
BestGC++: Optimizing Garbage Collection Selection
Through Benchmarking

Guilherme Luı́s Francisco Soares

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisors: Prof. Luı́s Manuel Antunes Veiga
Prof. Paulo Jorge Pires Ferreira

Examination Committee

Chairperson: Prof. Nuno Miguel Carvalho dos Santos
Supervisor: Prof. Luı́s Manuel Antunes Veiga

Member of the Committee: Prof. Rodrigo Fraga Barcelos Paulus Bruno

November 2024

Declaration
I declare that this document is an original work of my own authorship and that
it fulfills all the requirements of the Code of Conduct and Good Practices of
the Universidade de Lisboa.

Acknowledgments

First and foremost, I would like to thank Prof.Paulo Ferreira, for the opportunity to go develop my

thesis abroad under his guidance. The encouragement and insights provided were instrumental to

conclude this research.

I would also like to express my gratitude to Prof.Luı́s Veiga for the guidance and advice provided

throughout the development of my thesis, since the first PIC draft. His attention to detail and diverse

perspectives were essential in achieving the final goals of this work.

A special thanks goes to the University of Oslo for all the help provided during my time abroad. It

really doesn’t feel cold when people are always ready to help.

I would like to thank my family for their never-ending support throughout my academic journey, and

honestly my entire life! And my friends-those who have been with me since the beginning, those I made

over the past five years, and those I met during my Erasmus experience. Thank you for all the laughs,

memories, and support. Without you, this journey would not have been nearly as meaningful or even

possible.

Lastly, and most importantly, to my girlfriend: thank you for your unwavering support through all my

ups and downs. Your love and encouragement have been essential in shaping the person I am today.

You are an example to follow, and every day I strive to be more like you.

i

Abstract

The rapid adoption of cloud computing has transformed technology infrastructure, enabling service mod-

els such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and serverless Function-

as-a-Service (FaaS). Alongside this shift, microservices architecture has become widely adopted, allow-

ing applications to be built from independent services. Java is a popular language for developing these

microservices, yet their distributed systems nature presents challenges such as communication com-

plexity and system failures, requiring optimized runtime environments and efficient Garbage Collection

(GC) strategies.

In order to overcome these challenges, we will explore microservices architecture and review old

and modern GC algorithms like G1, Shenandoah, and ZGC, suitable for low latency environments, and

able to meet Service Level Agreements (SLAs). We also explore BestGC, a Java profiling tool that

selects the best GC for an application, which serves as a foundation for the solution developed in this

research. Building on this background, the thesis introduces two profiling tools: BenchmarkGC and

BestGC++. BenchmarkGC facilitates Java workload benchmarking, while BestGC++ refines the original

BestGC into a web service, allowing users to run their application with the optimal GC with minimal effort.

Experiments on GraalVM and HotSpot runtimes validated their effectiveness in identifying performance

bottlenecks and selecting the best GC based on workload characteristics, making it a valuable tool for

production environments.

Keywords

Garbage Collection, Benchmarks, Java Runtimes, Microservices

iii

Resumo

A rápida adoção da computação em nuvem transformou a infraestrutura tecnológica, permitindo mod-

elos de serviço como Infrastructure as a Service (IaaS), Platform as a Service (PaaS) e Serverless

Function as a Service (FaaS). Juntamente com essa mudança, a arquitetura de microsserviços foi am-

plamente adotada, permitindo que aplicações sejam construı́das a partir de serviços independentes.

Java é uma linguagem popular para desenvolver esses microsserviços; no entanto, a natureza dos

sistemas distribuı́dos apresenta desafios como a complexidade de comunicação e falhas de sistema,

exigindo ambientes de execução otimizados e estratégias eficientes de Garbage Collection (GC).

Para superar esses desafios, exploraremos a arquitetura de microsserviços e algoritmos de GC -

antigos e modernos. Exemplos de modernos são G1, Shenandoah e ZGC, adequados para ambientes

de baixa latência e capazes de atender aos Service Level Agreements (SLAs). Também exploramos

o BestGC, uma ferramenta de profiling em Java, que seleciona o melhor GC para uma aplicação, que

serve como base para a solução desenvolvida nesta pesquisa. Com base nesse contexto, a tese ap-

resenta duas ferramentas de profiling: BenchmarkGC e BestGC++. BenchmarkGC facilita a avaliação

de Java workloads, enquanto BestGC++ refina o BestGC original em um serviço web, permitindo que

os utilizadores executem aplicações com o GC ideal e um mı́nimo de esforço. Testes com GraalVM e

HotSpot validaram a sua eficácia na identificação de descidas de desempenho e na seleção do melhor

GC com base nas caracterı́sticas da aplicação, tornando-o uma ferramenta valiosa para ambientes de

produção.

Palavras Chave

Garbage Collection, Benchmarks, Ambientes de Execução Java, Microsserviços

v

Contents

1 Introduction 1

1.1 Serverless Computing . 2

1.2 Microservices . 2

1.3 Shortcomings . 3

1.4 Goals . 3

1.5 Organization of the Document . 3

2 Background 5

2.1 Microservices . 5

2.2 Garbage Collectors . 8

2.3 BestGC . 9

3 Related Work 13

3.1 Garbage Collector Algorithms . 13

3.1.1 Garbage First . 13

3.1.2 Shenandoah . 15

3.1.3 ZGC . 17

3.2 GCs - Studies and analysis . 19

3.2.1 NAPS . 19

3.2.2 NumaGiC . 21

3.2.3 iGC . 24

3.2.4 J-NVM . 26

3.2.5 Elastic Memory Management . 28

3.3 Runtime Optimizations . 31

3.3.1 GraalVM Native Image . 31

3.3.2 GraalVM Isolate Proxy . 32

4 Solution 35

4.1 BenchmarkGC . 36

4.2 BestGC++ . 41

vii

4.2.1 Metrics and Parameters Rational . 41

4.2.2 Application Architecture and Overview . 42

4.3 Summary . 44

5 Evaluation 47

5.1 Overview . 47

5.2 Testbed and Hardware Specifications . 48

5.3 BenchmarkGC Evaluation . 49

5.3.1 Performance and Benchmark Analysis . 49

5.3.2 HotSpot vs GraalVM . 67

5.3.3 Final Thoughts . 70

5.4 BestGC++ Evaluation . 71

5.4.1 Spring PetClinic - Benchmarks . 71

5.4.2 BestGC++ Testing Methodology and Results . 72

5.5 Summary . 74

6 Conclusion 77

6.1 Future Work . 79

Bibliography 79

A Code of Project 85

viii

List of Figures

2.2 Monolith and Microservice architecture . 7

3.1 G1 Heap Layout . 15

3.2 Card Table Example . 15

3.3 ZGC Garbage Collection Cycle: The cycle keeps repeating alternating the first good color

between M0 and M1 . 19

3.4 iGC Architecture . 24

3.5 EMM architecture . 30

3.6 GraalVM Native Image . 32

5.3 HotSpot DaCapo Results (P90 Pause Time - Lower is better) - The following graphs show

P90 pause time with different heap sizes across all DaCapo Workloads and GCs (G1,

Parallel, Z). The heap sizes used are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f) 8192. 52

5.4 HotSpot DaCapo Results (Throughput - Lower is better) - The following graphs show

throughput time with different heap sizes across all DaCapo Workloads and GCs (G1,

Parallel, Z). The heap sizes used are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f) 8192. 53

5.6 HotSpot Renaissance Results (P90 Pause Time - Lower is better) - The following graphs

show P90 pause time with different heap sizes across all Renaissance Workloads and

GCs (G1, Parallel, Z). The heap sizes used are: a) 256; b) 512; c) 1024; d) 2048; e)

4096; f) 8192. 55

5.8 HotSpot Renaissance Results (Throughput - Lower is better) - The following graphs show

throughput time with different heap sizes across all Renaissance Workloads and GCs

(G1, Parallel, Z). The heap sizes used are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f)

8192. 58

5.10 Graal DaCapo Results (P90 Pause Time - Lower is better) - The following graphs show

P90 pause time with different heap sizes across all DaCapo Workloads and GCs (G1,

Parallel, Z). The heap sizes used are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f) 8192. 60

ix

5.12 Graal DaCapo Results (Throughput - Lower is better) - The following graphs show through-

put time with different heap sizes across all DaCapo Workloads and GCs (G1, Parallel,

Z). The heap sizes used are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f) 8192. 63

5.13 Graal Renaissance Results (P90 Pause Time - Lower is better) - The following graphs

show P90 pause time with different heap sizes across all Renaissance Workloads and

GCs (G1, Parallel, Z). The heap sizes used are: a) 256; b) 512; c) 1024; d) 2048; e)

4096; f) 8192. 65

5.14 Graal Renaissance Results (Throughput - Lower is better) - The following graphs show

throughput time with different heap sizes across all Renaissance Workloads and GCs

(G1, Parallel, Z). The heap sizes used are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f)

8192. 67

5.15 Runtime Scoring Matrices (Lower score is better) - The following graphs show Garbage

Collector Throughput and P90 Pause Time scores across multiple heap sizes for GraalVM

(a,b), and HotSpot (c,d). All scores are normalized to G1 Throughput and Pause time

values. a) GraalVM P90 Pause Time Scores; b) GraalVM Throughput Scores; c) HotSpot

P90 Pause Time Scores; d) HotSpot Throughput Scores. 70

5.16 Spring PetClinic Benchmark Throughput and P90 Pause Time Results (Lower is better)

in seconds - The following graphs show PetClinic’s Throughput and P90 Pause Time

for GraalVM and HotSpot runtimes. GraalVM: a) p90 pause time and b) throughput;

HotSpot: c) p90 pause time and d) throughput. 72

x

List of Tables

3.1 Garbage Collectors . 30

4.1 Command-line options for BenchmarkGC . 36

5.1 List of Benchmarks/Workloads used by BenchmarkGC - spring is removed, so it can be

used to test BestGC++. 49

5.2 HotSpot - Workloads overview. 50

5.3 Graal - Workloads overview. 59

5.4 Improvement in Throughput and P90 Pause Time when changing from HotSpot to GraalVM

((+) value: decreased performance; (-) value: increased performance). 69

5.5 Spring PetClinic BestGC++ GC Selection in GraalVM and HotSpot with a Heap Size of

512MB - Old Equation 5.4 vs New Equation 5.5. 74

xi

xii

List of Algorithms

4.1 Run Benchmarks and build reports . 39

4.2 Run Benchmark Algorithm . 40

xiii

xiv

Listings

4.1 Benchmarks Config Example . 37

tables and code/benchmark report.json . 38

4.2 Example of Benchmark Report . 38

4.3 Structure of GC Scoring Matrix. 38

4.4 Structure of GC Report. 38

5.1 DaCapo Hotspot batik - a) 256 MB heap size and b) 512 MB heap size - Parallel GC

Pause times (in ns) . 51

5.2 DaCapo Hotspot h2 - a) 2048 MB heap size and b) 4096 MB heap size - ZGC Pause Time

and Throughput (in ns) . 51

5.3 Renaissance Hotspot scala-kmeans - a) 4096 MB heap size and b) 8192 MB heap size -

Pause Time per category for G1 and Parallel GCs(in ns) 54

5.4 Renaissance Hotspot akka-uct - a) 512 MB heap size and b) 4096 MB heap size -

Throughput and Total Pause Time(in ns) for all GCs . 57

5.5 DaCapo Graal h2 - a) G1 and b) Parallel - Pause time details for 2048MB Heap Size (in ns) 60

5.6 DaCapo Graal graphchi - a) G1 and b) Parallel - Throughput details (in ns) at 256MB heap

size . 62

5.7 Renaissance Graal finagle-http - Z,G1 and Parallel Pause Time details (in ns) at 256MB

heap size . 64

5.8 Renaissance Graal naive-bayes - Z,G1 and Parallel Throughput and Pause Time details

(in ns) at 1024MB heap size . 66

tables and code/matrix.json . 86

A.1 GC Scoring Matrix . 86

tables and code/gc report.json . 86

A.2 Garbage Collector Report . 86

xv

xvi

Acronyms

• AOT - Ahead of time

• EMM - Elastic Memory Management

• E2E - End-to-End

• G1 - Garbage First

• GC - Garbage Collector

• iGC - Incremental Garbage Collection

• LC - Latency Critical

• NAPS - NUMA-Aware Parallel Scavenge

• NUMA - Non-Uniform Memory Access

• SLA - Service Level Agreements

• TLABs - Thread Local Allocation Buffers

• ZGC - Z Garbage Collector

xvii

xviii

1
Introduction

Contents

1.1 Serverless Computing . 2

1.2 Microservices . 2

1.3 Shortcomings . 3

1.4 Goals . 3

1.5 Organization of the Document . 3

Within the domain of modern technology, the adoption of cloud computing as the main paradigm

instead of traditional on-premise infrastructures has changed the way individuals, businesses, and or-

ganizations interact with information technology. The concept of cloud computing is a model where

computing resources, storage, and services are delivered over the Internet. This can have many advan-

tages, such as the access to computing resources on demand and the absence of resource allocation

needed to manage infrastructure.

The three main models of cloud computing are [1]:

1. Infrastructure as a Service (IaaS): The consumer has control over the software being run, the

operating system, and the storage used but not the underlying infrastructure.

1

2. Platform as a Service (PaaS): The consumer deploys its application developed with specific li-

braries/tools given by the provider, having no control over the software, operating system, and

storage used by the cloud provider.

3. Software as a Service (SaaS): The consumer has the ability to use the provider’s application,

having no control over the application or underlying cloud infrastructure.

1.1 Serverless Computing

In the past decade, Serverless Computing, a cloud computing model, has gained increased popularity.

This model was made popular by Amazon with AWS Lambda 1 in 2014 and completely eliminates

the need for the users to manage the underlying architecture where their code is deployed. Usually,

this service is provided using a Function-as-a-Service model, although Container-as-a-Service is also

becoming popular nowadays. To use FaaS, the user develops a set of discrete functions on a specific

runtime language (most popular languages are supported), which will later be executed in response to

events or triggers. Users are charged only by the time spent in code execution, which doesn’t happen in

previously mentioned models. Despite the advantages of flexibility, ease of use, and cost, there are still

some challenges related to FaaS services, that will be discussed later.

1.2 Microservices

In this day and age, big corporations are either migrating or have already migrated from their monolith

architecture - where the application is developed as a single unit - to a microservices architecture, where

the application is divided into a set of small independent services, all communicating through a well-

defined API. This methodology allows each service to be developed and scaled independently based on

demand. It is worth mentioning that these services can have a serverless nature leveraging the FaaS

model. Netflix is one of the most well-known examples of a company with this kind of infrastructure,

having started their migration to microservices in 2008.2

One of the languages most widely used for microservices architectures is Java due to its stability,

ease of development as a Garbage-collected language, and platform independence originated from

the ”write once run anywhere” 3 principle of the Java Virtual Machine (JVM). There are various JVM

implementations used, with the Hotspot JVM and GraalVM being among the most popular.

1Introducing aws lambda (https://aws.amazon.com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/), ac-
cessed: 07/01/2023.

2Completing the netflix cloud migration (https://about.netflix.com/en/news/completing-the-netflix-cloud-migration),
accessed: 07/01/2023

3Sun Microsystems slogan for the Java platform

2

https://aws.amazon.com/about-aws/whats-new/2014/11/13/introducing-aws-lambda/
https://about.netflix.com/en/news/completing-the-netflix-cloud-migration)

1.3 Shortcomings

As mentioned earlier, challenges associated with microservices can stem from the chosen architecture

or the specific software used, the most common ones being:

Cold Starts: This phenomenon is present in serverless solutions. It’s the delay that occurs between

the initial function trigger and the infrastructure initialization/set-up to handle the first request to a

function that has been idle or hasn’t been recently executed.

GC delays: This occurs when microservices runtimes use a Garbage Collected language e.g., Java.

Due to Garbage Collection cycles, applications may experience higher latency when handling mul-

tiple requests than usual, and, in extreme cases, may become totally unresponsive for some time.

This is due to the computation resources being allocated to the garbage collection process.

Communication between microservices: As the number of microservices rises, the network com-

plexity also rises. So it is possible to have simple requests being bottlenecked by a specific service

within the network.

1.4 Goals

The exploration of microservices and their integration within modern software ecosystems serves as

a foundation for identifying optimizations and innovative solutions. Our goals centre around optimizing

these integrations, primarily through the utilization of one of the most prevalent microservices platforms,

the JVM (Java Virtual Machine). This pursuit aligns with:

• Improving language runtimes with the intention of mitigating cold starts.

• Optimize the Garbage Collection process by means of improving the Garbage Collector algorithm;

manipulating GC heuristics or even introducing software middleware to decrease resource usage

and improve system performance.

1.5 Organization of the Document

Chapter 1 introduces the current technological landscape, discussing its limitations, advantages, and

setting forth our research objectives. Following this, Chapter 2 delves into the foundational research on

Microservices, Garbage Collectors, and a Garbage Collector selection tool which supports the devel-

opment of our solution. The review of contemporary research continues Chapter 3, where we explore

current approaches to address the challenges mentioned earlier. Building on this foundation, Chap-

ter 4 details the two GC profiling tools developed during this work, explaining their architecture and

functionality. Next, Chapter 5 presents the evaluation of these tools, along with an analysis of whether

3

their performance aligns with the expectations set out in previous chapters. The thesis concludes with

Chapter 6, offering a summary of the work and proposing potential avenues for future research.

4

2
Background

Contents

2.1 Microservices . 5

2.2 Garbage Collectors . 8

2.3 BestGC . 9

In the upcoming subsections, our aim is to provide a comprehensive overview of the current research

landscape related to Microservices and Garbage Collectors, providing insights into key developments

and challenges in these fields.

2.1 Microservices

The appearance of the microservice architecture didn’t appear as a completely new concept, with some

authors defending that many ideas are related to an older concept - Service Oriented Architecture (SOA)

- being characterized as ”SOA done right” [2]. One of the earliest definitions of microservices architecture

was made by Lewis and Fowler 1 in the year 2014 and since then its popularity has been increasing

rapidly (Figure 2.1). They characterize this architecture as a way to modularize a single application into
1Microservices (https://martinfowler.com/articles/microservices.html), accessed: 07/01/2023.

5

https://martinfowler.com/articles/microservices.html

Figure 2.1: Google search for ”microservice” 2

multiple services, all of them easily deployable with lightweight communication mechanisms between

them.

The increasing popularity of microservices can be related to many factors such as:

• Famous companies like Amazon, Netflix, and Uber are actively sharing their successful migration

stories.

• More flexibility, autonomy, and overall speed of development due to the ability to assign different

teams the responsibility for the development and deployment of each service.

• The increased number of tools enabling easier implementation of microservices and a better de-

velopment experience e.g., DevOps tools, Chaos Engineering, Serverless Computing [3].

• Easier scaling due to its distributed nature.

Associated with the popularity increase many companies and organizations started to migrate their

infrastructure giving rise to many articles providing case studies and surveys about microservices mi-

gration.

On one of these studies, M. Villamizar et al. worked with a company to develop an application in

both monolith and microservice infrastructure, allowing them to arrive at multiple insights [4]. The appli-

cation was designed to only implement the two most popular services of this company for simplicity and

deployed on AWS. Looking at the architecture in Figure 2.2 we can see that migrating to a microservice

infrastructure leads to some additional complexity due to the increase of distribution in the system, which

is corroborated by the authors’ findings: “(...) we validated that microservices introduce many problems

of distributed systems (failures, timeouts, distributed transactions, data federation, responsibility assign-

ments, etc.)(...)” [4]. On the other hand, the microservice approach offers more granular scaling, with

6

each WebServer being able to scale individually both horizontally and vertically. Despite not making use

of the scaling possibilities the authors conclude that this would be a benefit, exploiting the pay-per-use

payment of the AWS cloud model. The latency introduced by the increase of intra-service communica-

tion was not very significant, allowing for the microservice approach to achieve the service requirements

with the added benefit of 17% less cost. Despite these positive results, the authors concluded that

unless the number of users expected is in the order of hundreds of thousands, you shouldn’t make a

transition. This is mostly related to the complexity of the new cultural and development policies that the

company would need to establish for a smooth deployment, scaling, and continuous delivery system.

Figure 2.2: Monolith and Microservice architecture

Simultaneously, other studies are being made comparing a simple microservice architecture ap-

proach to a serverless architecture. Shrestha and B. Nisha did a case study implementing an Image

Processing Application in both architectures using AWS resources [5]. The results demonstrated that

the serverless architecture leveraging a Function-as-a-Service model had slightly worse performance

(less than 10% discrepancy) in situations where the workload is constant or random. However, when

the workload was incremental or spiked the serverless approach had the advantage due to faster scal-

ing. The microservice architecture showed less memory consumption, while the serverless approach

incurred 3.5 times less cost3. M. Chadha et al. also did a migration case study, however using different

runtimes: Google Kubernetes Engine (GKE); Apache OpenWhisk on top of GKE; GCR (Google Cloud

Run) [6]. In this instance, the findings were mostly in favor of the microservices architecture, which

is, according to the authors, due to the workload being composed of simple API GET requests to a

database.

Overall, studies on serverless architecture report a reduction w.r.t cost, however, they also mention

the typical serverless problem - cold starts - showing multiple instances where it has negative effects

with potential to break Service level agreements [5–8].

2https://www.google.com/trends/
3Extra care is needed when allocating serverless memory, due to being proportional to the cost

7

https://www.google.com/trends/

In summary, given the intricate nature of microservices infrastructure and its widespread adoption in

the industry, it is logical to explore and create solutions tailored to these architectural paradigms.

2.2 Garbage Collectors

Before Garbage Collectors emerged, programmers had to manually manage their memory allocation

and deallocation. This process led to multiple kinds of bugs including dangling pointers, double-free

bugs, memory leaks, etc.

Nowadays, many of the most popular programming languages make use of some kind of Garbage

Collector e.g., Java, C#, Go, Javascript, OCaml. The use of a language with automatic memory man-

agement removes the burden of handling the application memory from the programmer to the language

runtime, simplifying the development process and reducing overall memory bugs. However, this also

introduces runtime overhead, which is why languages like C/C++ still have their use case and continue

to have static analysis tools being developed to remove previously mentioned bugs [9].

Garbage Collector algorithms can be divided into two main categories [10]:

• Tracing Algorithms

• Reference Counting Algorithms

Tracing Algorithms

Tracing Algorithms’ main characteristic is the fact they determine the live objects of the application, clas-

sifying the remaining ones as garbage. The first Garbage Collector was a tracing algorithm developed

for the Lisp language in 1959 by Mccarthy [11]. The algorithm is commonly known as Mark & Sweep

and justifies its title by having two distinct phases:

Mark: This is the first phase of the algorithm, and it is the reason for its tracing classification. As

mentioned before, in this phase all live objects are calculated, by starting at a known set of root

objects and marking all accessed objects from there.

Sweep: In this phase, all objects are accessed and checked if they are marked or not. If they are

not marked it means that it wasn’t possible to access them from the root objects i.e., they are safe to

be collected/deallocated.

Despite its age, as you will later verify (see chapter 3), this algorithm remains a fundamental stepping

stone for current GCs, and so many of its issues like cache locality, lack of concurrency (application isn’t

modified while the Garbage cycle is running - Stop-the-World algorithm), etc. are still relevant and

tackled. In particular, past work has addressed locality in object placement in the heap [12], and locality

in code paths where objects are allocated w.r.t. their influence in object lifetime [13].

8

Referencing Counting Algorithms

In the same year 1960, Collins also developed the first reference counting garbage collector algo-

rithm [14]. The main concept of this algorithm is the observation that an object is live if it has one

or more incoming references. To track this data, a simple field on each object can be used, tracking

the reference count as objects are created and deleted (incrementing and decreasing the ref. count

respectively). This way, we can free the object immediately and concurrently to the application as soon

as it becomes unavailable.

Additionally, a write barrier is needed, which consists of instructions injected by the compiler on all

application writes, to remove concurrency problems e.g., multiple threads manipulating the same object.

This is also a common concept in more recent research (see chapter 3).

Two of the main problems of referencing counting GCs are:

Barrier Overhead: Despite necessary, barriers introduce overhead to the application mutator.

Impossible to delete cyclic data structures: There isn’t a way of deleting objects in a cyclic graph.

2.3 BestGC

BestGC [15] is a tool that aims to select the most appropriate garbage collector for a user-provided

Java application. It does so by previously analyzing and benchmarking multiple applications with the

list of available garbage collectors on Java’s runtime across various heap sizes. The collected metrics

are application throughput and garbage collector pause time, which are used to score the Garbage

Collectors.

Afterwards, the user-provided application is monitored to collect metrics that will be used to choose

the most suitable GC and finally run the application.

Best GC Phases

In more detail, the Best GC’s phases could be outlined as follows:

Matrices Generation: This phase is only executed once, before even running BestGC. As men-

tioned before, its main purpose is to profile and benchmark the available Garbage Collectors with

benchmark applications, in this case, the DaCapo4 and Renaissance suites5 were chosen. The

benchmarks are run varying the heap size and upon completion, the metrics are compiled into a ma-

trix where each Garbage Collector gets a score assigned concerning their pause time and throughput

achieved. In this case, JDK 15 was being used, so Garbage First (G1), Parallel GC, Shenandoah,

4https://www.dacapobench.org/
5https://renaissance.dev/

9

and ZGC were the GCs used. Their score was normalized to the default Java GC collector, i.e., the

Garbage First Collector.

Run BestGC: To run BestGC the user provides the compiled java application, meaning the JAR file,

and a weight ∈ [0, 1] to throughput (or pause time). At least one needs to be provided, and their

relation is described by the equation: 1 = throughput weight + pause time weight. The user can

also choose to run the application after the benchmark, which is the default behaviour, and specify

how long the next phase (monitoring phase) will be.

Monitoring Phase: So that BestGC can select the best Garbage Collector for the application, it

needs to monitor the application first. This process occurs using the Garbage First GC and has

two main purposes: collect the amount of heap size in use and CPU usage. The heap in use is

calculated using the jstat6 tool, by providing the process id we can extract the survivor/eden/old

and compressed class space used by the Garbage First GC. The CPU usage is calculated using

proc/stat7 and top8 command, and if it reaches an average above 90% the application is classified

as CPU intensive which can be leveraged so to better understand the relation between CPU and

Garbage Collector.

Calculation Phase: Based on the recorded maximum heap size, BestGC increases its value by

20%, i.e., max heap = max heap ∗ 1.2, and then adjusts it upward to the nearest heap size used in

the Matrices Generation Phase [256 MB, 512 MB, 1024 MB, 2048 MB, 4096 MB, or 8192 MB]. With

the max heap calculated we can already select the corresponding matrix i.e., if we got a max heap

size of 4096MB the corresponding matrix will be the one where all benchmark applications were

executed with a heap size equal to 4096MB. Furthermore, given the previously provided throughput

(or pause time) weight, we calculate the Best GC by calculating the following equation for every GC

in the matrix:

Score = throughputweight ∗ throughputscore + pause timeweight ∗ pause timescore

. The lower the Score the better the GC, so the GC with minimum score is selected.

Results

After running the Matrix Generation Phase it was possible to observe that both suites had the Parallel

GC has better GC in terms of throughput time (which can be expected due to being a Stop the World

GC), while in relation to pause time, ZGC was the most suited, due to its concurrent nature. Analyzing

the CPU influence we can infer that the performance gained by using the BestGC was similar in non-

6https://docs.oracle.com/en/java/javase/11/tools/jstat.html
7https://man7.org/linux/man-pages/man5/proc.5.html
8https://man7.org/linux/man-pages/man1/top.1.html

10

CPU-intensive and CPU-intensive applications, which will serve as a basis for one of our parameter

decisions in 4.2.1. Finally, analyzing the overall quality of BestGC garbage collector selection, it reported

on average a 51.24% selection of the best possible GC, and an 85.95% GC with the correct category

i.e., the garbage collector selected belonged to the same category (concurrent/non-concurrent) as the

one with the best performance. Also, when failing it still registered a 1.75% improvement compared with

G1 and overall an average of 36.75% performance benefit.

11

12

3
Related Work

Contents

3.1 Garbage Collector Algorithms . 13

3.2 GCs - Studies and analysis . 19

3.3 Runtime Optimizations . 31

In this section, we summarize multiple research contributions and categorize them into three main

subsections: Garbage Collector Algorithms, GCs - Studies and analysis, and Runtime Optimizations.

3.1 Garbage Collector Algorithms

3.1.1 Garbage First

The default Oracle HotSpot Java Virtual Machine Garbage Collector is G1 [16–18], a GC (Garbage

Collector) targeted for multiprocessor systems with high memory scalability. Its main characteristics are:

generational; parallel; mostly concurrent; Stop-The-World and evacuating. It aims to achieve the best

tradeoff between latency and throughput for applications with large numbers of allocations, however

tends to achieve worse throughput compared with throughput-oriented GCs. Below we will explain its

main characteristics.

13

Generational

The G1 algorithm distinguishes the allocated objects in young and old generations. This is done due

to the observation that recently allocated objects have a higher probability of being removed from the

application, while objects that are kept on the application for a longer period, have a lower probability

of future removal. So it is more efficient to run more frequent garbage collection cycles on objects with

lower lifetime [19].

The young generation is divided into eden and survivor regions. The eden region contains the newly

allocated objects, while the survivor region contains the young objects that already survived a collection

cycle, and will be promoted to old objects if they survive another one (Figure 3.1).

Memory Layout

The heap is divided into regions of equal size. Mutator threads allocate thread-local allocation buffers

(TLABS) directly on each region using a Compare and Swap (CAS) operation, which prevents memory

allocation contention because each thread is responsible for different memory regions. After a success-

ful CAS operation, the thread can allocate the objects on its TLAB.

Each region x has a remembered set known as a card table (Figure 3.2), which tracks all old regions

that might contain pointers to live objects within the x region. This allows us to know which regions

contain references to the selected collection set at collection time. The only references that remembered

sets keep track of are old-to-young and old-to-old references because young-to-young and young-to-old

references are not needed (young regions are always collected).

Marking

G1 uses a concurrent marking algorithm called Snapshot-at-the-Beginning (SATB), meaning that it does

a heap snapshot and marks the objects as garbage concurrently using that snapshot. We can use a

heap snapshot instead of a Stop-The-World method because of the correct assumption that objects

that are garbage will remain garbage. Due to the nature of the snapshot mechanism, objects that are

created after the heap snapshot will be classified as live objects, and objects that become garbage after

the heap snapshot will become floating garbage having to wait for another marking phase to be correctly

classified.

During the concurrent marking phase, the G1 algorithm has to insert an SATB barrier when writing

to non-null references, because a concurrent write could violate the SATB assumption. When writing to

a non-null reference, this barrier will push the reference to a buffer to be later processed, keeping the

heap snapshot consistent.

14

Figure 3.1: G1 Heap Layout Figure 3.2: Card Table Example

Garbage Collection Cycle

The GC Collection Cycle is divided into two phases: The Young-Only phase and the Space Reclamation

phase. The Young-Only phase contains:

Normal Young Collections: Are triggered when the ratio of #eden regions+#survivor regions >=

newSizeRatio [17], then all objects of the collection set that are still reachable from the root objects

and remembered sets are evacuated.

Concurrent Young Collection: starts when the occupancy of the old generation reaches the Initi-

ating Heap threshold. It starts a marking phase to determine all live objects in the old generation

(while this process doesn’t finish Normal Young Collections can occur). The process ends with two

Stop-The-World pauses: Remark phase that finalizes the marking process and selects regions with

low occupancy to be prepared concurrently before the Cleanup phase, responsible for sorting the

prepared regions according to efficiency and deciding if the Space-Reclamation phase will occur.

After the Concurrent Young collection, G1 enters the Space-Reclamation phase where it does numer-

ous mixed collections (both young and old generation). This phase ends when the benefit of evacuating

more old-generation objects doesn’t outweigh the overhead.

3.1.2 Shenandoah

Shenandoah GC is a garbage collector from Red Hat for the JVM platform [20]. It was developed

with large heap applications in mind and its characteristics are region-based, low-pause, parallel, and

concurrent GC.1

The Shenandoah GC main contributions are lower pause times due to concurrent compaction and

an architectural neutral algorithm, only needing a reliable Compare and Swap (CAS) operation for its

implementation.

1There are already experimental Shenandoah generational builds see https://aws.amazon.com/blogs/developer/

announcing-preview-release-for-the-generational-mode-to-the-shenandoah-gc/ and https://openjdk.org/jeps/404

15

https://aws.amazon.com/blogs/developer/announcing-preview-release-for-the-generational-mode-to-the-shenandoah-gc/
https://aws.amazon.com/blogs/developer/announcing-preview-release-for-the-generational-mode-to-the-shenandoah-gc/
https://openjdk.org/jeps/404

Concurrent compaction raises many issues due to moving objects while possibly using them and

having to update all the references to that same object in an atomic fashion. To solve this, Shenandoah

makes use of a forwarding pointer, forcing all operations to that object to use the forwarding pointer. This

means that when moving an object the references can be updated incrementally. When multiple threads

are trying to update the object it will be done with a CAS operation and only one will succeed. It is worth

noting that this mechanism doesn’t create a new race condition when one thread is reading an object

while another is writing, but increases the window for the race condition to happen.

Memory Layout

To introduce a forwarding pointer means that each object will have an additional header word alongside

the word for the object class and the mark word (used for forwarding pointers, age bits, locking, and

hashing).

The heap is divided into regions of equal size. Both long-lived and newly allocated objects can

coexist in these regions.

Garbage Collection Cycle

The Shenandoah Garbage cycle has four phases, two Stop-the-World (STW) phases, and two concur-

rent. They are:

Initial Marking (STW): Phase where the root set is scanned.

Concurrent Marking: Similar to Section 3.1.1, uses Snapshot at the Beginning algorithm (SATB).

Each thread keeps the total live data for each heap region, to be later combined. It also updates

references to regions evacuated in a previous cycle.

Final Marking (STW): Phase where remaining marking/update queues tasks are processed and the

root set is re-scanned. It also creates the collection with the regions that contain the least amount of

live data.

Concurrent Compaction: To evacuate the live objects in the collection set the GC threads use a

speculative copy protocol. They first create a speculative local copy of the object. Next, they try to

ensure the forwarding pointer references their local object using a CAS operation. Failing the CAS

operation doesn’t raise any problems because it means other thread successfully copied the object.

Barriers

Shenandoah has multiple barriers to ensure correctness while on the concurrent GC phases.

• SATB Write Barrier

16

• Read barrier: Single operation that dereferences the forwarding pointer.

• Evacuation Write Barrier: Ensures that objects in the collection set are evacuated before a write.

• Compare Barrier: While comparing two objects, you can be comparing two distinct references to

the same object (from-space and to-space references). To correct this issue, on a failed compar-

ison the two objects are read again using the read barrier. If the reference matches, they are the

same.

All these barriers introduce overhead and diminish throughput however, they are the cost to have

diminished GC pauses and better latency.

3.1.3 ZGC

The Z Garbage Collector (ZGC) [21] is a Garbage Collector targeted for a large range of heap sizes (up

to 16TB), optimized for low latency. Its main characteristics are being a non-generational, region-based,

mostly concurrent, parallel, and mark-evacuate garbage collection algorithm.2. To achieve concurrency,

ZGC introduces two main novelties: colored pointers and load barriers.

Colored Pointers

ZGC uses 64-bit pointers (20 bits for metadata + 44 bits for object address), with currently only 4 bits of

metadata in use. These 4 bits of metadata are:

• Finalizable (F): The object is only reachable from a finalizer.

• Remapped (R): Reference is up to date and points to the correct object location.

• Marked0 (M0) and Marked1 (M1): If the object is marked.

The conjunction of these bits determines the color of the object. There are 3 possible good colors:

only M0 is set; only M1 is set; and only R is set. The color can be ”good” or ”bad” depending on which

phase of the Garbage Collection cycle ZGC is currently on (see Figure 3.3).

Load Barriers

To interpret the color pointers, ZGC uses a load barrier. The load barrier will be inserted by the Just

In Time compiler (JIT) when an object is loaded from the heap. After that, the load barrier examines

the colored pointer and determines if the color is ”bad” (slow path) or ”good” (fast path). If it has a bad

2Generational ZGC was introduced recently for JDK 21 see https://openjdk.org/projects/jdk/21/ and https://

openjdk.org/jeps/439

17

https://openjdk.org/projects/jdk/21/
https://openjdk.org/jeps/439
https://openjdk.org/jeps/439

color, it can be self-healed by either updating the pointer or relocating the object and then updating its

pointer. The pointer update is done using a Compare and Swap (CAS) operation to prevent concurrency

problems.

Memory Layout

ZGC divides its heap into memory regions (small, medium, large) that can be dynamically resized during

runtime. Furthermore, it maintains 3 virtual views of the same physical memory, each view correspond-

ing to one good color. This way, the pointers with good color can be dereferenced directly without the

need for bit masking operations.

Garbage Collection Cycle

The ZGC cycle consists of three Stop-the-World (STW) pauses and four concurrent phases (Figure 3.3):

STW Pause 1: Threads agree on the current good color; Pages allocated before the current cycle

are selected for collection; Roots are healed and pushed to the mark stack.

Marking/Remapping: Transverse, mark, and self-heal every object reached starting from root nodes.

Both mutator threads and GC threads can mark the objects, using a mark barrier and a load barrier

respectively. The GC threads will always hit the slow path even if the color is good to maximize the

number of objects in the local mark stack.

STW Pause 2: Check if all the marking stacks are empty. This can impact the throughput if the

mutator threads are all paused so, to avoid entering this phase early, local thread-handshaking is

performed with each mutator thread to check for local mark objects.3

Reference Processing: Handle references edge cases.

Selection of Evacuation Candidates(EC): Previous ECs are cleared, and forwarding tables are

dropped. Pages with no objects are reclaimed right away, and the remaining ones are added to the

Evacuation Candidates sorted by size.

STW Pause 3: Relocates all root set objects updating their references and good color.

Relocation: Relocates all objects in the EC, updating their address and the forwarding table.4 Ob-

jects that are not updated in this phase, will be updated on the next marking phase or by previous

load barriers.

3JEP 312: Thread-Local Handshakes: Introduce a way to execute a callback on threads without performing a global VM
safepoint. Make it both possible and cheap to stop individual threads and not just all threads or none.

4Table used to map pre-relocation addresses to post-relocation addresses

18

Figure 3.3: ZGC Garbage Collection Cycle: The cycle keeps repeating alternating the first good color between M0
and M1

3.2 GCs - Studies and analysis

3.2.1 NAPS

For throughput-oriented applications, Stop-the-World Garbage Collectors (GCs) have shown to be ef-

fective, on machines with a small number of cores. However, when using large core machines, with

a NUMA architecture, running OpenJDK 7 with Parallel Scavenge as the default GC, the performance

drastically decreases when the number of cores used is above 8.

NUMA (Non-Uniform Memory Access) architecture machines consist of multiple nodes each one

having various processing units and one local memory. To communicate between nodes a intercon-

nected bus is used.

The reasons for this performance decrease are:

Lack of NUMA-awareness: Leads to objects being allocated on a single node, overloading it.

Lock in Parallel Scavenge phase: Reduces parallelism and increases synchronization overhead.

To solve these issues NAPS [22] was developed, based on Parallel Scavenge and Numa-Aware. Its

main objectives are balancing the live objects between nodes and avoid locking in parallel phases.

Parallel Scavenge

First, let’s describe the workings of the Parallel Scavenge algorithm. As mentioned before, it is a Stop-

The-World (stops the application when running the GC cycle), parallel, and generational Garbage Col-

lector. To allocate objects each mutator thread uses a thread local allocation buffers (TLABs), avoiding

synchronization costs. The young generation contains three sections: eden-space (recently allocated

objects), from-space (objects that survived a collection), and the to-space. When there is a young col-

lection all the eden-space objects are copied to to-space, and the from-space objects are copied to the

old generation. This means that the from-space and to-space regions are swapped.

19

Young collection Phases: They are started when there isn’t space on the current TLAB and it is

impossible to fetch another.

• Initialization: All the mutator threads are paused, and the VM thread initializes a queue of GC

tasks. After it wakes all the GC threads.

• Parallel Phase: The GC threads fetch tasks using a monitor. There are:

– Root task: Provide an entry point to the object graph. While copying objects, the GC thread

stores a forwarding pointer on the old object header using a Compare-and-Swap (CAS)

operation to prevent other threads from copying the same object. All references reached

from that object are pushed to a Breadth-First Traversal (BFT) lock-free bounded queue.

When the BFT queue is empty, the GC thread fetches another root task, or a steal task if all

root tasks were already fetched.

– Steal task: The object graphs can be unbalanced so there is a need to distribute the work-

load to prevent some GC threads from being idle. When fetching a steal task, the GC thread

will steal an object reference from a random BFT queue, popping it from the tail to avoid

synchronization problems. When the thread can’t steal a task it enters a termination pro-

tocol incrementing a counter. Then it pools the counter and peeks into the other threads’

local queues. If all the queues are empty or the global counter is equal to #GCthreads then

the thread leaves the termination protocol. If it finds more tasks, the thread decrements the

counter and continues the stealing process.

– Final task: When a thread leaves the termination protocol it pops a task called final task.

The thread that has this task is the leader responsible for waking up the VM thread.

• Final Synchronization Phase: The VM thread resizes the different heap regions. In the end, it

wakes up the mutator threads.

Old Collection Phases: When an object promotion from the from-space to the old generation fails

the GC thread sets a flag. If the VM thread sees it, a two-phase mark-compact algorithm is started.

Both phases are parallel and use the same mechanism as the Young Generation collection.

• First Phase: Live objects are marked in parallel.

• Second Phase: The GC threads compact in parallel live objects by moving them into free

spaces.

Solution Design

After analyzing the Parallel Scavenge algorithm execution on multicore machines, the authors made the

following design decisions:

20

• Michael-Scoot lock-free queue: In order to reduce lock contention when multiple threads were

trying to dequeue the task queue.

• Removal of GC monitors lock: When terminating the GC threads would try to access the GC

lock at almost the same time, leading to contention. This lock was removed and the termination

protocol was changed to use a futex wait operation (compare and sleep) and an atomic variable

with a timestamp to prevent race conditions e.g., a GC thread is interrupted before suspending

itself by the VM thread, and when resuming it will execute the futex wait operation and verify that

the timestamp variable was changed by the VM thread, avoiding the deadlock.

• Fragmented spaces: Used in young generation. This divides the space into multiple fragments,

each with a virtual address range from a single physical node. When a thread allocates a TLAB it

will access its node. This way, locality improves because mutator threads tend to access recently

allocated objects, and thread migration is mitigated. When collecting, the GC threads will copy to

their node too, ultimately, leading to a balanced memory occupation between nodes due to stealing

tasks.

• Interleaved spaces: Used in old generation. Due to single-thread initialization, the objects tend

to be allocated on the same physical node. To mitigate this issue, whose pages are mapped from

different nodes with a round-robin policy. This will balance memory allocation and access.

With all these changes, after multiple benchmarks, it is possible to conclude that stop-the-world GCs,

in this case NAPS, can scale up to 48 GC threads, provided it has enough memory to collect, reducing

the application pause time.

3.2.2 NumaGiC

On cache-coherent Non-Uniform Access Memory architectures, applications with a large memory foot-

print suffer from the cost of the GC, because of many remote memory accesses during the GC reference

graph scan, that saturate the interconnect between memory nodes. These remote memory accesses

are due to the creation of inter-node references (a reference to an object allocated on a different node).

NumaGiC [23] was created to resolve these problems. It has a mostly distributed design and aims to

maximize memory access locality and avoid the drawbacks of a purely distributed design which tends to

decrease parallelism. The main optimization was to delegate the processing of objects to the GC thread

running on the remote node, by sending a message. This design can decrease parallelism because a

GC thread remains idle when there are no local objects to be collected. Enter the mostly distributed

design, where a GC thread has two modes: Local and Work Stealing mode. NumaGiC also introduces

several policies that aim to reduce the number of inter-node references, and to balance the amount of

objects across nodes.

21

Note: NumaGiC targets long-running computations that use large data sets, for which a throughput-

oriented stop-the-world GC algorithm is suitable. It is based on an improved version of Parallel Scav-

ange (see 3.2.1) called PSB (a stop-the-world, parallel, generational GC which is the default throughput-

oriented GC for Hotspot)

Numa friendly policies

The next memory placement optimization policies were created taking into account that the placement

decision should take less time than the expected benefit. The object graphs of 5 applications were

analysed with a customised version of PSB (Parallel Scavenge Baseline), which ensures that the objects

allocated by a mutator thread running on node i, always stay on that node (pure distributed design).

Applications:

Spark: A multi-threaded map-reduce engine

Neo4j: An embedded, disk-based, fully transactional Java persistence engine that manages graph

data

SPECjbb2013: Business logic service-side application benchmark that defines groups of threads

with different behaviours

SPECjbb2005: Business logic service-side application benchmark where all the threads have the

same behaviour

H2: An in-memory database from the DaCapo 9.12 benchmark

Based on the analysis it was possible to observe that the proportion of clustered references is always

high, specifically between young objects (most of applications with >= 90%), and old-to-young objects

(3 applications with >= 70%). It was also possible to conclude that the memory allocation imbalances

can vary greatly depending on the application, with a range from 7% to 40%.

Derived from these results, four policies were created:

1. Node-Local Allocation: An Object is placed on the same node as the mutator thread. Improves

both GC locality and application locality.

2. Node-Local Root : The roots of a GC thread are chosen to be located mostly on its running node.

3. Node-Local Copy : During young collection, a live object is copied to the node where the GC thread

is running. This in conjunction with the GC thread stealing mode re-balances the load.

4. Node-Local Compact : During the compacting phase of a full collection, an object being compacted

remains on the same node.

22

To map addresses to nodes, NAPS (see 3.2.1) fragmented space is used (each virtual address range

is allocated on a different node). However, unlike NAPS, it is extended to the old generation too. The

card table (Section 3.1.1) is divided into old-generation segments. This means that each segment has

the old-to-young roots of a given node enforcing Node-Local Root policy.

GC threads Mode

Local Mode: In this mode, a GC thread only collects its local memory. While processing references,

if an object from another node is encountered the GC thread sends the reference to the ”home node”

of the object. When a GC thread idles in local mode, it can steal work from its local nodes’s pending

queues. 5

Communication Infrastructure: NumaGiC uses a communication channel per each pair of nodes (to

avoid contention), implemented with a array-based lock-free bounded queue. To mitigate the atomic

compare and swap sync cost of multiple threads sending on the same queue, the references are sent in

bulk.

Work-stealing Mode: In work-stealing mode, a GC thread may steal work from any node and access

remote memory. It steals from 3 groups:

• Its own transmit buffers (cancelling the messages that were not delivered).

• The receive side of other nodes.

• Pending queues from other GC threads.

When stealing from one group, the GC thread will keep stealing for as long as possible from the same

group to avoid failed attempts.

When a GC thread does not find references to steal, it waits for termination. To solve async com-

munication termination problems, before entering the termination protocol, the GC thread checks the

remote memory to see if all its messages were delivered.

Switching between modes: A GC thread enters work-stealing mode when it does not find local work:

its local pending queue is empty; can’t steal from local GC threads; its receive channels are empty.

However, it regularly re-enters local mode (every 1024 stolen objects) because local work can be-

come available again, and this will ensure that all groups from the work-stealing mode will be checked

again when the GC thread leaves local mode.

5Parallel Scavenge keeps tasks on pending queues

23

Results

Testing NumaGiC against previous NAPS (see 3.2.1) showed improvements between 12% to 45% in

throughput. Those improvements were due to the high memory access locality without decreasing

parallelism, which translated into a reduction of interconnect traffic.

3.2.3 iGC

Latency Critical services experience heavy-tailed latency due to performance interference of the concur-

rent garbage collection (GC) as well as multi-tenancy (several different cloud customers are accessing

the same computing resources). The root cause is a semantic gap in resource allocation between JVM

and the underlying Linux OS in multi-tenant systems. This leads too:

• GC threads competing for CPU

• Co-located batch jobs interfering with Latency Critical (LC) services due to Simultaneous Multi-

Threading (SMT)

iGC [24] is a middleware that separates GC threads from worker threads of LC services by assigning

different CPUs for the GC threads and worker threads, avoiding interference. To mitigate SMT inter-

ference, iGC tries to assign threads of batch jobs and worker threads of LC services to different cores.

Furthermore, iGC limits the resource usage of batch threads when GC threads are co-located with batch

threads and GC is triggered. As a result, it effectively mitigates the contention of memory hierarchy in a

multi-tenant system. Now we will describe the iGC architecture and all its components (Figure 3.4).

Figure 3.4: iGC Architecture

24

Monitor

The monitor periodically collects the resource utilization information including CPU usage and heap

usage of a target JVM.

Short Term Controller

The controller manages the adaptive GC triggering procedure. It triggers GC based on CPU usage,

heap usage, and interval set by Monitor and the Long Term controller. It limits the CPU usage of batch

threads on the allocated CPU where GC threads are running (scenarios 4 and 5 in Figure above) by

setting a low priority in CPU usage for batch threads so they can be resumed when GC is finished.

If the JVM is started with root privilege, GC is triggered directly as the OS scheduler will treat it with

high priority. If not, GC is triggered if the cpu usage where GC threads run is smaller than cpu threshold

(70% in this case). If the CPU resource is not enough, iGC limits the CPU usage of batch threads

sharing the same CPU with GC threads by cgroup.

GC trigger situations:

1. There is enough CPU resource so it proactively triggers GC

2. The heap usage increases beyond a threshold such that GC must be triggered to avoid the alloca-

tion stall.

Long Term Controller

This unit has two key functions, dynamic CPU allocation and thread placement and adaptive monitoring

interval. The former addresses non-trivial CPU contentions between GC threads and worker threads

and between batch threads and worker threads. It also leverages Hyper-Threading (HT) for cache per-

formance improvement. The latter controls parameters used in GC, including the heap usage threshold,

the CPU usage threshold, and the number of GC threads.

JVM Problems:

• JVM running in user space: GC threads and worker threads are treated equally by the Linux

OS scheduler and the use of round-robin time-slicing based scheduling leading to higher latency

during GC.

• JVM running as root: the priority levels of the threads are converted to the OS-level priority levels

by the JVM and the OS schedules the threads based on their priority leading to higher latency if

GC threads have higher priority, or expensive Stop the World problems if GC threads have lower

priority.

25

• Solution: To solve this, iGC pins the Worker and GC threads to different CPUs.

Thread Placement Scenarios:

1. It assigns both CPUs of one core to worker threads, which avoids the interference from batch

threads and makes use of the memory hierarchy of the core.

2. It assigns both CPUs of one core to batch threads, which avoids the impact on worker threads.

3. When there are enough CPUs, worker threads and GC threads are assigned to the two CPUs of

one core, respectively (this allows to use HT to our favor).

4. When CPUs are not enough, GC threads share the CPU with batch threads on one CPU, while

worker threads use the other CPU.

5. In the worst scenario, GC threads share one CPU with batch threads, while other batch threads

use the other CPU of the same core.

Results

To test iGC, three NoSQL Latency Critical services were selected (Cassandra, HBase, Solr), and mul-

tiple workloads with varying percentages of read/update/insert and scan operations. The comparisons

were made against two GCs: Garbage-First and ZGC. The results allowed them to conclude that the

iGC middleware improved throughput in multi-tenant systems when used with both previously mentioned

Garbage Collectors.

3.2.4 J-NVM

Many modern data stores and big data analytics platforms are written in Java. Because they manipu-

late large amounts of persistent data, these systems can greatly benefit from the recent technological

advances in Non-Volatile Main Memory (NVMM).

To access NVMM two designs currently exist:

1. External design: NVMM remains outside Java Heap. The JVM accesses it through the file system

(FS) or Java native interface (JNI)

2. Integrated design: JVM stores Java objects in NVMM, and the application accesses them directly

(read/write instr.)

The external design is inefficient due to the cost of converting data back and forth between the NVMM

and Java representations. The internal design has a fundamental flaw: because NVMM now has Java

26

objects it has to run GC (very expensive when data is in the order of a hundred GBs as is the case with

NVMM).

J-NVM [25] avoids the problem mentioned before by noticing that the deletion of persistent objects is

often related to a specific event e.g., deleting data from a database, which is rare and well-defined - so

very few deletion sites. So it makes sense to avoid GC altogether.

Decoupling principle

Because Java is a GC language the authors introduce a decoupling principle between the data structure

of a persistent object and its representation in the Java world. Based on this principle, a persistent object

now consists of two parts: a data structure stored off-heap in NVMM, and a proxy that remains in volatile

memory. The data structure holds the fields of the persistent object (avoids collection), while the volatile

proxy provides the methods that manipulate them.

The J-NVM uses a class-centric approach which means that a persistent object has to be explic-

itly annotated as such. Despite not having the elasticity of the instance-centric approach of creating

persistent and volatile objects alike, it reduces problems in reliability (e.g., bugs can appear from hid-

ing durability from the compiler and programmer); and avoids cross-heap references (e.g., a reference

stored in the NVMM could refer to a persistent or volatile object).

J-NVM framework

The J-NVM framework offers two paradigms:

1. Low-level interface that focuses on performance

2. High-level interface that trades performance for usability

The Low-level interface defines the methods for the proxy to access the persistent data structure. The

High-level interface additionally provides failure-atomic blocks (block of code that is executed entirely or

not).

Properties:

• Association: The proxy maintains the persistent data on an array that holds the addresses of all its

blocks.

• Liveness by reachability: Implemented in J-NVM using a recovery-time GC, that transverses the

persistent object graph when application resumes after a crash.

27

• Fragmentation: J-NVM relies instead on a memory layout inspired by the work of Pizlo et al.. This

layout splits the heap into blocks of fixed size. If a large object does not fit into a single block,

J-NVM creates a linked list of blocks to store its content. Using blocks of fixed size eliminates

the fragmentation problem by design since we can always allocate large objects. However, this

memory layout also increases the complexity of accessing large objects (fixed by the array of

addresses).

• Low-level interface pwb, pfence, psync are used to: add the cache line to pending write queue;

ensure previous pwbs and stores to volatile/persistent memory are executed; (same as previous)

and additionally the writes in the pending queue are propagated to the NVMM.

Results

Both the low-level and the high-level interfaces systematically outperform the external design. In YCSB

benchmark the low-level interface is between 3.6 and 10.5x faster than other existing solutions.

3.2.5 Elastic Memory Management

Stream processing engines are very prominent in the modern technology landscape, mostly due to

Big Data and the need for real-time analytics in fields such as finance, telecommunications, and e-

commerce. The applications in these sectors require short End-to-End (E2E) latency, to achieve better

user experience, respect service level agreements, and generate profit.

The data stream can run through multiple tasks until the final output is computed, with each task

having different latency values. This means that if a task in the pipeline has a very high latency, it

greatly affects the E2E latency of the application. One of the causes of high latency in these streaming

tasks is the mismatch between required and allocated resources. Using static schedulers or having

the user predict the memory requirements of the task can incur in some having high latency due to

under-provisioning, or the opposite, compromising E2E latency in the end.

Other approaches like scaling entities or moving workload between entities still lead to costly opera-

tions like state migration and synchronization operations.

Elastic memory management would not have those problems, because there isn’t the need to ma-

nipulate state. It is possible already to elastic reconfigure Linux containers using “cgroup“ (Linux tool),

however, because on SPEs the Linux container normally contains all the executing tasks, it is not pos-

sible to use this method because it doesn’t provide enough granularity. The proposed solution is a

task-level elastic memory manager - EMM [26] - built on top of Apache Flink, a state-of-the-art SPE.

28

EMM

EMM has the ability to dynamically balance the memory between tasks. It does that using a provision-

ing plan, built by a quantitative model that uses task-level latency (queuing delay + processing time)

and memory size. It monitors the real-time performance of the application and analyses the metrics,

determining the optimal memory for each task to minimize latency.

Motivation Examples

Exactly-Once Guarantees: SPEs have these guarantees in order to ensure the correctness and

consistency of stateful operations in case of failures. Apache Flink uses a Pipelined Consistent

Snapshot mechanism in which the system periodically inserts barriers into the stream. When there

are multiple parallel tasks, and one of them gets delayed, it will affect a downstream task, that has to

wait for all the upstream barriers. So the upstream task latency will greatly influence the E2E latency.

Event-time Processing: Some streaming operations occur over data between a window of time.

Similar to the previous example, the downstream task has to wait for the slowest task to output the

result. Again an example of an upstream task influencing the E2E latency.

Structure

EMM consists of two parts: the EMM runtime and a module embedded in the SPE (Figure 3.5).

EMM runtime:

• Datastation: Pre-processes the data collected from Apache Flink into mature data to estimate α

(time taken to read an item from memory) and β (additional time taken to read an item from disk

compared to memory) parameters of the online learning method (method in which the model is

updated as new data points arrive).

• Solver: Gets the solution of a non-linear programming model.

• Resource Negotiator: Parses the provision plan from the solver and sends the resizing re-

quests. First sends and waits for the memory shrinkage requests. After that, it sends expansion

requests.

Modules in SPE:

• MemUpdateCoordinator: Located in the job master of the streaming application. Parses the

resizing request and maps the request to the correct task.

• Elastic Memory: Memory area used to cache state and handled by each task.

29

Results

Varying the execution interval of the metric pooling affected the performance of the system, With short

intervals leading to overreaction to metrics and long ones to a large delay in memory management. The

value on Flink was set to 30 seconds to achieve good performance. Compared with Flink Slot Sharing

capabilities, EMM could reduce significantly the E2E latency in multiple tests, with 46% to 62% (P99),

and 40% to 51% (mean) reduction.

Figure 3.5: EMM architecture

GC Comparison

The GC algorithms mentioned earlier can be compiled and classified as illustrated in Table 3.1.

Table 3.1: Garbage Collectors

Algorithm Concurrent concurrency Generational Parallel Copy/Evacuating Mark Objective

G1 Partial Yes Yes No/Yes Partial(Old Gen) Latency

Shenandoah Yes No1 Yes No/Yes Yes Latency

ZGC Yes No2 Yes No/Yes Yes Latency

Parallel/NAPS/NumaGiC No Yes Yes Young Gen/Old Gen Partial (Old Gen) Throughput

An observed correlation is that the Garbage Collector objective is directly tied to algorithm concur-

rency. It becomes evident that, for improved application latency, a preference is given to more concur-

rent algorithms due to fewer Stop-the-World pauses, whereas the opposite holds true for throughput.

We can also observe that all algorithms are fully parallel, prefer an Evacuating strategy for object com-

paction (lower memory requirements), and the ongoing push for generational support in newer GCs like

Shenandoah and ZGC, due to its potential benefits [19]. Looking at Table 3.1 we can denote that hav-

ing generational support implies a different approach for young and old generations, to avoid frequent

expensive operations like marking, however on newer algorithms with lower pause times that is not the

case.6

5We consider here that a fully concurrent algorithm implements all expensive operations e.g., global marking, concurrently to
the application

6See 1 and 2

30

3.3 Runtime Optimizations

3.3.1 GraalVM Native Image

Nowadays, server applications are being deployed and executed using cloud computing services such

as Function as a Service (FaaS). When the workload rises on these systems, the underlying platform

spawns new instances to handle the workload, however, the new instance will have a “cold start“. The

cold start happens due to the language runtime having to be initialized. These initializations can be very

slow due to resource-intensive processes like code verification, class loading, bytecode interpretation,

profiling, and dynamic compilation (e.g., in the Java VM). This can result in slow startups and a high

memory footprint, potentially breaking service-level agreements (SLA) and raising costs.

GraalVM Native Image [27] aims to solve these problems by points-to analysis and heap snapshot-

ting, followed by ahead-of-time (AOT) compilation.

Overview

The designed solution is based on a closed-world assumption, which means all Java classes must be

known at build time (Figure 3.6). All the Java bytecode of the application, libraries, VM, and JDK are

processed the same way by points-to analysis, heap snapshotting, and initialization (callback execution).

This process is iterative, and it only stops when a fixed point is reached.

Order of steps:

1. Points-to analysis: Used to discover all classes, methods, and fields reachable at run time. It starts

with all entry points and builds iteratively a type-flow graph that covers the application. It terminates

when there are no more possible type additions to the graph.

2. After building the type-graph, the initialization code can be run. The source of this code is Java

class initializers, which compute the initial values of static fields, and custom callbacks that can be

run at build time, before, during or after the analysis step.

3. Heap Snapshooting: Builds the object graph with all reachable objects and writes them into the

heap image (the initial heap on application start).

This process is repeated until there are no changes in all previous steps. After that, all reachable meth-

ods are compiled into machine code using Ahead of Time Compilation (AOT), and some optimizations

are made according to points-to analysis information e.g., marking fields as final.

The built Image Heap will be considered root-pointers by the Garbage Collector and can be used by

multiple VMs at the same time. This is called ”isolates”, and they provide the ability to host multiple VMs

31

Figure 3.6: GraalVM Native Image

in the same process, each one sharing the same AOT compiled code. Furthermore, each isolate has a

separate heap, so it isn’t possible to have direct object references between two isolates, and Garbage

Collection can happen separately in each isolate. When the isolate is destroyed all the isolate heap can

be freed without the need of running Garbage Collection.

Results

Testing with three recent frameworks (Quarkus (version 0.18.0), Micronaut (version 1.1.3), and Helidon

(version 1.0.1)) showed nearly two orders of magnitude improvement in startup time and instruction

count, with also a good improvement in memory size. All the framework start-up times were less than

30 milliseconds while using the Java Hotspot VM runtime took a second or more.

3.3.2 GraalVM Isolate Proxy

As mentioned before, while serverless platforms are known for their cost efficiency and relative ease

of use, they still have some downfalls. These include high latency experienced due to cold starts and

memory duplication of runtimes, libraries, and program state.

There are already solutions to reduce memory duplication for the JVM runtime e.g., Photons a frame-

work designed to share the language runtime reducing memory footprint and cold starts [28]. However,

Photos still has a cold-start problem due to the JVM startup time, so developing a similar solution using

GraalVM (a language runtime with lower start-up times) is an option worth pursuing.

As previously indicated in Section 3.3.1, GraalVM has the concept of isolates, a feature that enables

32

multiple VMs to be allocated on the same process, and share the same AOT compiled code, although

with different heaps and no state sharing. When not needed, isolates are destroyed, so there isn’t an

object caching functionality. This was designed with the thought that isolates should be short-lived with

low memory allocated, which is not true for all applications e.g., interactions with databases. Isolate

Proxy [29] aims to fix these limitations.

Solution Design

Isolate Proxy solves the previously mentioned limitations by implementing:

Object Pooling: Create a pool of warm isolates. When a thread detaches, the isolate is still alive on

the object pool, allowing for further invocations to utilize the previously allocated objects. When an

isolate is idle for a long time it can be destroyed, releasing all its allocated resources.

State Sharing: To enable state sharing, a specific isolate is created for that effect - a global shared

Isolate. Worker Isolates, when they want to access the shared state, send requests to the global

shared Isolate and get the result via argument passing.

Results

Testing the Isolate Proxy against Photons in a simulated cluster revealed that Isolate Proxy reduces the

overall memory usage for the cluster by 30%. When both solutions have the same cluster size, there

are fewer occurrences of cold starts on Isolate Proxy, which directly translates into better performance

due to Photons’ high startup time. Isolate Proxy also has lower memory requirements, allowing for more

simultaneous warm containers and collocated isolates, culminating in reduced cold starts as well.

33

34

4
Solution

Contents

4.1 BenchmarkGC . 36

4.2 BestGC++ . 41

4.3 Summary . 44

In this chapter, we will address the implementation architecture and components developed so as

to improve BestGC. As mentioned previously in Section 2.3 to run BestGC there is a matrix generation

phase, where a matrix that scores all available garbage collectors (GCs) in the user’s Java environment

is computed. So that a user can easily reproduce this matrix, a tool called BenchmarkGC1 (see Section

4.1) was developed, which we will describe in more detail. Furthermore, BestGC was enhanced to

support web invocations, which are run in a nearly fully automated fashion; and provide an overview

of the users’ running applications. Those improvements culminated in the tool BestGC++2, which is

explained more thoroughly later in Section 4.2.

1https://github.com/guilhas07/benchmark-gc
2https://github.com/guilhas07/bestgc-plus-plus

35

4.1 BenchmarkGC

This tool allows a user to run multiple benchmarks so it classifies Java garbage collectors with respect to

application throughput and garbage collector pause time, or for short pause time. The inputs supported

by the tool are described in the table 4.1.

Table 4.1: Command-line options for BenchmarkGC

Option Description

-h, –help Show this help message and exit

-d, –debug Enable benchmark debugging

-c, –clean Clean the benchmark stats

-s, –skip-benchmarks Skip the benchmarks and compute the matrix with
previously obtained garbage collector results. You
must specify the java jdk used to obtain previous
results. The jdk version is present in the name of
each benchmark stat file. See `–jdk`.

-i, –interactive Run the benchmark interactively

-j, –jdk JDK Specify the Java JDK version when skipping bench-
marks and calculating the matrix

-n, –number-iterations ITERATIONS Number of iterations to run benchmarks. Increase
this number for more reliable metrics

-t, –timeout TIMEOUT Timeout for each benchmark

-b, –benchmarks {{Renaissance,DaCapo} ...} Specify the group of benchmarks to run

As you can see by the option -b or –benchmarks description, the default benchmarks supported

are DaCapo3 and Renaissance4, tools whose main purpose is to profile the Java Virtual Machine with

non-trivial applications and workloads. Due to the existence of multiple applications in each benchmark

suite, the need for custom options can rise dramatically e.g., multiple benchmarks in DaCapo don’t sup-

port Java with version >= 17. To ensure users can execute the benchmark suites without extraneous

problems, a configuration file, benchmarks config.json, is provided to override or extend the bench-

mark settings. Its structure is shown below in Listing 4.1. Users can specify extra parameters for the

JVM by writing a list of string options, and override the number of iterations or timeout (in seconds) for

benchmarks that may take longer to run in less performant environments.

We will now explain the flow of the BenchmarkGC application. The first building block of the appli-

cation is the algorithm responsible for executing individual benchmarks and extracting relevant metrics.

This algorithm, detailed in Listing 4.2, begins by fetching the appropriate command to run, taking into

account the configuration in benchmark config.json (see 4.1). For instance, an example of a command

might be:

3https://www.dacapobench.org/
4https://renaissance.dev/

36

1 {
2 ”DaCapo” : {
3 ” kafka ” : { ” java ” : [” -XX:+ ExitOnOutOfMemoryError ”] } ,
4 ” h2o ” : {
5 ” i t e r a t i o n s ” : 5 ,
6 ” t imeout ” : 900 ,
7 ” java ” : [” - Dsys.a i .h2o.debug.a l lowJavaVers ions=21 ”]
8 } ,
9 }

10 }

Listing 4.1: Benchmarks Config Example

java -XX:+UseZGC -Xms4096m -Xmx4096m -Xlog:gc*,safepoint:file=example.log -r 10

--no-forced-gc

This command runs a Renaissance benchmark scala-kmeans using the Z Garbage Collector (see

Section 3.1.3) while logging the garbage collection operations5. The option Xlog:safepoint in particu-

lar, logs the duration of each garbage collection pause, allowing us to compute the garbage collectors’

average pause time and the 90th percentile pause time, used in the garbage collection scoring, as men-

tioned earlier. During the benchmark execution, system statistics are collected every 0.10 seconds using

the top6 command. The specific command used is top -bn 1 -p process_id. Here, the -b flag en-

ables batch mode, while the -n 1 option ensures the command runs only one iteration. By providing the

process id we can retrieve key performance metrics such as user-space cpu time(us), representing the

time spent in application code, io time(wa), indicating the time spent waiting for I/O operations, and the

percentage of cpu usage of the benchmark process since previous top invocation. During the bench-

mark execution, if the process crashes or if the execution time surpasses the user’s timeout value, a

benchmark report is created with the error code and message (if present). An example of a benchmark

report is shown in Listing 4.2.

The main algorithm in Listing 4.1 is responsible for running the selected benchmarks (or loading

previous reports from the user’s filesystem), as well as compiling every successful benchmark report into

a Garbage Collector report (whose format is described in Listing 4.4). See Listing A.2 in Appendix A for a

full example. After running all user-provided benchmark groups, also known as benchmark suites, invalid

benchmark reports are removed i.e., if a benchmark is not successful across all garbage collectors we

can’t use it to compute the score matrix. Having purged all invalid results from benchmark reports the

algorithm ends by creating an error report, so the user can see what failed in each benchmark, and the

previously mentioned Garbage Collector report for each GC. The valid benchmark reports are returned

to compute the scoring matrix.

Finally, we compute the scoring matrix for the garbage collectors given the benchmark reports. For
5https://docs.oracle.com/en/java/javase/11/jrockit-hotspot/logging.html#GUID-33074D03-B4F3-4D16-B9B6-8B0076661AAF
6https://man7.org/linux/man-pages/man1/top.1.html 8

37

1 {
2 ” ga rbage co l l ec to r ” : ”G1” ,
3 ” j dk ” : ” HotSpot 21.0.4 ” ,
4 ” benchmark group ” : ”DaCapo” ,
5 ” benchmark name ” : ” avrora ” ,
6 ” heap size ” : ” 256 ” ,
7 ” e r r o r ” : n u l l ,
8 ” avg cpu usage ” : 17.5 ,
9 ” avg cpu t ime ” : 17.2 ,

10 ” avg io t ime ” : 0.1 ,
11 ” p90 io ” : 0.0 ,
12 ” number of pauses ” : 18 ,
13 ” t o t a l p a us e t i me ” : 15879736 ,
14 ” avg pause t ime ” : 882207.56 ,
15 ” pauses per category ” : {
16 ” G1Co l lec tFo rA l l oca t ion ” : 7 ,

17 ” I C B u f f e r F u l l ” : 1 ,
18 ” Cleanup ” : 10
19 } ,
20 ” t o t a l pau se t i me pe r ca t ego r y ” : {
21 ” G1Co l lec tFo rA l l oca t ion ” : 15231688 ,
22 ” I C B u f f e r F u l l ” : 57392 ,
23 ” Cleanup ” : 590656
24 } ,
25 ” avg pause t ime per category ” : {
26 ” G1Co l lec tFo rA l l oca t ion ” : 2175955.43 ,
27 ” I C B u f f e r F u l l ” : 57392.0 ,
28 ” Cleanup ” : 59065.6
29 } ,
30 ” p90 pause time ” : 2329170.8 ,
31 ” throughput ” : 73643900878
32 }

Listing 4.2: Example of Benchmark Report

each combination of heap size and GC, the scores are given by the following equation:

throughputscore =
#benchmarks success∑

i=1

throughputi (4.1)

p90 pause timescore =

#benchmarks success∑
i=1

pause timei (4.2)

As you can see in the Equation 4.2, to compute the throughput and pause time scores we compute

the sum between all successful benchmarks because we want each successful benchmark to have an

equal contribution to the score. In the end, all scores will be normalized against the values of G1 garbage

collector 3.1.1. The resulting matrix will follow the format shown in Listing 4.3. For a fully detailed matrix

consult the Listing A.1 in Appendix A.

1 {
2 ” mat r i x ” : {
3 ” heap size ” : {
4 ” ga rbage co l l ec to r ” : {
5 ” throughput ” : <value >,
6 ” pause time ” : <value>
7 }
8 }
9 }

10 }

Listing 4.3: Structure of GC Scoring Matrix.

1 {
2 ” ga rbage co l l ec to r ” : <gc name>,
3 ” j dk ” : <jdk >,
4 ” s t a t s ” : [
5 {
6 ” heap size ” : <heap size >,
7 ” number of pauses ” : <value >,
8 ” t o t a l p a us e t i m e ” : <value >,
9 ” avg pause t ime ” : <value >,

10 ” p90 avg pause t ime ” : <value >,
11 ” avg throughput ” : <value >,
12 / / L i s t o f benchmarks
13 ” benchmarks ” : [” . . . ”]
14 }
15]
16 }

Listing 4.4: Structure of GC Report.

38

Algorithm 4.1: Run Benchmarks and build reports
Initialize benchmark reports as a nested dictionary with default list values;
Initialize heap sizes by calling get heap sizes();
Initialize failed benchmarks as a nested dictionary with default list values;
foreach gc in garbage collectors do

foreach heap size in heap sizes do
if skip benchmarks is true then

Load benchmark reports[gc][heap size] with reports for gc, heap size, and jdk;

else
Append results of running benchmark groups to
benchmark reports[gc][heap size];

Pass gc, heap size, iterations, jdk, timeout, and benchmark groups as
arguments;

foreach result in benchmark reports[gc][heap size] do
if result is not successful then

Append error details to
failed benchmarks[result.heap size][result.benchmark name];

Store result.garbage collector and result.error;

Build error report using jdk and failed benchmarks;
Update benchmark reports by removing failed reports based on failed benchmarks;
Build garbage collectors report using jdk and the updated benchmark reports;
return benchmark reports;

39

Algorithm 4.2: Run Benchmark Algorithm
Input: benchmark group, benchmark, gc, heap size, iterations, jdk, timeout
Output: Benchmark Report or Error
Function kill process(process, cmd):

process.kill();
benchmark command← get benchmark command(benchmark group, benchmark, gc,
heap size, iterations);

file← DummyTimerAndFile();
file path← get benchmark debug path(gc, benchmark group.value, benchmark, heap size);
if debug then

file← open(file path, ”w”);
process← subprocess.Popen(benchmark command, stdout=file,
stderr=subprocess.STDOUT);

else
process← subprocess.Popen(benchmark command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE);

timer← if timeout == None then
DummyTimerAndFile();

else
Timer(timeout, kill process, (process, benchmark command));

time start← time.time ns();
pid← process.pid;
cpu usage stats, cpu time stats, io time stats← [], [], [];
timer.start();
while process.poll() == None do

p← subprocess.run([”top”, ”-bn”, ”1”, ”-p”, pid], capture output=True, text=True);
lines← p.stdout.splitlines();
us, wa← extract cpu io times(lines);
io time stats.append(wa);
cpu time stats.append(us);
cpu usage← calculate cpu usage(lines);
cpu usage stats.append(cpu usage);
time.sleep(0.1);

timer.cancel();
throughput← time.time ns() - time start;
cpu usage avg← mean(cpu usage stats);
cpu time avg← mean(cpu time stats);
io time avg← mean(io time stats);
p90 io← percentile(io time stats, 90);
if process.returncode == 0 then

result← build benchmark report(gc, benchmark group.value, benchmark, heap size,
cpu usage avg, cpu time avg, io time avg, p90 io, throughput, jdk);

else
if debug then

error← ”Check ” + file path + ” for error logs.”;

else if process.stderr then
error← process.stderr.read().decode();

result← build benchmark error(gc, benchmark group.value, benchmark, heap size,
cpu usage avg, cpu time avg, io time avg, p90 io, jdk, process.returncode, error);

file.close();
result.save to json();
return result;

40

4.2 BestGC++

As mentioned before in Section 2.3, BestGC is a tool that aims to select, as the name implies, the

best Garbage Collector for a user-given Java application, and it does so by previously profiling multiple

Java applications to score GCs based on metrics. Afterwards, when profiling a given application, it can

use the previously collected data and select the best GC based on some parameters. The benchmark

profiling was already covered in the previous Section 4.1, so we will now dedicate to explaining what

modifications and improvements were made to create BestGC++.

4.2.1 Metrics and Parameters Rational

One of the possibilities to improve the BestGC Garbage Collector selection is to generate different

matrices based on a value of some metric gathered while executing the application, which could enhance

GC selection accuracy due to the increased matrix specificity. Previously, the authors of BestGC tried

to classify applications into CPU and non-CPU intensive, looking at the CPU usage during benchmark

execution. However, this raises some problems:

• What should be the chosen CPU usage percentage threshold for classifying an application as

CPU-intensive or non-CPU-intensive?

• Once that value is chosen, we will categorize our available benchmarks into two groups, which

may result in an imbalance of data between them or a lack of data for a specific matrix category.

• An application with CPU usage close to the selected threshold may experience significantly worse

performance if it ”lands” on the incorrect side.

Another approach explored was classifying applications as either I/O or CPU intensive. To do this, we

initially used the top8 tool, focusing on the ”wa: time waiting for I/O completion” metric (in percentage).

To understand how this metric behaves, we created various test cases with differing levels of file manip-

ulation. After running these examples, it became clear that to trigger a high rise in wa%, the application

needs to spend significantly more time waiting for I/O operations than performing CPU work. This could

be indicative of an issue within the application. Moreover, even if we set a low wa% as a threshold to

classify applications as I/O or CPU intensive, there remains the possibility that an application with high

CPU usage could still be classified as I/O intensive. Switching to a different classification method, such

as monitoring disk reads using iostat7, would still suffer from the same limitations.

The key takeaway is that, given the complex interplay between multiple factors like I/O and CPU

utilization, a simplistic binary classification would create a false dichotomy and fail to capture the full

nuance of the data.
7https://linux.die.net/man/1/iostat

41

After exploring these possibilities, we shifted our focus to alternative methods for improving GC

selection while also enhancing user experience. Although we ultimately decided against these ideas,

they provided valuable insights into the metrics that can affect application performance, and, as a result,

we are now tracking them with the BenchmarkGC profiling application (see 4.1).

As mentioned earlier, running BestGC currently requires users to manually assign weights based

on their desired emphasis on throughput and latency, the latter defined as GC pause time. A way to

enhance user experience would be to automatically determine the optimal weights, allowing users with

minimal technical expertise to run their applications with the utmost performance. To solve that, we

return to the topic of CPU usage, we made the following observation: if an application shows high CPU

utilization during profiling, it suggests that a GC that competes with the application for CPU resources

would be detrimental, impacting the already stressed application. This means the GC should prioritize

application throughput and minimize interference. Based on this insight, we decided to compute the

throughput weight using the application’s average CPU usage, cpu avg for short. In the piecewise

equation 4.3, we clamp average CPU values below 30% to 0 and those above 90% to 1. For average

CPU values within this range, we apply a linear function to ensure a smooth transition.

throughput weight =


0 cpu avg ∈ [0, 30]
cpu avg

60 − 0.5 cpu avg ∈ [30, 90]

1 cpu avg ∈ [90, 100]

, 0 ≤ cpu avg ≤ 100 (4.3)

Important to remember that given the computed throughput weight value the pause time weight will

be pause timeweight = 1− throughputweight.

4.2.2 Application Architecture and Overview

To further enhance user experience, we enabled BestGC to function as a web application. This approach

simplifies the process for users, allowing them to submit their compiled Java application (in Jar format8) -

from now on referred to only as java application - and specify parameters to achieve optimal performance

with minimal effort.

We developed the web application using Spring9, a widely adopted open-source framework for build-

ing web applications in Java. The architecture is designed to support flexibility and performance profiling

for Java applications, with the following key services:

8https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html
9https://spring.io/

42

Core Services:

Matrix Service: This service is responsible for loading the matrix generated by BenchmarkGC (see

Section 4.1). Once the matrix is loaded, it handles the scoring of all Garbage Collectors (GCs). If no

weights are provided, it will automatically calculate them using the equation in 4.3.

Profile Service: As the name suggests, this service profiles the user’s Java application. During

profiling, it captures metrics such as heap size, CPU usage, I/O wait time, and CPU time percentages

(which correspond to the us and wa values from the top8 tool). These metrics provide insight into

the application’s performance characteristics.

Run Service: This service manages the execution of the user’s Java application. It tracks running

applications and stores relevant information such as process IDs, application names, and the com-

mands used to execute them. This service is integral for managing multiple runs and gathering

runtime data.

Main Endpoints for User Functionality

POST /profile app: This endpoint allows users to submit their Java application along with any nec-

essary arguments. Optionally, users can specify throughput and pause time weights. The application

is profiled, and then executed with the best-performing GC based on the profiling results. The final

execution can be toggled on or off by the user.

POST /run app: Similar to /profile app, but in this case, the user manually selects the heap size

and GC without a profiling stage. The application is run directly with the specified parameters.

GET /poll apps?ids=application ids: This endpoint accepts a list of comma-separated application

IDs and returns the current performance metrics for the specified applications. The metrics are

gathered from the Profile Service, giving users a real-time view of heap usage, CPU consumption,

and more.

Now that we have covered the architecture, we can focus on the user workflow. With an emphasis on

simplicity and minimizing friction in the user experience, the workflow for getting an application up and

running follows these steps:

1. Accessing the Application: The user navigates to the application’s root endpoint

e.g., http://your-domain.com.

2. Input Submission: The user fills in his application arguments (if applicable) and uploads their

Java application.

3. Profiling and Execution: The application is then profiled, weights are computed, optimal heap

size is determined, and it runs automatically.

43

4. User Notification and Dashboard Access: The user receives a notification indicating that the

application is being profiled and is redirected to a dashboard when done. Here, they can view all

running applications and monitor performance metrics.

Expanding on item 3, the BestGC++ application employs a new approach to profiling. Since we use

CPU usage percentage as a key metric for selecting the most suitable Garbage Collector, it is crucial

to manually specify the heap size during the profiling process. We begin with a minimum heap size of

256MB and double it until we reach a size that allows the application to run successfully. This method

ensures that the captured CPU usage metrics closely resemble those observed during the application’s

final execution, allowing us to accurately determine the appropriate throughput weight.

An important implementation detail is the inclusion of a dashboard on the BestGC++ application,

which is crucial for its users, transforming it into a full-fledged service. This dashboard provides valu-

able insights into application performance, including metrics related to I/O, CPU usage, and heap size.

These metrics are displayed only when the user expands the application details, reducing the number

of unnecessary web requests.

Lastly, while BestGC++ can now function as a service, it is important to note it is still fully capable of

being used as a console application while using the new automatic weight calculation functionality.

4.3 Summary

In this chapter, we presented the solution implemented to enhance BestGC by introducing two ma-

jor components: BenchmarkGC and BestGC++, each designed to optimize the selection of the best-

performing garbage collector (GC) for a given Java application.

The BenchmarkGC tool was developed to automate the generation of a scoring matrix, which classi-

fies available GCs based on their throughput and pause time performance across multiple Java bench-

marks. The tool supports a flexible configuration, allowing users to run benchmarks with custom JVM

options, benchmark iterations, and timeouts. It also generates detailed reports for each GC and bench-

mark, which are then compiled into a scoring matrix. This matrix provides normalized scores for each

GC, making it easy to compare their performance in a user’s environment.

The second enhancement, BestGC++, improves upon the original BestGC by introducing new fea-

tures and improving its user experience. BestGC++ now functions as a web service, allowing users

to upload their compiled Java applications (in JAR format), profile them, and automatically select the

best GC for optimal performance using the scoring matrix generated by BenchmarkGC. Furthermore,

BestGC++ introduces automatic weight determination based on application profiling, especially focusing

on CPU usage, allowing it to dynamically balance throughput and pause time weights without requiring

manual input from the user. Despite these enhancements, BestGC++ retains the functionality of its pre-

44

decessor, allowing it to operate as a console application while incorporating the new weight calculation

feature.

The chapter concludes with the architecture and workflow of BestGC++, detailing how it profiles

applications, computes GC scores, and facilitates user interaction through a web-based dashboard.

This comprehensive solution simplifies the process of selecting the best GC, reducing the complexity for

users while ensuring their Java applications run with optimal performance. In the next Chapter 5 we will

test these developed tools to assess their improvements and effectiveness.

45

46

5
Evaluation

Contents

5.1 Overview . 47

5.2 Testbed and Hardware Specifications . 48

5.3 BenchmarkGC Evaluation . 49

5.4 BestGC++ Evaluation . 71

5.5 Summary . 74

5.1 Overview

This chapter provides a comprehensive evaluation of the two GC profiling applications developed, as

detailed in Section 4. We begin with an analysis of the results obtained with the BenchmarkGC applica-

tion (see Section 4.1), an application designed to facilitate the benchmark of various Garbage Collectors

(GCs). By utilizing this application in combination with different Java Development Kits (JDKs), we can

derive meaningful insights into the performance of these GCs and Java runtimes. To carry out this

evaluation, we selected two widely used Java runtimes, Oracle HotSpot and Oracle GraalVM with Just-

in-Time (JIT) compiler. These runtimes are frequently deployed in real-world applications, making them

47

ideal for performance comparison. Additionally, we focused on benchmarking three prominent garbage

collectors: G1, Parallel, and ZGC. However, a key limitation must be noted. As previously stated in

Section 3.1.3, Generational ZGC was introduced in Oracle HotSpot, version 21, however, this feature is

not available for GraalVM (with native image) (see Section 3.3.1), which lacks support for ZGC entirely.

Furthermore, Graal JIT only supports non-Generational ZGC1, so as a result, any comparisons of ZGC

between these two runtimes (HotSpot and GraalVM JIT) will use the default non-Generational version.

The primary metrics we will focus on during our evaluation are throughput-the time taken to complete

each workload (see workload definition in Section 5.2)-and the p90 GC pause time, which represents the

90th percentile of garbage collection pause durations. These metrics will allow us to assess the overall

performance and efficiency of the garbage collectors across different configurations and runtimes.

To evaluate BestGC++, we must select an application that didn’t contribute to the results obtained

during the matrix generation phase (mentioned in Section 4.1). This ensures an unbiased evaluation

of BestGC’s ability to identify the appropriate Garbage Collector for a given random application. Only

after analyzing the application with the BenchmarkGC tool, can we determine if BestGC was capable of

selecting the correct GC for the application, based solely on the previously obtained data.

5.2 Testbed and Hardware Specifications

The evaluation was conducted on a machine running Arch, a Linux-based Operating System, equipped

with an i7 6700k CPU (4 cores, 4.00 GHz) and 16GB of RAM. For runtime performance profiling, we

used Oracle HotSpot and Oracle GraalVM with JIT both with version 21.0.4. In this evaluation, we define

Benchmarks as a group consisting of multiple Workloads, each of which, is a distinct computational

task designed to stress test the Java runtime and Garbage Collector. The purpose of these benchmarks

is to provide a diverse set of workloads to evaluate how different GCs perform under various conditions.

The Benchmarks and Workloads used with the tool BenchmarkGC are listed in Table 5.1. The DaCapo

and Renaissance benchmarks were selected due to the wide range of real-world workloads they en-

compass, from small to big applications, that are frequently selected to profile garbage collectors (GCs)

and Java runtimes.

To evaluate BestGC, we chose Spring PetClinic2, a very popular application in the Java ecosystem

due to being an entry point to the Spring framework3. This application was chosen because it is a

typical Java web application. However, if we examine the DaCapo workloads we can see that it has

a spring workload, which indeed uses the Spring PetClinic. We will remove that workload from the

BenchmarkGC, meaning it will not be used in the matrix generation phase, which as highlighted in

1Generational ZGC already exists in the development branch of GraalVM JDK, being planned for 24.1 release
https://github.com/oracle/graal/issues/8117

2https://github.com/spring-projects/spring-petclinic
3Spring is an open source framework for the Java language

48

Table 5.1: List of Benchmarks/Workloads used by BenchmarkGC - spring is removed, so it can be used to test
BestGC++.

Benchmarks Workloads

DaCapo avrora batik biojava cassandra eclipse fop graphchi h2 h2o jme jython kafka luindex
lusearch pmd spring sunflow tomcat tradebeans tradesoap xalan zxing

Renaissance scrabble page-rank future-genetic akka-uct movie-lens scala-doku chi-square
fj-kmeans rx-scrabble neo4j-analytics finagle-http reactors dec-tree scala-
stm-bench7 naive-bayes als par-mnemonics scala-kmeans philosophers log-
regression gauss-mix mnemonics dotty finagle-chirper

the previous Section 5.1, is fundamental for an unbiased assessment of BestGC++’s decision-making

capabilities.

5.3 BenchmarkGC Evaluation

5.3.1 Performance and Benchmark Analysis

We will start by analyzing both benchmarks (DaCapo and Renaissance) independently on the two cho-

sen Java runtimes (HotSpot and GraalVM) with respect to throughput and p90 pause time. Each bench-

mark was evaluated with varying heap sizes, allowing us to extract how different GCs react when facing

varying degrees of stress in terms of memory availability. Due to the existence of a multitude of work-

loads with different requirements, some couldn’t run while using a specific combination of Garbage

Collector and heap size. In spite of this being a very good pointer while choosing a Garbage Collector

for environments with low available memory, we couldn’t correctly attribute a throughtput and pause time

value for GCs that couldn’t complete said workload. Due to this fact, we will see that for smaller heap

sizes there are less considered workload results, due to the necessity of pruning them from the results.

Very important to reiterate, that throughput and pause time are both metrics with time units, meaning

that a low score is always better. For throughput meaning the workload took less time to complete, and

for pause time meaning that the GCs’ duration of pauses is smaller.

HotSpot Results

Beginning the analysis with an overview of the number of workloads used, and how many were success-

ful i.e., run until completion with no errors for each Garbage Collector. This information is in Table 5.2.

In total 45 workloads were executed, and all GCs were successful when using heap sizes greater than

2048MB. However, we can see that for smaller heap sizes, G1 has more workloads run until completion

e.g., at 256MB heap size it completes successfully three more workloads than Parallel GC and two more

than ZGC. This tells us that G1 can better handle systems with less memory available, not indicative,

49

however, that the performance will be in any way acceptable.

Table 5.2: HotSpot - Workloads overview.

Heap Sizes (MB) GC Success Error

256

G1 34 11

Parallel 31 14

Z 32 13

512

G1 41 4

Parallel 40 5

Z 40 5

1024

G1 44 1

Parallel 44 1

Z 43 2

2048

G1 45 0

Parallel 45 0

Z 45 0

4096

G1 45 0

Parallel 45 0

Z 45 0

8192

G1 45 0

Parallel 45 0

Z 45 0

DaCapo Results Let’s begin by examining the DaCapo results in terms of the p90 pause time, as

shown in Figure 5.3. The most notable takeaway is the consistently low pause times achieved by the

nearly fully concurrent ZGC. Across all workloads in the DaCapo benchmark, regardless of the heap

size, ZGC manages to maintain p90 pause times under 0.01 seconds.

In contrast, the other garbage collectors, G1 and Parallel, show similar results across most work-

loads, although the G1 Garbage Collector shows slightly higher pause times across most workloads.

The notable exception is when using a heap size of 256MB (see Figure 5.3a). In that case, the Parallel

GC exhibited higher pause times in 18 out of 19 benchmarks compared to G1. Parallel GC consistently

shows a higher maximum pause time across most heap sizes (see Figure 5.3), with the exception of

Figure 5.3f, where G1 has the higher p90 pause time, although the difference is minimal.

The data raises some questions regarding the inconsistency of pause time values when the heap

size is modified. One might expect that increasing the heap size would lead to lower pause times across

all workloads, as more memory should alleviate the system’s memory pressure, reducing the likelihood

of longer Full GC pauses. However, this is not always the case. For instance, in the batik workload,

50

the p90 pause time increases from 0.19 seconds with a 256MB heap (Figure 5.3a) to 0.27 seconds

with a 512MB heap (Figure 5.3b) when using the Parallel GC. A plausible hypothesis is that with a

larger heap, the total amount of garbage that accumulates and needs to be collected also increases,

potentially causing longer pauses during GC phases. However, this does not necessarily indicate a

negative trend. If we examine additional data (see Listing 5.1) provided by the BenchmarkGC tool (see

Section 4.1), we can observe that the average pause time decreased when the heap size increased

to 512MB. This suggests that while the p90 pause time might occasionally increase with a larger heap,

the overall pause behaviour of the system may still improve, with shorter average pauses benefiting the

system’s performance.

1 {
2 ” avg pause t ime ” : 102161303.76 ,
3 ” avg pause t ime per category ” : {
4 ” Cleanup ” : 19367.2 ,
5 ” Pa ra l l e lGCFa i l edA l l oca t i on ” :
6 107023688.71 ,
7 ” I C B u f f e r F u l l ” : 130851.5
8 }}

(a)

1 {
2 ” avg pause t ime ” : 76053790.0 ,
3 ” avg pause t ime per category ” : {
4 ” Cleanup ” : 33892.33 ,
5 ” Pa ra l l e lGCFa i l edA l l oca t i on ” :
6 89975202.93 ,
7 ” I C B u f f e r F u l l ” : 220712.0
8 }}

(b)

Listing 5.1: DaCapo Hotspot batik - a) 256 MB heap size and b) 512 MB heap size - Parallel GC Pause times (in
ns)

1 {
2 ” throughput ” : 575998378675 ,
3 ” number of pauses ” : 1520 ,
4 ” t o t a l p a u se t i me ” : 653447466
5 }

(a)

1 {
2 ” throughput ” : 347383293671 ,
3 ” number of pauses ” : 659 ,
4 ” t o t a l p a u se t i me ” : 366088051 ,
5 }

(b)

Listing 5.2: DaCapo Hotspot h2 - a) 2048 MB heap size and b) 4096 MB heap size - ZGC Pause Time and
Throughput (in ns)

Let’s now shift our focus to the throughput results. After analyzing the pause time data, it is reason-

able to expect that the Z Garbage Collector (ZGC) would underperform in terms of throughput compared

to more throughput-optimized GCs like G1 and Parallel. As shown in Figure 5.4, this assumption holds

true. The results show a clear pattern where, in terms of throughput (remember, a smaller throughput

value is better), the Garbage Collectors rank as follows: Z > G1 > Parallel.

Interestingly, the results of the workload batik show that in spite of having a very high p90 pause time,

exhibits remarkably low throughput. This suggests that this workload is highly memory-intensive, placing

51

significant stress on the Garbage Collector while being less computationally demanding intensive than

other workloads.

Most workloads, tend to display similar values independent of the heap size used. However, an

obvious exception is the h2 workload when using ZGC. To understand this anomaly, we need to delve

deeper into the statistics (refer to Listing 5.2). One potential explanation is the substantial reduction

in the number of pauses (nearly 2.3 times fewer), which results in a 1.8 fold reduction in total pause

time. Nevertheless, this alone cannot fully account for the dramatic 228-second reduction in execution

time when increasing the heap size from 2048MB to 4096MB. It suggests that other underlying factors,

possibly related to memory management efficiencies or reduced GC pressure, may also be at play,

further improving the workload’s performance at larger heap sizes.

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: HotSpot DaCapo Results (P90 Pause Time - Lower is better) - The following graphs show P90 pause
time with different heap sizes across all DaCapo Workloads and GCs (G1, Parallel, Z). The heap sizes
used are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f) 8192.

52

(a) (b)

(c) (d)

(e) (f)

Figure 5.4: HotSpot DaCapo Results (Throughput - Lower is better) - The following graphs show throughput time
with different heap sizes across all DaCapo Workloads and GCs (G1, Parallel, Z). The heap sizes used
are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f) 8192.

Renaissance Results Let’s now analyze the Renaissance Benchmark results, focusing on pause time.

Figure 5.6 presents the findings, which, similar to the previous results obtained of DaCapo in Figure 5.3,

show that Z Garbage Collector continues to present impressive low p90 pause time values. However, in

contrast to what happened in the DaCapo 256MB (see Figure 5.3a), the Renaissance workloads reveal

a different trend for the G1 and Parallel GCs. Specifically, in 9 out of 12 workloads with a 256MB heap

size, Parallel GC shows lower p90 pause times than G1 GC (Figure 5.6a). The same pattern can be

observed for the remaining heap sizes: 13/20 (512MB); 16/23 (1024MB); 17/24(2048MB). However, for

a heap size of 4096MB, there is a tie i.e., there are equal amounts of workloads where G1 and Parallel

outperform each other. With an 8192MB heap size (see Figure 5.6f), the trend reverses, with Parallel

GC showing worse p90 pause times compared to G1 in 15 out of 24 workloads.

An interesting exception occurs with the workload scala-kmeans, where ZGC records the worst

53

p90 pause time among all GCs. This is due to the low memory stress in this workload at larger heap

sizes, which favours throughput-oriented GCs. In these scenarios, ZGC, designed to pause more of-

ten to avoid full garbage collection cycles (see 3.1.3), maintains consistent pause time values across

all heap sizes. While, on the other hand, G1 and Parallel when not under heavy heap applications,

avoid long pauses altogether as you can see on the Listing 5.3. At 4096MB heap size, despite the

number of pauses remaining very similar, the pause time increases again due to the following pauses:

ParallelGCFailedAllocation in Parallel GC and G1CollectForAllocation in G1 GC.

1 {
2 ” P a r a l l e l ” : {
3 ” t o t a l pa use t im e pe r ca tego r y ” : {
4 ” I C B u f f e r F u l l ” : 125121 ,
5 ” Cleanup ” : 95571 ,
6 ” Pa ra l l e lGCFa i l edA l l oca t i on ” :
7 19036923
8 }
9 } ,

10 ”G1” :{
11 ” t o t a l pa use t im e pe r ca tego r y ” : {
12 ” I C B u f f e r F u l l ” : 65346 ,
13 ” G1Co l lec tFo rA l l oca t ion ” : 17317822
14 }
15 }}

(a)

1 {
2 ” P a r a l l e l ” : {
3 ” t o t a l pa use t im e pe r ca tego r y ” : {
4 ” I C B u f f e r F u l l ” : 62346 ,
5 ” Cleanup ” : 104511
6 }
7 } ,
8 ”G1” :{
9 ” t o t a l pa use t im e pe r ca tego r y ” : {

10 ” I C B u f f e r F u l l ” : 57755 ,
11 ” Cleanup ” : 103218
12 }
13 }}

(b)

Listing 5.3: Renaissance Hotspot scala-kmeans - a) 4096 MB heap size and b) 8192 MB heap size - Pause Time
per category for G1 and Parallel GCs(in ns)

54

(a) (b)

(c) (d)

(e) (f)

Figure 5.6: HotSpot Renaissance Results (P90 Pause Time - Lower is better) - The following graphs show P90
pause time with different heap sizes across all Renaissance Workloads and GCs (G1, Parallel, Z). The
heap sizes used are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f) 8192.

Starting the throughput analysis of the Renaissance workloads, we first observe that, similar to the

results from the DaCapo Benchmark (refer to Figure 5.4), ZGC consistently shows higher throughput

values across all heap sizes (see Figure 5.8). Moreover, the Parallel GC outperforms both G1 and ZGC

in terms of throughput, achieving consistently lower values across all tested heap sizes. Notably, the

workload akka-uct in Figure 5.8b stands out due to a difference exceeding 300 seconds in throughput

between ZGC and the other GCs. This gap narrows to less than 50 seconds only when the heap size

reaches 4096MB. Examining the data in Listing 5.4, we can confirm that ZGC’s total pause time for

a 512MB heap is significantly lower-100 times less than Parallel and 87 times less than G1. When

the heap size increases to 4096MB, ZGC’s pause time decreases by a factor of 1.24, while the pause

times for Parallel and G1 decrease more sharply (by 3.69 and 6.24 times, respectively). This reduces

the gap, with Parallel’s pause time being 33 times higher than ZGC’s and G1’s being 17 times higher,

55

raising further questions about ZGC’s throughput decline. One might intuitively attempt to explain this

conundrum with an equation like the following:

throughput512MB − throughput4096MB ≈ total pause time512MB − total pause time4096MB (5.1)

Based on the data in Listing 5.4, we apply and evaluate the previous Equation 5.1:

Parallel:

103483032311− 76203010562

109
= 27.28

47119299019− 12759848804

109
= 34.36

27.28 ≈ 34.36

G1:

109273124016− 74241081333

109
= 35.03

40811559264− 6543404594

109
= 34.27

35.03 ≈ 34.27

Z:

425930406666− 105217020071

109
= 320.71

466408601− 376147881

109
= 0.09026072

320.71 ̸≈ 0.09026072

After calculating Equation 5.1 for each GC, we conclude that the relationship between throughput

and pause time holds for both G1 and Parallel GCs. However, it is not a perfect one-to-one mapping.

For instance, in the case of Parallel GC, there is a 7-second discrepancy between both sides of the

equation. This difference could be attributed to factors such as concurrent GC overhead or non-GC-

related operations like I/O, thread contention, or general system overhead. A key factor likely explains

why the equation does not hold for ZGC: allocation stalls. Allocation stalls occur when the memory

allocation rate exceeds the speed at which the GC can reclaim memory. When this happens, ZGC by

not having the ability to do an STW pause to retrieve large memory chunks, will essentially behave like

a Stop-the-World GC until it retrieves enough memory, greatly impacting throughput.

56

1 {
2 ” P a r a l l e l ” : {
3 ” t o t a l p a u se t i me ” : 47119299019 ,
4 ” throughput ” : 103483032311
5 } ,
6 ”G1” :{
7 ” t o t a l p a u se t i me ” : 40811559264 ,
8 ” throughput ” : 109273124016
9 } ,

10 ”Z ” :{
11 ” t o t a l p a u se t i me ” : 466408601 ,
12 ” throughput ” : 425930406666
13 }}

(a)

1 {
2 ” P a r a l l e l ” : {
3 ” t o t a l p a u se t i me ” : 12759848804 ,
4 ” throughput ” : 76203010562
5 } ,
6 ”G1” :{
7 ” t o t a l p a u se t i me ” : 6543404594 ,
8 ” throughput ” : 74241081333
9 } ,

10 ”Z ” :{
11 ” t o t a l p a u se t i me ” : 376147881 ,
12 ” throughput ” : 105217020071
13 }}

(b)

Listing 5.4: Renaissance Hotspot akka-uct - a) 512 MB heap size and b) 4096 MB heap size - Throughput and
Total Pause Time(in ns) for all GCs

57

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: HotSpot Renaissance Results (Throughput - Lower is better) - The following graphs show throughput
time with different heap sizes across all Renaissance Workloads and GCs (G1, Parallel, Z). The heap
sizes used are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f) 8192.

58

GraalVM Results

With the transition to the GraalVM runtime, we first present the number of workloads profiled, as shown

in Table 5.3. Similar to the results obtained with the HotSpot runtime, all workloads were successfully

executed with heap sizes of 2048 MB or larger. A comparison between Table 5.3 and Table 5.2 reveals

no significant differences. This indicates that, under the GraalVM runtime, G1 remains the superior

choice when dealing with memory-constrained environments.

Table 5.3: Graal - Workloads overview.

Heap Sizes (MB) GC Success Error

256
G1 34 11

Parallel 31 14
Z 32 13

512
G1 41 4

Parallel 40 5
Z 40 5

1024
G1 44 1

Parallel 44 1
Z 43 2

2048
G1 45 0

Parallel 45 0
Z 45 0

4096
G1 45 0

Parallel 45 0
Z 45 0

8192
G1 45 0

Parallel 45 0
Z 45 0

DaCapo Results Beginning with the DaCapo Benchmark, we analyze the results in terms of the p90

pause time, representing the 90th percentile of pause times. As shown in Figure 5.10, the Z Garbage

Collector consistently exhibits lower pause time values across all heap sizes. Focusing on Figure 5.10a,

which presents workload results for a heap size of 256 MB, we observe that the Parallel GC demon-

strates lower pause time values compared to G1 in 13 out of 19 workloads. This trend persists across

different heap sizes; for instance, in Figure 5.10d, Parallel GC outperforms G1 in 17 out of 21 workloads

at a heap size of 2048 MB.

Interestingly, despite being a throughput-oriented garbage collector, Parallel GC achieves lower p90

pause time values than G1. To illustrate this, let’s analyze the h2 workload at a heap size of 2048MB

(see Figure 5.10d), which clearly demonstrates that G1 exhibits a worse p90 pause time compared to

Parallel GC. As shown in Listing 5.5, G1 has a lower total pause time of less than 1.35 seconds when

compared to Parallel, primarly due to having 100 fewer pauses while maintaining a similar average

pause time (only 0.00617 seconds higher). Notably, the difference in the p90 percentile is more signifi-

59

cant, at 0.033 seconds. So for more restricted pause time requirements, Parallel GC would still be the

safer option.

1 {
2 ” p90 pause time ” : 83211244.4 ,
3 ” number of pauses ” : 332 ,
4 ” t o t a l p a us e t i m e ” : 13331332086 ,
5 ” avg pause t ime ” : 40154614.72
6 }

(a)

1 {
2 ” p90 pause time ” : 50437108.6 ,
3 ” number of pauses ” : 432 ,
4 ” t o t a l p a us e t i me ” : 14681780210 ,
5 ” avg pause t ime ” : 33985602.34
6 }

(b)

Listing 5.5: DaCapo Graal h2 - a) G1 and b) Parallel - Pause time details for 2048MB Heap Size (in ns)

(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Graal DaCapo Results (P90 Pause Time - Lower is better) - The following graphs show P90 pause
time with different heap sizes across all DaCapo Workloads and GCs (G1, Parallel, Z). The heap sizes
used are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f) 8192.

60

Turning to the throughput results in DaCapo depicted in Figure 5.12, we start by referring that the Z

Garbage Collector, as expected due to its latency-oriented architecture, shows higher throughput values

across all heap sizes, being the worse GC with respect to throughput. Analogously to what happened

in the pause time results, Parallel GC exhibits better performance compared to G1. However, it is worth

mentioning that the difference in throughput between all GCs is pretty low across most workloads, with

only ZGC exhibiting larger differences due to allocation stalls (see workload h2 in Figure 5.12). However,

one of the workloads at 256MB of heap size exhibits a different pattern, meaning that the Parallel GC

got worse throughput among all GCs, the workload graphchi. To diagnose the motives for why this

happened we need to consult the data in Listing 5.6, and it becomes pretty evident when we observe

that the difference in throughput between G1 and Parallel is approximate to the difference in total pause

time (| − 92.47| ≈ | − 90.76|).

Turning to the throughput results in DaCapo depicted in Figure 5.12, we note that the Z Garbage

Collector, consistent with its latency-oriented architecture, exhibits the highest throughput values across

all heap sizes, making it the least effective garbage collector in terms of overall throughput. Similar to the

observations in the pause time results, Parallel GC demonstrates better performance compared to G1.

However, it is important to highlight that the differences in throughput among the garbage collectors are

relatively minor across most workloads, with only ZGC showing significant variations due to allocation

stalls, as seen in the h2 workload in Figure 5.12. Notably, one workload at a heap size of 256 MB exhibits

a different pattern: the Parallel GC underperforms compared to the other garbage collectors in terms

of throughput, specifically for the workload graphchi. To investigate the reasons behind this anomaly,

we can refer to the data in Listing 5.6. It becomes evident that the difference in throughput between

G1 and Parallel GC closely aligns with the difference in total pause time (| − 92.47| ≈ | − 90.76|). The

larger total pause time is largely attributed to ”ParallelGCFailedAllocation” pauses, that contribute to 752

more pauses than G1. This reinforces our earlier analysis in Table 5.3, where G1 demonstrates superior

performance compared to other garbage collectors in low-memory environments. This is likely due to its

efficient generational-based memory management, which optimizes resource usage under constrained

conditions.

61

1 {
2 ” throughput ” : 101929334256 ,
3 ” t o t a l p a us e t i m e ” : 10000028850 ,
4 ” avg pause t ime ” : 3640345.41 ,
5 ” number of pauses ” : 2747 ,
6 ” pauses per category ” : {
7 ” Cleanup ” : 5 ,
8 ” G1Co l lec tFo rA l l oca t ion ” : 1812 ,
9 ” G1TryIn i t ia teConcMark ” : 49 ,

10 ” G1PauseRemark ” : 441 ,
11 ” G1PauseCleanup ” : 440
12 }
13 }

(a)

1 {
2 ” throughput ” : 194402623047 ,
3 ” t o t a l p a us e t i me ” : 100759511173 ,
4 ” avg pause t ime ” : 28796659.38 ,
5 ” number of pauses ” : 3499 ,
6 ” pauses per category ” : {
7 ” Cleanup ” : 6 ,
8 ” Pa ra l l e lGCFa i l edA l l oca t i on ” : 3493
9 }

10 }

(b)

Listing 5.6: DaCapo Graal graphchi - a) G1 and b) Parallel - Throughput details (in ns) at 256MB heap size

62

(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Graal DaCapo Results (Throughput - Lower is better) - The following graphs show throughput time
with different heap sizes across all DaCapo Workloads and GCs (G1, Parallel, Z). The heap sizes
used are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f) 8192.

63

Renassaince Results Switching to the Renassaince benchmark, we start by analyzing the

p90 pause time metrics in Figure 5.13 following the same approach as before. Not surprisingly, ZGC

shows again across all workloads and heap sizes that is capable of outperforming the other GCs when

it comes to achieving the lowest p90 pause time. Using the workload finagle-http at 256MB heap size

(see Figure 5.13a) and referring to the additional statistics in Listing 5.7, we observe a remarkable result

by solving Equation 5.2: ZGC’s p90 pause time is less than 30% of G1’s average pause time and less

than 40% of Parallel’s GC pause time.

Z p90 pause time
average pause time {G1, Parallel}

G1:
480413.6

1614107.67
= 0.298

Parallel:
480413.6

1098527.98
= 0.437

(5.2)

Switching to the Renaissance benchmark, we begin by analyzing the p90 pause time metrics in Fig-

ure 5.13, following the same approach as before. As expected, ZGC consistently achieves the lowest

p90 pause time across all workloads and heap sizes, outperforming the other garbage collectors. Fo-

cusing on the finagle-http workload at a heap size of 256 MB (see Figure 5.13a) and referring to the

additional statistics in Listing 5.7, we observe a remarkable result by solving Equation 5.2: ZGC’s p90

pause time is less than 30% of G1’s average pause time and less than 40% of Parallel GC’s pause time,

reforcing even more it’s superiority when it comes to latency-sensitive.

1 {

2 ”Z ” :{ ” avg pause t ime ” : 202858.01 , ” p90 pause time ” : 480413.6 } ,

3 ”G1” :{ ” avg pause t ime ” : 1614107.67 , ” p90 pause time ” : 2930847.0 } ,

4 ” P a r a l l e l ” :{ ” avg pause t ime ” : 1098527.98 , ” p90 pause time ” : 1464950.6}

5 }

Listing 5.7: Renaissance Graal finagle-http - Z,G1 and Parallel Pause Time details (in ns) at 256MB heap size

64

(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Graal Renaissance Results (P90 Pause Time - Lower is better) - The following graphs show P90 pause
time with different heap sizes across all Renaissance Workloads and GCs (G1, Parallel, Z). The heap
sizes used are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f) 8192.

Examining the throughput results in Figure 5.14, comparable to what happened to the DaCapo work-

loads, Parallel GC shows on average better throughput times on every analyzed heap size. On the other

hand, Z Garbage Collector is the least performant, showing higher throughput times. However, upon

closer inspection, we notice that for multiple workloads the difference in throughput among all GCs is

less than five seconds compared to Parallel GC. For example, at a heap size of 1024MB, workloads

future-genetic, gauss-mix, dec-tree and dotty display minimal differences in throughput. This sug-

gests that for certain workloads, GCs like G1 and ZGC, which are not primarly designed for throughput,

can still achieve comparable performance, making them viable options. One workload that stands out is

the naive-bayes workload with a 1024MB heap size (see Figure 5.14c), where G1 unexpectedly shows

the best throughput, while Parallel GC performs similarly to ZGC. Consulting the Listing 5.8 we can an-

alyze the difference between throughput and total pause time for Z and Parallel compared to G1. The

65

results are the following:

throughputZ − throughputG1

109
≡ 167979862433− 4807492792

109
= 167.52sec

total pause timeZ − total pause timeG1

109
≡ 985669542− 4807492792

109
= −3.82sec

throughputParallel − throughputG1

109
≡ 172323381000− 4807492792

109
= 163.17sec

total pause timeParallel − total pause timeG1

109
≡ 106203311236− 4807492792

109
= 101.4sec

As shown, although both ZGC and Parallel GC exhibit worse throughput by 167.52 and 163.17

seconds respectively, this disparity cannot be attributed solely to differences in total GC pause time.

For one, Z’s total pause time is actually 3.82 seconds less than G1, and the difference for Parallel GC

is only 101.4 seconds. This leaves nearly 160 seconds in the ZGC case and 60 seconds in Parallel’s

case unaccounted for. A potential explanation for ZGC could be allocation stalls, which are not counted

as GC pause times but instead occur when threads wait for available memory. In the case of Parallel

GC, allocation stalls can still happen if a mutator thread has to wait for the start of an STW Garbage

Collection Cycle, which involves the stoppage and synchronization of all mutator threads. If the mutator

threads are busy, the synchronization time can add up. Furthermore, additional factors related to the

workload itself could be influencing these results, and further analysis using more profiling tools and

deeper inspection of the source code would be useful to fully understand the cause.

1 {

2 ” P a r a l l e l ” :{

3 ” t o t a l p a us e t i me ” : 106203311236 ,

4 ” throughput ” : 167979862433

5 } ,

6 ”Z ” :{

7 ” t o t a l p a us e t i me ” : 985669542 ,

8 ” throughput ” : 172323381000

9 } ,

10 ”G1” :{

11 ” t o t a l p a us e t i me ” : 4807492792 ,

12 ” throughput ” : 77778448188

13 } ,

14 }

Listing 5.8: Renaissance Graal naive-bayes - Z,G1 and Parallel Throughput and Pause Time details (in ns) at

1024MB heap size

66

(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Graal Renaissance Results (Throughput - Lower is better) - The following graphs show throughput
time with different heap sizes across all Renaissance Workloads and GCs (G1, Parallel, Z). The heap
sizes used are: a) 256; b) 512; c) 1024; d) 2048; e) 4096; f) 8192.

5.3.2 HotSpot vs GraalVM

Now that all Benchmarks and Workloads have been thoroughly analyzed, we can finally compare each

runtime directly, focusing on the matrices computed from the Benchmark and Workload results (refer to

Section 4.1). As explained earlier, the scoring matrix ranks each Garbage Collector based on throughput

and p90 pause time for each heap size. Similar to the workload metrics, a lower score indicates better

performance. An example of the scoring matrix is shown in Listing A.1, and a visual representation of

the matrices we are going to analyze can be found in Figure 5.15.

As discussed in Section 4.1, the GC scores are computed by summing the successful workload

metrics and normalizing them against the G1 Garbage Collector. This means a GC can have a worse

(i.e., higher) score while still showing better performance across more workloads. This happens because

67

each workload contributes equally, and poor performance in one workload can skew the overall score.

Using this graph and the previous analysis from Section 5.3.1, we can easily identify these situations.

Starting with GraalVM’s p90 pause time scores in Figure 5.15a, we clearly see that ZGC has the

best pause time scores. Additionally, Parallel GC ties with G1, outperforming G1 in 3 of the heap sizes.

However, to determine overall performance, we can apply the following equation:

∑
i∈{256,512,1024,2048,4096,8192}

g1score − parallelscore =

= (1− 1.38) + (1− 1.19) + (1− 0.77) + (1− 0.8) + (1− 1.07) + (1− 0.94) =

= −0.15

(5.3)

This indicates that, overall, Parallel GC had worse performance, meaning G1 had a lower overall

score. An example where a GC might have a worse score despite better performance in more workloads

is Parallel GC at a heap size of 256MB. In Section 5.3.1, we observed that for a 256MB heap, Parallel

GC outperformed G1 in 13 out of 19 workloads. However, in Figure 5.15a, Parallel GC has the worst

performance, mainly due to the batik workload.

Moving on to GraalVM’s throughput scores if Figure 5.15b, we observe that, as expected after our

previous analysis, Parallel GC consistently performs better than its counterparts. It ties with G1 at the

1024MB heap size and loses with G1 by just 0.01 at the 256MB heap size. ZGC, on the other hand,

shows the worst throughput performance, though it reveals an interesting observation: ZGC’s worst

throughput score is for the 256MB heap, where it is 41% higher than G1’s score. However, for the same

heap size, ZGC’s p90 pause time is 94% lower than G1’s. This wide range is even more pronounced

in larger heaps (pause time = 98%lower, throughput = 9% higher for a 4096MB heap), providing the

basis for a new GC scoring method in Section 5.4.

Turning to the HotSpot p90 pause time results in Figure 5.15c, we again see a tie between Parallel

GC and G1, but with a greater performance gap at the 256MB heap size. In GraalVM, Parallel GC

performed 1.38 times worse than G1; in HotSpot, this difference increases to 2.45 times. While it may

be tempting to conclude that Parallel GC is less optimized for smaller heaps on HotSpot compared

to GraalVM, it’s important to remember that these results are normalized to G1. By examining the

Garbage Collector Reports data (provided by BenchmarkGC) and the calculated statistics in Table 5.4,

we find that Parallel GC improved its p90 pause time by 4% when switching to GraalVM. Conversely,

G1’s performance dropped by 71% in GraalVM, indicating that the performance difference is largely due

to G1’s optimization in HotSpot rather than poor Parallel GC performance in HotSpot. Furthermore, if

we focus on heap sizes ≥ 1024MB, Parallel GC consistently outperforms G1 in p90 pause time, with

only a minor surplus of 0.03 at 4096MB, indicating better optimization for larger heaps. As in GraalVM,

ZGC remains the clear winner in p90 pause time.

Focusing now on Figure 5.15d, which shows the throughput scores for HotSpot GCs, we observe a

68

greater disparity than in the GraalVM results, particularly for the smaller heap sizes (256MB and 512MB).

To identify the source of this difference, we refer again to Table 5.4. At 256MB, the disparity is primarily

due to G1’s superior performance in HotSpot (GraalVM being 32% less performant). At 512MB, however,

Parallel GC performs better in GraalVM (11%), which explains why Parallel GC has higher throughput

than G1 in HotSpot for that heap size.

One notable observation in the table is the 29% improvement in ZGC’s p90 pause time at the 4096MB

heap size when switching to GraalVM. This improvement is not evident by looking at the Figures 5.15a

and 5.15c, as ZGC’s pause time values are orders of magnitude lower than G1’s.

Table 5.4: Improvement in Throughput and P90 Pause Time when changing from HotSpot to GraalVM ((+) value:
decreased performance; (-) value: increased performance).

(GraalVM - HotSpot)/HotSpot (%) More Performant
Heap Sizes (MB) GC Throughput P90 Pause Time Throughput P90 Pause Time

256
G1 32 71 HotSpot HotSpot

Parallel -1 -4 GraalVM GraalVM
Z -2 2 GraalVM HotSpot

512
G1 -3 1 GraalVM HotSpot

Parallel -11 2 GraalVM HotSpot
Z -4 -6 GraalVM GraalVM

1024
G1 -3 6 GraalVM HotSpot

Parallel 0 2 Equal HotSpot
Z -4 -7 GraalVM GraalVM

2048
G1 -3 1 GraalVM HotSpot

Parallel -6 1 GraalVM HotSpot
Z -2 -6 GraalVM GraalVM

4096
G1 -7 -1 GraalVM GraalVM

Parallel 0 2 Equal HotSpot
Z -3 -29 GraalVM GraalVM

8192
G1 -2 -1 GraalVM GraalVM

Parallel -2 -2 GraalVM GraalVM
Z -2 10 GraalVM HotSpot

69

(a) (b)

(c) (d)

Figure 5.15: Runtime Scoring Matrices (Lower score is better) - The following graphs show Garbage Collector
Throughput and P90 Pause Time scores across multiple heap sizes for GraalVM (a,b), and HotSpot
(c,d). All scores are normalized to G1 Throughput and Pause time values. a) GraalVM P90 Pause
Time Scores; b) GraalVM Throughput Scores; c) HotSpot P90 Pause Time Scores; d) HotSpot
Throughput Scores.

5.3.3 Final Thoughts

After analyzing both the HotSpot and GraalVM runtimes, each evaluated with two benchmarks-DaCapo

and Renaissance-several we can draw the following key conclusions:

Z Garbage Collector is the best choice in terms of p90 pause time: Throughout all Benchmarks

and Workloads, independent of the Java runtime used, ZGC achieved significantly smaller pauses

compared with the other garbage collectors. However, this advantage may also present a downside,

which we will explain when discussing throughput.

Parallel GC offers better throughput and p90 pause time than G1: As noted earlier, the through-

put values were quite close among all GCs, but Parallel GC consistently achieved lower throughput

values (remember, a smaller throughput value is better). It’s easy to think, that if we extrapolate this

to a long-running application, the benefits would accumulate. However, regarding p90 pause time,

this claim may be somewhat misleading; while Parallel GC has the best p90 pause time values com-

pared to G1, the results are fairly divided. For each heap size and benchmark, Parallel GC main-

tained an advantage in more than half of the analyzed workloads. Conversely, in cases where Parallel

GC shows worse throughput compared to G1, we found that the average pause time is the principal

culprit, suggesting that G1 can perform better in terms of throughput and average pause time in

70

certain scenarios.

ZGC exhibits the worst throughput (sometimes by a large margin): As expected, an almost fully

concurrent garbage collector lacks the characteristics to present the best throughput among all avail-

able GCs. Nonetheless, for many workloads, the differences were not as significant as previously

anticipated, indicating that a latency-oriented collector like ZGC can still achieve acceptable through-

put values. However, we identified a potential pitfall: when ZGC handles applications with high mem-

ory allocation rates while having low available memory, it can incur allocation stalls, dramatically

increasing workload execution times and negatively impacting throughput.

HotSpot and GraalVM exhibit similar characteristics: Overall, the previous statements apply to

both runtimes, suggesting that each garbage collector demonstrates comparable behaviour, regard-

less of the runtime used.

GraalVM is more performant (in throughput): In 15 out of 18 configurations (combinations of GC

and heap size), GraalVM demonstrates significant improvements in throughput. Of the remaining

3 configurations, two are draws, showing no noticeable difference between GraalVM and HotSpot.

However, one stands out as an exception: GraalVM exhibits 32% lower performance when using

G1 with 256MB heap size, suggesting that G1 in HotSpot may be better optimized for low memory

environments (see Table 5.4).

HotSpot is more performant (in p90 pause time): HotSpot delivers superior p90 pause time per-

formance in 10 out of 18 configurations, with the most notable improvement when using G1 with

a 256MB heap, where GraalVM has 71% performance reduction. Nevertheless, GraalVM shows a

notable result with ZGC at a 4096MB heap size, achieving a 29% improvement in pause time. This

is particularly impressive given ZGC’s already low p90 pause time baseline.

5.4 BestGC++ Evaluation

To evaluate BestGC++, as previously mentioned, we use the Spring PetClinic application. Given that

the DaCapo benchmark suite already includes a Spring PetClinic workload that as mentioned in Sec-

tion 5.2, wasn’t included in the matrix generation phase, we opted to use it.

5.4.1 Spring PetClinic - Benchmarks

For establishing a baseline of comparison, PetClinic was executed using the BenchmarkGC profiling

application across both HotSpot and GraalVM runtimes. The results are presented in Figure 5.16.

We observe that Parallel GC exhibits consistent performance across all heap sizes in both runtimes.

Notably, G1 shows better optimization in HotSpot at the 256MB heap size compared to GraalVM’s G1

at the same heap size, which is consistent with previous findings in Section 5.3.2. Additionally, G1 in

71

HotSpot achieves its best performance in terms of throughput and p90 pause time at 256MB. However,

in both runtimes, G1 experiences worse p90 pause times as heap sizes increase, which is expected

as larger memory allows GC cycles to be delayed, leading to larger collections and longer pauses.

Regarding throughput, G1 remains consistent across all heap sizes, except for HotSpot at 256MB,

where its performance stands out.

ZGC maintains consistent p90 pause times in both runtimes, achieving the lowest pause times

among all GCs, followed by Parallel GC most of the time. Regarding throughput, Z Garbage Collector

shows improvement up to the 1024MB heap size (in both runtimes), after which performance plateaus.

Overall, ZGC is the best-performing GC in terms of p90 pause time across both runtimes, while Parallel

GC delivers the highest throughput in most heap sizes.

(a) (b)

(c) (d)

Figure 5.16: Spring PetClinic Benchmark Throughput and P90 Pause Time Results (Lower is better) in seconds -
The following graphs show PetClinic’s Throughput and P90 Pause Time for GraalVM and HotSpot run-
times. GraalVM: a) p90 pause time and b) throughput; HotSpot: c) p90 pause time and d) through-
put.

5.4.2 BestGC++ Testing Methodology and Results

Evaluating BestGC++ focuses on testing its ability to select the most performant Garbage Collector,

i.e., its accuracy, using a pre-existing GC scoring matrix (see Section 4.1) and optionally user-provided

weights for throughput and p90 pause time.

Key considerations include:

72

• The sum of the weights is always equal to 1, e.g., if the throughput weight is 0.6, the p90 pause time

weight will be 0.4.

• The equation used in the original BestGC implementation (Section 2.3) is defined as follows:

Score = throughputweight × throughputscore + pause timeweight × pause timescore (5.4)

• Like its predecessor, BestGC++ calculates the applications’ maximum heap size by increasing the

observed maximum heap size by 20% and rounding it up to the nearest heap size in the scoring

matrix (see Section 2.3 for more details).

Examining Equation 5.4 and considering the range discrepancy issue mentioned in Section 5.3.2,

we identify that if the throughput score and pause time score have different ranges, the equation may

become skewed. For instance, consider the following scenario: a GC has a pause time score of 0.5 and

a throughput score of 2. Calculating the score with equal throughput and pause time weights, each 0.5,

yields:

throughput score contribution = throughput score× 0.5 = 2× 0.5 = 1

pause time score contribution = pause time score× 0.5 = 0.5× 0.5 = 0.25

As we can see, although both scores are proportionally related to 1, their impact on the overall score

differs significantly. To address this imbalance, we multiply the terms, ensuring that if any weight is zero,

the corresponding term is effectively ignored, effectively becoming equivalent to the old Equation 5.4.

This leads to the piecewise Equation 5.5:

Score =


throughputweight × throughputscore if pause timeweight = 0

pause timeweight × pause timescore if throughputweight = 0

throughputweight × throughputscore × pause timeweight × pause timescore otherwise

(5.5)

To evaluate PetClinic, we profiled the application under BestGC++ in both automatic mode and man-

ual mode with throughput weights set to 1 and 0 for both GraalVM and HotSpot runtimes. The command

used for the automatic mode is: java -jar bestgc.jar dacapo-23.11-chopin.jar --args="spring

-n 10 --no-pre-iteration-gc" --automatic --monitoringTime=50. For manual mode, we remove

the --automatic flag and specify the weight using --wt=<value>.

The results compare BestGC++’s accuracy using the original Equation 5.4 versus the modified Equa-

tion 5.5. In each case, BestGC++ profiles the Spring PetClinic application, selects the optimal heap

73

size and determines the best GC according to the selected equation. The accuracy is then measured by

comparing the selected GC against the most performant GC for the given Spring PetClinic workload,

calculated using the same weights and equation across all GCs for the selected heap size.

Table 5.5: Spring PetClinic BestGC++ GC Selection in GraalVM and HotSpot with a Heap Size of 512MB - Old
Equation 5.4 vs New Equation 5.5.

Old Equation New Equation Selected GC Correct Option
Runtime Throughput Weight G1 Parallel Z G1 Parallel Z Old Equation New Equation Old Equation New Equation

GraalVM - Manual Mode 1 1 0.97 1.26 1 0.97 1.26 Parallel Parallel
GraalVM - Manual Mode 0 1 1.19 0.04 1 1.19 0.04 Z Z

GraalVM - Automatic Mode 0.72 1 1.03 0.92 1 0.23 0.01 Z Z Parallel Z
HotSpot - Manual Mode 1 1 1.06 1.27 1 1.06 1.27 G1 Parallel
HotSpot - Manual Mode 0 1 1.18 0.05 1 1.18 0.05 Z Z

HotSpot - Automatic Mode 0.71 1 1.09 0.91 1 0.26 0.01 Z Z Parallel Z

The results are summarized in Table 5.5. BestGC++ identified a heap size of 512MB as the most

optimal. In automatic mode, both runtimes showed similar average CPU usage when executing Spring

PetClinic. This can be derived by remembering that throughput weight is calculated using CPU average

and the Equation 4.3. The only significant difference occurred with a throughput score of 1, where G1

was selected in HotSpot, while Parallel was selected in GraalVM, consistent with the observations in

Section 5.3.2. In other cases, Z Garbage Collector was chosen in both Old and New equations.

Finally, and most important to test our hypothesis, the computed Correct Options show that with the

new scoring method (Equation 5.5), BestGC++ made 5 out of 6 correct selections, compared to 3 out of

6 using the old Equation 5.4, revealing 33% improvement.

5.5 Summary

In this Section we evaluated the two GC profiling tools developed, BenchmarkGC, a tool that allows us to

benchmark Java workloads, collect performance metrics, and ultimately classify Garbage Collectors in a

scoring matrix, and BestGC++, a profiling tool meant to select the best Garbage Collector for a given ap-

plication, using the BenchmarkGC’s scoring matrix. They were executed with multiple Java runtimes and

workloads, explaining the methodology and reasoning behind the testing. The Java runtimes HotSpot

and GraalVM (JIT), were chosen, due to having similar capabilities in terms of available Garbage Collec-

tors, so a fair comparison could be made in the future. Workloads were selected by choosing two of the

most popular Java benchmarking suites (DaCapo and Renaissance). However, special attention was

paid so as to not repeat workloads used in the BenchmarkGC and BestGC++ testing, because the latter

is dependent on the former. Specifically, the Spring PetClinic workload that was present in DaCapo, so

it ended up being removed so as to be used by BestGC++.

Analyzing BenchmarkGC’s result we made several findings when it comes to Garbage Collection per-

formance, in different runtimes. One of which, is the fact that GraalVM is more performant than HotSpot

when it comes to throughput in 15 out of 18 configurations. However, the opposite also happened for a

74

heap size of 256MB, where G1 showed a performance reduction of 32% when switching from HotSpot

to GraalVM. The better GCs in terms of performance related to throughput and p90 pause time were

also identified, with ZGC being the better GC for pause time and ParallelGC for throughput. Although

opposite to Z, Parallel had closer GCs to its values e.g., G1.

Reasons for application performance decay were also identified, like allocation stalls with low mem-

ory heap sizes e.g., ZGC; higher pause times due to a heap size increase, which increases the duration

of GC cycles; GC overhead, and other system phenomenons, proving that the metrics collected by the

BenchmarkGC profiling application are useful when it comes to diagnosing applications.

Furthermore, BestGC++ was tested with Spring PetClinic and a new scoring method was developed

so as to improve on the old scoring equation. Analyzing the new scoring method, revealed that it had

improved 33%, increasing from 50% to 83%. This indicated that the BestGC++ tool with the new scoring

method as a higher accuracy, further increasing its usability value.

In this section, we evaluated two profiling tools developed for garbage collection analysis: Bench-

markGC and BestGC++. BenchmarkGC enables benchmarking of Java workloads, collecting perfor-

mance metrics to classify garbage collectors within a scoring matrix. BestGC++ is designed to identify

the most suitable garbage collector for a specific application based on the scores derived from Bench-

markGC. We conducted tests across multiple Java runtimes and workloads, detailing the methodology

and rationale behind our testing approach.

The Java runtimes selected for this evaluation were HotSpot and GraalVM (JIT), as they offer sim-

ilar capabilities regarding available garbage collectors, facilitating a fair comparison. Workloads were

chosen from two of the most popular Java benchmarking suites, DaCapo and Renaissance. To en-

sure the validity of our results, care was taken to avoid repeating workloads used in BenchmarkGC and

BestGC++ testing, particularly excluding the Spring PetClinic workload from DaCapo, which was utilized

in BestGC++.

Our analysis of BenchmarkGC’s results yielded several insights into garbage collection performance

across different runtimes. Notably, GraalVM outperformed HotSpot in terms of throughput in 15 out

of 18 configurations. However, a performance reduction of 32% was observed in G1 when switching

from HotSpot to GraalVM at a heap size of 256MB. The best-performing garbage collectors regarding

throughput and p90 pause time were also identified, with ZGC excelling in pause time and ParallelGC in

throughput, despite ParallelGC having closer values to G1 in comparison.

We also identified key factors contributing to application performance degradation, such as alloca-

tion stalls at low memory heap sizes (e.g., with ZGC), lower throughput due to pause time increase,

higher GC cycle durations in larger heap sizes resulting in increased pause times, and overall GC over-

head. These findings showcase the value of the metrics collected by the BenchmarkGC profiling tool in

diagnosing application performance issues.

75

Furthermore, we tested BestGC++ using the Spring PetClinic workload, developing a new scoring

method to enhance the existing scoring equation. The analysis revealed a significant improvement of

33%, increasing from 50% to 83% in accuracy. This enhancement indicates that BestGC++ with the new

scoring method offers greater accuracy, further increasing its usability and effectiveness as a profiling

tool.

76

6
Conclusion

Contents

6.1 Future Work . 79

This thesis began by examining the current technology landscape, which is now deeply integrated

with cloud computing. We highlighted the rise of various cloud service models, such as Infrastructure-

as-a-Service (IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service (SaaS), and serverless so-

lutions like Function-as-a-Service (FaaS). In terms of application architecture, large enterprises are

increasingly adopting microservices, where applications are composed of independent services. We

identified Java as a predominant language in microservices development, and thus, set our goals to-

ward optimizing its surrounding environment—including the language runtime, Garbage Collector (GC),

and inter-microservice communication.

We then reviewed the current state of research on microservices architecture, contrasting it with

monolithic and serverless designs. This analysis showed that while microservices offer advantages,

they also introduce challenges such as increased communication complexity and distributed system

issues like failures and timeouts. Despite these drawbacks, the widespread adoption of microservices

justified our focus on developing solutions tailored to this architecture. In terms of garbage collection, we

identified two main types of GC algorithms: Tracing Algorithms and Reference Counting Algorithms. We

77

began by exploring Mark-and-Sweep, the first tracing algorithm, which marks live objects by traversing

root objects and then sweeps unmarked objects. Next, we examined a reference-counting algorithm,

which keeps track of the number of references to each object. Additionally, we explored a profiling tool

called BestGC, designed to identify the most suitable Java GC by using a precomputed matrix score.

BestGC operates in four phases: matrix generation, execution, monitoring, and GC scoring, ultimately

selecting the best-performing GC. This tool served as the foundation for our developed solution.

Next, we reviewed several studies, particularly on the performance of modern Java GCs such as

G1, Shenandoah, and ZGC. The latter two are noteworthy for being almost fully concurrent algorithms,

with a focus on minimizing pause times—a critical factor in cloud environments where Service Level

Agreements (SLAs) often prioritize tail latency. We also explored various approaches to improving GC

performance, such as middleware for better GC thread placement on CPU cores, reducing interference

with latency-sensitive application threads, and optimizations for NUMA architectures. Additionally, we

touched on runtime optimizations, such as GraalVM Native Image, which emphasizes fast startup times,

mitigating cold starts. Graal’s ahead-of-time (AOT) compilation allows it to share runtime resources

efficiently across multiple processors (Isolate Proxy), reducing memory footprint in server environments.

After reviewing these studies, we introduced two GC profiling tools we developed. BenchmarkGC is

designed to simplify benchmarking Java applications, collecting comprehensive metrics on GC perfor-

mance and automatically computing a scoring matrix for easier evaluation of which GC is most suitable

for a given heap size. BestGC++, as the name suggests, builds on the original BestGC tool. It was refac-

tored to function as a web service, allowing users to profile their applications and identify the optimal GC

with minimal input required. This improvement makes BestGC++ more accessible to non-expert users

by automating the calculation of weights, that previously required user input, now calculated based on

application CPU usage. Another enhancement is its ability to monitor applications already in production

to analyze their performance in real time.

We then tested both profiling tools to validate the improvements. BenchmarkGC was executed with

two Java runtimes, GraalVM and HotSpot. By comparing GCs and runtimes, we found that the collected

metrics enabled the identification of GC-related issues, such as allocation stalls and high pause times,

which increased overall execution time. Our results showed that ZGC performed best in both runtimes in

terms of p90 pause time, while ParallelGC excelled in throughput, with G1 performing similarly. GraalVM

demonstrated better performance in most configurations for throughput, while HotSpot had an edge in

p90 pause time. For BestGC++, we evaluated its accuracy by running the Spring PetClinic application in

both HotSpot and Graal, allowing the tool to determine the optimal GC based on the weights (calculated

from average CPU usage). During this evaluation, we identified and addressed an issue in the original

BestGC scoring equation, resulting in a new scoring equation for BestGC++. The new equation showed

an accuracy improvement of 33%, raising the accuracy from 50% to 83%. These results confirm the value

78

of the profiling tools we developed. BenchmarkGC offers deep insights into application performance,

while BestGC++ provides a practical tool for improving Java application performance by selecting the

best GC accurately.

6.1 Future Work

Future work could focus on further enhancing BestGC++’s ability to select the most suitable GC. This

was discussed earlier in Section 4.2.1, where we suggested classifying applications as I/O or CPU-

intensive to refine the scoring process. However, simply using a binary classification fails to capture

the full complexity of the data, as applications are often exceptions to such rigid categories, and this

approach could reduce the available workload pool. A promising avenue would be to employ artificial

intelligence (AI), which can handle a wider range of parameters and capture more intricate, non-linear

relationships, as was done previously but just for one runtime and just one algorithm [30]. A potential

implementation would be a Multilayer Perceptron (MLP), a type of feed-forward neural network capable

of learning complex patterns through backpropagation. This approach is well-suited to our problem,

given the diverse parameters that influence GC performance. In addition, BenchmarkGC has to be

enhanced to collect more data points, such as disk activity and other JVM events beyond GC pauses.

With a richer dataset and sufficient workloads, AI could offer a more accurate and dynamic classification

method for BestGC++.

79

80

Bibliography

[1] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud computing,” Gaithersburg, MD,

USA, Tech. Rep., 2011.

[2] O. Zimmermann, “Microservices tenets,” Computer Science - Research and Development, vol. 32,

no. 3, pp. 301–310, Jul 2017. [Online]. Available: https://doi.org/10.1007/s00450-016-0337-0

[3] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Microservices: The journey so far

and challenges ahead,” IEEE Software, vol. 35, no. 3, pp. 24–35, 2018.

[4] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casallas, and S. Gil, “Evaluating

the monolithic and the microservice architecture pattern to deploy web applications in the cloud,” in

2015 10th Computing Colombian Conference (10CCC), 2015, pp. 583–590.

[5] R. Shrestha and B. Nisha, “Microservices vs serverless deployment in aws: A case study with

an image processing application,” in 2022 IEEE/ACM 15th International Conference on Utility and

Cloud Computing (UCC), 2022, pp. 183–184.

[6] M. Chadha, V. Pacyna, A. Jindal, J. Gu, and M. Gerndt, “Migrating from microservices to

serverless: An iot platform case study,” in Proceedings of the Eighth International Workshop

on Serverless Computing, ser. WoSC ’22. New York, NY, USA: Association for Computing

Machinery, 2022, p. 19–24. [Online]. Available: https://doi.org/10.1145/3565382.3565881

[7] H. B. Hassan, S. A. Barakat, and Q. I. Sarhan, “Survey on serverless computing,”

Journal of Cloud Computing, vol. 10, no. 1, p. 39, Jul 2021. [Online]. Available:

https://doi.org/10.1186/s13677-021-00253-7

[8] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casallas, S. Gil,

C. Valencia, A. Zambrano, and M. Lang, “Infrastructure cost comparison of running web applica-

tions in the cloud using aws lambda and monolithic and microservice architectures,” in 2016 16th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2016, pp.

179–182.

81

https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1145/3565382.3565881
https://doi.org/10.1186/s13677-021-00253-7

[9] X. Ma, J. Yan, W. Wang, J. Yan, J. Zhang, and Z. Qiu, “Detecting memory-related bugs by tracking

heap memory management of c++ smart pointers,” in 2021 36th IEEE/ACM International Confer-

ence on Automated Software Engineering (ASE), 2021, pp. 880–891.

[10] R. Jones, A. Hosking, and E. Moss, The Garbage Collection Handbook: The Art of Automatic

Memory Management, 1st ed. Chapman & Hall/CRC, 2011.

[11] J. McCarthy, “Recursive functions of symbolic expressions and their computation by

machine, part i,” Commun. ACM, vol. 3, no. 4, p. 184–195, apr 1960. [Online]. Available:

https://doi.org/10.1145/367177.367199

[12] D. Patrı́cio, R. Bruno, J. Simão, P. Ferreira, and L. Veiga, “Locality-aware gc optimisations for

big data workloads,” in On the Move to Meaningful Internet Systems. OTM 2017 Conferences,

H. Panetto, C. Debruyne, W. Gaaloul, M. Papazoglou, A. Paschke, C. A. Ardagna, and R. Meers-

man, Eds. Cham: Springer International Publishing, 2017, pp. 50–67.

[13] R. Bruno, D. Patricio, J. Simão, L. Veiga, and P. Ferreira, “Runtime object lifetime profiler for latency

sensitive big data applications,” in Proceedings of the Fourteenth EuroSys Conference 2019,

ser. EuroSys ’19. New York, NY, USA: Association for Computing Machinery, 2019. [Online].

Available: https://doi.org/10.1145/3302424.3303988

[14] G. E. Collins, “A method for overlapping and erasure of lists,” Commun. ACM, vol. 3, no. 12, p.

655–657, dec 1960. [Online]. Available: https://doi.org/10.1145/367487.367501

[15] S. Tavakolisomeh, R. Bruno, and P. Ferreira, “Bestgc: An automatic gc selector,” IEEE Access,

vol. 11, pp. 72 357–72 373, 2023.

[16] D. Detlefs, C. Flood, S. Heller, and T. Printezis, “Garbage-first garbage collection,” in

Proceedings of the 4th International Symposium on Memory Management, ser. ISMM ’04.

New York, NY, USA: Association for Computing Machinery, 2004, p. 37–48. [Online]. Available:

https://doi.org/10.1145/1029873.1029879

[17] W. Zhao and S. M. Blackburn, “Deconstructing the garbage-first collector,” in Proceedings of the

16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, ser.

VEE ’20. New York, NY, USA: Association for Computing Machinery, 2020, p. 15–29. [Online].

Available: https://doi.org/10.1145/3381052.3381320

[18] Oracle, Java Platform, Standard Edition HotSpot Virtual Machine Garbage Collection Tuning Guide,

2023.

[19] D. Ungar, “Generation scavenging: A non-disruptive high performance storage reclamation

algorithm,” in Proceedings of the First ACM SIGSOFT/SIGPLAN Software Engineering

82

https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/3302424.3303988
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/1029873.1029879
https://doi.org/10.1145/3381052.3381320

Symposium on Practical Software Development Environments, ser. SDE 1. New York,

NY, USA: Association for Computing Machinery, 1984, p. 157–167. [Online]. Available:

https://doi.org/10.1145/800020.808261

[20] C. H. Flood, R. Kennke, A. Dinn, A. Haley, and R. Westrelin, “Shenandoah: An open-source

concurrent compacting garbage collector for openjdk,” in Proceedings of the 13th International

Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines,

Languages, and Tools, ser. PPPJ ’16. New York, NY, USA: Association for Computing Machinery,

2016. [Online]. Available: https://doi.org/10.1145/2972206.2972210

[21] A. M. Yang and T. Wrigstad, “Deep dive into zgc: A modern garbage collector in

openjdk,” ACM Trans. Program. Lang. Syst., vol. 44, no. 4, sep 2022. [Online]. Available:

https://doi.org/10.1145/3538532

[22] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro, “A study of the scalability of stop-the-world

garbage collectors on multicores,” SIGARCH Comput. Archit. News, vol. 41, no. 1, p. 229–240,

mar 2013. [Online]. Available: https://doi.org/10.1145/2490301.2451142

[23] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and N. Nguyen, “Numagic: A garbage collector for

big data on big numa machines,” SIGARCH Comput. Archit. News, vol. 43, no. 1, p. 661–673, mar

2015. [Online]. Available: https://doi.org/10.1145/2786763.2694361

[24] J. Zhao, A. Pi, X. Zhou, S.-Y. Chang, and C. Xu, “Improving concurrent gc for latency critical

services in multi-tenant systems,” in Proceedings of the 23rd ACM/IFIP International Middleware

Conference, ser. Middleware ’22. New York, NY, USA: Association for Computing Machinery,

2022, p. 43–55. [Online]. Available: https://doi.org/10.1145/3528535.3531515

[25] A. Lefort, Y. Pipereau, K. Amponsem, P. Sutra, and G. Thomas, “J-nvm: Off-heap persistent

objects in java,” in Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems

Principles, ser. SOSP ’21. New York, NY, USA: Association for Computing Machinery, 2021, p.

408–423. [Online]. Available: https://doi.org/10.1145/3477132.3483579

[26] S. Ravindra, M. Dayarathna, and S. Jayasena, “Latency aware elastic switching-based

stream processing over compressed data streams,” in Proceedings of the 8th ACM/SPEC

on International Conference on Performance Engineering, ser. ICPE ’17. New York,

NY, USA: Association for Computing Machinery, 2017, p. 91–102. [Online]. Available:

https://doi.org/10.1145/3030207.3030227

[27] C. Wimmer, C. Stancu, P. Hofer, V. Jovanovic, P. Wögerer, P. B. Kessler, O. Pliss, and T. Würthinger,

“Initialize once, start fast: Application initialization at build time,” Proc. ACM Program. Lang., vol. 3,

no. OOPSLA, oct 2019. [Online]. Available: https://doi.org/10.1145/3360610

83

https://doi.org/10.1145/800020.808261
https://doi.org/10.1145/2972206.2972210
https://doi.org/10.1145/3538532
https://doi.org/10.1145/2490301.2451142
https://doi.org/10.1145/2786763.2694361
https://doi.org/10.1145/3528535.3531515
https://doi.org/10.1145/3477132.3483579
https://doi.org/10.1145/3030207.3030227
https://doi.org/10.1145/3360610

[28] V. Dukic, R. Bruno, A. Singla, and G. Alonso, “Photons: Lambdas on a diet,” in

Proceedings of the 11th ACM Symposium on Cloud Computing, ser. SoCC ’20. New

York, NY, USA: Association for Computing Machinery, 2020, p. 45–59. [Online]. Available:

https://doi.org/10.1145/3419111.3421297

[29] S. Wang, “Thin serverless functions with graalvm native image,” Master Thesis, ETH Zurich, Zurich,

2021-04-22.

[30] J. Simão, S. Esteves, A. Pires, and L. Veiga, “Gc-wise: A self-adaptive approach for memory-

performance efficiency in java vms,” Future Generation Computer Systems, vol. 100, pp. 674–688,

2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167739X18304898

84

https://doi.org/10.1145/3419111.3421297
https://www.sciencedirect.com/science/article/pii/S0167739X18304898

A
Code of Project

85

1 {
2 ” mat r i x ” : {
3 ” 256 ” : {
4 ”G1” : {
5 ” throughput ” : 1.0 ,
6 ” pause time ” : 1.0
7 } ,
8 ” P a r a l l e l ” : {
9 ” throughput ” : 1.36 ,

10 ” pause time ” : 2.47
11 } ,
12 ”Z ” : {
13 ” throughput ” : 1.93 ,
14 ” pause time ” : 0.12
15 }
16 } ,
17 ” 512 ” : {
18 ”G1” : {
19 ” throughput ” : 1.0 ,
20 ” pause time ” : 1.0
21 } ,
22 ” P a r a l l e l ” : {
23 ” throughput ” : 0.96 ,
24 ” pause time ” : 1.18
25 } ,
26 ”Z ” : {
27 ” throughput ” : 1.24 ,
28 ” pause time ” : 0.05
29 }
30 } ,
31 ” 1024 ” : {
32 ”G1” : {
33 ” throughput ” : 1.0 ,
34 ” pause time ” : 1.0
35 } ,
36 ” P a r a l l e l ” : {
37 ” throughput ” : 0.97 ,
38 ” pause time ” : 0.8
39 } ,
40 ”Z ” : {
41 ” throughput ” : 1.17 ,
42 ” pause time ” : 0.03
43 }
44 } ,
45 ” 2048 ” : {
46 ”G1” : {
47 ” throughput ” : 1.0 ,
48 ” pause time ” : 1.0
49 } ,
50 ” P a r a l l e l ” : {
51 ” throughput ” : 0.94 ,

52 ” pause time ” : 0.79
53 } ,
54 ”Z ” : {
55 ” throughput ” : 1.19 ,
56 ” pause time ” : 0.02
57 }
58 } ,
59 ” 4096 ” : {
60 ”G1” : {
61 ” throughput ” : 1.0 ,
62 ” pause time ” : 1.0
63 } ,
64 ” P a r a l l e l ” : {
65 ” throughput ” : 0.95 ,
66 ” pause time ” : 1.02
67 } ,
68 ”Z ” : {
69 ” throughput ” : 1.1 ,
70 ” pause time ” : 0.03
71 }
72 } ,
73 ” 8192 ” : {
74 ”G1” : {
75 ” throughput ” : 1.0 ,
76 ” pause time ” : 1.0
77 } ,
78 ” P a r a l l e l ” : {
79 ” throughput ” : 0.95 ,
80 ” pause time ” : 0.94
81 } ,
82 ”Z ” : {
83 ” throughput ” : 1.1 ,
84 ” pause time ” : 0.03
85 }
86 }
87 } ,
88 ” ga rbage co l l ec to rs ” : [
89 ” P a r a l l e l ” ,
90 ”G1” ,
91 ”Z ”
92] ,
93 ” benchmarks ” : { / / L i s t o f benchmarks used
94 ” 256 ” : [” . . . ”] ,
95 ” 512 ” : [” . . . ”] ,
96 ” 1024 ” : [” . . . ”] ,
97 ” 2048 ” : [” . . . ”] ,
98 ” 4096 ” : [” . . . ”] ,
99 ” 8192 ” : [” . . . ”]

100 }
101 }

Listing A.1: GC Scoring Matrix

1 {
2 ” ga rbage co l l ec to r ” : ”G1” ,
3 ” j dk ” : ” HotSpot 21.0.4 ” ,
4 ” s t a t s ” : [
5 {
6 ” heap size ” : ” 256 ” ,
7 ” number of pauses ” : 17836 ,
8 ” t o t a l p a us e t i me ” : 43527753550 ,
9 ” avg pause t ime ” : 2440443.68 ,

10 ” p90 avg pause t ime ” : 6024536.22 ,
11 ” avg throughput ” : 57974666909.47 ,
12 ” benchmarks ” : [
13 ” . . . ” / / L i s t o f success fu l benchmarks
14]
15 } ,
16 {
17 ” heap size ” : ” 512 ” ,
18 ” number of pauses ” : 13583 ,
19 ” t o t a l p a us e t i me ” : 109548964900 ,
20 ” avg pause t ime ” : 8065152.39 ,
21 ” p90 avg pause t ime ” : 14456188.89 ,
22 ” avg throughput ” : 71026543908.37 ,
23 ” benchmarks ” : [
24 ” . . . ” / / L i s t o f success fu l benchmarks
25]
26 } ,
27 {
28 ” heap size ” : ” 1024 ” ,
29 ” number of pauses ” : 10028 ,
30 ” t o t a l p a us e t i me ” : 91535440538 ,
31 ” avg pause t ime ” : 9127985.69 ,
32 ” p90 avg pause t ime ” : 23743435.2 ,
33 ” avg throughput ” : 70715007539.57 ,
34 ” benchmarks ” : [
35 ” . . . ” / / L i s t o f success fu l benchmarks
36]
37 } ,

38 {
39 ” heap size ” : ” 2048 ” ,
40 ” number of pauses ” : 6257 ,
41 ” t o t a l p a us e t i m e ” : 84939964591 ,
42 ” avg pause t ime ” : 13575190.12 ,
43 ” p90 avg pause t ime ” : 33744149.2 ,
44 ” avg throughput ” : 72125366917.17 ,
45 ” benchmarks ” : [
46 ” . . . ” / / L i s t o f success fu l benchmarks
47]
48 } ,
49 {
50 ” heap size ” : ” 4096 ” ,
51 ” number of pauses ” : 3928 ,
52 ” t o t a l p a us e t i m e ” : 56826444177 ,
53 ” avg pause t ime ” : 14467017.36 ,
54 ” p90 avg pause t ime ” : 35331718.0 ,
55 ” avg throughput ” : 71255828500.39 ,
56 ” benchmarks ” : [
57 ” . . . ” / / L i s t o f success fu l benchmarks
58]
59 } ,
60 {
61 ” heap size ” : ” 8192 ” ,
62 ” number of pauses ” : 3546 ,
63 ” t o t a l p a us e t i m e ” : 41580511333 ,
64 ” avg pause t ime ” : 11726032.52 ,
65 ” p90 avg pause t ime ” : 31194526.16 ,
66 ” avg throughput ” : 70757142346.61 ,
67 ” benchmarks ” : [
68 ” . . . ” / / L i s t o f success fu l benchmarks
69]
70 }
71]
72 }

Listing A.2: Garbage Collector Report

86

87

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms
	Glossary

	1 Introduction
	1.1 Serverless Computing
	1.2 Microservices
	1.3 Shortcomings
	1.4 Goals
	1.5 Organization of the Document

	2 Background
	2.1 Microservices
	2.2 Garbage Collectors
	2.3 BestGC

	3 Related Work
	3.1 Garbage Collector Algorithms
	3.1.1 Garbage First
	3.1.2 Shenandoah
	3.1.3 ZGC

	3.2 GCs - Studies and analysis
	3.2.1 NAPS
	3.2.2 NumaGiC
	3.2.3 iGC
	3.2.4 J-NVM
	3.2.5 Elastic Memory Management

	3.3 Runtime Optimizations
	3.3.1 GraalVM Native Image
	3.3.2 GraalVM Isolate Proxy

	4 Solution
	4.1 BenchmarkGC
	4.2 BestGC++
	4.2.1 Metrics and Parameters Rational
	4.2.2 Application Architecture and Overview

	4.3 Summary

	5 Evaluation
	5.1 Overview
	5.2 Testbed and Hardware Specifications
	5.3 BenchmarkGC Evaluation
	5.3.1 Performance and Benchmark Analysis
	5.3.2 HotSpot vs GraalVM
	5.3.3 Final Thoughts

	5.4 BestGC++ Evaluation
	5.4.1 Spring PetClinic - Benchmarks
	5.4.2 BestGC++ Testing Methodology and Results

	5.5 Summary

	6 Conclusion
	6.1 Future Work

	Bibliography
	A Code of Project

