
Incremental Replication for Mobility Support in OBIWAN
�

Luı́s Veiga Paulo Ferreira

INESC/IST, Rua Alves Redol 9, Lisboa, Portugal phone: 351 21 3100292
E-mail:

�
luis.veiga,paulo.ferreira � @inesc.pt

Abstract

The need for sharing is well known in a large number of
distributed collaborative applications. These applications
are difficult to develop for wide area (possibly mobile) net-
works because of slow and unreliable connections.

For this purpose, we developed a platform called OBI-
WAN1 that: i) allows the application to decide, in run-time,
the mechanism by which objects should be invoked, remote
method invocation or invocation on a local replica, ii) al-
lows incremental replication of large object graphs, iii) al-
lows the creation of dynamic clusters of data, and iv) pro-
vides hooks for the application programmer to implement a
set of application specific properties such as relaxed trans-
actional support or updates dissemination.

These mechanisms allow an application to deal with sit-
uations that frequently occur in a (mobile) wide-area net-
work, such as disconnections and slow links: i) as long as
objects needed by an application (or by an agent) are co-
located, there is no need to be connected to the network,
and ii) it is possible to replace, in run-time, remote by lo-
cal invocations on replicas, thus improving the performance
and adaptability of applications.

The prototype is developed in Java, is very small and
simple to use, the performance results are very encourag-
ing, and existing applications can be easily modified to take
advantage of OBIWAN.

1 Introduction

There is a clear need for data sharing and collabora-
tion support in a large number of applications in different
domains. In OBIWAN, we focus on applications in the
area of co-operative work within virtual organizations; for
example, a virtual enterprise grouping several companies
from different countries, a virtual marketplace, a widely dis-

�
This work was supported by Microsoft Research.

1OBIWAN stands for Object Broker Infrastructure for Wide Area
Networks.

tributed software development team, a distributed game in-
volving people anywhere in the world, etc.

This need for information sharing is increasing along
two main axis: wide area (i.e., across the Internet) and
mobility (i.e., portable computers, webpads, personal dig-
ital assistants, smart cellular phones, etc.). As a matter of
fact, besides the growing number of desktop computers con-
nected to the Internet, there are other devices, generally
called information appliances (info-appliances, for short)
that are gaining enormous popularity; personal digital as-
sistants (PDAs) are just one of them.

The role of these info-appliances, currently handling
agendas, calendars, etc. will certainly grow as more com-
puting power and communications capability can be in-
cluded [17, 19]. In particular, the foreseen increase of band-
width in wireless communication makes the connection of
these info-appliances to the Internet a reality [15].

We envisage a general scenario in which a user wants to
access data using a PC in his office, using a laptop while in
the airport or in the hotel, using a PDA in a taxi, etc. The
user wants to live in this “data ubiquitous world” with no
other concern besides doing his own work and, as much as
possible, to keep on working in spite of any system problem
that may occur (e.g. network disconnections).

So, there is a constant need to access shared data no mat-
ter where you are and the info-appliance you use, and users
want the same degree of responsiveness and performance
as in a fully high-bandwidth low-latency wired connected
environment. Sometimes these requirements may be im-
possible to fulfill but the system should be able to minimize
the number of such occurrences.

For example, if accessing data on some remote machine
is not possible for some reason, the application should not
stop working; instead, it should, at least, automatically pro-
pose the user an alternative access to such data from another
machine, even if such data is not up to date.

While disconnections maybe rare in stationary local area
networks, they occur in greater number in mobile networks.
Most applications consider them to be failures that are ex-
posed to users. In the mobile environment, applications
will face frequent, lengthy network disconnections. Some

1

of these will be involuntary (e.g., due to a lack of network
coverage) while others will be voluntary (e.g., due to a high
dollar cost). Mobile applications should handle such dis-
connections gracefully and as transparently as possible. In
addition, users should be able, as far as possible, to continue
working as if the network was still available. In particular,
users should be able to modify local replicas of global data.

Therefore, in this paper we focus on the following is-
sues: incremental replication of an object graph, automatic
object-fault detection and resolution.This paper is organized
as follows. In the next section we present the architecture
of OBIWAN focusing on incremental replication. In sec-
tion 3 we describe the implementation of OBIWAN. In Sec-
tions 4 and 5 we present some experimental results and re-
lated work, respectively. Finally, in Section 6 we present
some conclusions.

2 Architecture

OBIWAN gives to the application programmer the view
of a network of machines in which one or more processes
run; objects exist inside processes. An object can be in-
voked locally (after being replicated) or remotely (by means
of RMI). OBIWAN is a set of runtime services on top of
the JVM. The OBIWAN data structures are basically two:
proxy-out/proxy-in pairs [18]. A proxy-out stands in for an
object that is not yet locally replicated. For each proxy-out
there is a corresponding proxy-in.

Without loss of generality, we now describe how OBI-
WAN works with a prototypical example shown in Figure 1:
there are two processes in two different sites, S1 and S2,
and the initial situation (a) is the following: i) S2 holds a
graph of objects A, B and C; ii) only object AProxyIn is
registered in a name server, and iii) S1 holds a remote ref-
erence to object AProxyIn, that was obtained from a name
server. The prototypical example illustrates the most impor-
tant data structures supporting the incremental replication
of the objects graph from S2 to S1, and the corresponding
object faults and their resolution.

Stubs and skeletons are created by the underlying virtual
machine (Java in the current implementation). Objects A,
B and C are created by the programmer; their replicas, A’,
B’, and C’ are created upon the programmer’s request. All
other objects, i.e. proxies-in and proxies-out, are part of the
OBIWAN platform and are transparent to the programmer,
except AProxyIn for reasons that will be made clear after-
wards.

Figure 1 also shows, for each object and proxy, the inter-
faces implemented:

� IA, IB and IC: these are the remote interfaces of ob-
jects A, B and C, respectively, designed by the pro-
grammer; they define the methods that can be remotely
invoked on these objects.

Root Root

IARemote

A

IProviderRemote

IA

IA

IProvider
IDemander

B

C

IB
IProvider

IDemander

IC
IProvider

IDemander

Root Root

IARemote

A

BA'
IProviderRemote

IA

IA

IProvider
IDemander

C

BproxyOut

IA
IProvider

IDemander

IDemandee
IB IProviderRemote

IB

IB
IProvider

IDemander

IC
IProvider

IDemander

Root Root

IARemote

A

BA'

IA
IProvider

IDemander

C

IA
IProvider

IDemander

IB
IProvider

IDemander

IC
IProvider

IDemanderB'
IB

IProvider
IDemander

CproxyOut IDemandee
IC

stub

skeleton

iinterface
implemented

object

interface IProviderRemote
Object get(mode)
void put(Object)

AProxyIn

AProxyIn

BProxyIn

IProviderRemote
IA AProxyIn

IProviderRemote
IB BProxyIn

IProviderRemote
IC CProxyIn

interface IProvider
Object get(mode)
void put(Object)

interface IDemander

interface IDemandee
void setProvider(IProvider);
void setDemander(IDemander);
Object demand();

void setProvider(IProvider);
void updateMember(Object replica,
 Object member);

proxy

Site S1 Site S2situation (a)

situation (b)

situation (c)

Figure 1. Replication in OBIWAN. Objects created on
each step are shaded.

� IProvider: interface with methods get and put that
supports the creation and update of replicas; method
get results in the creation of a replica and method
put is invoked when a replica is sent back to the pro-
cess where it came from in order to update its master
replica.� IDemander and IDemandee: interfaces that support the
incremental replication of an object’s graph(v. subsec-
tion 2.2);� IProviderRemote: remote interface that inherits from
IProvider so that its methods can be invoked remotely.

2.1 Replication

Taking into account the OBIWAN architecture previ-
ously described, it is clear that OBIWAN allows the applica-
tion programmer, if he wants so, to control, both at compile
and at run-time, which objects should be invoked remotely
or locally. An object that is invoked locally is a replica of a
master in some remote process.

For example, in Figure 1, the master replica A, after be-
ing replicated into S1, can still be invoked via RMI because
the local reference of type IARemote points to its master
replica through AProxyIn. So, at any time, both replicas,
the master and the local, can be freely invoked. It is the pro-
grammer, or even the user, who decide what the best option
is.

A local replica A’ can be updated from the its master A,
or update it, whenever the programmer wants. Obviously,
due to replication, the issue of replicas’ consistency arises.
We leave the responsibility of maintaining (or not) the con-
sistency of replicas to the programmer.2

The incremental replication of an object graph has two
clear advantages w.r.t. the replication of the whole reacha-
bility graph in one step: i) the latency imposed on the appli-
cation is smaller because the application can invoke imme-
diately the new replica,3 and ii) only those objects that are
really needed become replicated.

Thus, situations in which an application does not need
to invoke all objects of a graph, or when the info-appliance
where the application is running has limited memory are
those in which incremental replication is useful. On the
other hand, there are situations in which it may be better to
replicate the whole graph; for example, if all objects are re-
ally required for the application to work, it is better to repli-
cate the transitive closure of the graph. The application can
easily make this decision in run-time, between incremental
or “transitive closure” replication mode, by means of the
mode argument of the method IProvideRemote::get(mode).

An architectural issue arises with the use of proxies-out.
Since both proxies-out and objects share an interface but not
an implementation (e.g. B’ and the corresponding BProx-
yOut share IB but have different implementations) objects
can only be manipulated by means of method invocation
(i.e. no direct access to internal data).

In the case of Figure 1, this means that the code writ-
ten by the programmer in A’ can not access directly internal
data of B’. This is due to the fact that B’ may not exist yet;
instead, there is BProxyOut in S1 that implements IB but in
such a way that it detects the fault of B’; then, BProxyOut
will create B’ so that the invocation can proceed normally.
We believe this is not an important restriction. As a mat-
ter of fact, this is a sensible way of manipulating objects,
only through methods, thus ensuring encapsulation. Note
that this limitation also exists, for example, in Microsoft
ActiveX components [3] and Java Beans [9].

2Note that the application programmer is not forced to deal with con-
sistency; he may simply use a library of specific consistency protocols
written by any other programmer. We plan to develop such libraries for
well known consistency policies[13].

3Obviously, a perfect mechanism of pre-fetching in the background can
completely eliminate the latency.

Root Root

IARemote

A

BA'

IA
IProvider

IDemander

C

IA
IProvider

IDemander

IB
IProvider

IDemander

IC
IProvider

IDemander

B'
IB

IProvider
IDemander

CproxyOut IDemandee
IC

IProviderRemote
IA AProxyIn

IProviderRemote
IB BProxyIn

IProviderRemote
IC CProxyIn

Site S1 Site S2

BproxyOut
IDemandee
IB

X

step 3

step 4

step 4

Figure 2. Intermediate step between situations (b) and (c)
of Figure 1.

2.2 Incremental Replication

We now explain in detail the steps involved in the in-
cremental replication of the graph presented in Figure 1.
Starting with the initial situation (a), the application run-
ning in S1 requests A’ by invoking method AProxyIn.get;
this method simply invokes A.get. Then, this method exe-
cutes the following:

1. create A’ in S2;
2. for each reference A holds (only to B in this case) cre-

ate the corresponding ProxyIn objects (only BProxyIn
in this case) in S2; in the constructor of BProxyIn, set
an internal reference pointing to B;

3. create a ProxyOut object for each ProxyIn created in
the previous step (only BProxyOut in this case) in S2;

4. set the internal reference of A’ (of type IB) so that it
points to BProxyOut;

5. invoke BProxyOut.setProvider(BProxyIn) so that
BProxyOut points to BProxyIn;

6. invoke BProxyOut.setDemander(A’) so that BProxy-
Out also points to A’; return A’.

Thus, AProxyIn.get terminates simply by returning A’. As
a result, A’ and BProxyOut are automatically serialized by
the underlying virtual machine and sent to S1. This results
in situation (b) in Figure 1 where the just created objects are
shaded. Later, the code in A’ may invoke any method that
is part of the interface IB, exported by B, on BProxyOut
(that A’ sees as being B’). For transparency, this requires
the system to support a kind of “object fault” mechanism
as described now. All IB methods in BProxyOut simply
invoke its demand method BProxyOut.demand that runs as
follows(see Figure 2):

1. invokes method BProxyIn.get (BProxyIn is BProxy-
Out’s provider);

2. BProxyIn.get invokes B.get that will proceed in a sim-
ilar way as explained previously for A.get: creates B’,
CProxyOut, CProxyIn and sets the references between
them; once this method terminates, as illustrated in
Figure 2, B’, BProxyOut and CProxyOut are all in S1,
CProxyIn is in S2, and BProxyOut points to B’; note
that A’ and BProxyOut still point to each other;

3. BProxyOut invokes B’.setProvider(this.provider) so
that B’ also points to BProxyIn; this is needed because
the application can decide to update the master replica
B, by invoking method B’.put that in turn will invoke
BProxyIn.put, or to refresh replica B’ (method BProx-
yIn.get);

4. BProxyOut invokes A’.updateMember(B’,this) so that
A’ replaces its reference to BProxyOut with a reference
to B’;

5. finally, BProxyOut invokes the same method on B’
that was invoked initially by A’ (that triggered this
whole process) and returns accordingly to the appli-
cation code;

6. from this moment on, BProxyOut is no longer reach-
able in S1 and will be reclaimed by the garbage collec-
tor of the underlying virtual machine.

It’s important to note that, after situation (c) of Figure 1,
further invocations from A’ on B’ will be normal direct in-
vocations with no indirection at all. Later, when B’ invokes
a method on CProxyOut (standing in for C’ that is not yet
replicated in S1) an object fault occurs and will be solved
with a set of steps similar to those previously described. The
replication mechanism just described is very flexible in the
sense that allows each object to be individually replicated.
However, this has a cost that results from the creation and
transference of the associated data structures (i.e., proxies).
To minimize this cost OBIWAN allows an application to
replicate a set of objects, i.e. a cluster.

A cluster is a set of objects that are part of a reachability
graph. For example, if an application holds a list of 1000
objects, it is possible to replicate a part of the list so that
only 100 objects are replicated and a single pair of proxy-
in/proxy-out is effectively created and transferred between
sites. Thus, the amount of objects in the cluster is deter-
mined in run-time by the application. The application spec-
ifies the depth of the partial reachability graph that it wants
to replicate as a whole. So, these clusters are highly dy-
namic. This is an intermediate solution between: i) having
the possibility of incrementally replicate each object, or ii)
replicating the whole graph. In Section 4 we present the
performance results for all these possibilities.

interface IA
extends Serializable

interface IProvider

interface IARemote
extends IA, IProviderRemote

class AProxyIn
extends java.rmi.server.UnicastRemoteObject
implements IARemote

interface java.rmi.Remote

interface IDemander

interface IDemandee

class AProxyOut
implements
IA, IDemandee

interface
IProviderRemote

class java.rmi.server.UnicastRemoteObject
part of Java language

part of OBIWAN platform

generated by OBIWAN compiler

coded in part by the programmer

class A
implements IA,
IDemander,
IProvider

Figure 3. Interfaces and classes of OBIWAN. Inheritance
is represented with a solid line; implementation is repre-
sented with a dashed line.

3 Implementation

The OBIWAN system runs on top of the Java virtual
machine. Java is portable, free, simple to use, and sup-
ports the basic functionality required, i.e. RMI, dynamic
code loading and reflection. In this section we describe the
classes, interfaces and tools that constitute OBIWAN. We
also illustrate how to port both legacy non-distributed and
distributed-RMI applications on top of OBIWAN.

3.1 Classes and Interfaces

Suppose we want to build a distributed application with
an object that can be either locally replicated or invoked
via RMI. Additionally, we wanted objects to be replicated
incrementally, i.e., as and only when they are needed.

All the interfaces and classes involved in this example
are illustrated in Figure 3. The “rectangular” interfaces
and classes are part of the regular Java distribution. The
“rounded rectangles” represent OBIWAN platform inter-
faces that are constant and therefore pre-compiled. The
“dashed ellipses” represent classes and interfaces automat-
ically generated by the obicomp compiler. Finally, the
solid “ellipse” represents the class that the programmer
must write. The programmer only has to worry with the
so-called “business-logic”.

The implementation of interfaces IDemander and
IProvider is automatic through source code augmentation

of the class the programmer has written. The program-
mer only has to write class A, the corresponding interface
IA can be derived from it, and, obviously, the code of the
client that invokes an instance of A. Note that the interfaces
IProvider and IProviderRemote are constant, thus
they do not have to be generated each time an application is
written. The interface IARemote, and classes AProxy-
Out and AProxyIn are generated automatically.

To summarize, when a new application is developed the
programmer does the following steps: i) write the interface
IA; ii) write the class A; iii) run the obicomp tool. The
last step is to automatically generate the other interfaces and
classes needed, and to extend class A implementing inter-
faces IProvider and IDemander. Currently, obicomp uses
a mix of: i) Java reflection mechanism to analyze classes
and generate the corresponding proxies, and ii) source code
insertion to augment the classes written by the programmer
with the methods that implement interfaces IDemander and
IProvider.

3.2 Porting Existing Applications

We also wanted to make the porting of existing appli-
cations to OBIWAN a simple process, so that an existing
application that was written with no distribution in mind,
could be easily transformed into a distributed application
with access to the functionality provided by OBIWAN (in-
cremental replication). If an existing application is already
distributed by means of RMI, we also want to be able to
modify it so that it may use functionality supported by OBI-
WAN.

For non-distributed applications the porting should be
performed in the following manner: from every existing
class A, an interface IA representing its public methods can
be automatically derived (if it does not exist yet). From
this interface, OBIWAN automatically generates interface
IARemote and classes AProxyOut and AProxyIn. Finally,
class A is automatically modified as follows: i) its refer-
ences to instances of other classes that may be incrementally
replicated must be changed to reference the correspond-
ing interfaces so that, by polymorphism, AProxyOut can
stand for an instance of A; ii) class A must implement in-
terfaces IA, IDemander and IProvider; the implementation
of IA is obvious, and the implementation of IDemander and
IProvider is done automatically by obicomp.

For a distributed application that was developed with the
typical RMI-based approach, the modifications required to
make it run on top of OBIWAN are rather easy. Taking into
account Figure 3, and given class A, interface IARemote,
and class IARemoteImpl, it is necessary to perform the fol-
lowing (all done automatically by obicomp): i) generate
the interface IA; this is similar to the interface IARemote
that has been written by the programmer and is automat-

ically generated by stripping it of any remote-awareness,
namely, exceptions; ii) create, from any existing implemen-
tation class (e.g. IARemoteImpl), a local class A; iii) pro-
ceed as with a non-distributed application previously de-
scribed.

Thus, for a distributed application that was developed
with the typical RMI-based approach, OBIWAN uses a re-
verse process to strip the application classes of explicit RMI
references and then, deals with them as if they were devel-
oped without remoteness in mind, generating automatically
the code for remote access and replication.

4 Experimental Results

In this section we present two types of experimental re-
sults: i) performance measurements comparing LMI (local
method invocation) vs. RMI, and ii) incremental replica-
tion with and without clustering with varying parameters.
All the performance results we obtained in a 100 Mb/sec
local area network, connecting Pentium II and Pentium III
PCs with 128 Mb of main memory each, running JDK 1.3.

4.1 Performance of LMI vs. RMI

In this section we present performance results compar-
ing RMI to LMI, i.e. local method invocation, on a single
object. The time it takes to make a local method invocation
is 20 microseconds4. A remote method invocation takes 2,8
milliseconds and, obviously, is independent of the object
size. In Figure 4 we present the cost of performing several
invocations via RMI and LMI for several object sizes. Note
that the execution time of LMI includes the cost due to the
creation of the replica and to update it back in the master
site. We can conclude that:

� the LMI on a replica performs better than RMI for
larger number of invocations and for smaller objects;� with RMI, the object size has no influence on the in-
vocations time; however, this time grows very sharply
with the number of invocations;� for small objects and few invocations, the performance
of RMI and LMI is similar; thus, even in this case, the
cost of creating a replica and then updating the master
replica is comparable.

4.2 Performance of Incremental Replication

In this section we study the performance of incremen-
tal replication for several object sizes: 64 bytes, 1024 bytes
and 16 Kbytes. We use a list with 1000 objects (all with

4This method performs an access to a variable of the object, so it is not
an empty method.

0.00

10.00

20.00

30.00

40.00

50.00

60.00
1 3 5 7 9 11 13 15 17 19

number of invocations

Ti
m

e
(m

ill
is

ec
on

ds
) RMI

LMI 256
LMI 1024

LMI 4096

LMI 16K

LMI 64K

Figure 4. Comparison of RMI and LMI.

the same size) that is created in site S2. This list is then
replicated into another site S1, in several steps, each step
replicating 1, 25, 100, 250, 500, or 750 objects. Then, the
application running in site S1 invokes a method on each ob-
ject of the list. When the object being invoked is not yet
replicated the system automatically replicates the next 1, 25,
100, 250, 500, or 750 objects.

The results are presented in Figure 5. Note that, the time
values include the creation and transference of all the repli-
cas along with the corresponding proxy-out/proxy-in pairs
for each object being replicated. So, in this case, each object
still can be individually updated because there is no cluster-
ing of objects.

From Figure 5, we can conclude that:

� the steps observed are due to the creation and transfer-
ence of replicas along with the corresponding proxy-
in/proxy-out pairs;

� the creation and transference of replicas along with the
corresponding proxy-in/proxy-out pairs is more signif-
icant than object invocations;

� the incremental replication of one object each time is
the most flexible alternative but is the least efficient for
large number of invocations;

� the incremental replication of 25 to 100 objects each
time is the most efficient alternative;

� the incremental replication of 750 or 500 objects each
time is not efficient because of the high cost of cre-
ation and transference of the corresponding replicas
and proxy-out/proxy-in pairs;

� for info-appliances with reduced amount of free mem-
ory, when only a part of the objects are effectively
needed, it is clearly advantageous to incrementally
replicate a small number of objects (but more than one
each time).

64 byte Objects

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700 800 900 1000

invocations

tim
e

(m
s)

1

25

100

250

500

750

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700 800 900 1000

invocations

tim
e(

m
s)

500

750

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600 700 800 900 1000

invocations

tim
e

(m
s)

25
100
250

500

750

1

1

1

25
100

250

1024 byte Objects

16 Kbyte Objects

750

500
250

100
25

Figure 5. Incremental replication of objects.

4.3 Performance of Cluster Replication

In this section we study the performance of incremental
replication with object clustering. The list and object sizes
are the same of the previous section. The application run-
ning in site S1 invokes a method on each object of the list.
When the object being invoked is not yet replicated the sys-
tem automatically replicates the next 25, 100, 250, 500, or
750 objects. The difference is that objects are replicated in
groups, i.e. clusters with several sizes: 25, 100, 250, 500,
or 750 objects. This means that, for each of these clusters,
all objects are replicated as a whole, thus there is only one
proxy-in/proxy-out pair being created. Consequently, each
object can not be individually updated.

The results are presented in Figure 6. Note that, in
each case, the time values include the creation and transfer-
ence of all the replicas along with the single corresponding
proxy-out/proxy-in pairs.

From Figure 6, we can conclude that:
� when compared to the previous section the perfor-

mance results are much better because there is only one
proxy-out/proxy-in pair being created and transferred
for each cluster; so, the most significant performance

64 byte objects with clustering

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000

invocations

tim
e

(m
s)

25

100

250

500

750

1024 byte objects with clustering

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800 900 1000

invocations

tim
e

(m
s)

25
100

250

500

750

16K objects with clustering

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000

invocations

tim
e

(m
s)

25

100
250500

750

25

100

250
500

750

Figure 6. Incremental replication of clusters of objects.

cost is data serialization (done by the Java virtual ma-
chine) and network communication;� when compared to the previous section, the perfor-
mance results are not that sensitive to the amount of
objects being replicated each time (i.e. the curves are
closer); the reason is the same as in the previous item.

5 Related Work

The OBIWAN platform is related to several other sys-
tems that support distributed invocation, replication, auto-
matic detection and resolution of object-faults. An impor-
tant difference is that all these systems do not provide an
integrated platform supporting all the mechanisms as OBI-
WAN does. This integration is an advantage to the program-
mer as he may decide what functionality is best adapted to
his application scenario.

Javanaise [2, 11] is a platform that aims at providing
support for cooperative distributed applications on the in-
ternet. In this system the application programmer develops
his application as if it were for a centralized environment,
i.e. with no concern about distribution. Then, the program-
mer configures the application to a distributed setting; this

may imply minor source code modifications; a proxy gen-
erator is then used to generate indirection objects and a few
system classes supporting a consistency protocol. Javanaise
does not provide support for incremental replication. Ja-
vanaise clusters are defined by the programmer and are less
dynamic than in OBIWAN. In other words, the frontier of
the clusters in OBIWAN are defined in run-time by the ap-
plication in order to improve its performance and to allow
disconnected work.

There has been some effort in the context of CORBA
to provide support for replicated objects [10]. There has
been also similar efforts in the context of the World Wide
Web [2]. However, most of this work addresses other spe-
cific issues such as group communication, replication for
fault-tolerance, protocols evolution, etc. None seems to ad-
dress the issue of distributed application development for
networks of info-appliances with mobility in mind. OBI-
WAN attempts to minimize bandwidth and connection time
to address this issue. With OBIWAN, the programmer has
the means to make his application to decide, in run-time, if
an object should be invoked via RMI or if a local replica
should be created. We believe that this is a very important
aspect when developing distributed applications for info-
appliances given the significant and rapid changes in the
quality of service of the underlying network.

The issue of object caching has been addressed by many
systems. This is different from what we propose, replica-
tion: in OBIWAN objects can be replicated freely among
sites. However, there are some common aspects between
caching and replication. An important distributed system
with object and page caching is Thor [14]. This system pro-
vides a hybrid and adaptive caching mechanism handling
both pages and objects. In addition, Thor provides its own
programming language. Most object-oriented databases
(OODBs) [22], for example such as O � [7], GemStone [1],
do have some kind of caching. However, they are very
heavyweight, and often come with their own specialized
programming language. There has been some work on ob-
ject caching in CORBA as well. For example, Chockler
[8] proposes an hierarchical cache system in which servers
cache objects that clients will then ask for. When compared
to OBIWAN, it is clear that we do allow objects to be repli-
cated in the client and there is no hierarchical caching sys-
tem.

Much work has been done regarding object-fault han-
dling [12, 21]. However, most of it has been centered
on persistent programming languages or related to adding
transparent, orthogonal persistence to existing program-
ming languages. Nevertheless, it is useful, since it intro-
duces well-known and widely accepted designations for rel-
evant existing techniques and/or concepts, e.g. swizzling.
Our object-fault handling is done without modifying the
underlying virtual machine. This makes our solution more

portable.

6 Conclusions

In wide area networks, distributed applications must be
capable of dealing with variable quality of service and dis-
connections. The mechanism of object replication sup-
ported in OBIWAN allows the programmer to deal with
such situations; applications may decide, at run-time, what
is the best way to invoke an object: via remote method invo-
cation (RMI), or locally via local method invocation (LMI)
based on a replication mechanism that brings objects to the
info-appliance where an application is running.

The flexibility of the invocation mechanism allows the
application programmer to develop his application in such
a way that the user can continue to work disconnected from
the network (either voluntary or not). As long as the objects
needed by an application (or an agent) are locally accessi-
ble, there is no need to be connected to the network. In ad-
dition, by replicating objects in the info-appliance where an
application using them is running, the overall performance
can be improved w.r.t. an approach in which objects are
always invoked via RMI.

We showed how incremental replication and object fault-
ing resolution can be done without modifying the Java vir-
tual machine. We think that a similar solution could be used
for other virtual machines (e.g., .Net [16]). The number of
objects being replicated can be changed in run-time by the
application. This allows the application to balance latency,
bandwidth, invocation performance and memory used. All
these aspects are of utmost importance in a mobile wide-
area network of info-appliances. The performance results
of our first prototype, even with no special optimizations,
are very encouraging.

We plan to test our prototype on several info-appliances
under different network conditions (wide-area and wire-
less). We will study how the performance numbers pre-
sented in Section 4 depend on the relative speed of the
processors involved, for example, between a hand-held PC
such as Compaq iPAQ, and a desktop PC. In the future, in-
stead of inserting code (with obicomp) into classes written
by the programmer, we plan to use a byte-code manipula-
tion library, such as Javassist [4], JOIE [5] or BCEL [6],
to avoid source code dependency. Additionally, we want to
investigate the possibility of expressing our compiler and
code augmenter in declarative terms by making use of re-
sults in work like Kava [20].

References

[1] P. Butterwoth, A. Otis, and J. Stein. The GemStone object
database management system. Commun. ACM, 34(10):64–
77, Oct. 1991.

[2] S. J. Caughey, D. Hagimont, and D. B. Ingham. Deploying
distributed objects on the internet. Recent Advances in Dist.
Systems, Springer Verlag LNCS, Eds. S. Krakowiak and S.K.
Shrivastava, 1752, Feb. 2000.

[3] D. Chappell. Understanding ActiveX and OLE. Redmond,
WA: Microsoft Press, 1996. ISBN 1-572-31216-5.

[4] S. Chiba. Javassist — a reflection-based programming wiz-
ard for java. In Proc. of OOPSLA’98 W’shop on Reflective
Programming in C++ and Java, Oct. 1998.

[5] G. Cohen, J. Chase, and D. Kaminsky. Automatic program
transformation with joie. In Proc. of the 1998 USENIX An-
nual Technical Symposium, 1998.

[6] M. Dahm. Byte code engineering with the javaclass api.
Technical report b-98-17, Freie Universitt Berlin, Institut fr
Informatik, 1998.

[7] O. Deux et al. The O � system. Comm. of the ACM,
34(10):34–48, Oct. 1991.

[8] G. C. el al. Implementing caching service for dist. corba ob-
jects. In Proc. of the IFIP/ACM Int. Conf. on Dist. Systems
Platforms and Open Dist. Processing (Middleware’2000) -
Springer Verlag, Heidelberg, Apr. 2000.

[9] R. Englander and M. Loukides. Developing Java Beans.
O’Reilly & Associates, 1997. ISBN: 1565922891.

[10] P. Felber, R. Guerraoui, and A. Schiper. Replication of corba
objects. Recent Advances in Dist. Systems, Springer Verlag
LNCS, Eds. S. Krakowiak and S.K. Shrivastava, 1752, Feb.
2000.

[11] D. Hagimont and F. Boyer. A configurable rmi mechanism
for sharing dist. java objects. IEEE Internet Computing, 5,
Jan. 2001.

[12] A. L. Hosking and J. E. B. Moss. object fault handling for
persistent programming languages: a performance evalua-
tion. In ACM Conf. on Object-Oriented PRogramming Sys-
tems, Languages and Applications, 288-303, Sept. 1993.

[13] K. Li and P. Hudak. Memory coherence in shared vir-
tual memory systems. ACM Trans. on Computer Systems,
7(4):321–359, Nov. 1989.

[14] B. Liskov, M. Day, and L. Shrira. Dist. object management
in Thor. In Proc. Int. W’shop on Dist. Object Management,
pages 1–15, Edmonton (Canada), Aug. 1992.

[15] M. W. Oliphant. The mobile phone meets the internet. Soft-
ware Practice and Experience, 36(8):20–28, Aug. 1999.

[16] D. S. Platt. Introducing Microsoft .Net. Microsoft Press,
2001. ISBN: 0-7356-1377-X.

[17] J. M. Reuter. Inside Windows CE. Microsoft Programming
Series. Microsoft Press, 1998. ISBN 1-57231-854-6.

[18] M. Shapiro. Structure and encapsulation in distributed sys-
tems: the proxy principle. In Proc. of the 6th Intl. Conf. on
Dist. Systems, pages 198–204, Boston, May 1986.

[19] B. Venners. Inside the Java Virtual Machine. Java Masters
Series. McGraw-Hill, 1997. ISBN 0079132480.

[20] I. Welch and R. J. Stroud. Kava using byte code rewriting
to add behavioural reflection to java. In Proc. of the Sixth
USENIX Conf. on Object-Oriented Technologies and Systems
(COOTS’01), San Antonio (USA), Jan. 2001.

[21] S. J. White and D. J. Dewitt. A performance study of alterna-
tive object faulting and pointer swizzling strategies. In 18th
VLDB Conf. Vancouver, British Columbia, Canada, 1992.

[22] S. Zdonik and D. Maier. Readings in Object-Oriented
Database Systems. Morgan-Kaufman, San Mateo, Califor-
nia (USA), 1990.

