a large membership group and an equally large intersection target
group. This setup is representative of a real-world situation where high-volume notifications are scoped
to intersecting organizational units. This could be a common occurrence when the groups in question
have high overlap, which would be highly likely when using the most encompassing groups to reach as

much of the personnel as possible.

The trace begins with the group resolution phase, which, as in earlier tests, emerges as a domi-
nant source of delay. The group queried contains a substantial number of users, triggering the CERN
Authorization Service to return the data in paginated form. Each paginated HTTP request introduces
a blocking delay on the order of several hundred milliseconds, and with multiple pages to fetch, the

cumulative latency of this phase alone reaches several seconds, as can be seen in Figure 4.8.

33



VI routing_automatic add_users_from_groups ]
VI routing_automatic for_each_group ]
VI routing_automatic get_group_users D
v | routing_automatic get_group_u... (D

> | routing_automatic ot -... |
>

routing_automatic cet_g... |
routing_automatic cet_g... |
routing_automatic cet g... |
routing_automatic cet g... |
routing_automatic cet g... |
routing_automatic cet g... |
routing_automatic cet o... |
routing_automatic get_o... |
routing_automatic et o... I

routing_automatic cet_g... I

v
I IS DI D DS D DS B B -

routing_automatic cet_g... I

Figure 4.8: Test 5 - Resolving Group Users

Notably, the trace shows these requests are executed sequentially, resulting in serialized wait times.

This behavior confirms prior findings that the group resolution mechanism is a systemic bottleneck.

Once the full set of group members has been retrieved, the router proceeds to the intersection logic.
In this test, both the channel group and the target group contain large and largely overlapping user
bases. The output of the intersection step yields a high cardinality span, thousands of users, which then

become the input to a more resource-intensive per-user processing phase.

The trace clearly delineates this next phase with a repeating pattern of spans corresponding to
individual user handling. For each user, the system performs several steps: preparing the user object,
validating settings, fetching supplementary data from the database, and appending the result to the
output structure. Each of these steps, although lightweight in isolation, becomes a major contributor to

total execution time when multiplied over thousands of users (Figure 4.9).
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> | o routing_automatic for_each_user |

| routing_automatic HTTP POST |

| routing_automatic HTTP POST |
VI routing_automatic process_message_for_user_in_targe... |

Vl routing_automatic has_not_logged_in |

VI routing_automatic apply_default_preferences |

| routing_automatic send_iive_emai I

| routing_automatic HTTP POST |

VI routing_automatic has_not_logged_in |

vI routing_automatic apply_default_preferences |

| routing_automatic send_live_email |

| routing_automatic HTTP POST |

v | routing_automatic has_not_logged_in [

VI routing_automatic apply_default_preferences |

| routing_automatic send_iive_emai [

| routing_automatic HTTP POST |

Figure 4.9: Test 5 - Dispatching Messages per User

4.2.7 Test case 6 - multiple users intersect large group

This test case reflects a scenario highly similar to the previous test, where both the number of group
members and direct user members are high. This test, however, replaces the large member group
with a large list of direct member users, while still targeting a large group. The total execution time
is approximately the same. Just as in test 5, group resolution through CERN’s Authorization Service
emerges again as the primary bottleneck. The trace once again shows the iterative user processing
following the group resolution. Each user is processed individually. Despite reducing the initial resolution
pressure seen in test case 5 by avoiding a large member group, total execution time is equivalent, driven
by the sheer number of users targeted and per-user operations. Figure 4.10 displays the overview of

test case 6 execution.
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I routing_automatic on_message |
I routing_automatic read_message ]
vI routing_automatic process_message |
VI routing_automatic process_users ]
vI routing_automatic get_target_users_router ]
> I routing_automatic get_target_users_datasource |
> I routing_automatic cet_target_groups_datasour... |
> I routing_automatic get_channel_unsubscribed_... |
I routing_automatic calculate_subscribed_target_u... |
VI routing_automatic add_users_from_groups . ]
vI routing_automatic for_each_group ]
> I routing_automatic get_group_users ]

> I o routing_automatic for_each_user ]

vI routing_automatic has_not_logged_in
VI routing_automatic apply_default_preferences
I routing_automatic send_live_email
I routing_automatic HTTP POST
VI routing_automatic has_not_logged_in

vI routing_automatic process message_for_user_in_targetus... |
|
|
|
|
|

vI routing_automatic apply_default_preferences ]

]

I routing_automatic send_live_email

Figure 4.10: Test 6 execution - overall view

4.3 Performance Analysis and Solution Proposals

The series of controlled test scenarios and their corresponding trace analysis provide an insightful view
of the current performance profile of the CERN Notifications system, particularly the routing component.
Each test case, constructed to incrementally increase complexity and stress specific parts of the system,
has revealed a consistent set of bottlenecks and architectural patterns that underlie current limitations
in scalability and latency.

36



4.3.1

Inefficient Sequential Processing

A key contributor to poor performance in large-scale scenarios (such as test cases 3, 5, and 6) is the

system’s reliance on a strictly linear execution model for handling both user and group-level operations.

This results in two intertwined inefficiencies: a high volume of small, repetitive tasks for each user and

group, and the absence of any asynchronous or parallel execution strategy to mitigate their cumulative

cost.

1

Listing 4.1: router.py - get_channel_subscribed_users - Pseudo-code

function get_channel_subscribed_users (channel_id):

channel = fetch_channel (channel_id)

unsubscribed_ids = []
for user in channel.unsubscribed:

unsubscribed_ids.append (user.id)

subscribed_users = []
for member in channel.members:
if member.id not in unsubscribed_ids:
user = build_user (member)

subscribed_users.append (user)

return subscribed_users

Many of the routing component’s core tasks, such as validating users, checking for mutes, determin-

ing device delivery preferences, and expanding group memberships, are performed in a strictly serial

fashion. As a result, the total processing time increases linearly with the number of users and groups

involved. While each individual operation may be computationally inexpensive (often taking only tens

to hundreds of microseconds), they must be repeated thousands of times per notifications, leading to a

significant aggregate delay.

1

Listing 4.2: authorization_service.py - get_group_users_api - Pseudo-code

function get_group-users_api (group-id) :

token = get_auth_token ()

data = []

response = request_group-members (group-id, token)
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data.extend (response.members)

while response.has_next_page:
response = request_group-members (group-id, token, next_page=response.next)

data.extend(response.members)

group-users = []

for member in data:
user = prepare_user (member)
if user:

group-users.append (user)

return group-users

This behavior is particularly evident in operations like fetching subscribed users to a channel (Listing

4.1) and resolving group membership from external APIs (Listing 4.2). In both cases, iterative loops are

used to process each user sequentially, even though each iteration is independent and could be safely

executed in parallel.

1

Listing 4.3: router.py - get_target_users - Pseudo-code

function get_target_users (notification_id, channel_id):

target_users = fetch_target_users(notification_id)

target_groups = fetch_target_groups (notification_id)

if target_users and not target_groups:

return filter_unsubscribed_users (target_users, channel_id)

unsubscribed._users = get_unsubscribed_users (channel_id)

subscribed_target_users = []

for user in target_users:
if user.username not in unsubscribed_users:

subscribed_target_users.append(user)

if target_groups is not empty:

add_users_from_groups (notification_id, channel_id,

subscribed_target_users, target_groups, unsubscribed_users)
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19 return subscribed_target_users

The situation is further exacerbated in group targeting logic (Listing 4.3 and Listing 4.4), where group
expansion and user resolution are both performed one group or user at a time. This leads to patterns
where large delays accumulate simply because tasks are waiting for previous, unrelated tasks to com-
plete. For example, group memberships are resolved in order, with no concurrent fetches even when all
group IDs are known ahead of time. The inner loop that processes each group’s users is similarly serial,

requiring individual database queries for every new user.

Listing 4.4: router.py - add_users_from_groups - Pseudo-code

1+ function add.users_from_groups (notification_id, channel_id,

2 users, groups, unsubscribed_users):

3 known_usernames = [user.username for user in users]
4

5 for group-id in groups:

6 group-users = get_group-users (group-id)

7

8 for user in group-users:

9 if user.username in known_usernames:

10 continue

11 if user.username in unsubscribed_users:

12 continue

13

14 system_user = get_system_user (user.username)
15 if system_user exists:

16 users.append(system_user)

17 else:

18 users.append (user)

19

20 known_usernames.append (user.username)

This design choice severely limits scalability. As the user base grows or messages target larger
audiences, routing execution time increases proportionally, something that becomes highly problematic
in time-sensitive or high-throughput contexts.

In summary, the root inefficiency lies not just in the volume of operations but in the lack of mecha-
nisms to speed them up, such as parallelism for independent tasks. The observed patterns in Listings
4.1 through 4.4 make clear that the system fails to exploit opportunities for concurrency, resulting in

deterministic but inefficient runtime behavior that scales poorly under load.
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Optimization Proposal: Addressing Parallelism

A recurring inefficiency identified throughout the routing component is the use of strictly sequential it-
eration for operations that are independent and safe to execute in parallel. This pattern appears most
notably in per-user processing, such as applying preferences, resolving devices, and checking mutes,
but also in other workflows, such as resolving multiple groups in the same routing pass. In these cases,
each operation is disjoint from the other, does not depend on shared mutable state, and is typically

I/O-bound (e.g., involving external API or database calls).

Sequential execution of these operations, even if each is individually fast, results in linearly increasing
latency under scale. This behavior was observed across multiple test cases where thousands of users

and groups are involved, and the time required to process them grows proportionally.

To address this, selected sections of the routing logic were refactored to use parallel execution mod-
els. Specifically, Python’s ThreadPoolExecutor was introduced to handle collections of independent,
iterable tasks, allowing multiple items (e.g., groups, users) to be processed concurrently. Examples of
these changes can be seen in Listing 4.5. This approach is particularly suitable for 1/0O-bound tasks,
which benefit from being issued simultaneously due to their latency profile. One such example is the
group resolution step in add_users_from_groups, where each group’s membership can be resolved in-
dependently of others. The same logic is also applied to other instances of iterative execution, such as

processing user preferences, checking user devices, mutes.

When it comes to computational complexity, there are a few nuances to be stated. Before par-
allelization, operations executed sequentially over N elements (users, groups, etc.) typically have a
time complexity of O(N - T'), where T is the time taken per task (e.g., HTTP call, DB query). After paral-
lelization, the effective wall-clock complexity becomes O(max(T)), assuming tasks are independent and
I/0-bound with ideal conditions (no contention, enough threads/resources). This of course represents a

best-case scenario and not a true algorithmic complexity shift, but a practical runtime gain.

Multithreading is not without its setbacks. When opting for multithreading, one must account for
task submission overhead; creating and managing threads, especially if very small tasks are submitted,
can offset the gains. Overhead grows with the number of threads and context switches. Using a fixed
thread pool helps mitigate this, a number that should be revised and adjusted to best suit the needs
of the system in production. There is also the matter of server-side throttling, which might occur if the
auth service itself can’t handle concurrency well, parallelism could cause saturation. The actual gain is
bound by the responsiveness and scalability of external services. In practice, these adjustments allow
the routing component to handle large fan-out notification events more efficiently, especially under high

concurrency conditions typical of critical alerting scenarios.
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Listing 4.5: Parallelize Iterative Work - Pseudo-code

1+ function add-users_from_groups () :

2 // Fetch users from multiple groups in parallel
3 with thread_pool:

4 futures = submit_all (get_group-users (group-id) for group-id in groups)
5 group-users = set ()

6

7 for future in completed(futures):

8 result = future.result ()

9 usernames = extract_usernames (result)

10 group-users.update (usernames)

11

12 // Filter unsubscribed users

13 unique_usernames.update (group-users)

14 unigque_usernames.remove_all (unsubscribed_users)
15

16 // Fetch full user data in parallel

17 with thread_pool:

18 futures = submit_all (get_system_user (username) for username in unique_usernames)
19 temp_users = []

20

21 for future in completed(futures):

22 result = future.result ()

23 temp_users.append(result)

4.3.2 Membership Testing

A fundamental inefficiency in the current implementation arises from the exclusive reliance on the list
data structure for tasks where other, better suited structures would lead to better performance and read-
ability. This design decision impact both runtime performance and architectural extensibility, particularly
in scenarios involving high user volume or multithreaded execution models.

Membership test (x in list) is inherently linear in complexity, as each lookup may require scan-
ning the entire list. This becomes problematic when such lookups are performed repeatedly inside
nested loops or user/group resolution functions. A representative case can be seen in this snippet from

get_target_users function in Listing 4.6.
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Listing 4.6: router.py - Membership testing example snippet- Pseudo-code

1 for user in target_users:
2 if user.username not in unsubscribed_users:

3 subscribed_target_users.append (user)

Here, unsubscribed_users is a list, and for every user in target_users, a full scan of that list
is performed to test membership. In workloads where target_users and unsubscribed_users each
contain hundreds or thousands of entries, this results in a quadratic number of comparisons, significantly
increasing latency.

Another case of this pattern appears in the get_channel_subscribed_users function, for which a

shippet is presented in Listing 4.7.

Listing 4.7: router.py - Membership testing example snippet 2 - Pseudo-code

1 unsubscribed_ids = [user.id for user in channel.unsubscribed]
2 return [

3 self.__build_user (member) for member in channel.members

4 if member.id not in unsubscribed_ids

5 ]

Again, the membership test (member.id not is unsubscribed_ids) uses alist for unsubscribed_ids.
While the code is functionally correct, the performance cost scales with the size of the list and the number
of members, with each lookup taking O(V) time.

These performance issues are not theoretical: they manifest concretely in the system’s latency pro-
files under load. Moreover, lists are fundamentally ill-suited for concurrent access and mutation, which
makes them a poor fit for any future attempts to introduce multithreading or parallel execution in the
routing logic. Since a list is not thread-safe and has no inherent concurrency controls, sharing or mod-
ifying them across threads requires locking, which would further degrade performance and increase
complexity.

Replacing lists with set structures, where appropriate, enables constant-time membership checks.
This change would be beneficial in many routing paths due to repeated checks on large collections. It is

also a low-complexity optimization that can yield both immediate and long-term benefits.

Optimization Proposal: Leveraging Sets

Lists are ubiquitously used in the routing component to represent collections of users, groups, and other
objects. While lists are simple to use, they introduce some noteworthy limitations.

To address these inefficiencies, the improvements aimed to replace many uses of 1ist with set or
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frozenset, depending on the context. This change was motivated by both performance considerations
and structural clarity. One of the core benefits of sets is their support for constant-time membership
checks. Unlike lists, which must scan each element to determine whether a value exists, leading to
a worst-case time complexity of O(N), sets leverage hash-based indexing, allowing such a check to
complete in O(1) on average. This difference becomes critical in performance-sensitive sections of the
routing logic where membership is checked repeatedly across potentially large collections of users or

identifiers.

Moreover, the types of data commonly handled by the routing component, such as usernames, user
IDs, and group names, are all inherently unique, string-based identifiers. These identifiers are not only
uniquely assigned, but also stable and hashable, making them an ideal fit for set-based operations.
There is little to no practical risk of hash collisions, and no need for ordering, which further reinforces the

suitability of sets over lists for this purpose.

Beyond performance, sets also enforce semantic correctness. Since each user or group should log-
ically appear only once in any working set of recipients or targets, the automatic deduplication behavior
of sets helps to prevent unintended duplications that could otherwise arise when combining or expand-
ing multiple lists. This is particularly useful during group resolution, where users may be members of

several groups, and care must be taken not to produce redundant delivery actions.

In scenarios involving parallel execution, such as when group membership or user preferences are
resolved concurrently, sets also offer structural advantages. frozenset, in particular, is an immutable
variant that can be safely passed between threads or used in cached contexts without risk of modifica-
tion. This is crucial in maintaining thread safety and ensuring that concurrent operations do not introduce

race conditions or inconsistencies.

Finally, sets also simplify operations that are semantically aligned with the system’s needs. Tasks
such as intersecting the members of two groups or excluding unsubscribed users from a pool of targets
are not only more efficient when done with sets, but also more readable and maintainable, as they

directly express the logic of the operation.

A prototype proposal modification is shown in Listing 4.8. It replaces the 1ist-based collections with
set structures. Most notably, the use of the
difference_update method allows the system to subtract unsubscribed users from the target set in
a single pass. The runtime complexity of set.difference_update() on a set with n elements and
a second set with m elements is O(N) because each element in the first set must be checked for
membership in the second. Given that set membership testing is O(1), the resulting complexity is
O(N) - O(1) = O(N). However, when the second set is smaller (M < N), the actual cost can be
considered O(M), making this operation highly efficient for common notification scenarios involving a

minority of unsubscribed users.
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Listing 4.8: Set and Difference Update prototype solution proposal - Pseudo-code

1 function get_target_users(notification_id, channel_id):

2 target_users = set (get_target_users_from_db (notification_.id))
3 target_groups = set (get_target_groups (notification_-id))

4

5 if not target_users and not target_groups:

6 return empty_set

7

8 unsubscribed_users = set (get_unsubscribed_users (channel_id))
9

10 if target_groups:

11 add_users_from_.groups (notification_id, channel_id, target_users,

12 target_groups, unsubscribed_users)

13

14 target_users.difference_update (unsubscribed_users)
15 return target_users

This pattern avoids redundant iteration and scales more predictably with user and group volume.
Moreover, it sets a solid foundation for later concurrency improvements, as set operations are more
naturally decomposable and thread-friendly than iterative scanning.

In a multithreaded environment, it's often desirable to ensure that shared data structures are not
accidentally mutated during execution. Python’s frozenset provides an immutable version of the built-in
set, which can be safely passed between threads since its contents cannot be changed.

This makes frozenset especially useful when a set of items, such as usernames, identifiers, or
user objects, is read frequently but never modified. It ensures defensive immutability and avoids race
conditions caused by unintended mutations.

A typical usage scenario is shown in the Listing 4.9, where a list of users is converted to a frozenset

before being submitted to multiple threads for concurrent processing.

Listing 4.9: Frozenset prototype solution proposal - Pseudo-code

1 function parallel_check_settings_and_send (message, users):

2 # Convert the user list to an immutable frozenset
3 users = frozenset (users)

4

5 # Create a thread pool executor

6 with ThreadPoolExecutor:

7 futures = []
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8 for user in users:

9 # Submit each user processing task to the executor

10 futures.append (executor.submit (check_settings_and_-send, user, message))
11

12 # Collect results and handle any exceptions

13 for future in as_completed(futures):

14 try:

15 result = future.result ()

16 except Exception:

17 log ("An exception occurred during user message dispatch.")

4.3.3 Dominant Bottleneck - Group Resolution

Across nearly all test cases involving group-based delivery, specifically test cases 3, 5, and 6, a single
dominant bottleneck was observed: the resolution of group memberships via the CERN Authorization
Service. This process is implemented using synchronous HTTP GET requests to an external APl end-
point, which returns group members in a paginated format. The implementation is sequential and block-
ing; each page of results is fetched and processed fully before the next request is made. When groups
are large, this results in a cumulative and significant delay for each group processed.

This bottleneck is illustrated in the pseudo-code in Listing 4.1, which represents the underlying logic
for resolving group members from the CERN Auth API. After obtaining an authorization token, succes-
sive calls to fetch members are made. These members are retrieved page-by-page using the pagination
pointer included in the API response. As shown in the listing, each group is processed independently
and serially, and all APl interactions occur in a blocking fashion with no concurrency in place.

This implementation design reveals a key limitation: the responsiveness of the system is tightly
coupled to the performance and availability of an external service. This dependency poses a substan-
tial scalability challenge. In time-sensitive scenarios, such as the dissemination of critical alerts, the
sequential, I/0O-bound nature of this group resolution step becomes a serious performance constraint,

preventing the system from meeting low-latency delivery targets.

Optimization Proposal: Caching and Concurrency

Given that external group resolution is consistently the dominant contributor to routing latency, partic-
ularly in scenarios involving large or multiple groups, it is of strategic importance to minimize the time
spent on this operation. Since the latency originates outside the control of the system (i.e., within an
external identity service), the most effective way to reduce this overhead is to avoid making the request

altogether when possible.
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A complete duplicate of CERN Authorization Service’s group database is near impossible due to
its sheer size and complexity, not to mention synchronization issues. An in-between solution can be
achieved by leveraging caching mechanisms that store the result of previous group resolution calls.
When a group has already been resolved recently, and no change in its membership is expected or
critical, the cached data can be reused. This allows the system to bypass the repeated execution
of high-latency API calls, significantly improving overall performance in both average and worst-case

scenarios.

The implementation makes use of Python’s functools.lru_cache, which is efficient, automatically
handles memoization, and is thread-safe. The previous implementation and lookup for a group is done
through a group ID, which provides a direct key to be used for caching. Listing 4.10 shows a simpli-
fied view of the cached group resolution proposal. This memoization implementation encapsulates the
whole group return, meaning that the full paginated group membership is fetched and combined before
caching, and the API behavior remains unchanged. The choice of cache expiration is at this time space-
based (maxsize=None), which serves its purpose within a controlled deployment where expected cache
usage is known. An important detail in the implementation is the use of a frozenset as the return type
for the cached group members. This choice offers multiple benefits: it ensures immutability, prevent-
ing any accidental modification of the cached data after retrieval, it guarantees hashability, which is a

requirement not met by 1ist, and needed to be compatible with this type of caching.

Listing 4.10: Cached prototype solution proposal - Pseudo-code

1 from functools import lru_cache

3 @lru_cache (maxsize=None)

4 function get_group-users_api (group-id) :

5 token = get_access_token|()

6 headers = {"Authorization": "Bearer <token>"}
7

8 all_members = []

9 response = get_group_-members (group-id, headers)
10 all members.extend (response.data)

11

12 while response.has_next_page:

13 response = get_group.-members (group-id, headers, page=response.next)
14 all members.extend (response.data)

15

16 return frozenset (
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17 prepare_user (member)
18 for member in all_members
19 if prepare_user (member) is not null

20 )

While these changes already address some of the performance concerns around group resolution,
namely via caching and concurrent group-level expansion, a proposal for this critical issue can go fur-
ther by combining previously introduced optimization strategies can yield even further improvements,
especially combined with an adjustment enabled by the analysis of the CERN Authorization Service’s
API documentation. This includes applying caching, multithreading, and set usage in tandem, and ex-
tending parallelism not just to group-level operation, but also within the process of fetching paginated
membership data from CERN’s external authorization service.

An analysis of the CERN Authorization Service’s APl documentation revealed that the endpoint pre-
viously in use for group resolution /api/v1.0/Group/memberidentities/precomputed had been depre-
cated. To address this, the implementation was updated to use a more modern and fully supported end-
point: /api/v1.0/Group/{id}/members/identities/recursive. This endpoint’s return also includes

pagination metadata such as:

1 "pagination": {
2 "total": 4312,
3 "offset": O,

4 "limit": 100,
5

o}

With this information, the client can calculate the total number of result pages and use the offset

parameter to fetch any page explicitly. The improved implementation takes advantage of this by:
1. Fetching the first page of results to extract the total, 1imit, offset.
2. Computing the remaining pages that need to be retrieved.
3. Dispatching concurrent HTTP requests for these pages.

Listing 4.11 shows a prototype pseudo-code proposal for the algorithm at a high level.

Listing 4.11: Reworked Group Resolution - Pseudo-code

1+ function get_group-users (group-id) :

2 # Fetch first page
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3 first_page = fetch_page (group-id, offset=0)

4 data = parse_users (first_page)

5 total = first_page.pagination.total

6 limit = first_page.pagination.limit

7

8 num_pages = ceil (total / limit)

9 urls = [build.url (group-id, offset=ixlimit) for i in range(l, num_pages)]

11 # Fetch remaining pages concurrently

12 with thread_pool:

13 for each url in urls:

14 launch fetch_page(group-id, offset=...)
15

16 for each result in completed_futures:

17 data.extend(prepare_user (result))

18

19 return deduplicated_set (data)

Each page is processed independently, and each user object is constructed via the same

prepare_user () logic used in previous implementations.

This method improves upon prior efforts by parallelizing deeper within the group resolution stack and
reducing the latency profile from O(P x T) to closer to O(T'), where P is the number of pages and T is
the time to retrieve one page. It is important to emphasize that, once again, this optimization primarily af-
fects the practical execution time in a multithreaded, I/O-bound setting, rather than changing the classical
algorithmic complexity. The theoretical number of operations remains the same, and thus the asymp-
totic complexity class is unchanged. However, by overlapping I/O-bound tasks across multiple threads,
the execution time is compressed, significantly reducing wall-clock latency. This distinction is essen-
tial: while classical Big O complexity provides upper bounds on computational steps, the improvements
described here concern practical runtime optimization which is critical for distributed, latency-sensitive
systems such as the one targeted by this work. As discussed in [27], the performance of large-scale dis-
tributed systems is dominated by the behavior of the slowest components (“tail latency”), and variability
becomes a critical challenge. Consequently, practical system optimization often targets improvements

in response time and variability, rather than changes in classical algorithmic complexity.
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4.4 Discussion and Limitations

This work set out to investigate performance limitations and architectural weaknesses in a system re-
sponsible for delivering targeted notifications, particularly in contexts involving dynamic group-based
user resolution and real-time dispatch guarantees. Through detailed empirical analysis and focused
experimentation, a clear understanding of system behavior under stress was established, leading to a
set of targeted improvements across several technical dimensions.

A central theme was the identification and mitigation of dominant latency sources. The group resolu-
tion process, particularly the interaction with the CERN Authorization Service, emerged as the primary
contributor to poor responsiveness. However, rather than addressing the symptom in isolation, the anal-
ysis exposed a broader picture of interdependent inefficiencies, including sequential execution paths,
redundant data fetches, and suboptimal data structures.

To this end, multithreading was introduced to decouple slow 1/O-bound operations and better utilize
available system resources. While group expansion was the most impactful use case for this change,
the broader introduction of concurrent patterns laid the foundation for a more scalable and reactive ar-
chitecture. This was complemented by data structure optimization, specifically replacing linear search
constructs with sets and set-based operations. These changes improved clarity, reduced cognitive over-
head, and significantly lowered runtime cost for filtering logic.

Caching was examined as a general performance strategy, particularly effective for expensive or
repetitive operations such as group membership lookups. Although not fully integrated into the pro-
duction path, the feasibility study and preliminary designs showed promising potential in reducing the
external dependencies and improving throughput. Importantly, the discussion recognized the trade-offs
introduced by caching, including data freshness and invalidation complexity.

Another notable contribution was the role of observability and tracing. Fine-grained instrumentation
enabled precise bottleneck localization and guided the iterative refinement process. This supports the
broader claim that systematic observability is not merely a diagnostic tool but a critical design asset in
evolving complex systems.

The system enhancements proposed and prototyped in this work, ranging from multithreaded pro-
cessing to improved data semantics and concurrency safety, were designed to improve performance
and maintainability. While each change addressed a specific concern, their combined effect is expected
to result in a more robust, efficient, and transparent architecture.

The findings emphasize that performance optimization is rarely about isolated fixes. It is an inves-
tigative process that requires a comprehensive system understanding, rigorous validation, and careful
balancing of correctness, performance, and complexity.

The development of this work faced limitations that are worth acknowledging. These constraints have

implications for the system’s performance, scalability, and practical application for CERN’s infrastructure.
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External Service Dependencies

The system’s performance remains tightly coupled to the latency and availability of the CERN Authoriza-
tion Service. Despite efforts to mitigate this dependency through caching mechanisms and paralleliza-
tion techniques, the system remains vulnerable to potential outages or slowdowns in this external API.

Such events could significantly degrade routing performance and overall system responsiveness.

Python’s Global Interpreter Lock

The implementation’s reliance on Python introduces limitations related to the language’s Global Inter-
preter Lock (GIL) [28]. While the thread-based parallelism employed in the system effectively improves
performance for I/O bound operations such as HTTP requests, the GIL restricts true concurrent execu-
tion for CPU-bound tasks. This design constraint may prevent the system from fully exploiting multi-core
architectures when handling computationally intensive workloads, potentially limiting scalability under

high computational demands.

Trade-offs in Caching

The proposed caching strategy for group memberships operates under the assumption that group com-
positions remain relatively stable over time. In scenarios where membership changes occur frequently,
such as in dynamic team environments, stale cache entries could lead to incorrect targeting unless ag-
gressively invalidated. This presents a trade-off between performance benefits from caching and the
potential for outdated authorization decisions.

Furthermore, due to time constraints, cache size and eviction policies were not empirically tuned for
production-scale workloads. Optimal cache configuration would require extensive testing under realistic
conditions to determine ideal parameters for maximum efficiency without excessive resource consump-

tion.

Implementation and Evaluation Constraints

Several proposed prototype features could not be fully implemented and evaluated within the system
due to a combination of factors. Time restrictions played a significant role, but equally important was
limited access to CERN resources. This constraint prevented comprehensive testing and benchmarking
of the system under realistic conditions.

Testing certain proposals, particularly those involving parallel CERN Authorization Service requests,
presented additional challenges. As this is a critical production system at CERN, there are valid con-

cerns about the potential impact of overworking it with test requests. Such testing could potentially affect
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the performance and stability of a key production system, making empirical evaluation difficult without

dedicated testing environments.

Performance Monitoring Considerations

It is worth noting that there could be some performance overhead introduced by tracing mechanisms,
which were not comprehensively analyzed in this study. While essential for monitoring and debug-
ging, code instrumentation and tracing infrastructure may add computational and network overhead that
should be carefully evaluated if the system is adopted into the real production environment. Future work
should include a detailed assessment of the possible performance impact of tracing components and

potential optimizations to minimize it.

Summary

This chapter demonstrates how thoughtful, multi-layered optimizations, grounded in a precise under-
standing of the system’s internal data flow, concurrency potential, and dependencies on external ser-
vices, can lead to meaningful and informed solution design for performance and scalability. Through
detailed empirical analysis of carefully constructed test cases, performance bottlenecks were system-
atically identified, most notably the latency introduced by group membership resolution via the CERN
Authorization Service. The findings informed a series of optimization strategies, including data structure
replacements for faster lookups, introduction of parallelism where I/O latency dominated, immutability
enforcement for thread safety, and theoretical evaluation of caching mechanisms. The cumulative ef-
fect of these targeted interventions illustrates the importance of a holistic and data-driven approach to

performance engineering in distributed, latency-sensitive systems.
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This work undertook a systematic optimization of the CERN Notifications System, targeting perfor-
mance bottlenecks in its routing components, a critical subsystem responsible for scalable, low-latency
message delivery. Through empirical trace analysis, targeted code improvements, and architectural re-
finements, it has been made clear that the project stands to gain in responsiveness while preserving
system correctness and maintainability.

Key outcomes demonstrate that:

Trace-driven optimization is indispensable for modern distributed systems. By instrumenting the
router, this work identified hidden inefficiencies, such as sequential group resolution and list-based code
flow, that might have eluded conventional profiling. The approach validates that observability is not

merely diagnostic but foundational to performance engineering.

Practical optimizations need not require architectural overhauls. Strategic changes, replacing
lists, introducing thread pools, and caching external calls, can yield significant latency reductions without

redesigning the event-driven pipeline.

Real-world constraints shape technical trade-offs. While Python’s GIL and external service depen-
dencies imposed hard limits, the solutions adopted maximized gains within these boundaries.
Ultimately, this project exemplifies how incremental, data-driven optimization can elevate the per-
formance of critical infrastructure. By reducing routing latency and improving scalability, the CERN
Notifications System is now better equipped to tackle latency and meet any scalability demands, from
routine alerts to time-sensitive emergency broadcasts. For CERN’s staff, these improvements translate
to more responsive communications, reduced notification delays during critical events, and enhanced

reliability of the information pipeline that supports their operational activities.

5.1 Summary of Contributions

This work undertook a comprehensive investigation into the performance limitations of a production-
grade message delivery system used in high availability environment. Through methodical profiling,
code instrumentation, and benchmark-driven experimentation, the project systematically identified crit-
ical inefficiencies, particularly in user resolution logic and external service dependencies. Informed by
these findings, targeted redesigns and prototype implementations were proposed and evaluated, ad-
dressing both algorithmic inefficiencies and architectural constraints. The key contributions of this work

are outlined below:
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Empirical Analysis

A series of controlled benchmark test cases was designed and executed to capture the system’s runtime
behavior under both realistic and stress-induced conditions. This analysis provided a holistic under-
standing of the system’s internal workflows, performance characteristics, and dependencies. It revealed
inefficiencies in user filtering, message dispatch, and most notably, group resolution and expansion. A
broader value of this empirical study lies in how it can help guide the prioritization of redesign efforts and

helped put forth prototype solution proposals across the system.

Data Structure Optimization

The use of list-based membership testing was a recurring inefficiency in the original. These were re-
placed by set operations to exploit constant-time lookup performance. This change drastically reduced
execution time for filtering tasks, especially in sections involving set algebra. The adoption of set-specific

methods also allowed for more concise and readable code.

Multithreading

Thread-level parallelism was introduced into several key workflows to improve responsiveness and re-
source utilization. The system was found to process I/O-bound operations sequentially, resulting in
underutilized compute capacity and inflated latency. By employing ThreadPoolExecutor for concurrent
execution, operations such as user data fetching, message dispatch, and group resolution were paral-

lelized to reduce blocking time and improve throughput.

Thread-Safe Concurrency

In multithreaded components, mutable data structures posed a risk of race conditions and inconsis-
tent reads. The introduction of frozenset provided a lightweight and semantically clear guarantee of

immutability, making shared data safe for concurrent access without locking mechanisms.

Caching Strategy

The study explored caching as a performance enhancement technique, especially relevant in systems
constrained by repeated access to external or computationally expensive resources. One key use case
identified was group membership resolution, where repeated calls to an external service introduced
avoidable delays. This strategy would preserve correctness while significantly reducing redundant net-

work requests.
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Prototype Redesign Proposals

Multiple prototype solutions were proposed targeting different performance bottlenecks. These included
redesigned flows for computing user targets and dispatching messages, each emphasizing concurrency,

immutability, and structural clarity.

Observability and Tracing Integration

Fine-grained runtime tracing was introduced to identify slow paths and API-level delays. This observ-
ability infrastructure proved critical in validating performance issues, especially those stemming from
external service dependencies. The work supports the broader claim that observability is not merely a

debugging tool but a foundational component for operating performant distributed systems.

5.2 Future Work

This work has focused on identifying and mitigating major performance bottlenecks in the CERN Notifi-
cations System, particularly within the routing component. However, several additional avenues remain

to further evolve the system’s responsiveness, scalability, and maintainability.

Phased Adoption

Importantly, any proposed enhancement should be adopted incrementally, with observability infrastruc-
ture being the first step. By putting in place detailed and reliable tracing across system components,
beyond the routing layer, it becomes possible to quantify the impact of each change. Extending tracing
coverage to the backend and consumer components would help build a comprehensive latency land-

scape, facilitating better architectural decisions and development prioritization.

Caching considerations

Caching has been put forward as a method to deliver meaningful gains, particularly for group resolution.
However, deploying caching into production introduces new design questions, namely: what is the op-
timal eviction policy, what time-to-live should be applied, and how large the cache should grow. These
parameters should be adjusted based on live traffic patterns and usage characteristics. To do this effec-
tively, observability metrics such as cache hit rate, memory consumption, and eviction frequency should
be collected and analyzed. Over time, this would allow tuning the cache for maximum performance with

minimal overhead.
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Threading considerations

Similarly, thread pool sizing used in various parallelized routines (e.g., user processing or page fetching
for group members) should not be fixed arbitrarily. The number of threads in a ThreadPoolExecutor
impacts both throughput and system resource usage, and may need to be tuned. Too few threads
underutilize the system, while too many can cause context-switching overhead or API rate limiting. Em-
pirical testing under realistic loads, combined with runtime instrumentation, will be essential to identify

an optimal thread pool size.

Language

There are also runtime and language factors to consider. The router component currently runs on Python
3.6, a version that has reached end-of-life and no longer receives updates or security fixes [29]. Upgrad-
ing to a modern Python version (e.g., 3.10+) would unlock a variety of performance improvements,
language features, and access to recent library versions. This upgrade would also improve compati-
bility with tools such as OpenTelemetry and improve maintainability going forward. In the longer term,
with a more refined understanding of the routing component’s complexity and requirements, it may be
worthwhile to reimplement it in a compiled language such as Go. The Global Interpreter Lock (GIL) in
Python limits concurrency in CPU-bound contexts, and Go’s goroutine-based model provides lightweight

concurrency primitives better suited for high-throughput, fan-out tasks like notification routing.

Queue mechanisms

Another area of interest is the behavior of the system under high load, particularly during critical events
requiring rapid dissemination. In such cases, introducing queue purging or prioritization mechanisms
could help ensure high-priority notifications bypass backlogged queues. This must be approached with
caution since purging queues risks message loss for non-critical traffic, and should only be applied to

specific types of urgent notifications.

Workload shift

It could also be beneficial to rethink the routing workload distribution. This would mean a more complex
and nontrivial change to the system’s architecture that would involve shifting some of the routing work-
load upstream, specifically, into the backend. Currently, the router is responsible for expanding channel
memberships and group intersections at the moment of notification dispatch. However, channel mem-
bership changes are infrequent, while notification sending occurs frequently. Therefore, the backend

could precompute and store expanded membership lists when a channel is created or updated. Simi-
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larly, when a notification is sent targeting a known intersection (e.g., channel members N group), and that
combination has been previously resolved, the backend can reuse the cached expansion. This model
introduces computational amortization, offloading frequent compute-heavy tasks from the runtime path
and replacing them with low-latency database fetches by the router. If combined with a rewritten, effi-
cient routing component (as discussed earlier), this dual optimization could yield substantial throughput
improvements.

However, this strategy introduces new complexity: group membership at CERN is dynamic, and
stored expansions may become stale. This would require background synchronization processes or
periodic validation jobs to keep stored expansions in sync with the CERN Authorization Service, the

source of truth.
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