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Abstract

Replication is a widely-adopted technique for improving data availability and application performance. In the
replicated objects model, applications execute methods on objects replicated locally. These objects may contze
references to other objects not yet replicated.

The memory management of these distributed (and possibly persistent) graphs of replicated objects is a very diffici
task. If performed manually, it leads to memory leaks (useless objects that are never deleted) and dangling referen
(referencing objects prematurely deleted) causing storage waste and application failure.

Current distributed garbage collection algorithms are not well suited for such systems because either (i) they a
unsafe since they do not consider the existence of replication, or (ii) they impose severe constraints on scalability |
requiring causal delivery to be provided by the underlying communication layer, or iii) they are not complete, w.r.t
distributed cycles of garbage.

We address this problem by developing a comprehensive approach to distributed garbage collection for replicat
objects. Our solution is based on: i) an acyclic distributed garbage collector capable of handling replicated objec
safely, and ii) a cyclic algorithm that complements the previous one by detecting distributed cycles of garbage involy
ing replicated objects. This twofold hybrid approach is, therefore, complete.

This is the first complete solution of the problem of distributed garbage collection for replicated objects; in partic-
ular, the detection and reclamation of distributed garbage cycles does not need any kind of global synchronizatio
To achieve this goal we introduce the notion of a GC-consistent cut for distributed systems with object replication
We have implemented the algorithm both on Rotor (a free source version of Microsoft .Net, extended to allow objec
replication) and on OBIWAN (a platform supporting mobile agents, object replication and remote invocation); we
observed that applications are not disrupted.



1 Introduction The first issue, safety of the DGC, has been solved
in our previous work with an acyclic, reference-listing
Replication is a well-know technique for improving databased, replication-aware DGC algorithm [34]. However,
availability and application performance as it allows tahis solution is not complete, i.e. it does not reclaim cy-
collocate data and code. Thus, data availability is ensureges of garbage. The design of complete DGC algorithms
because, even if the network is not available, data remaiissa problem that has been addressed many times before
locally available; in addition, application performance isfor systems without replication [28, 1]. However, such
potentially better (when compared to a remote invocasolutions, besides other considerations concerning scala-
tion approach) as all accesses to data are local. Howevpliity, performance, etc., suffer from a fundamental draw-
there are several relevant difficulties that must be solveshck: they are not safe because they do not take into ac-
to take full advantage of replication. count the existence of replicated objects.
In particular, the memory management of distributed
(and possibly persistent) graphs of replicated objects is Thus, we propose a solution that, as others before, fol-
a very difficult task. If performed manually, it leadslows a hybrid approach: an acyclic distributed collector
to memory leaks (useless objects that are never deletdshsed on reference-listing [35, 34], improved with rules
and dangling references (referencing objects prematurefyr safety in presence of replicated objects, and a cycle
deleted) causing storage waste and application failuréetector that complements the first, thus providing a com-
The reason is that graphs of reachability are large, widellete solution for the problem of DGC.
distributed and frequently modified through assignment
operations executed by applications. In addition, data The novelty of our work is that we provide a solution
replicated in many processes is not necessarily coheret the detection and reclamation of cycles of garbage
making manual memory management much harder.  for systems with replicated objects; it does not require
Furthermore, the presence of replication increases thgobal synchronization, it is completely asynchronous,
need for a complete solution concerning the automatiand it does not disrupt applications.
memory management of replicated objects. As it will be-
come clear in the following sections, it only takes one Our algorithm uses a centralized approach. The de-
replica of an object being involved in a distributed cyclictection of distributed cycles of garbage works on a view
garbage, to consequently encompass all other replicasaff the global distributed graph that is consistent solely
the same object in the cycle, and prevent their reclaméer this purpose. This view results from the combina-
tion. Thus, distributed cyclic garbage involving repli-tion of graph snapshots taken by each process indepen-
cated objects is, arguably, more frequent and wastes matently. While this view may not correspond to a consis-
storage, when compared with systems without replicaent cut, it still allows safe detection of distributed cy-
tion [47, 22, 30]. cles of garbage. This view results from a cut named GC-
For these reasons, it is impossible to do manual mengonsistent-cut. GC-consistent-cuts can be obtained with-
ory management without generating dangling referencesit requiring any distributed synchronization among the
and/or memory leaks. Automatic memory managemenprocesses involved.
also known as Garbage Collection (GC), is the single
realistic option which is able to maintain referential in- The rest of this paper is organized as follows. The next
tegrity (i.e. no dangling references or memory leaks) isection characterizes the RM model assumed by the DGC
object-based replicated memory (RM) systems. As a redgorithm; it is rather abstract and general, so that the
sult, program reliability and programmer productivity areGC solutions provided are widely applicable. Section 3
clearly improved. briefly describes the acyclic DGC algorithm. Section 4
There are two fundamental problems concerning digresents the algorithm for cycles detection and reclama-
tributed garbage collection (DGC) in RM systems: i) ention. In Section 5, we present a discussion of the algo-
suring safety in presence of replication, and ii) achievingithm properties. Sections 6 and 7 address the implemen-
completeness. Obviously, the solutions provided must ldation and performance evaluation respectively. In Sec-
feasible, in particular, they must be scalable and not intons 8 and 9 we describe relevant related work and final
trusive to applications. conclusions.



2 Model from the local-root of its enclosing process. An object is
reachable-remotelywhen it is referenced by other ob-

The DGC algorithm proposed is rather general given thgéct(s) in different process(es).
it applies to systems with minimal requirements. Basi- For DGC purposes, objects can be either dead or live.
cally these systems support object replication; the undesn object is said to bdive if it is reachable-locally
lying model is called Replicated Memory Model (RMM). (in some process) or if it is reachable-remotely from
This model clearly defines the environment for which thgome object that is reachable-locally (thus, live objects
DGC algorithm is conceived. arereachable-globally). An object is said to belead

A RM system is a replicated distributed memory spanif it is neither reachable-locally nor (directly or indi-
ning several processes. These processes are connegtaslly) reachable-remotely from a reachable-locally ob-
in a network and communicate only by asynchronoupgct_ Dead objects are callgghrbage Thus, objects
message passing. These messages do not support gdl¢ly reachable-remotely may be either live or dead: live
kind of remote invocation. As a matter of fact, in a RMopjects are transitively reachable (through a chain of re-
system, the only way to share information is by replimote references) from a local-root of some other process;
cation of data, which can be done with a DSM basedead objects constitute distributed garbage.
mechanism[20]. Thus, processes do not use Remote ProDistributed garbage may be acyclic, cyclic, or hybrid.
cedure Call (RPC) to access remote data. In other wordsyery DGC algorithm is able to detect acyclic distributed
application code inside a process never sends messaggshage. Complete DGC algorithms are able to detect
explicitly. Instead, application code access data alwaygnd reclaim cyclic distributed garbage. Hybrid garbage
locally; transparently to the application code, the RMnay be detected by a single algorithm (one that is com-
runtime system is responsible to replicate data locallglete), or by cooperation of acyclic and cyclic collectors.
when needed. The unit for replication is the object. Any object can be

Each participating process in the RM system enclosggplicated in any process. A replica of obj&cin process
the following entities: memory, mutatérand a coher- p jg notedXp. Each process can hold a replica of any

ence engine. In our RM model, for each one of thesgpject for reading or writing according to the coherence
entities, we consider only the operations that are relevagtotocol being used.

for GC purposes.

o 2.2 Mutator model
2.1 Memory Organization

o _ ) The single operation executed by mutators, which is rel-

bytes in memory. Applications can have different viewspe only way for applications to modify the graph of ob-
of objects and can see them as language-level class i@tts.

stances, memory pages, data base records, web pageSihe reference assignment operation executed by a mu-
etc. tator in some procesB is notedX :=Yp. This means

_ Objects can contaireferencespointing to other ob- - that 4 reference contained in objétts assigned to the
jects. Anoutgoing inter-processreference is a reference yajye of a reference contained in obj¥d If Y points to

to a target object in a different process. AOMING 4 opjectz in some other process, this assignment oper-
inter-processreference is a reference to an object that igion results in the creation of a new inter-process refer-
pointed from a different process. Our model does Nnot rgsyce fromx to Z.

strict how references are actually implemented. They can Obviously, other assignments can delete references

be virtual memory pointers, URLs, etc. transforming objects in garbage. For example, in pro-

We definelocal-root to be the set of references in agegsp the mutator may perforniX := NULL),; this
process enclosed in global variables and stacks. An ob-
ject isreachable-locallywhen it is transitively reachable  2This notation is not fully accurate but it simplifies the explana-
tion of the DGC algorithm. As a matter of fact, to be more precise we
1The term mutator [6] designates the application code which, fronshould writeX.ref = Y.ref (C++ style notation). However, this im-
the point of view of the garbage collector, mutates (or modifies) th@roved precision is not important for the DGC algorithm description
reachability graph of objects. and would complicate it un-necessarily.




may result on some objeZtto become unreachable, i.e. When an object is propagated to a process we say that
garbage, given that there are no references pointing to its enclosed references aegported from the sending

In conclusion, assignment operations (done by mutatorpyocess to the receiving process; on the receiving pro-
modify the object graph either creating or deleting refereess, i.e. the one receiving the propagated object, we say
ences. that the object’s enclosed referencesiarported.

It's worthy to note the following aspects concerning
the creation of inter-process references. The only way a
process can create an inter-process reference is through
The coherence engine is the entity of the RM system th#te execution of only two operations: (i) reference as-
is responsible to manage the coherence of replicas. Thignment, which is performed explicitly by the mutator
coherence protocol effectively used varies from system t@s described in Section 2.2), and (i) object propagation,
system and depends on several factors such as the nuaich is performed by the coherence engine in order to
ber of replicas, distances between processes, and othéiow the mutator to access some objéct.

However, the only coherence operation, which is relevant

for GC purposes, is theropagation of an object, i.e. the . .

replication of an object from one process to another. Thg ACyC“C Distributed Garbage Collec-
propagation of an objedt from proces$1 to proces$2 tion

is notedpropagate¥; .p.

We assume that any process can propagate a repngge overall solution for the problem of DGC in a RM
into itself as long as the mutator causing the propagatictystem, is constituted by the following algorithms: i) a
holds a reference to the object being propagated. Thu§cal tracing-based garbage collection (LGC) algorithm
if an objectX is unreachable-locally in procesy, the running in each process, ii) a replication-aware reference-
mutator in that process can not force the propagatiot of listing acyclic distributed garbage collector (ADGC) al-
to some other process; however, if some other proegss dorithm [34], and iii) a distributed cycles detector (DCD)
holds a reference &, it can requesX to be propagated algorithm. The LGC, ADGC and DCD algorithms de-
from P1 to P2 (more details in Section 3). pend on each other to perform their job, as explained af-

In each process, the coherence engine holds two ddg{wards.
structures, callehPropList andoutPropList; these in- ~ Common to both the ADGC and the DCD (and used
dicate the processom whicheach object has been IorOIO_also by the LGC), there are two main data structures:
agated, and the procesgeswvhicheach object has been
propagated, respectivelyThus, each entry of thi@Pro-
pList/outPropList contains the following information:

2.3 Coherence Model

e Stub - A stub describes an outgoing inter-process
reference, from a source process to a target process
(e.g. from object X in a process P1 to object Y in

e propObj - the reference of the object that has been P2).

propagated into/to a process; e Scion - A scion describes an incoming inter-process

reference, from a source process to a target process
(e.g. to object Y in a process P2 from object X in
P1).

e propProc - the process from/to which the object
propObj has been propagated,;

e sentUmesgecUmess - bit indicating if a . . . .
: Thus, a scion represents an incoming reference, i.e., a
Unreachablemessage has been sent or received

o ; reference pointing to an object in the scion’s process; a
(more details in Section 3). . .
stub represents an outgoing remote reference, i.e., a ref-

In the rest of this paper, for clarity, entries in the€'€NCe pointing to an object in another process.

mProlest and Ol.!tPrOlefst will be referred to adn- 4For example, in some DSM-based systems, when the mutator
Prop/OutPropentries, or simply afPropgOutProps tries to access an object that is not yet cached locally, a page fault is
generated; then, this fault is automatically recovered by the coherence

SUsually, this information does exist in the coherence engine irngine that obtains a replica of the faulted object from some other
order to manage the replicas. process.




process P1 process P2 Thus, the fact thaXp; is not reachable-locally in pro-

local ocal cessP1 does not mean that is unreachable-globally; as
@ a matter of fact, according to the coherence moXg|,
@ contents can be accessed by an application in pr&R&ss

by means of a propagate operation.
Therefore, in a RM system, a target obj&cts con-

< sidered unreachable only if the union of all the replicas

@ of the source objecK in this example, do not refer to it.
W This is theUnion Rule introduced in Larchant [10, 11]:
process P3 a target objectZ is considered unreachable only if the

union of all the replicas of the source objects do not refer

Figure 1: Safety problem of current DGC algorithms
g Y b g to it. The next sections show how this rule is enforced.

which do not handle replicated datd: is erroneously
considered unreachable.

Note that stubs and scions do not impose any indired2 LGC

tion on the native reference mechanism. In other word%ach process has a local garbage collector (LGC); it

they do not interfere either with the structure of refery, s as any standard tracing collector with the differ-

ences or the invocation mechanism. They are simply,ces stated now. The LGC starts the graph tracing
GC specific auxiliary data structures. Thus, stubs anglyy, the process’s local-root and set of scions. For each
scions should not be confused with (virtual machine) nas,1gqing inter-process reference it creates a stub in the
tive stubs and scions (or skeletons/proxies) used for e,y set of stubs. Once this tracing is completed, every
mote method invocations (RMI). _ object reachable-locally by the mutator has been found
In the remaining of this section we describe the LGQe_g_ marked, if a mark-and-sweep algorithm is used);
and ADGC algorithms. These algorithms are (brieflyhpjects not yet found are unreachable-locally; however,
presented mainly for completeness of the solution and ggey can still be reachable from some other process hold-
ameans to explain the usefulness of stubs and scions, 4ag a replica of, at least, one of such objects (as is the
how replication is safely dealt with. Then, in Section 4case ofXe1 in Figure 1). To prevent the erroneous dele-

we focus on the DCD algorithm. tion of such objects, the collector traces the objects graph
(marking the objects found) from the listgropList
3.1 Replication Awareness and outPropList , and performs as follows: i) when

a reachable-locally object (previously discovered by the
Both the ADGC and the DCD algorithms follow a set ofLGC) is found, the tracing along that reference path ends,
well-defined rules (presented later) so that they are safd ii) when an outgoing inter-process reference is found
and live in presence of replication. This means that theshe corresponding stub is created in the new set of stubs.
algorithms solve the safety problem that is not addressed
by other DGC algorithms [28, 1]; as a matter of fact, sucl@ 3 ADGC
algorithms do not take into account the existence of repli-
cated objects, as explained now. From time to time, possibly after a local collection, the

Consider Figure 1 in which an objeXtis replicated in  ADGC sends a messadewSetStubshis message con-

processe®1 andP2. Now, suppose thatp; contains a tains the new set of stubs that resulted from the previ-
reference to an objeztin another proced83, Xp; points  ous local collection; this message is sent to the processes
to no other objectXp; is not reachable-locally ang, is  holding the scions corresponding to the stubs in the pre-
reachable-locally. Then, the question is: shdilie con- vious stub set. In each of the receiving processes, the
sidered garbage? Classical DGC algorithms (designé®DGC matches the just received set of stubs with its
for function-shipping systems) consider thais effec- set of scions; those scions that no longer have the cor-
tively garbage. However, this is wrong because, in a RMesponding stub, are deleted.
system, it is possible for an application?g to acquire a As previously stated, the ADGC, to be correct in pres-
replica of X from some other process, in particul®g;.  ence of replicated objects, must ensure the Union Rule.



This rule, fundamental for the safety of the ADGC, is en€ontaining the reference to a remote object. Thus, inter-
sured as follows: process references are created as a result of the propaga-
tion of replicas. Such propagation leads to the export and
e For an object which is reachable only from theimport of references, as mentioned in Section 2.3.
inPropList , a messagéJnreachableis sent to Thus, whatever the coherence protocol, there is only
the site from where that object has been propasne interaction of the mutator with the ADGC algorithm.
gated; this sending event is registered by changinghis interaction is twofold: (i) immediately before a
asentUmess bit in the correspondin@PropList propagate message is sent, the references being exported
entry from 0 to 13 (contained in the propagated object) must be found in or-

When aUnreachablemessage reaches a processqer to create the corresponding scions, and (ii) immedi-

this delivery event is registered by changing aately before a propagate message is delivered, the out-

recUmess it in the correspondingutPropList going inter-process references being imported must be
entry from 0 to 1 found in order to create the corresponding local stubs,

if they do not exist yet. Note that this may result in the

e For an object which is reachable only from theCreation qf chains'of stub-scion pairs, as it happens ipthe

outPropList , and the enclosing process has a1 SSP Chains algorithm [36]. To summarize, the following

ready received aJnreachablemessage from all "ules are enforced by the ADGC:

the processes to which that object has been previ-

ously propagated, Reclaimmessage is sent to all

those processes and the corresponding entry in the

outPropList  is deleted; otherwise, nothing is done.

e Clean Before Send Propagate Before sending a
propagate message, enclosing an obyectrom a
processP2, Y must be scanned for references and
the corresponding scions createdia

When a process receives Reclaim message it

deletes the corresponding entry in thropList e Clean Before Deliver Propagate:Before deliver-

ing a propagate message, enclosing an objedb

In summary, besides the messdgewSetStubgwo a proces$1, Y must be scanned for outgoing inter-
other messages may be sent by the ADG@reachable process references and thg corresponding stubs cre-
andReclaim On the receiving process, these messages &t€d inP1, if they do not exist yet.

are handled by the ADGC that performs the following It is worthy to note that the mutator does not have to be

operathns: sets thecUmess bit in the correqundmg blocked while the ADGC specific operations mentioned
putPropUst 'entry, and de!etes the correspopdmg €Y hove are executed (scanning the object being propagated
n th.elnPropL_lst ' res!oectlvely. Thus, a replicated Ob'and creating the corresponding scion and stub); such op-
jectis effectuvely recl_almgd (by .the L.GC) only after theerations can be executed in the background.
corresponding entry in thePropList is deleted. From these rules, results the fact that scions are always
created before the corresponding stubs; and OutProps are
3.4 Propagation always created before their corresponding InProps. This

is due to a causality relationship (their creation is causally

In a RM system mutators may create inter-process refegrdered) between them.
ences very easily and frequently, through a simple refer-
ence assignment operation (see Section 2.2). Note t 15
when such an assignment does result in the creation of
an inter-process reference, this can only happen becau¥bge ADGC is not complete as it does not reclaim dis-
in the local process, there was already an object replicdeibuted cycles of garbage. The detection and deletion of
distributed cycles of garbage is a difficult problem that

5Note.that from now on, the replif:a is not reaghgble by the locahas been addressed in many ways: gIobaI tracing, back-
mutator; if another propagate operation occurs bringingwreplica .o in o detection within groups, with centralized or dis-
of that same object into the process, tild replica remains locally . . .
unreachable, and a new entry is created initReopList  with the  tributed approaches (see Section 8 for a comparison of
correspondingentUmess set to 0. the most relevant work to ours).

Completeness




We solved this limitation by developing another algo-scion.
rithm, the DCD algorithm, capable of detecting such cy-
ples asynchronously. Onpe acycle is detecteq, the I:?C,_lp_l Cyclic Garbage Comprising Replicated Ob-
instructs the ADGC algorithm to delete one of its entries jects
so that the cycle is eliminated. Then, the ADGC is capa-
ble of reclaiming the remaining garbage objects. Following this notation, a simple example of a dis-
Our algorithm makes use of a centralized approacliributed cycle, comprising replicated objects, can be
The detection of distributed cycles of garbage works on $een in Figure 2. This cycle can be represented by the
view of the global distributed graph that is consistent fofollowing (others possible) chain of objects (starting and
its purposes. Such a view results from the graph snafinishing inP2):
shots taken by each process independently (i.e., with no
synchronization required at all). As explained later, this {{F, H, 1}p2,{O, W, K}p3,{D, W, B}p1}
view may not correspond to a consistent cut (as defined Clearly, all objects belong to a distributed garbage cy-
by Lamport [18]) but it still allows to safely detect dis- cle, since none of them is reachable from any local root
tributed cycles of garbage. This view, results from a cufthe one in proces®1 targeting objectAp; has been
that we call a GC-consistent-cut. GC-consistent-cuts cateleted by the mutator). Therefore, there are no sources
be obtained without requiring any distributed synchroof global reachability. However, in this situation, the

nization among the processes involved. ADGC algorithm is unable to proceed, because it con-
siders objects to be live, when they are reachable from
. _ scions.
4 Cyclic Distributed Garbage Collec- ReplicasWez andW), must both be found unreach-
tion able for any (or both) of them to be reclaimed. How-

ever, both of them are targeted by other objec@p{,

In this section, we describe the DCD algorithm; we firsDp; respectively) that are reachable remotely (dultp
provide an overview of the algorithm, the main dateKps respectively). Thus, the ADGC algorithm presented
structures, and then we present the details of the detezarlier will never issu&J nreachable(and consequently,
tion of distributed garbage cycles. Reclaim messages regarding replid&iss andwW,. Con-

Objects are represented by their name (a letter) anersely, without receiving these messages, procé3kes
their enclosing process (e.gdp1 in Figure 2). Sub- andP3will remain including stubs regarding remote ref-
graphs of connected objects may be represented in abbezencesBp; — Fp2 andKpz — Dp1, respectively) in
viation (e.g.,{{A, W', B}p1,{F, H, 1}p2}), aggregated their NewSetStubmessages. Due to this double inter-
by its/their enclosing process. References may be alsiependency, the ADGC algorithm always perceives the
explicitly described when relevant (e.8p1 — Fpy). objects included in the example portrayed, as reachable-

Remote references are described by their corresponglobally (therefore, as live objects) while, in fact, they are
ing stubs and scions (e.dp1 — Fp2). Objects repli- no longer reachable to the mutator.
cated from/to processes (e.9,;) are represented with  Cyclic distributed garbage is created at a lower rate
their associated inProp/outProp entries. Furthermore, thiean acyclic distributed garbage. Nevertheless, it is still
association among replicas of the same object, in diffefrequent [47, 22, 30]. Arguably, it is even more so with
ent processes, is made explicit by gray dashed lines. Thisplicated objects. If not detected and reclaimed, it sim-
eases visualization of the Union Rule presented earlier.ply accumulates over time, wasting an ever increasing

Throughout this section, for clarity, we extend the nofraction of the memory space.
tions of reachability, already defined for objects (recall Thus, to achieve completeness, we must also provide
Section 2.1), also to GC structures like scions, stubs arad detector for cyclic distributed garbage objects. Ex-
InProp and OutProp entries. In particular, when we saigting cycle detectors (and otherwise complete DGC al-
that some stubs are reachable from a scion, we actualjprithms), found in the literature, are not applicable to
mean: stubs, describing remote references, enclosed ithe RM model. They cannot handle replication safely
objects, which are reachable from another object, taras stated earlier, given that they do not take replication
geted by an incoming remote reference, described byiato account. Naive extensions of these algorithms, in
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Figure 2: Cyclic distributed garbage comprising replicated objects. OWjetas been previously replicated from
proces$3 to proces$l.

which replicas are simply considered as additional olreceives summarized snapshots of processes (instead of
jects, are not safe either and lead to premature reclamfall graphs). These summarized snapshots contain all the
tion of replica content, that could still be of potentialinformation relevant for DCD purposes, and are much
use to applications (recall Figure 1). A comprehensivemaller than the full object graphs.

overview of DGC algorithms, with further details, is pre- Using these snapshots, the DCDP performs a global

sented in Section 8. mark-and-sweep (GMS) on the graphs description re-
ceived. This is performed in a way so that inter-process
4.2 Algorithm Overview references are traced only if the corresponding stub-scion

pairs are consistent in the graphs description. Simi-

Our algorithm makes use of a centralized approach. Tharly, corresponding OutProp and InProp entries, indi-
first approach of this kind was introduced in [21]. How-cating replication paths are also traced by the GMS, as
ever, our work has several differences that will be becomienplicit inter-process references, in order to uphold the
clear afterwards. Union Rule. Otherwise, the marking on that reference

In the following paragraphs, we describe the main ideatops.
of the DCD algorithm. We follow an intuitive descrip- When a garbage cycle is detected, the DCDP can in-
tion that does not consider many subtle aspects; these ateuct certain processes to delete one or more of their
addressed in the next sections. However, it provides stions, InProp or OutProp entries. The explicit deletion
description of the main idea that is easy to understand. of such structures is a safe operation due to the property

The process performing the detection of the distributedf garbage being stable, i.e., once an object is garbage,
cycles of garbage (called DCDP for distributed cycles det stays so. Explicit deletion of InProp and OutProp can
tector process) receives object graph snapshots from eduh performed by triggering entries to sdddreachable
participating process and detects distributed cycles comressages. The end result of these explicit deletions is
prised within these processes (existing at the time thesige transformation of a distributed cycle of garbage into
snapshots were taken). As a matter of fact, the DCDR® set of acyclic garbage objects; thus, these objects can
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be readily reclaimed by the ADGC algorithm describedf the above mentioned data structures that can propa-
previously. gate global reachabilityutsidea process, i.e., commonly

The DCDP works on a view of the global distributedstubs, and InProp and OutProp entries. The need to in-
graph that is consistent for its purposes. As explained iclude OutProp entries along with InProp entries, is sym-
this section, this view may not correspond to a consignetrical to the previous case. It also stems from the need
tent cut (as defined by Lamport [18]) but it still allows toto uphold the Union Rule.
safely detect distributed cycles of garbage. We call such The notions ofSource- Setand Target— Set(calcu-

a cut, a GC-consistent-cut. lated via graph summarization described further in Sec-

This a weaker requirement than that of a consistention 4.4 ) are illustrated generally in Figure 3. Note that
cut in a distributed system due to: i) distributed cyclictco uphold the Union Rule, InProp and OutProp entries
garbage (as all garbage) is stable, i.e., after it becombslong to botfSource- SetandTarget— Setof the sum-
garbage it will not be touched again by the mutator, antharized graph. This is made explicit in the original graph
i) distributed cyclic garbage is always preserved by théy using double-direction arrows between these entries
ADGC (that is why we need a special detector), i.e., ifind the objects they refer to. In the summarized version,
the DCD algorithm does nothing, it still is safe. this is made clear with different shadings: brighter for

GC-consistent-cuts can be obtained without requirin§ource- Setand darker foiT arget— Set
a distributed consensus [15] among the applications pro- The ADGC structures must be extended with time-
cesses that send their graph descriptions to the DCD®amps. Thus, DCDP is able to perform GMS along dis-
This means that the DCDP still performs useful work, i.etributed paths consistently, for cycle detection purposes.
it is capable of detecting cycles, even if its global viewwWhen needed information is missing, the DCDP acts
of the graph is made of local graph descriptions (sent bgonservatively to ensure safety. Nonetheless, these time-
the applications processes) at different and uncoordinatsthmps may already be present for other DGC and coher-
moments. ence purposes, like preserving correctness in the presence

The DCDP is also capable of performing its task with-of lost, duplicated or delayed messages. Thus, this may
out requiring every existing process to send its graph dexot be an additional demand to most systems.
scription. The only consequence is that cycles compris- Additionally, every entry belonging to tigource- Set
ing objects in processes, unknown to the DCDP, are notust include the set of entries of thiarget— Setthat are
detected. However, all other cycles are detected and r@ransitively) reachable from it. The need for this infor-
claimed. mation is justified and detailed in Section 4.4.

Finally, every entry in theTarget— Set must bear a
special bit indicating reachability-local, i.e., if there is a
transitive path from a local root of the enclosing process,
The data structures manipulated by the DCD algothat can lead to this entry.
rithm are extensions to the ADGC data structures In summary, the extensions to these structures, manip-
(Stubs Scions InProp and OutProp. For the DCD al- ulated by the DCDP, are as follows.
gorithm, these structures are grouped, in each process, inScion(member of theSource- Se):
two sets:Source- SetandTarget— Set

The Source- Set in a process, includes all the entries

of the above mentioned data structures that can propa-, TargetsFrom list of stubs, InProps, and OutProps,

gate global reachabilitinsidea process, i.e., commonly in the same process, transitively reachdimen the
scions, and OutProp and InProp entries. The need to in-  g¢jon.

clude InProp entries along with OutProp entries stems

from the need to uphold the Union Rule. This way, when- Stub (member of thelarget— Sej:

ever a replica is reachable-globally, every other replica

of the same object must be so as well. Thus, globally

reachability must be propagated both ways, thus through e ReachLOCAL: flag-bit accounting for local reacha-

OutProp and InProp entries. bility (from the local root of the enclosing process)
The Target— Setin a process includes all the entries of the stub.

4.3 Data Structures

e time— stamp for GC-consistent-cut purposes.

e time— stamp for GC-consistent-cut purposes.

8
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Figure 3: Summarization of an object graph iftource- SetandTarget— Set

OutProp (member of theSource— Set and of the available. Finally, theReachLOCAL flag, in each ele-
Target— Se): ment of theTarget— Set indicates the local reachability
of the entries for inclusion in the GMS roots.

These structures effectively summarize, in each pro-
cess, and solely for distributed cycle detection purposes,
'all the relevant information of application object graphs.
The full calculation of these structures is addressed in the
following subsection.

e time— stamp for GC-consistent-cut purposes.

e TargetsFrom list of stubs, InProps, and OutProps
in the same process, transitively reachdhben the
object the OutProp refers to.

e ReachLOCAL: flag-bit accounting for local reacha-
bility (from the local root of the enclosing process)4 4  Graph Summarization
of the object the OutProp entry refers to.
Object graphs in application processes may be very large.
InProp (member of theSource— Set and of the Consequently, the size of the corresponding snapshot
Target— Se: may contribute to increase bandwidth usage, memory oc-
cupation by the DCDP, and a large amount of disk space.
In addition, such a large amount of data could turn cy-

« TargetsFrom list of stubs, InProps, and OutProps,CIe detection into a CPU-consuming operation requiring

. . access to a large amount of data.
in the same process, transitively reachdhben the Thi bl g . ved b izing the obiect
object the InProp refers to, is problem is solved by summarizing the objec

graph snapshot of each application process in such a way
e ReachLOCAL: flag-bit accounting for local reacha- that, from the point of view of the DCDP, there is no
bility (from the local root of the enclosing process)!0ss of relevant information. This summarization trans-
of the object the InProp entry refers to. forms a snapshot of an application graph into the two sets
(Source- Setand Target— Se) presented earlier, with
The TargetsFromlists, held for each entry in the their corresponding associations.
Source- Set establish reachability associations, among As a matter of fact, references strictly internal to
objects targeted by incoming remote references, and ol-process are not relevant for the DCDP, as long as
jects holding outgoing remote references, in each prdahe relations between entries in tlsource— Set and
cess. These lists allows the DCD algorithm to determind,arget— Setare known. In Fig. 2, in proced®2, ref-
while detecting cycles, the next set of processes (targetedencesF — H, H — |}p; fall into this category. In
by implicit or explicit outgoing references) that should beother words, what is relevant for the DCD algorithm,
marked in order to transverse the full distributed grapks to know which stubs, InProps and OutProps (i.e.,the

e time— stamp for GC-consistent-cut purposes.
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Target— Se), are reachable form scion, InProps and Out- e Source- Se{P1) = {Scior(Dp1), INProp(\Ws;)}
Props (i.e., th&ource- Sej.
This summarization is performed on every snapshot;

then it is made available to the DCDP. Thus, while pro- Graph summarization is performed transversing the

cesses can take snapshots by serializing local graphs, E]}%ph, while propagating and combining reachability in-

DCDP uses them iny in their summarlged form, i.e., afformation (regarding elements in tBeurce- Sej of ob-
ter graph summarization. In the rema_mqler of the dO(i'ectS. This is done breadth-first, in order to minimize the
ument, the termsnapshot, graph descriptipandsum- number of times each object is re-scanned.

marized graph descriptioare logically equivalent, w.r.t.

the DCDP. Once available, summarized object graphs are

sent to the DCDP. The summarized graph has obvious aﬁ'—S Distributed Cycle Detection Process

vantages both in terms of network and disk usage. In agks already mentioned, to perform the DCD algorithm,
dition, this summarization can be performed lazily, withthe DCDP receives a summarized description of the ob-
low priority, with minimal impact on application perfor- ject graph of applications processeblote that such ob-
mance (see Section 7). ject graphs are strictly local to each application process.

In the example shown in Fig. 2, the summarized graphh addition, as will be made clear afterwards, the DCDP
information at process$?1 would hold the following does not require the object graph of all the existing appli-
data® cation processes to perform useful work; thus, cycles are
detected even with a partial view of the global graph.

It's worthy to note that our algorithm does not require
the snapshots to be taken synchronously by every appli-
i cation involved. In other words, there is no need for a
viaWes). distributed consensus [15] which would be clearly a bad

solution for performance and scalability reasons. Thus,

o Stul{Frp)@rr = {ReachLOCAL = falsg}; this 2S explained now, the DCDP analyzes the object graphs
means thaStul{Fe,) is not reachable from the local with special care for consistency and causality from a
root of proces®1 (ReachLOCAL is falsg. Note ~DGC pointofview. _
that while the stub refers to an object located in Each process maintains a private counter global to the
processP2, the stub structure is kept procesl ~ Process. Time-stamps are created, in each process, by

where the remote reference actually exists. This jmonotonically increasing this counter. Thus, each time
denoted by the symb@@®. a scion, or OutProp entry is created, the counter value is

stored in its time-stamp field, and the counter is atomi-
cally incremented. Stubs (and InProp entries) receive the
e InProp(Wg;) @p1 = {TargetsFrom =  same time-stamp stored at their counterpart scions (and
{Fp2, Wj,},ReachLOCAL = false}; this  OutProp entries, respectively).
means that InProp(\Wp,) leads to StuliFe;) Each process sends to the DCDP, included with its
and InProp(W,) (InProp(Wg,) leads to itself, summarized graph description, a list containing, for each
since InProps and OutProps propagate reachabilifyocess, the highest time-stamp value it has received
marks in both directions due to the Union Rule; infrom it. Then, the DCDP performs a global mark-and-
this case, it will propagate reachability andfrom  sweep (GMS) on the graphs description received. This
OutPropWe3)). Furthermore, it is not reachable GMS is done in such a way that inter-process references
from local root ofP1. are traced only if the corresponding stub-scion pair exists
in the graphs description. Similarly, corresponding Out-

Therefore, summarized information of procé¥kis  prop and InProp entries, indicating replication paths are
completed with the contents 8burce- SetandTarget—
Set A description of an object graph is obtained using a library that,
through serialization, writes a file describing the objects, stubs and

6Symbol=- meansevaluates t@r returns = relates a field name scions, InProps and OutProps, of the process. This description is then
and its value. subject to a summarization process.

e Target— Se(P1) = {Stul{Fp2), InProp(Wg,) }

e Scion(Dp1)@r1 = {TargetsFrom= {Fpz, W, }};
this means that, inP1, Scion(Dp1) leads to
Stuli{Fp2) andInProp(W,;) (describing replication
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Figure 4: Roots of the GMS at the DCDP.

also traced by the GMS, as implicit inter-process refer-  process holding the corresponding stub, are also
ences, in order to uphold the Union Rule. Otherwise, the members of the GMS root.
tracing on that reference stops.
The roots of the GMS are the following (see Figure 4): e OutProp entries, whose associated time-stamp has a
value greater than the greatest value known in the
e Those objects that, in each application process, are processing holding the corresponding InProp entry,
directly reachable from the local roots (stack, etc.)  are also members of the GMS root.
must be obviously considered roots of the GMS (in
Figure 4-c such objects are shaded). The last two rules enforce a conservative approach to
ensure safety. The scions in this situation are those whose

* Scions whose corresponding stubs are included Igorresponding stubs have not been created yet when their

processes whose graph des_cnpuon IS not aVa“IabL:enclosing application process has created its graph de-
at the DCDP (when performlpg th_e GMS), are alsc§cription (then sent to the DCDP). Similarly, the Out-
mgmb_ers of the_GMS root (in Figure 4'_b such aProp entries are those whose corresponding InProp en-
sclon 1s the one n P3 whose corresponding stub Fies have not been created when their enclosing process
in P4). These scions are members of the GMS _rocéenerated its graph description (then sent to the DCDP).
for safety reasons. As a ma_tter of fact, such scion Note that the situations, described in the last two items,
may_not haye a corresponding stub (so 1they COUIPnay occur because the graph descriptions received by the
be simply discarded) but the DCDP can't say thabCDP are snapshots taken at different moments at differ-

for sure. Thus, it uses a conservative approach. . o o
ent processes, with no coordination at all. This is a con-

e InProp and OutProp entries, whose correspondinggduence of the fact that there is no need for global syn-

available at the DCDP, must also be considered agiing summarized graph descriptions and sending them
At momentta , the graphs are in fact those as illustrated

in Figure 4-a. However, the view DCDP has, based on
e Those scions whose associated time-stamp hasgeaph descriptions received so far, is different because
value greater than the greatest value known in théhe graph descriptions obtained from P2 is older than P3

approach, once again, to ensure safety.

11



'
i , P4 graph
P1 L[> (in> B ! description

T — ] > not available
N b : at DCDP
P2 i I R
b ' :},%’5 t l
P3 i 5ﬁ <O-t'-‘> J(""ﬁ’cb t
| ’ t pX|
CDP " +«—|P3
: y | t E d
. . . . . ta b) The global graph as perceived
a) Object graphs received by DCDP provide a view of the global graph that does not by the DCDP based on the graph
corresponds to a real one; the differences are due to the shaded stubs, scions, and descriptions received so far:
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The line in bold represents an inconsistent cut but safe for cyclic GC purposes. Creation
of scion and OutProp entries always preceed creation of stubs and InProps entries. This
is because there is a causality relation among them, due to the ADGC safety rules
presented.

Figure 5: View of the graphs as seen by the DCDP.

and the graph description of P1 is even older than P2'guate message(s) sent to their enclosing process(es). The
The shaded scions and stubs reflect such differences. number of messages sent only influences the bandwidth

In Figure 5-a we show, in bold, a cut that is not causallpised and the speed of cycle reclamation. Those dis-
consistent; it results from the uncoordinated creation aritibuted garbage cycles that already existed when the ear-
sending of summarized object graphs, from each appliest graph description (being processed by the DCDP)
cation process to the DCDP. It is clear that this cut igvas created, and are totally included in the graph descrip-
such that the creation of stubs and scions, InProps atidns available at the DCDP, are effectively detected and
OutProps, is not consistent for regular DGC purposeseclaimed. Thus, considering Figure 5-a, all cycles that
However, based on such graphs, the DCDP builds a G@xisted beforab , that are totally enclosed in processes
consistent cut that allows it to detect distributed cycle®1, P2, and P3, are detected by the DCDP.
of garbage. This cut is consistent w.r.t. the finding of
such cycles. Thus, a GC-consistent cut is a set of GC . . . .
structures, together with their associations, that provide  Discussion of Algorithm Properties
a safe view of the distributed object graph, for the sole ] ]
purpose of detecting cycles. This is ensured as long 4a this sectlpn,_we address the relevant propertlfes of any
the rules to define the root-set of the GMS (performed b§omPplete distributed garbage collector discussing them
the DCDP) and tracing are respected. In particular, the&92inst the algorithm proposed: safety, liveness, com-
rules specify which scions, OutProps and InProps mu§{€teness, termination, and scalability.
be members of the root-set of the GMS.

The result from the GMS is a set of garbage stubsSafety: The ADGC and DCD algorithms are resilient
scions, and InProps, OutProps. However, not all ofo message loss, delay, re-ordering and replay. Concern-
these belong to distributed cycles of garbage. Some aig ADGC, loss or delay oNewSetStub&) nreachable
these (those that are not members of distributed cycles ahdReclaimmessages does not affect safety because ob-
garbage) are reclaimed by the acyclic algorithm. jects deletion is only triggered by reception of these mes-

The DCDP determines which of such scions, Outsages. It may, however, delay garbage detection. Mes-
Props and InProps actually belong to cycles comprisingage replay is innocuous since all messages are idempo-
replicated objects. This is done as follows: only sciongent. This is trivial forU nreachableand Reclaimmes-
that are simultaneously garbage and, still, referenced lsages.NewSetStubsiessages always carry information
stubs, can belong to a distributed cycle of garbage. Sinabout the most recent scion known when they were first
ilarly, only those OutProp entries found to be garbagseent. This way, a replayddewSetStubsiessage will not
but with their corresponding InProp entries known to thg@rematurely delete scions created more recently.

DCDP, can belong to cyclic garbage. Then, one, any, W.r.t. DCD, when the DCDP performs GMS, it is safe
or all of them, can be selected for deletion and the adevhen considering scions, InProps and OutProps refer-
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ring to processes that have yet not sent their graph diten sends the reduced graph to its parent DCDP. With
scriptions to the DCDP. It conservatively considers therthis scheme, it is possible to detect (and reclaim) any dis-
as GMS roots. Furthermore, scions, InProps and Outributed cycle of garbage independently of its size.
Props, with time-stamps greater than the highest value Floating-garbage consists of just recently created dis-
known in the process holding the stub, InProp and Outributed cycles that cannot be detected until summarized
Prop counterparts, are also conservatively considered geaph information, at processes, correctly reflects it. The
GMS roots. There are no ordering requirements, analgorithm is conservative in these situations. Obviously,
therefore no competition, nor racing conditions, amonghis is an inevitable phenomenon to GC in general. How-
messages sent to DCDP. Message loss will only delayver, the relevant issue w.r.t. cycle detection is eventu-
garbage detection. Replay of older messages may, hoaHy detecting them, since they are stable (therefore, long-
ever, prevent detection of newer cycles. This will bdived), and created at a slow rate.
solved when an updated graph description is received by
the DCDP. Additionally, several independent DCDP ma)ﬁ_ L
ermination:

execute without error. Regarding termination, cycle detections

are trivially granted to terminated due to the centralized
approach used for cycle detection. Once the DCDP ini-
Liveness: Algorithm liveness, w.r.t. acyclic distributed tiates a cycle detection regarding a set of participating
garbage, relies on processes sendilggvSetStubsies-  processes, it will terminate promptly whether cycles are
sages (containing live stubs) ardnreachableand found or not. Propagation of reachability marks during
Reclaimmessages regarding unreachable replicas. ThMS is granted to finish, since it is performed locally and
is ensured since every process will eventually send thegeeds to visit each element (belonginglource— Sets
messages after execution of the LGC. andTarget— Set3 only once.
W.r.t. to DCD, the algorithm liveness is obviously de-
pendent on DCDP receiving messages, carrying graph

descriptions, by participating processes. These graph qE,c_:alability: W.rt. scalability, it stems mainly from

scriptions must be eventually updated regarding each € Io?se sydnchronliatlon rquU|reTents (tc_y_clet_detectlon
these processes. Is performed asynchronously w.r.t. participating pro-

cesses), and detections in course do not require storing
additional state information at participating processes.
Completeness: The algorithm is complete in the senseMoreover, each participating process is ignorant of the
that any cyclic distributed garbage is eventually detectegthers sending summarized graph descriptions to the
and reclaimed. Distributed garbage cycles comprisBCDP. Hierarchical cooperation of several DCDPs, al-
replicated objects that eventually will be included in theeady presented when we addressed completeness, also
graph descriptions, created independently by the preontributes to scalability w.r.t. distributed cycle detec-
cesses comprising them. Once these summarized din. In addition, several distinct DCD can be done in
scriptions are made available to the DCDP, it will detecparallel using different DCDP.
the distributed garbage cycles contained in them.

To remain safe, the DCDP can only detect distributed
cycles of garbage that are fully enclosed in the graphs d& Implementation
scriptions it holds. This may suit most distributed cycles,
that are small, but clearly limits the maximum size of thelhe algorithms were implemented in Rotor[39] (a free
detectable cycles. However, this limitation can be solvedersion of Microsoft .Net[29]), that we extended to sup-
because it is possible (and desirable, for scalability angort object replication. We have also implemented them
availability purposes) to have several DCDPs. Thesé@ OBIWAN [40, 41, 13], a middleware that supports ob-
DCDPs can be organized hierarchically (or in any otheject replication on top of .Net and Java.
way) so that a DCDP at a higher level has a larger view of The algorithms (ADGC and DCD) were implemented
the global distributed object graph. Such a larger view isombining modules written in C++ and C#. The imple-
obtained as follows. Each DCDP applies a graph reducnentation we have done on Rotor includes virtual ma-
tion on the set of graphs it holds already summarized arehine modification (for LGC and DGC integration), Re-
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moting code instrumentation (to detect export and impof.2 Remoting Code Instrumentation
of references), and distributed cycle detection.

. . e . . Remoting services code instrumentation intercepts mes-
Virtual machine modifications were implemented in

C++. This is the language Rotor core is |mplemente8a.geS sent and' received by Processes in the cont.ext of
. o ‘ ) bject propagations (performed resorting to remote invo-
in. Remoting instrumentation code was developed in C#, .. .
) . . : ) . Cation), so that scions, stubs, InProps and OutProps are
since high-level code of the Remoting services is writ- .
) 2 created accordingf§.
ten in this language. Graph summarization and the actual ) :
. . To accomplish this, custom headers were appended to
DCDP were also written in C#. .
Remoting messages, e.g.,

. In this sec_tion we briefly descr_ibe the most impor_tang ionindexmachine processldto uniquely identify GC
Implementation aspects concerning the above mentloneaructures associated with replicas and remote references

g(r)]dsétv(;/:th greater emphasis on the modifications mad|$ﬁcluded in Remoting messages. These values must be

propagated throughout the entire sink chain. Therefore,
adaptations were made on base filesbasetransport-
6.1 LGC and ADGC Integration headers.cs, corechannel.cs, message.cs, dispatchchan-
nelsink.cs, binaryformattersink.cs Higher level files
The ADGC algorithm must cooperate with the LGC, essuch asemotingservices.cs, tcpsocketmanagebasa-
sentially, in two ways: ryformatter.csand activator.cswere also modified pri-
marily to invoke, when remote references were detected,
e the LGC must provide, in some way, the ADGCspecialized methods included in the previous files. One
with information about every remote objects referspecialized filegcdata.csimplements a new clas§C-
enced by local objects; this is necessary to ensufdanager containing all the utility methods and GC state
that all stubs (representing outgoing remote referdsed in all other files.
ences) are correctly created/preserved; Code implementing ADGC algorithm’s explicit mes-
sages is grouped in a specific cld3&CManager this
e the ADGC algorithm must prevent the LGC from re-code runs as a low priority thread in each application
claiming objects that are no longer reachable-locallprocess, and is responsible for composing and send-
but are target of incoming remote references; thigg NewSetStubdJnreachableand Reclaimmessages
ensures that scions actually prevent objects from béazily. NewSetStubdJnreachableand Reclaimmes-
ing reclaimed. Similarly, InProp and OutProp en-sages from other processes, are delivered when well-
tries also prevent replicated objects from being preknown remote methods made available by DGCManager
maturely reclaimed. are invoked by another process.

The implemented solution consists simply on a rung 3 Graph Description Summarization
ning thread that monitors existing stubs verifying that

they are still valid, i.e., the Rotor transparent proxies adn order to be consistent, object graph serialization must
sociated with them still exist. This is achieved using Robe performed while the application code is not running.
tor weak-references. A similar approach is used to mon the current implementation, this is performed immedi-
itor InProp and OutProp entries. ately after the LG€ and before allowing the application
This approach has several advantages: i) it does nt Proceed. However, this o_bject graph. serialization is
impose relevant modifications on the Rotor Kernel (CLR€€ded only for cycle detection. Thus, it only needs to
- Common Language Runtime), ii) it can be implemente@e seldom done. This allows the serialization of the ob-
using a_high'IeV_eI language such as C#, lii) mOdiﬁcati_on? 8ln Rotor, messages exchanged by these services are created, in-
are mainly restricted to the Remoting package, and iv) tercepted, coded and decoded in several stages, called sinks. A group

does not interfere with the LGC used. of different sinks that sequentially process a message constitutes a

The data structures representing stubs, scions InpyRJaK chain. . .
! ! 9This needs to be performed not necessarily after every LGC. This

pLists and OutPropLists are all implemented as _h_aSI'(‘)beration may be only seldom performed, e.g., once out of every 10
tables so that when needed, they are accessed efficiently. 100) LGC executions.
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ject graph to be done in other more convenient situations # of propagations  Rotor | Rotor w/ DGC | Variation
such as when the application stops waiting for input, of 10 1933 2072 7-19‘;/0
is idle. In patrticular, it does not have to be created ev: 51388 ég;‘éz %g;gi ;g'gg 0;"

. .. . . 0
ery tlm_e an LGC occurs. It can be fqrther optlmlzed'wn 1000 118890 140101 17 99%
operating system support; e.g., using copy-on-write ok

graph pages, serialization can be performed lazily in the

background with minimal delay, extra memory, and ProTaple 1: Propagation latency (in ms) due to ADGC man-

cessor load. . . . agement of remote references (including relative varia-
Graph summarization is coded in C#. Itis performedﬂon)

lazily and incrementally, in each process, after a new ) _

object graph has been serialized, by a separate thre§gnote refergnces are e_xportedllmported, resulting from
(which is almost always blocked). Summarization of ob!h€ Propagation of replicas. For safety, these opera-
ject graphs stored persistently in files is performed bsg\(;ns are always performed anq canr!ot be fulfllled Iaz_lly.
an off-line process executing the same function: it trans/é tested worst case scenarios, discarding potentially
verses the graph, breadth-first, in order to minimize timé&ng ne_ztwork communication times, that could mask
overhead (i.e., re-tracing of objects). Once summarizeéFUb/SC'On creation overhead. Figure 6 and Table 1 show

graph information becomes atomically available to th&esults for increasing series of object propagations car-
DCDP. rying 10 references (10 different references being ex-

ported/imported), where client and server processes ex-
ecute in the same machine. This forces the ADGC to
create 10 scions and stubs each time a propagation takes
The DCDP performing GMS is implemented in C# bothpIace. The o_verh_ead associated with the c_reation of stubs
in Rotor[39] and OBIWAN[40, 41, 13]. The choice apd scions, in j[hls.wc_)rst case scenario without commu-
of the implementation language of the cycles detectdication delay, is within 7%-21% which is acceptable for

had no constraints, provided that inter-operability coul(ﬁhe functionality provided, i.e., a safe DGC (and not one

be fulfilled between the DCD and the graph serializazhat is lease-based).

tion/summarization component in each process. The results regarding snapshot creation (by means of
Cycle detection is implemented as a standard mark arig'ialization of the object graph) were very bad on Ro-
sweep algorithm abiding to the marking rules presentel@” (Se€ Figure 7). We must stress, though, that these
earlier (namely, one that enforces the Union Rule). An@Perations do not have to be performed frequently. As
mark-and-sweep algorithm could be used (as long as & Micro-benchmark, we used graphs with 10000 linked

respects the marking rules). Therefore, we do not providd!mmy objects (just holding a reference). Rotor seri-
more details about its implementation. alization takes on average 26037 ms. To serialize the

same graph, with every object containing an additional
remote reference (additional 10000 stubs), it takes 45125
7 Performance Evaluation ms (73% more). This portrays a very conservative sce-
nario, concerning the number of outgoing inter-process
The most relevant performance results of our implereferences: one in that each object holds a unique remote
mentation are those related to phases critical to applieference. In normal circumstances, the number of re-
cations performance: i) stub/scion creation common tonote references in a process, is several orders of magni-
any acyclic DGC (corresponding to the implementatiortude lower than the number of local references.
of safety ruleClean Before Send PropagatandClean Nevertheless, serializing a remote reference is faster
Before Deliver Propagate presented in Section 3.4), than serializing an additional dummy object and, there-
and ii) snapshot serialization. These phases could dfsre, the impact of serializing GC structures is lower than
lay and potentially disrupt the mutator, therefore applithat of objects. However, these rather un-encouraging re-
cations. Results were obtained using a Pentium 4 Mobikults are a direct consequence of the very inefficient seri-
1600Mhz with 512 Mb RAM. alization code (for any purpose) included in Rotor. We
We measured the creation of stubs and scions whehink this is intentional as Microsoft considers several

6.4 Cycle Detection
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Figure 6: Propagation latency due to ADGC management of remote references.

aspects of the .Net CLR (Common Language Runtimejontribution addresses the issue of detecting and reclaim-
as commercial product critical code, namely serializatiomng cycles of garbage for replicated object systems, we
and LGC. focus on previous work dealing either with DGC algo-
To address these limitations, we re-implemented théthms in replicated environments (which are not com-
algorithm (the same ADGC, with the same code foplete), or with algorithms for collecting distributed cycles
DCDP, on OBIWANJ40, 41, 13] at user-level), so thatof garbage, (i.e., algorithms that are complete) in non-
it runs on top of the commercial version of .Net. In thisreplicated environments. Note that, as there is no pre-
second implementation, with production-level .Net serivious work addressing the detection and reclamation of
alization code, serialization times are subject to a speedarbage cycles in a replicated system, this approach cov-
up of approximately 100 times. These results are morers the all spectrum of existing solutions that may have
encouraging (see Figure 8). They range from 250ms wome aspect that can be compared to our DCD algorithm.
350ms. This imposes significantly shorter pause times.
Moreover, these operations needs to be performed o

]
sporadically. E?fl ADGC for Replicated Environments

DGC for replicated objects was first addressed by Fer-
8 Related Work reira [7, 8] in the framework of the Larchant project [9,

10, 11]. This work proposed a new DGC algorithm based
Given that the DGC algorithms presented in this articl®n a set of safety rules that take into account the existence
provide a complete approach to the problem of DGC foof replicated objects, thus solving the problem illustrated
replicated object systems, the solutions can be related itoFigurel. In particular, the Union Rule then introduced,
a large number of work performed in the area of garbagensures the safety of the DGC algorithm. However, the
collection. As a matter of fact, DGC has been a matursolution then proposed is not scalable because it requires
field of study for many years and there is extensive literthe underlying communication layer to support causal de-
ature [28, 1, 37] about it. However, given that our mairivery. In addition, it is not complete as it fails to detect
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and reclaim cycles of garbage. entire cycle. Cycles that span many objects, copied into
The PerDiS project [5, 34, 12] improved on previousa single process in charge of tracing may cause overload.
work so that it no longer required the underlying com- In another centralized approach, distributed garbage
munication layer to support causal delivery. This wasollection is performed by a logically centralized
achieved by means of a new set of rules that conservaerver [21] that receives graph information from every
tively creates the scion-stub pair of an inter-process refeprocess. The centralized server performs complete dis-
ence immediately before being exported/imported. Howtributed garbage collection and informs processes of ob-
ever, this algorithm is also not complete, i.e. it does ngects to delete. Requirements on clock synchronization
reclaim cycles of garbage. This algorithm has also beeand message latency are strict making this solution un-
used to enforce referential integrity and minimize storagscalable.
waste in web content replication systems [43]. The work presented in [46] proposes trial deletion to
Our current work, concerning the ADGC described irdetect distributed cyclic garbage. It uses a separate set
this article, improves on the mentioned above algorithmsf reference count fields for trial deletion in each object.
in the sense that it is integrated with the DCD, thus mak¥hese count fields are used to propagate the effect of trial
ing a complete solution for the GC in object replicatedsimulated) deletions. Trial deletion starts on an object
systems. suspect of belonging to a distributed cycle. The algorithm
The work described in [48] is related to ours given thasimulates the recursive deletion of the candidate object
it addresses the issue of DGC for a distributed shareahd all its referents. When, and if the trial counts of every
memory system (TreadMarks [17]). They propose a corpbject of the sub-graph drop to zero, a distributed cycle
servative collector that uses partitioned garbage colletas been successfully found. It imposes the use of refer-
tion on a process basis; this approach is the same useaice counting for LGC (which is seldom chosen); this is
by many others. All messages exchanged between pr@n important limitation. The recursive freeing process is
cesses are scanned for possible contained pointers; thigbounded. Furthermore, it has problems with mutually
is similar to the safety rules mentioned above w.r.t. theeferencing distributed cycles of garbage.
DGC in Larchant. However, their solution is specific to In [24], distributed backtracing starts from suspected
TreadMarks, i.e. it is not widely applicable. In addition,objects (of belonging to a distributed cycle of garbage),
it does not reclaim cycles of garbage. and stops until it finds local roots or when all objects
leading to the suspect have been backtraced. There are
8.2 Cyclic DGC for non-Replicated Environ- two mutu_ally recursive pr_oc_edures: one to perform local
ments backtracing and another is in charge of remote backtrac-
ing. Distributed backtracing results in a direct acyclic
Global propagation of time-stamps until a global mini-chaining of recursive remote procedure calls, which is
mum can be computed was first proposed in [16] to deelearly unscalable. To ensure termination and avoid
tect distributed cycles of garbage. Distributed garbageoping during backtracing, eadbref (representing re-
collection based in cycles detection within groups of promote references) must be marked with a list of trace-
cesses was first introduced in [19]. These algorithms aid’s to remember which backtraces have already visited
not scalable since they require a distributed consensiis This requires processes to keep state about detections
by the participating processes on the termination of then course which raises questions of fault-tolerance. Lo-
global trace. This is also impossible in the presence afal back-tracking is performed with resort to optimized
faults [15]. structures similar to our graph summarization mecha-
Migrating objects to a single process in order to connism. To ensure safety, reference copies (local and re-
vert a distributed cycle into a local one, that is tracemote) must be subject to a transfer-barrier that updates
able by a basic LGC, was suggested by several othemrefs The distributed transfer barrier may need to send
in [4, 23]. Object migration, for the sole purpose of GC extra messages that are guarded against delayed delivery.
is a heavy requirement for a system, needs extra andDistributed backtracking is also used in [33] for cycle
possible lengthy messages (bearing the actual objecttection in CORBA. As in our work, it addresses de-
among participating processes. Itis very difficult to accutailed issues about implementation of this concept in a
rately select the appropriate process that will contain theeal environment/system with off-the-shelf software.
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In [31], groups of processes are created to be scannedlored white, a cycle has been detected. If the mark
as a whole and detect cycles exclusively compriseid gray, it means other paths lead to the scion and sub-
within them. Groups of processes can also be mergagknerations must be initiated. Stub messages need to in-
and synchronized so that ongoing detections can be relude, besides marks, additional information about every
used and combined. It has fewer synchronization requirsingle sub-generator reaching each stub. Sub-generators
ments w.r.t. [19, 32]. When a candidate is selected, tware created in the back-trace of the generator that receives
strictly ordered distributed phases must be performed the gray mark. This lazy back-tracking mechanism can
trace objects. Mark-red phase paints the distributed trabe very slow. An optimistic variation leverages knowl-
sitive closure of the suspect objects with the color rededge about sub-generators triggering several back-traces
This must be performed for every cycle candidate. Teiin different processes. Possible errors are prevented re-
mination of this phase creates a group. Afterwards, thgorting to a special black color associated with marks in
scan-phase is started independently in each of the partiseions whose sub-generator status is later revised.
pating processes. The scan-phase ensures un-reachabilitfhe resulting global approach to cycle detection is
of suspected objects. Objects also reachable from othachieved at the expense of additional complexity and per-
clients (outside the group) are marked green. This cofiermance penalties. It imposes a specific, longer, heav-
sists of alternating local and remote steps. The cycle deer LGC that must collaborate with the cycle detector.
tector must inspect objects individually. This demanddhere is a tight connection and dependency among LGC,
strong integration and cross-dependency with the execaeyclic DGC and cycles detection. This is inflexible since
tion environment and the local garbage collector. Mutaeach of these aspects is subject to optimization in very
tor requests on objects are asynchronous w.r.t. GC; whelifferent ways, and should not be limited by decisions
this happens during scan-phase, to ensure safety, all atbout the others. The mark propagation consists of a
an object descendants may need to atomically be markgtbbal task being continuously performed; it has a per-
green, which blocks application when it is actually muimanent cost. Instead it should be deferred in time, and
tating objects. As in [24], GC structures need to storexecuted less frequently.
state about all ongoing detections passing through them. Relevant mutator events (i.e., edge-creation and edge-

In [14], marks associated both with stubs and sciondestruction), and causal dependencies among them, are
are propagated between sites until cycles are detectedonitored in [22] to perform DGC. Only edge-creation
Marks are complex holding three fields (distance, rangand destruction involving remote references are relevant.
and generator identifier) and an additional color field. LoObjects targeted by remote references are designated
cal roots first, and then scions, are sorted according gobal roots. Analysis of mutator events is used as an
these marks. Stubs require two marks. Objects are tracatiernative to tracing the distributed object graph. Each
twice every time the LGC runs (with important perfor-relevant event equates to lazily sending a control mes-
mance penalty to applications) starting from local rootsage (either create or destroy) with respective direct de-
and scions: first in decreasing, and then in increasing opendency vector (DDV) that reflects causal dependencies
der of marks, towards stubs. Mark propagation througbn operations performed by other global roots. DDV are
objects to the stubs is decided by min-max marking (thiebgged, merged with its causal predecessors, and propa-
is heavier than simply reach-bit propagation). One megrated, until full vector-time is obtained for each global
sage propagates marks from stubs to scions. root. This enables calculation of the complete transitive

Cycle detection is started by generators that propagatéosure of the graph. This approach is complete. It is re-
marks, initiating in local roots and scions recently cresilient to message loss and duplication, and lazy message
ated or touched by the mutator. When a remote invoca&xchange avoids races and synchronization bottlenecks.
tion takes place, a new generator is created and its ddewever, it has unbounded latency for all garbage de-
sociated mark must be propagated along the downstredattion (not just for cyclic garbage) and increased space
distributed sub-graph. Generator records include creatimverhead. The use of vector clock logs, for each global
time, a range field and a locator of the mark generatoroot, makes this algorithm unscalable.

White marks represent pure marks while gray marks in- Our management of unsynchronized summarized
dicate mixing of marks from different generators during ayraph descriptions can be related to GC-consistent-cuts
local trace. When a generator receives back its own mari databases as proposed in [38]. In this work, a GC-
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consistent-cut has one or more copies of every page j@5]. GC collects one partition at-a-time. Inter-partition
the database. These copies, possibly inconsistent framferences must be managed, and inter-partition cycles
a transactional point of view, can be created at differertan occur, as inter-site in DGC. However, there are no
instants. However, all these pages, when combined witesues of distribution to address here.
knowledge from database locks, may be consistently and Recently, in [27] a complete proof of safety and
safely used for LGC purposes. This may require at leativeness is provided foBirrel's reference listing algo-
as much memory as the database data itself. This workhm [2, 3] on which Java DGC is based. Although this
can be applied only to a centralized database system,aigorithm is not complete, as it cannot detect distributed
is not distributed, and is strongly dependent of the speycles of garbage objects, it is arguably the most widely
cific information provided by the database synchronizadeployed DGC algorithm.
tion mechanisms. Another example of usage of snapshots in distributed
In our work, GC-consistent-cuts apply to distributedobject stores, while completely unrelated to GC, appears
systems and do not require any kind of synchronizatioim [26]. It enables efficient system archiving and allows
information about participating applications. Obtainingsafe computation over earlier system states.
and managing such synchronization information, in dis- In summary, our approach is the first to address mem-
tributed systems, would be clearly undesirable for scalary management for replicated object systems, in a com-
bility and performance reasons. prehensive manner. It presents the first DGC algorithm
GC-consistent-cuts were used before, in the contefér these systems, that is complete, i.e., that can detect
of distributed systems, in [42]. However, the solutionand reclaim distributed cycles of garbage comprised of
presented is not replication-aware, i.e., it is not safe ireplicated objects spanning several processes. It has few
the presence of replicated objects. A de-centralized verequirements on synchronization avoiding disruption to
sion of this algorithm is presented in [44, 45]. It intro-mutator and intrusion to LGC. Furthermore, it has been
duces algebra-based cycle detection by forwarding protd@plemented on realistic off-the-shelf systems.
messages (piggy-backed on acyclic DGC messages) that
carry an algebraic representation of a distributed path be-
ing transversed. This algebra comprises all the objec® Conclusions
that the message has been sent to (cdkegdety, and
unresolved dependencieso(irce$. The latter constitute \We presented a comprehensive solution to address mem-
objects still un-visited by the probe message, but that mayfy management for replicated object systems. To the
still maintain the whole cycle reachable. best of our knowledge, we presented the first distributed
Upon message reception, each process appliesdarbage collection algorithm that is both safe in the pres-
matching predicate to the received algebra. If it succeedence of replication, and complete w.r.t. distributed cycles
a distributed garbage cycle has been found. If not, Rf garbage comprising replicated objects.
may either forward an updated version of the algebra to The main contributions of our work are: i) a novel dis-
other processes (containing target objects) or terminatédbuted cycles detector algorithm that is able to reclaim
detection (e.g., when local roots are reached, a mutatdlistributed cycles comprising replicated objects. It does
cycle detector race is detected, or an identical probe meot require global synchronization, it is scalable, and it is
sage has already been forwarded through the same patt)t intrusive w.r.t. mutator and LGC. It is able to make
State concerning multiple cycle detections in progress grogress without requiring all processes to participate, ii)
kept exclusively in each of algebra-carrying probing mesthe notion of DGC-consistent cut applied to wide area
sages. The algorithm does not need to store informatigeplicated objects, and iii) an implementation on Rotor
in processes regarding each specific on-going detectiodnd on .Net with minimum impact on the source code of

This helps scalability and robustness. Rotor runtime.
In comparison with previous work, our approach,
8.3 Additional Remarks while being complete and scalable, is more flexible. In

fact, it imposes fewer and lighter restrictions w.r.t. syn-
Design and implementation of complete GC on singleehronization among processes, state management at each
site partitioned object stores is thoroughly addressed process about detections in course, and intrusion with the
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mutator and with the LGC. Thus, it is specially adequateis]
for realistic systems with off-the-shelf software. This fact
is confirmed by our implementation on Rotor and using
.Net. ]
Finally, although we have implemented the ADGC and
DCD algorithms in Rotor and OBIWAN, our solutions
are rather general. Itis possible to apply the same ideas;
and, in particular the notion of the CG-consistent-cut and
the DCDP, to other platforms supporting object replica-
tion.

In the future, we plan to address the following subjects:

(8]

e investigate how the implementation can be further
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