A Decentralized Utility-based Scheduling
Algorithm for Grids

Joao Luis Vazao Vasques
joao.vasques@ist.utl.pt

Instituto Superior Técnico
Av. Prof. Doutor Anibal Cavaco Silva - 2744-016 Porto Salvo
INESC-ID

Abstract. Grid systems have gain tremendous importance in past years
since application requirements increased drastically. The heterogeneity
and geographic dispersion of grid resources and applications places some
difficult challenges such as job scheduling. A scheduling algorithm tries
to find a resource for a job that fulfills the job’s requirements while
optimizing a given objective function. Utility is a measure of a user’s
satisfaction that can be seen as a objective function that a scheduler
tries to maximize. Many utility as an objective scheduling algorithms
have been proposed. However, the proposed algorithms do not consider
partial requirement satisfaction by awarding an utility based on the to-
tal fulfillment of the requirement and follow centralized or hierarchical
approaches suffer problems concerning scalability and fault tolerance.
Our solution proposes a decentralized scheduling architecture with util-
ity based scheduling algorithm that considers partial requirements satis-
faction to overcome the shortcomings of actual solutions.

Keywords: grids, utility scheduling, partial utility, resource discovery

1 Introduction

The idea of having access to computational power as we have to electricity is not
new. In 1961, John McCarthy stated that ”computation may someday be orga-
nized as a public entity.” The term ”Grid” was chosen because of the parallel
that was made to the electric grid. An electrical grid provides resources, i.e. elec-
tricity, to many heterogeneous entities in a distributed and geographic dispersed
environment. Grid computing follows the same principle but with different par-
ticipants since it provides computational power to users instead of electricity. A
Grid is formed by many heterogeneous resources. Sets of resources that share
common sharing rules and conditions are called Virtual Organizations (VO).

Grid computing had its breakthrough on the 1990’s which coincided with
the boom of the Internet. The massification of the internet combined with the
constant increase of network bandwidth computing power of devices (see the
transistors Moore’s law) and decrease of resources cost opened the doors to Grid
computing.

The computational power required by science nowadays is huge. Genetic
studies, large macroeconomic simulations and physicists trying to find the ori-
gin of the universe are examples of investigation areas that need to have access
to a lot of computational power, i.e. computational resources. Due to the con-
tinuous growing need of science for computational resources it is important to
have mechanisms that assure that shared resources are used in an efficient and
fair way. For this reason, grid scheduling is a very important problem that has
been widely studied by the computer science community. The purpose of grid
scheduling is to allocate a job to a resource, fulfilling the job’s requirements while
optimizing resource utilization.

Many solutions have been propose to address this problem. However, they
do not consider partial requirement fulfillment and rely on a centralized or hier-
archical architectures that have problems of scalability and fault tolerance. To
address this shortcomings we propose a grid scheduling algorithm that considers
partial requirement fulfillment based on information provided by the user and
considers the grid as a structured peer-to-peer network where the peers are the
VOs.

The rest of the document is organized as follows: in section 2 we present
what we pretend to achieve, the study and analysis of the related is work is
done in section 3, in section 4 we present our solution to address the shortcom-
ings mentioned before, the evaluation methodology and metrics are described
in section 5, in section 6 we present some concluding remarks. There is also
an appendix section. In appendix A we present some metrics that are used to
evaluate the performance of scheduling algorithms. In appendix B we present a
calendarization that we are going to follow during the implementation.

2 Objectives

The goal is this work is to develop a decentralized utility based scheduling algo-
rithm for grid environments. The algorithm will incorporate partial requirement
fulfillment based on information provided by the user that, to the best of our
knowledge, no other utility based grid scheduling algorithm uses. With this new
scheduling approach, we pretend the optimize resource utilization and maximize
user’s utility. By using a decentralized P2P architecture we plan to address the
problems of scalability that are inherent to most of the solutions that have been
proposed.

3 Related Work

This sections describes the most relevant research work for the definition of our
utility-based scheduler, organized according to a top-down approach. In section
3.1 we present an overview of the existing middleware for grids. Next, on section
3.2 we describe how resource discovery is performed is grids. Finally, in section
3.3 we describe important scheduler aspects, such as scheduling phases, classes
of algorithms and some scheduling algorithms.

3.1 Grid Middleware

Middleware aims to provide abstractions to programmers by shielding them from
the complexity of the grid. Next we present some of the most important grid
middleware systems. We will cover some important aspects of grid middleware
such as how an application is defined, what kind of applications are supported,
what is the grid architecture that the middleware was built for.

3.1.1 Condor-G Condor-G [30] aims at providing users access to compu-
tational resources at many sites, which is a challenging issue due to the wide
variety of grid resources.

Condor-G combines the intra-domain resource and computational manage-
ment methods of Condor [57] with the inter-domain resource management pro-
tocols of the Globus Toolkit [31] . From Condor comes important aspects related
to intra-domain resource and job management, such as resource discovery, job
submission, job allocation and scheduling [35]. From Globus project it uses the
Globus Toolkit protocols to address the remote resource access issue, namely:
the Grid Security Infrastructure (GSI) [29] for authentication and authoriza-
tion allowing the system to authenticate a user just once; the Grid Resource
Allocation and Management (GRAM) [17] for remote submission of a compu-
tational request; the Monitoring and Discovery System (MDS) [16] for getting
information about grid resources; and the Global Access to Secondary Storage
(GASS) [5] for data transfer.

The Condor-G agent, also named computational management service, allows
the user to treat the grid as a local resource and gives the possibility to perform
operations such as submitting jobs, query a job’s status, be informed of job
termination and access job’s logs. Condor-G agent can be accessed by a personal
desktop agent, which uses the Globus protocols described above to interact with
the machines on the Grid.

Jobs and resources are announced through the use of ClassAds, a set of
uniquely named expressions, e.g. attributes formed by pairs of (name, values),
that is assembled using a semi-structured data model [57]. Condor-G supports
two kinds of application types: Bag-of-Tasks (BOT) and Message Passing In-
terface (MPI). A BOT application consists of multiple independent tasks with
no communication among each other. A MPI application is composed of multi-
ple tasks with inter-task communication. When a user submits a job, the job is
passed to the agent’s scheduler, which is responsible for job scheduling, monitor-
ing, fault-tolerance and credential management [49]. The scheduling operations
are performed using the Matchmaking mechanism [30, 36] using a centralized
matchmaker. Resources and users express their characteristics and the constrains
to the matchmaker. The matchmaker uses the information from the ClassAds
to select the appropriate resource. When the scheduler receives a job request,
it creates a Condor-G GridManager deamon which is responsible for managing
and submitting all the jobs of a single user. The GridManager terminates when
all the user’s jobs are completed. Each job submission request of the GridMan-

ager results in the creation of a Globus Job Manager on the selected resource(s).
Condor-G follows a centralized scheduling approach.

In [38], Jacob et al. propose a multi dimensional matchmaking framework
to overcome some of the Condor-G’s matchmaking shortcomings, such as lack
support for parallel jobs and non-consideration of dynamic information.

3.1.2 Nimrod-G Nimrod-G [6] is a Grid middleware for building and man-
aning large computacional experiments over distributed resources [49] that sup-
ports dealine and economy-based computations. Experiments are described using
a simple declarative parametric modeling language (DPML). Nimrod-G supports
BOT and MPT applications.

Nimrod-G uses the Globus [28] middleware services for dynamic resource
discovery and dispatching jobs. The main components on the Nimrod-G archi-
tecture are: Client or User Station, Parametric Engine, Scheduler, Dispatcher
and Job-Wrapper.

The User Station is a user-interface whose function is to control and supervise
a specific experience (list status of all jobs). The user can vary time and cost
parameters while the scheduling is taking place.

The Parametric Engine receives the experiment plan described by the declar-
ative parametric modeling language and is responsible for maintaining the state
of the experiment, creation of jobs, maintenance of job status and interacting
with clients, scheduler and dispatcher.

The Scheduler is responsible for resource discovery, resource selection and
job assignment. Nimrod-G’s Scheduler is organized in a hierarchical way unlike
Condor-G which follows a centralized approach. The resource discovery algo-
rithm interacts with the Grid Information Service to get a list of the authorized
machines and to keep track of the resources status. Nimrod-G scheduling ap-
proach is based on computational economy [2,7,49]. Nimrod-G was one of the
first grid middleware using the computational economy approach to grid schedul-
ing. Computational economy can be handled in two ways. First, the system can
work on the user’s behalf and try to complete the assigned work within a given
timeline and cost. Second, the user can negotiate for resources and find out if
the job can be performed. Important parameters of computational economy are
the resource cost (set by its owner), the price the user is willing to pay and
the deadline for the execution completion. Nimrod-G’s scheduling objective is
to maximize utility.

The Dispatcher initiates the execution of a task on the resource selected by
the Scheduler and periodically updates the task execution status to the Para-
metric Engine.The Dispatcher is also responsible for starting the Job-Wrapper.

The Job-Wrapper responsible for setting up the environment on the selected
resource for a task [2], starting the execution of the task on the selected resource
and sending the results back to the Parametric Engine via Dispatcher.

3.1.3 GrADS GrADS is the abbreviation of Grid Application Development
Software [4]. GrADS aims to provide programming tools and execution environ-

ments for development of applications on the Grid. GrADS supports MPI and
workflow applications.

In GrADS, an application must be encapsulated into Configurable Object
Program (COP) which can be optimized for execution on a specific collection of
resources [4,15]. A COP includes the application code, a Mapper that determines
how to map tasks to a set of resources and a Resource Selection Performance
Model that can be used to estimate the performance of the application on a set
of resources [15,46].

The system relies upon performance contracts that specify the expected per-
formance of each application as a function of available resources. When a COP is
sent to the execution environment, the system must determine available resources
and secure them to the COP. The Monitoring and Discovery System (MDS) re-
trieves the application requirements and filters the resources that can not be
used [39]. The Performance Modeler [59] uses the information retrieved from the
MDS and the Application Performance Model to determine the resources for the
application execution. The scheduler ranks each qualified resource for each appli-
cation component [15]. After the ranking, a performance matrix is constructed
and used by scheduling heuristics to map the COP into resources. Three schedul-
ing heuristics have been applied in GrADS: Min-Min, Max-Min and Sufferage.
When the resources are selected, GrADS will start the COP on those resources.
The execution is tracked the Contract Monitor [15,59] that detects anomalies
and may call a rescheduler if necessary. GrADS follows a centralized scheduling
architecture.

3.1.4 Askalon Askalon [23] is a Grid middleware for application development
and computing environment whose goal is to provide an invisible Grid to ap-
plication developers. Askalon provides four tools to the user: Scalea, Zenturio,
Aksum and PerformanceProphet.

Scalea [58] is a performance instrumentation, measurement, and analysis tool.
Zenturio [48] is a tool designed to specify and automatically conduct large sets
of experiments, supporting multi-experience performance analysis. Aksum [25]
is a tool for performance analysis that helps programmers to understand per-
formance problems such as message passing and mixed parallel programs. The
PerformanceProphet helps the users in terms of modeling and predicting the
performance of behavior of distributed and parallel applications. Unlike other
middleware systems such as Condor-G and Nimrod-G, Askalon is design as a set
of distributed grid services using web services.

Askalon supports workflow applications. A workflow application can be mod-
eled as a Direct Acyclic Graph (DAG) where the tasks are the nodes and
the dependencies between tasks are the arcs among the nodes. The user can
describe workflows using the XML-based Abstract Grid Workflow Language
(AGWS) [22]. Askalon’s Resource Manager, GridARM [24], provides user au-
thorization, resource management, resource discovery and advanced reservation.
Resource discovery and matching are performed based on the constrains pro-
vided by the Scheduler.

Askalon’s Scheduler has a centralized architecture and processes the work-
flow specification described in AGWL, converts it to an executable form and
maps it onto available resources [24]. The Scheduler uses GridARM to get infor-
mation about the Grid resources and maps the workflow onto resources using a
Genetic Algorithm based on user-defined QoS parameters. After that, a dynamic
scheduling algorithm takes in consideration aspects such as machine crashes or
CPU and network load and performs a reschedule if necessary. The Execution
Engine is responsible for controlling the execution of a workflow based on the
information provided by the Scheduler.

3.1.5 Pegasus Pegasus [18,19] is part of the GridPhyN project [63] and is a
system that maps complex scientific workflows onto Grid resources.

Pegasus uses the Globus Toolkit [31] GRAM [17] for remote job submission
and management; Monitoring and Discovery Service (MDS) [16] to get infor-
mation about the state of resources; Replica Location Service (RLS) [13] to get
information about the data available at the resource.

Pegasus uses DAGMan and Condor-G [30] to submit jobs on Globus-based
resources. There are two main components in Pegasus: Pegasus Workflow Map-
ping Engine (PWME) and DAGMan workflow executor for Condor-G. PWME
receives an abstract workflow description and generates an optimized concrete
workflow . An abstract workflow describes the computation in terms of logi-
cal files and logical transformations and indicate the dependencies between the
workflow components and can be described using Chimera’s [27] Virtual Data
Language (VDL). A concrete workflow is an executable workflow that DAGMan
can process. First, Pegasus queries the MDS to get information about the avail-
ability of the resources. The next step consists in reducing the workflow to only
contain the necessary tasks for the final product. This is done by querying the
RLS for replicas of the required data. Next, Pegasus queries the Transforma-
tion Catalog (TC) to find the location of the logical transformation (software
components) defined on the workflow. The information obtained is used to make
scheduling decisions (random selection, round robin, min-min). It is possible add
new scheduling algorithms to Pegasus. Pegasus has an option that clusters jobs
together in case the are small jobs assigned to the same resource. this point re-
source selection has been done. The information about the application and the
selected resources is used to build a concrete workflow which is sent to DAG-
Man. DAGMan will follow the dependencies of tasks and submit to Condor-G
that will dispatch them to selected resources.

3.1.6 Comparison Table 1 summarizes the most relevant properties of the
different middleware systems that were described. Using information from [49]
five categories have been chosen to make the classification: Application Type,
Application Definition, Scheduling Architecture, Scheduling Objective and Self-
Optimization. The Scheduling Objective has two categories identified by the
letters d and r meaning deadline and resource utilization respectively.

Self-

Application |Application |Scheduling . L Optimizati

t t
Systems Type Definition |Architecture Scheduling Objective ptunization

Condor-G |[BOT/MPI ClassAd Centralized |Load Balancing Dynamlc'
rescheduling

Nimrod-G|BOT/MPI |DPML Hierarchical |0 tHty/Optimization(d) Dynamic
rescheduling

GrADS MPT/Workflow COP Centralized |Optimization(d) Dynamlc.
rescheduling

Askalon |Workflow AGWL Centralized |Utility/Optimization(r) Peerrrpance

prediction

Pegasus |Workflow VDL Centralized |Optimization(r) Dynamlc.
rescheduling

Table 1. Middleware classification

3.2 Resource Discovery in Grids

Resource discovery is the process of searching and locating resource candidates
that are suitable for executing jobs. The dynamic and heterogeneous nature of
the Grid makes efficient resource discovery a challenging issue. In this section we
will present some of the most important approaches of resource discovery and
some implementations.

3.2.1 Classification of Resource Discovery Systems Resource discovery
in Grids can be classified in three main categories, regarding their fundamental
architecture: centralized, hierarchical and decentralized /peer-to-peer (P2P).

— Centralized: in the centralized category, resource discovery is performed
by querying a unique server. This solution is adopted by some systems such
as Condor-G [30] and Askalon [23]. Having a central server provides easier
interfaces to manage grid resources. This approach has many disadvantages
such as single point of failure that compromises the availability of the whole
system, lack of scalability and can easily lead to bottleneck in frequent up-
dates or requests. Web services grid management tools are profusely used in
centralized resource discovery mechanisms.

Hierarchical: in the centralized category, resource discovery is performed by
querying servers laid out as a hierarchy. This solution is adopted by Nimrod-
G [6]. The hierarchical approach was adopted by some systems to overcome
the problems caused by centralized resource discovery. This approach is more
scalable and reduces the bottleneck problem when compared to the central-
ized one. However, single point of failure still exists since failure of one server
may cause that a large part of the nodes become invisible to queries. Like
in centralized solutions, web services are very used in hierarchical resource
discovery.

Decentralized or P2P: Grid and P2P environments are very similar in
some aspects such as: large scale (millions of shared resources), lack of global

centralized authority and strong diversity of resources. One of the first works
to propose a P2P approach to grid resource discovery was [34] by Tamm-
nitchi et al. P2P is more scalable and fault tolerant than the two previous
approaches and shares many characteristics with grids. For these reasons,
P2P approach to resource discovery is adequate to the grid.

3.2.2 Resource Description and Matching In this section we will present
some solutions to the resource discovery problem in grid environments.

Centralized resource discovery solutions use a central server to discover
resources. Condor-G’s matchmaking mechanism [30, 36] uses a ”"Matchmaker”
(central server) where resources advertise their specifications and users their re-
quirements using ClassAds. The ”Matchmaker” acts as a ”yellow page” that finds
the appropriate set of resources for a user request. In [41] Kaur et al. propose a
centralized resource discovery mechanism for grids which relies on web services.
The proposed solution has four main components: UDDI rich Query Model, Grid
Web Services Description Language (GWSDL), SOAP and HTTP. The UDDI
rich Query Model uses the UDDI standard to discover grid services by main-
taining resource information as key-value pair in the UDDI database. GWSDL
is an extended version of WSDL that is used to describe grid services. SOAP
is used for communication between web services in the grid. HTTP provides an
easy to use interface to post and get requests. In [51], Morris et al. present a web
services based grid middleware, UNICORE 6, that uses web services to describe
grid resources. Each resource is defined by Web Services Resource Framework
(WS-RF), an open standard, and stored in a central database (UNICORE User
Database). UNICORE provides web services for job submission, access to stor-
age resources and file transfers. Jobs are described using the job submission
description language (JSDL).

Hierarchical resource discovery solutions use a hierarchy of servers to dis-
cover resources. Nimrod-G [6] follows a hierarchical resource discovery approach.
In [32] Ramos et al. propose a solution for resource discovery in grids based on
Globus Toolkit (GT3) using web services. The authors propose a hierarchical
topology that divides the grid into Virtual Organizations (VO). Each VO has
master and slave nodes. The master nodes are responsible for updating the re-
source database and the slave nodes for retrieving information from resources
under their master command. Resource discovery is performed using a configu-
ration file which includes the requested resource information. The configuration
is used to generate an XML file that is distributed to all the slaves and the re-
source search is initiated. Each slave checks if the request is satisfied and returns
the information to its master.

Decentralized or P2P resource discovery aims to overcome some limita-
tions of centralized and hierarchical solutions such as scalability and fault tol-
erance. In [11] the authors propose a P2P three layer resource discovery model
for grids. The model is built on a structured P2P system and uses a Distributed
Hash Table (DHT) to map nodes and data objects to overlay network. When a
client makes a request, it will be carried out to find the resource on the local grid.

If the resource is found, the result will be returned to the user. If the resource is
not found, the request will be send to another grid (node) using the P2P virtual
layer between nodes. The first layer in the model is formed by the IS root node.
The root node is just a node that uses the same resource requests as the other
high performance nodes. The second layer is formed by super nodes. Each ad-
ministrative domain needs to have its own super node, which is registered in the
IS root node. The super node provides resource information about its domain,
accepts tasks from the upper layer. The super node sends the its results to the
root node. Authors propose Chord [55] or Gnutella [1] to manage the second
layer. The third layer is composed of the various domains resources This layer
can be managed using Chord or Gnutella. In [44] Ma et al. propose a resource
discovery model with three layers. The bottom layer is the resource layer. Each
resource of a virtual organization (VO), super peer, must register in its super
peer. The intermediate layer is formed by super peers. Each super peer saves
information from its peers (resources) and exchange that information with other
super peers. The upper layer is formed by Super peer Agents. Super peer Agents
are resource services of a region and can take charge of one or more similar su-
per peers. The resource discovery uses a DHT and an Ant colony optimization
(ACO) algorithm. When a specific resource can not be found in a VO, located
via Chord [55], managed by a super peer the solution uses ACO to find the peer
which has the required resource.

Table 2 provides a resume and classification of resource discovery in grids. A
higher number of ”+” means that an approach is more successful on a particular
aspect than the others. The reliability aspect is measured in terms of single point
of failure. The dynamism aspect is related to resources dynamically joining and
leaving the grid.

Centralized Hierarchical P2P
Scalability + ++ +++
Dynamism + ++ +++
Reliability + ++ +++
Server Bottleneck +++ ++ +
Example Condor-G [30]|Ramos et al. [32]|Chen et al. [11]

Table 2. Resource Discovery classification

3.3 Grid Job Scheduling

In this subsection will be described the following important issues about Grid
scheduling: objective functions, phases of Grid scheduling and classification of
Grid scheduling algorithms.

3.3.1 Phases of Grid Scheduling The Grid scheduling process can be di-
vided into three main phases [53]: resource discovery where a list of potential

10

resources is created, system or resource selection were a set of resources is chosen
and task execution where the tasks are executed and monitored. Figure 1 was
taken from [53] and shows the three main phases and the steps that make them.

Phase One-Resource Discovery

Phase Three- Job Execution

|6. Advance Reservation |

7.Job Submission

|S. Preparation Tasks |

[1. Authorization Filtering |

[2. Application Defiaition

[3. Min. Requirement Filtering |
y

Phase Two - System Selection / |9. Monitoring Progress |

10 Job Completion
11. Clean-up Tasks

|4. Information Gathering |

|5. System Selection |

Fig. 1. Grid scheduling phases

— Resource Discovery: the first stage is to know which resources are avail-
able. The first step consists in determining the set of resources that a user
has access to. The is done consulting the Grid Information System (GIS).
At the end of this step, the user will have a list of resources that he/she
can access. The next step is the application requirement definition. In this
step the user specifies a set of requirements for the job in order to filter the
set of resources. An example of how requirements can be specified is the
ClassAd used by Condor [57]. The next step is to do a minimal requirement
filtering. The goal is to eliminate the resources that do not meet the minimal
requirements.

— System Selection: in this phase the goal is to select a single resource to

schedule the job. This is done is in two steps: gather dynamic information
and system selection. Gather dynamic information is important in order to
make the best mapping between job and resource.
Information can be obtained by consulting the GIS and the local resource
scheduler. The system selection consists in choosing a resource with the
gathered information. One of the approaches to resource selection is Condor
Matchmaking [50,57].

— Task Execution: the first step, advanced reservation, is optional. The goal
is to make the best use of the system. Advanced reservation difficulty de-
pends on the considered resource. When the resource or resources are chosen,
the task needs to be submitted. Globus Grid Resource Allocation and Man-
agement (GRAM) is used by middleware systems such as Condor-G for job

11

submission. The next step is preparation. In this step a set of operations take
place to prepare the resource to run the task. The following step is monitor-
ing. Once the task is started it is important to keep track of its progress. By
monitoring tasks, the scheduler can conclude that a given task in not mak-
ing progress and may reschedule it. The next step is job completion were
the user is notified when a task or job finishes. The final step is the cleanup
were temporary files are removed and the user collects information from the
resource that will be used to analyze the results.

3.3.2 Classes of Scheduling Algorithms The are many scheduling algo-
rithms. In order to compare them and classify them, a classification needs to
be made. In [8], Casavant et al propose a hierarchical taxonomy for scheduling
algorithms in general-purpose parallel and distributed systems [20]. Grid falls
into a subset of this taxonomy since it is a special kind of the systems that are
considered in [8]. Due to the nature of the Grid, some new characteristics such
as batch, immediate, adaptive and preemptive scheduling need to be considered
in Grid scheduling algorithms. In the following, there are described the main
types of scheduling in Grids.

— Local vs Global: at the highest level, scheduling can be divided into lo-
cal and global [8]. Local scheduling operates on a single processor scenario.
The scheduler is responsible for the allocation and execution of processes in
the CPU [20]. Global scheduling allocate processes to multiple processors to
optimize a system-wide performance goal [20]. Considering what was said
before it is obvious to conclude that Grid scheduling is global.

— Static vs Dynamic: In [60] and [61], Xhafa et all state that exist two
main aspects to determine the dynamics of Grid scheduling: dynamics of
job execution and dynamic of resources. Dynamics of job execution refers
to the situation of job failure. Dynamics of resources refer to the possibility
of resources join and leave the Grid and changes of local resource usage
policies. In static scheduling the information about the Grid’s resources is
available at schedule time, every task is assigned once to a resource and
there are not job or tasks failures. With static scheduling it is possible to
estimate computation costs before the task execution and to have a global
view of costs and tasks [20]. These estimations cannot be done in scenarios
with nodes can fail or become isolated. Since these situations can occur very
often mechanisms such as rescheduling [15] were introduced to smooth the
problem.

In dynamic scheduling cost estimation is difficult [20], jobs can fail and re-
sources can join and leave the Grid in an unpredictable way [60]. Dynamic
scheduling has two components: system state estimation and decision mak-
ing. System state estimation is responsible for collect information about the
Grid and build an estimate. This estimate will be the base to the decision of
mapping a task to a resource. Since it is not possible to estimate computa-
tion costs before execution load balancing is used as an alternative to ensure

12

the system well functioning.

— Centralized vs Decentralized vs Hierarchical: The scheduling responsi-
bility can be delegated on one centralized scheduler or be shared by multiple
distributed schedulers. On the centralized approach there is only one sched-
uler for the Grid. In the centralized approach it is possible to monitor all the
resources state which makes easier to create efficient schedulers [60]. Another
advantage of centralized scheduling is the easy management [42] and imple-
mentation of schedulers. However, centralized scheduling approaches have a
single point of failure [61], lack of scalability [20,42,60,61] and lack of fault-
tolerance [20,42,60]. Condor [57,61] uses a centralized scheduler based on the
ClassAd matchmaker [50]. On the decentralized approach there is no central
scheduler that controls the resources. In this approach, local schedulers play
an important role since the scheduling requests are sent to them. These type
of schedulers take in consideration important issues such as fault-tolerance,
scalability and multi-policy scheduling. In the hierarchical approach sched-
ulers are organized in an hierarchical way. This approach is more scalable
and fault-tolerant than the centralized approach although, it does not scale
and it is not fault-tolerant as the decentralized approach.

— Immediate vs batch: In the immediate approach, jobs are schedule as they
enter the system [61] using the system’s scheduling algorithm. Jobs do not
wait for the next time interval when the scheduler will get activated [61]
On the other way, in the batch approach, jobs are grouped in batches and
scheduled as a group [61]. In the batch approach the scheduler can use job
and resource characteristics better than immediate schedulers since it has
the time between the activation of the batch scheduler.

— Adaptive: This approach uses information regarding the current status of
the resources and predictions of their future status to avoid a decrease of
performance. Rescheduling is an adaptive scheduling where running jobs are
migrated to other resources. In [47], Othman et al refer that the Grid must be
able to recognize the state of resources and propose an adaptable resource
broker. An example of an adaptive scheduling algorithm can be found on
Huedo et al. work [33].

3.3.3 Classic Scheduling Algorithms In this section we present some of
the classical scheduling algorithms in Grids and distributed systems.

First Come First Served In First Come First Served algorithm, jobs are
executed according to the arriving time order [43]. This algorithm has a major
disadvantage. When a large job is on the waiting queue, the jobs behind it must
wait a long time for the large job to finish. This situation is called convoy effect.

Round Robin In the Round Robin algorithm each job is assigned a time
interval, called quantum, during which it is allowed to run [56]. If a job cannot
be completed in a quantum it will return to the queue and wait for the next

13

Design Choice|Approaches
. Dynamic
D .
ynamics Stath

Centralized

Architecture |Hierarchical
Decentralized
Immediate

Mode Batch

Table 3. Classes of scheduling algorithms

round [43]. Round Robin has the advantage that a job does not need to wait
for the previous job to complete to execute. The only challenging issue with this
algorithm is to find a suitable length for the quantum [56].

Minimum Execution Time The Minimum Execution Time (MET) al-
gorithm assigns each task to the resource that performs it with the minimum
execution time [45]. MET does not consider whether the resource is available or
not at the time (ready time) [21,45,52] and can cause severe imbalance in load
across resources [21,45,52]. The main advantage of the algorithm is that it gives
to a task the resource that performs it in the smallest amount of time [45]. MET
takes O(m) time to map a task to a resource [21].

Minimum Completion Time The Minimum Completion Time (MCT)
algorithm assigns a task to the resource that obtains the earliest completion
time for that task [21,45,52]. The expression for the completion time can be
found in appendix A, equation 3. MCT has the following disadvantage: the
resource that was assigned to a task may not have the minimum execution time
for it [21,45,52]. MCT takes O(m) time to map a task to a resource [21].

Min-min The Min-min algorithm has two phases [21]. On the first phase,
the completion time of all unassigned tasks on all available machines is used to
calculate to minimum completion time of a task T on a machine M [52]. On the
second phase, the task with the minimum completion time is chosen, removed
from the task list and assigned to the corresponding resource [21]. The process
is repeated until all tasks are mapped to a resource. We can conclude that jobs
the can be completed earliest have higher priority than the others [37,43, 52].
Min-min takes O(s?m) time to map a task to a resource [21].

Min-max The Min-Max algorithms has two phases [37,52] and uses the
minimum completion time (MCT) for the first phase and the minimum exe-
cution time (MET) for the second phase as metrics. The first phase of Min-

Max is the same as the Min-min algorithm. The second phase the task whose
MET{fastest machine}
M ET{selected machine}

The task is removed from the unassigned list, resource workload is updated and
the process is repeated until the list is empty [52]. The intuition of this algo-
rithm is that we select resources and tasks from the first step that the resource
can execute the task with a lower execution time in comparison with other re-
sources [37].

has the maximum value will be selected for mapping [37].

14

Max-min The Max-min has two phases as Min-min has [21]. The first phase
is equal to the Min-min algorithm [21,37,52]. On the second phase, the task with
the maximum completion time is chosen, remove from the task list and assigned
to the corresponding resource [52]. The process is repeated until all tasks are
mapped to a resource. Max-min can be combined with Min-min in scenarios
where the are tasks of different lengths [43]. Max-min takes O(s?m) time to
map a task to a resource [21].

Sufferage The sufferage of a task is the difference between its second min-
imum completion time and its first minimum completion time [37,52]. These
completion times are calculated considering different resources [43]. In the Suf-
ferage algorithm the criteria to assign a task to a resource is the following: assign
a resource to a task that would suffer the most if that resource was not assigned
to it [43,45]. The sufferage value of a task is the difference between its second
earliest completion time and its earliest completion time [43,45]. Once a task is
assigned to a resource it is removed from the list of unassigned tasks and the
process is repeated until there are no tasks in the unassigned list. Sufferage takes
O(s*m) time to map a task to a resource [21].

Largest Job on Fastest Resource - Shortest Job on Fastest Resource
The Largest Job on Fastest Resource - Shortest Job on Fastest Resource (LJFR-
SJFR) algorithm allocates the largest job on the fastest resource in order to
reduce makespan (equation 1) and the smallest job to fastest resource in order
to reduce the flow time, appendix A equation 2, [37,52]. On the first phase of
the algorithm is the same as the Max-min algorithm with one difference, LJFR-
SJFR does not consider all the jobs (N) on this phase. Let 0 < m < N be the
number of considered jobs on the first phase. At the end of the first phase, m
jobs are assigned to m machines. On the second phase, the remaining jobs are
assigned using Min-min and Max-min methods alternatively i.e. SJFR followed
by LJFR [37,52].

3.3.4 QoS and Utility-based Scheduling Algorithms QoS are constrains
or bounds that are related to the provided service. QoS appeared on aspects
related to telephony and computer networks such as service response time, loss,
signal-to-noise ratio, cross-talk, echo, etc. In the Grid environment there are
some different QoS aspects to consider such as deadline, price, execution time,
overhead.

Utility is a concept, originally from economics, that evaluates the satisfac-
tion of a consumer while using a service. In a Grid environment, utility can be
combined with QoS constrains in order to have a quantitative evaluation of a
user’s satisfaction and system performance.

The classical scheduling algorithms presented in the previous section do not
consider QoS or utility demands. Next, we present some QoS and utility schedul-
ing algorithms for Grid environments.

In [3] Amuda et al. propose a QoS priority-based scheduling algorithm. The
algorithm assumes that all the necessary information about resources, jobs and
priority values to be available and is designed for batch mode independent tasks.

15

The task partition divides the tasks into two groups (high and low) using the
priority value as a QoS parameter. After the task division, the scheduler classifies
the tasks into four categories: 1A - low complexity and high priority, 1B - low
complexity and high priority, 2A - high complexity and low priority and 2B - low
complexity and low priority. After task classification the resources are divided
into two groups: high processing speed systems (group 1) and hybrid systems
(group 2). High processing tasks go to group 1 and the others to group 2. Tasks
with higher priority are scheduled first and equally on all the machines.

In [9] Chauhan et al. propose two algorithms for QoS-based task scheduling:
QoS Guided Weighted Mean Time-min (QGWMT) and QoS Guided Weighted
Mean Time Min-Min Max-Min Selective (QGWMTMMS).

QGWMT is a modification of the Weighted Mean Time-min [40] algorithm
that considers network bandwidth as a QoS parameter. First, the algorithm
divides the tasks in two groups: high and low QoS. Tasks from the high QoS group
are scheduled first. For each group, the algorithm calculates the performance of
resources. Next, for each task on a group, the algorithm calculates the task’s
weighted mean time (WMT). The task with the higher WMT is selected. Then,
the algorithm choses the resource that gives the earliest completion time to the
selected task and maps the task to it. This process is repeated, for each group,
until all tasks are mapped.

QGWMTMMS is a modification of the Weighted Mean Time Min-Min
Max-Min Selective [10] algorithm using network bandwidth as a QoS parameter.
First, the algorithm creates n priority groups and assign tasks to them according
based on their QoS demands. Tasks from higher priority groups are scheduled
first. First, the algorithm calculates the expected execution time of each task on
all resources. For each group, it calculates the weight of the resources in that
group, the weighted mean time for each task in the group and the standard
deviation of the completion time of unassigned tasks. If the relative standard
deviation is less than the critical value of relative standard deviation (calculated
by experiments) the task with the minimum WMT is selected for mapping.
Otherwise, the task with the higher WMT is selected for mapping.

In [12] Chen proposes an economic grid resource scheduling based on utility
optimization that uses a universal flexible utility function that addresses QoS re-
quirements of deadline and budget. The paper assumes that a grid is hierarchical
and that the user submits the assignment to a Grid Resource Manager (GRM).
The GRM is at the top of the hierarchy, on the second level there are the Domain
Resource Managers (DRM) that are responsible for Computing Nodes (CN) or
other DRM. The algorithm starts by the GRM getting utility information from
all DRM and by calculating the rate of throughput and average response delay.
Then, the algorithm finds out which of DRM has the maximum utility value
(MUV) and selects it to be the scheduling node. If MUV is not unique, them
the DRM which has the greatest variance is chosen. If the nodes on the next
level of the chosen DRM are not CN them the process is repeated. Otherwise,
the algorithm finds the node which has the maximum utility value and give it
the user assignment.

16

In [14] Chunlin et al. propose an optimization approach for decentralized
QoS-based scheduling based on utility and pricing. The authors consider two
types of agents in the proposed scheduling model: Grid resource agents that rep-
resent the economic interests of the resources and Grid task agents that represent
the interests of the Grid user. Grid resources can be divided into computational
resources (CPU speed, memory size, storage capacity) and network resources
(bandwidth, loss rate, delay and jitter). Task agents specify their resource re-
quirements using a simple and declarative utility model. The Grid is seen as a
market where the task agents act as consumers that and resources as providers
that compete with each other to maximize their profit. Due to the fact that the
its not realistic that the Grid knows all the utility functions of the task agents,
although it is mathematical tractable, and it requires global coordination of
all users, the authors propose a decomposition of the problem in two problems
(task agent optimization and resource agent optimization) by adopting a com-
putational economy framework. The proposed solution allows multi-dimensional
QoS requirements that can be formulated as a utility function that is weighted
sum of each dimension’s QoS utility function. Three QoS dimensions are con-
sidered: payment, deadline and reliability. The scheduling is done by solving the
subproblems via an iterative algorithm. In each iteration, each player (task agent
and resource agent) trade with each other to find a global optimum solution to
the system while trying to maximize their own utility. The process stops when
all arrive at the same solution.

Table 3.3.4 presents a classification of all the scheduling algorithms described
in this document using some criteria describe in section 3.3.2. The symbol * in
the table means that there was not possible to evaluate the corresponding criteria
of a particular algorithm using the information provided in the author’s paper.

Algorithms Order-Based |Heuristic|QoS|Utility| Adaptative| Dynamics| Mode |Complexity
FCFS Yes No No | No No Static Batch *
Round Robin Yes No No | No No Static Batch *
MET No Yes |No| No No Static |Immediate| O(m)
MCT No Yes |No| No No Static |Immediate| O(m)
Min-Min No Yes |No| No No Static Batch O(s*m)
Min-Max No Yes |No| No No Static Batch O(s*m)
Max-Min No Yes | No| No No Static Batch O(s*m)
Sufferage No Yes | No| No No Static Batch O(s*m)
LJFR-SJFR No Yes |No| No No Static Batch O(s*m)
Amuda et al. No Yes |Yes| No No Static Batch *
Chaughan et al. 1 No Yes |Yes| No No Static Batch |O(s® + sm)
Chaughan et al. 2 No Yes |Yes| No No Static Batch |O(s® 4 sm)
Chen No Yes | Yes| Yes No Static * *
Chunlin et al. No Yes | Yes| Yes No Static * *

Table 4. Classification of scheduling algorithms

17

3.4 Resume and Discussion

In this related work section we presented different topics related to grid schedul-
ing. First, we described and classified some of the existing grid middleware sys-
tems. All the described systems have a centralized or hierarchical architecture.
With the continuous growth of grids these architectures will face problems such
as scalability, fault tolerance and server bottleneck. Next we made a classification
and described some resource discovery approaches. Due to dynamics of the grid
we concluded that the P2P approach was most adequate to grid environments.
After resource discovery we presented grid scheduling. We started the section
by presenting the stages of grid scheduling. Then we presented some important
criteria for classification of scheduling algorithms. Next, we described and clas-
sified two different types of scheduling algorithms: no QoS or utility constrains
and with QoS and/or utility constrains. Considering the algorithms with QoS
and utility constrains we concluded that all solutions consider only complete
requirement fulfillment when calculating utility.

In our solution we will consider scalability and bottleneck issues by proposing
a P2P topology to the grid. Our utility scheduling algorithm will consider partial
requirement fulfillment, i.e. partial utility.

4 Proposed Solution

A high level representation of the proposed solution’s architecture is depicted
in Figure 2. In our solution we organize the grid as structured P2P network
where the peers are Virtual Organizations (VO). A study performed by Zhang
et al. [62] shows that some centralized solutions such as Globus MDS fail to
scale beyond 300 concurrent users i.e. the throughput begins to decline below
acceptable levels. We present a decentralized architecture since it has more ad-
vantages when compared to centralized or hierarchical approaches.The pros and
cons of each approach were discussed in the Related Work section. In each peer
there is a Local Scheduler (LC) that is responsible for all scheduling operations
of a the considered VO. Each LC will implement our utility-based scheduling
algorithm. In 4.1 we describe in detail each of the architecture’s entities and
the interactions between them. In 4.2 we describe our utility-based scheduling
algorithm. In 4.3 we present the technologies that will support our work.

4.1 Architecture in Detail

In this section we will present the network topology of the grid and what infor-
mation is exchanged between the entities that we present on Figure 2.
Resources send information about their current state to the LC. Resources’
information can be classified in two categories: static and dynamic. Static in-
formation does not change over time. Some examples of static information are:
operating system, processor, number of cores, disk memory, RAM, etc. Dynamic
information is likely to change over time. Some examples of static information

18

../J g

[Resource node Resource node \

\ . | //
\ ‘: .
\\\ Resource ‘1) // /

Informatlon Resource
Informatlon —
— Local Scheduler -

Resource S/wrmary ﬁ \ Resourte Summary
\ Ao

Resource Summary (- Resource Summary
(Jobs
<
y

User

Fig. 2. High Level Architecture

are: CPU occupation (per core), number of allocated jobs, free disk memory,
free RAM, etc. The information is, periodically, sent to the resources using XML
format. VOs exchange information about their resource state periodically. The
exchanged information is a resume of the VO’s resources state that includes av-
erage resource utilization, resource with the less CPU occupation, resource that
more available memory (disk and RAM).

The grid is organized in a structured P2P network. We use Chord [55] for
routing the exchanged messages between VOs. Chord is based on a Distributed
Hash Table (DHT). Each node in the network has a unique identifier (key) and
can be located using a consistent Hash function. According to the order of the
node identifiers, Chord forms a logical ring topology and simply routes a key
through a sequence of other nodes toward the destination node. Chord’s routing
complexity in a P2P network with n nodes is O(log n). By using this routing
approach each VO only needs to have the identifiers of other VOs.

4.2 Utility Scheduling Algorithm

As mentioned before, VOs exchange summaries of resource information. When a
LC receives a job, it calculates the utility value of each of its resources. Next, the
LC uses the information from other VOs to calculate an estimate of that VO’s

19

utility. If any of those estimates is greater than the maximum value of utility of
local resources, then the job is forwarded to that specific VO. Otherwise, the job
is assigned to the resource that has the higher utility value. The pseudo-code for
the described procedure is presented in Algorithm 1

Algorithm 1 pseudo-code to be executed by the Local Scheduler

localUtil = ||
req < job.Requirements
resumes <— VOsResumes
for all » €LocalResources do
localUtil.add(Calculate Utility(r,req))
end for
best LocalUtil = max(localUtil)
for all res €resumes do
u = CalculateUtility(res,req)
if u > bestLocalUtil then
ForwardJob(job,res.getVO)
exit
end if
end for
AssignJob(best LocalUtil.get Resource)
exit

Next, we will describe how to calculate the utility value of a resource used
in Algorithm 1 in Calculate Utility(resource,requirement). Our solution is based
on the work of Silva et al. [54]. In our solution, users describe job requirements
using XML. For each requirement, it will be possible for the user to define
intervals with different values of utility. Using this feature will lead to a
more flexible evaluation of resources using partial utility. We define two basic
operators: and, or. The or operator selects the resource having the highest utility.
The and operator indicates that all requirements must be met and the result is
a combined aggregation of the combined satisfaction of requirements.

In our solution we consider four classes of users : guest, registered in
other VO, registered in the VO, VO administrator. Each class defines a way to
calculate utility for operators and and not .

Guest users have the most flexible policy. The and operator will return the
weighted sum of all partial utilities of a resource. This policy follows a best-
effort approach. Users that are registered in other VO have more privileges
than guests so their policy tries to satisfy their requests in a more favorable
and balanced maner. The operator and will return the product of all partial
utility values of a resource. Users that are registered in the VO have a policy
that aims to minimize their dissatisfaction. The and operator will return the
minimum partial utility value of a resource. Administrators have the most
rigid policy of all classes. Operator and is used when the user is not willing to
accept resources that do not fulfill one or more requirements. The or operator,

20

unlike all other classes that gives the requirement with the maximum utility, will
test the requirements in the order they appear on the job requirement file.

4.3 Implementation Issues

There will be two phases of implementation. On the first phase we will implement
our solution using a grid simulator. The simulator will allow us to have an idea of
how the solution will behave in a scenario with many VOs with different kinds
of resources. The chosen simulator was GridSim because it is widely used by
many authors and has some relevant functions such as the possibility of organize
entities in a network topology.

The second phase we will implement our algorithm on a grid. We will use the
Web Services Resource Framework (WSRF) of Globus Toolkit. WSRF allows ac-
cess to Globus components such as GRAM or file transfer (Reliable File Transfer
Service) using a web services interface. Resources will use web services to send
information about their status to the LC. After the LC decided the resource to
run a specific job it will ask GRAM to submit the job to that resource.

5 Evaluation Methodology

In this section we present the metrics and the test environment that we will
use to evaluate our solution. We will use the following metrics to evaluate the
performance of our algorithm.

— Number of requests successfully allocated using partial utility compared with
the discarded requests on conventional solutions;

— Average utility of the system;

Overall resource utilization;

— Job makespan;

Number of idle resources;

— Total weighted completion time;

Comparison of the average satisfaction of each class of users

Our tests will be run on the GridSim simulator to evaluate the scalability
and behavior of the solution for large number of VOs and users. GridSim will be
the tool to make a comparison between centralized schedulers approach and our
decentralized solution. We will also implement our solution in a grid environment
to assert how the algorithm behaves in a non-simulation scenario.

More information on makespan, resource utilization and total weighted com-
pletion time can be found on appendix A.

6 Conclusions

We started this document by presenting a global view about scheduling in grids.
We described and classified some grid middleware solutions, resource discovery

21

approaches and scheduling algorithms. The analysis of all theses topics allowed
us to have the necessary knowledge to identify some aspects that have not been
explored: decentralized grid scheduling algorithm and partial requirement fulfill-
ment.

Once identified the shortcomings we proposed a solution that considers the
grid as a structured P2P network where the peers are VO and where local
schedulers of each VO interact exchanging information about the state of their
resources and use a method to calculate utility that considers partial requirement
fulfillment. Finally, we presented the metrics the will support the evaluation of
our solution.

References

1. Gnutella website. http://www.gnutella.com/, January 2007.

2. David Abramson, Rajkumar Buyya, and Jonathan Giddy. A computational econ-
omy for grid computing and its implementation in the Nimrod-G resource broker.
Future Generation Computer Systems, 18:1061-1074, 2002.

3. T. Amudha and T.T. Dhivyaprabha. Qos priority based scheduling algorithm and
proposed framework for task scheduling in a grid environment. In Recent Trends in
Information Technology (ICRTIT), 2011 International Conference on, pages 650
—655, June 2011.

4. F.Berman. The GrADS Project: Software Support for High-Level Grid Application
Development. International Journal of High Performance Computing Applications,
15(4):327-344, November 2001.

5. Joseph Bester, Ian Foster, Carl Kesselman, Jean Tedesco, and Steven Tuecke. Gass:
a data movement and access service for wide area computing systems. In Proceed-
ings of the sizth workshop on I/0 in parallel and distributed systems, IOPADS 99,
pages 78-88, New York, NY, USA, 1999. ACM.

6. R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: an Architecture for a Resource
Management and Scheduling System in a Global Computational Grid. Proceedings
Fourth International Conference/Ezhibition on High Performance Computing in
the Asia-Pacific Region, pages 283-289 vol.1, 2000.

7. Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz Stockinger. Eco-
nomic Models for Resource Management and Scheduling in Grid Computing 2 .
Players in the Grid Marketplace. Marketplace, pages 1-27.

8. T.L. Casavant and J.G. Kuhl. A Taxonomy of Scheduling in General-Purpose
Distributed Computing Systems. Software Engineering, IEEE Transactions on,
14(2):141 154, feb 1988.

9. Sameer Singh Chauhan and R C Joshi. Qos guided heuristic algorithms for grid
task scheduling. International Journal of Computer Applications, 2(9):24-31, 2010.

10. S.S. Chauhan and R.C. Joshi. A weighted mean time min-min max-min selec-
tive scheduling strategy for independent tasks on grid. In Advance Computing
Conference (IACC), 2010 IEEFE 2nd International, pages 4 -9, feb. 2010.

11. Dong Chen, Guiran Chang, Xiuying Zheng, Dawei Sun, Jiajia Li, and Xingwei
Wang. A novel p2p based grid resource discovery model. Journal of Networks,
6(10), 2011.

12. Juan Chen. Economic grid resource scheduling based on utility optimization. In
Intelligent Information Technology and Security Informatics (IITSI), 2010 Third
International Symposium on, pages 522 —525, April 2010.

22

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kessel-
man, P. Kunszt, M. Ripeanu, B. Schwartzkopf, H. Stockinger, K. Stockinger, and
B. Tierney. Giggle: A framework for constructing scalable replica location services.
In Supercomputing, ACM/IEEE 2002 Conference, page 58, Nov. 2002.

L Chunlin and L Layuan. An optimization approach for decentralized qos-based
scheduling based on utility and pricing in grid computing. Concurrency Compu-
tation Practice And Experience, 19(1):107-128, 2007.

K Cooper, A Dasgupta, K Kennedy, C Koelbel, A Mandal, G Marin, M Mazina,
F Berman, H Casanova, A Chien, H Dail, X Liu, A Olugbile, O Sievert, H Xia,
L Johnsson, B Liu, M Patel, D Reed, W Deng, and C Mendes. New Grid Scheduling
and Rescheduling Methods in the GrADS Project. International Journal of Parallel
Programming, 33:209-229, 2005.

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information ser-
vices for distributed resource sharing. In High Performance Distributed Computing,
2001. Proceedings. 10th IEEFE International Symposium on, pages 181 —194, 2001.
Karl Czajkowski, lan Foster, Nick Karonis, Carl Kesselman, Stuart Martin, Warren
Smith, and Steven Tuecke. A resource management architecture for metacomput-
ing systems. In Dror Feitelson and Larry Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, volume 1459 of Lecture Notes in Computer Science,
pages 62-82. Springer Berlin - Heidelberg, 1998.

Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal
Patil, Mei-Hui Su, Karan Vahi, and Miron Livny. Pegasus: Mapping scientific
workflows onto the grid. In Marios Dikaiakos, editor, Grid Computing, volume 3165
of Lecture Notes in Computer Science, pages 131-140. Springer Berlin - Heidelberg,
2004.

Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anasta-
sia Laity, Joseph C. Jacob, and Daniel S. Katz. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems. Sci. Program., 13:219-237,
July 2005.

Fangpeng Dong and Selim G Akl. Scheduling Algorithms for Grid Computing :
State of the Art and Open Problems. Components, pages 1-55, 2006.

K. Etminani and M. Naghibzadeh. A min-min max-min selective algorihtm for
grid task scheduling. In Internet, 2007. ICI 2007. 3rd IEEE/IFIP International
Conference in Central Asia on, pages 1 —7, sept. 2007.

T. Fahringer, J. Qin, and S. Hainzer. Specification of grid workflow applications
with agwl: an abstract grid workflow language. In Cluster Computing and the Grid,
2005. CCGrid 2005. IEEE International Symposium on, volume 2, pages 676 — 685
Vol. 2, may 2005.

Thomas Fahringer, Alexandru Jugravu, Sabri Pllana, Radu Prodan, Clovis Sera-
giotto, and Hong-Linh Truong. Askalon: a tool set for cluster and grid computing.
Concurrency and Computation: Practice and Ezperience, 17(2-4):143-169, 2005.
Thomas Fahringer, Radu Prodan, Rubing Duan, Juurgen Hofer, Farrukh Nadeem,
Francesco Nerieri, Stefan Podlipnig, Jun Qin, Mumtaz Siddiqui, Hong-Linh
Truong, Alex Villazon, and Marek Wieczorek. Askalon: A development and grid
computing environment for scientific workflows. In Ian J. Taylor, Ewa Deelman,
Dennis B. Gannon, and Matthew Shields, editors, Workflows for e-Science, pages
450-471. Springer London, 2007.

Thomas Fahringer and Clovis Seragiotto. Automatic search for performance prob-
lems in parallel and distributed programs by using multi-experiment analysis. In

26.
27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

23

Sartaj Sahni, Viktor Prasanna, and Uday Shukla, editors, High Performance Com-
puting - HiPC 2002, Lecture Notes in Computer Science, pages 151-162. Springer
Berlin - Heidelberg, 2002.

Pavel Fibich and Hana Rudov. Model of Grid Scheduling Problem. Centrum, 2001.
I. Foster, J. Vockler, M. Wilde, and Yong Zhao. Chimera: a virtual data system
for representing, querying, and automating data derivation. In Scientific and Sta-
tistical Database Management, 2002. Proceedings. 14th International Conference
on, pages 37 — 46, 2002.

Tan Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit.
International Journal of Supercomputer Applications, 11:115-128, 1996.

Tan Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security archi-
tecture for computational grids. In Proceedings of the 5th ACM conference on
Computer and communications security, CCS 98, pages 83-92, New York, NY,
USA, 1998. ACM.

J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: a com-
putation management agent for multi-institutional grids. Proceedings 10th IEEE
International Symposium on High Performance Distributed Computing, pages 55—
63.

”Globus”. http://www.globus.org/.

T. Gomes Ramos and A.C. Magalhaes Alves de Melo. An extensible resource
discovery mechanism for grid computing environments. In Cluster Computing and
the Grid, 2006. CCGRID 06. Sizth IEEE International Symposium on, volume 1,
pages 115 — 122, May 2006.

E. Huedo, R.S. Montero, and I.M. Llorente. Experiences on adaptive grid schedul-
ing of parameter sweep applications. In Parallel, Distributed and Network-Based
Processing, 2004. Proceedings. 12th Euromicro Conference on, pages 28 — 33, Feb.
2004.

Adriana Iamnitchi, Ian Foster, and Daniel C. Nurmi. A peer-to-peer approach
to resource discovery in grid environments. In In High Performance Distributed
Computing. IEEE, 2002.

E. Imamagic, B. Radic, and D. Dobrenic. An Approach to Grid Scheduling by
using Condor-G Matchmaking Mechanism. 28th International Conference on In-
formation Technology Interfaces, 2006., (3):625-632, 2006.

Emir Imamagic, Branimir Radic, and Dobrisa Dobrenic. An Approach to Grid
Scheduling by Using Condor-G Matchmaking. Journal of Computing and Infor-
mation Technology, pages 329-336, 2006.

H. Izakian, A. Abraham, and V. Snasel. Comparison of heuristics for scheduling
independent tasks on heterogeneous distributed environments. In Computational
Sciences and Optimization, 2009. CSO 2009. International Joint Conference on,
volume 1, pages 8 —12, april 2009.

Japhynth Jacob, Elijah Blessing Rajsingh, and Isaac Balasingh Jesudasan. Dy-
namic multi dimensional matchmaking model for resource allocation in grid en-
vironment. In Dhinaharan Nagamalai, Eric Renault, and Murugan Dhanuskodi,
editors, Trends in Computer Science, Engineering and Information Technology,
volume 204 of Communications in Computer and Information Science, pages 179—
185. Springer Berlin Heidelberg, 2011.

Yi Jian and Yanbing Liu. The State of the Art in Grid Scheduling Systems
Chongging University of Posts and Chongqing University of Posts and School of
Computer Science , UEST of China. System, (Icnc), 2007.

24

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Zhang Jinquan, N. Lina, and Jiang Changjun. A heuristic scheduling strategy
for independent tasks on grid. In High-Performance Computing in Asia-Pacific
Region, 2005. Proceedings. Fighth International Conference on, pages 6 pp. —593,
July 2005.

Eep Kaur and Jyotsna Sengupta. Resource discovery in web-services based grids.
Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A taxonomy
and survey of grid resource management systems for distributed computing. Soft-
ware: Practice and Ezxperience, 32(2):135-164, February 2002.

Yun-Han Lee, Seiven Leu, and Ruay-Shiung Chang. Improving job scheduling al-
gorithms in a grid environment. Future Generation Computer Systems, 27(8):991—
998, October 2011.

Shaohui Ma, Xinling Sun, and Zuhua Guo. A resource discovery mechanism inte-
grating p2p and grid. In Computer Science and Information Technology (ICCSIT),
2010 3rd IEEE International Conference on, volume 7, pages 336 —339, July 2010.
M. Maheswaran, S. Ali, H.J. Siegal, D. Hensgen, and R.F. Freund. Dynamic match-
ing and scheduling of a class of independent tasks onto heterogeneous computing
systems. In Heterogeneous Computing Workshop, 1999. (HCW ’99) Proceedings.
Eighth, pages 30 —44, 1999.

A. Mandal, A. Dasgupta, K. Kennedy, M. Mazina, C. Koelbel, G. Marin,
K. Cooper, J. Mellor-Crummey, B. Liu, and L. Johnsson. Scheduling workflow
applications in grads. In Cluster Computing and the Grid, 2004. CCGrid 2004.
IEEFE International Symposium on, pages 790 — 797, april 2004.

A. Othman, P. Dew, K. Djemame, and I. Gourlay. Adaptive grid resource broker-
ing. In Cluster Computing, 2002. Proceedings. 2002 IEEE International Conference
on, pages 172 —179, sept. 2003.

Radu Prodan and Thomas Fahringer. Zenturio: a grid middleware-based tool
for experiment management of parallel and distributed applications. Journal of
Parallel and Distributed Computing, 64(6):693 — 707, 2004.

Mustafizur Rahman, Rajiv Ranjan, Rajkumar Buyya, and Boualem Benatallah. A
taxonomy and survey on autonomic management of applications in grid computing
environments. Library, (May):1990-2019, 2011.

R. Raman, M. Livny, and M. Solomon. Resource management through multi-
lateral matchmaking. Proceedings the Ninth International Symposium on High-
Performance Distributed Computing, pages 290-291.

M. Riedel, B. Schuller, D. Mallmann, R. Menday, A. Streit, B. Tweddell, M. Shah-
baz Memon, A. Shiraz Memon, B. Demuth, T. Lippert, D. Snelling, S. van den
Berghe, V. Li, M. Drescher, A. Geiger, G. Ohme, A. Vanni, C. Cacciari, S. Lan-
zarini, P. Malfetti, K. Benedyczak, P. Bala, R. Ratering, and A. Lukichev. Web
services interfaces and open standards integration into the european unicore 6 grid
middleware. In EDOC Conference Workshop, 2007. EDOC °07. Eleventh Interna-
tional IEEE, pages 57 —60, oct. 2007.

Rajendra Sahu. Many-Objective Comparison of Twelve Grid Scheduling Heuristics.
International Journal, 13(6):9-17, 2011.

Jennifer M Schopf. Chapter 1 Ten Actions when Grid Scheduling The User as a
Grid Scheduler.

J.N. Silva, P. Ferreira, and L. Veiga. Service and resource discovery in cycle-sharing
environments with a utility algebra. In Parallel Distributed Processing (IPDPS),
2010 IEEFE International Symposium on, pages 1 —11, april 2010.

Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
SIGCOMM Comput. Commun. Rev., 31:149-160, August 2001.

25

56. Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edition, 2007.

57. Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the Grid, pages
299-335. John Wiley and Sons, Ltd, 2003.

58. Hong-Linh Truong and Thomas Fahringer. Scalea: A performance analysis tool
for distributed and parallel programs. In Burkhard Monien and Rainer Feldmann,
editors, Furo-Par 2002 Parallel Processing, volume 2400 of Lecture Notes in Com-
puter Science, pages 41-55. Springer Berlin / Heidelberg, 2002.

59. Sathish S Vadhiyar and Jack J Dongarra. A Metascheduler For The Grid. Dis-
tributed Computing, 2002, 2002.

60. Fatos Xhafa and Ajith Abraham. Meta-heuristics for Grid Scheduling Problems.
pages 1-37, 2008.

61. Fatos Xhafa and Ajith Abraham. Computational models and heuristic methods for
Grid scheduling problems. Future Generation Computer Systems, 26(4):608-621,
April 2010.

62. Xuechai Zhang, J.L. Freschl, and J.M. Schopf. A performance study of monitoring
and information services for distributed systems. In High Performance Distributed
Computing, 2003. Proceedings. 12th IEEFE International Symposium on, pages 270
— 281, June 2003.

63. Yong Zhao, Michael Wilde, Ian Foster, Jens Voeckler, James Dobson, Eric Gilbert,
Thomas Jordan, and Elizabeth Quigg. Virtual data grid middleware services for
data-intensive science. Concurrency and Computation: Practice and Ezxperience,
18(6):595-608, 2006.

A Metrics and Criteria of Grid Scheduling

Makespan can be defined as the finishing time of the last task. It is one of the most
popular optimization criteria. Small values of makespan indicate that the scheduler is
operating in an efficient way [26]. Considering the makespan as the only critera does
not imply the optimization of other objectives.

makespan = max{F;,i=1,...,N} (1)

Where F; is the finish time of the i*" task and N is the total number of tasks. The
objective function consists in minimizing the maximum value of makespan

Flow Time is the sum of the finishing times of tasks [52]. Flow time measures the
response time of the Grid system.

flowtime:ZFi,izl,...,N (2)

Where F} is the finish time of the i**" task and N is the total number of tasks.The
objective function consists in minimizing the flow time.

Completion Time is a time that a machine will take to finalize the processing of
the previous assigned tasks and the planned tasks. This criteria requires knowing,
for each machine, the ready time and expected time to complete time the assigned
tasks. The following equation calculates the completion time of machine m in the ETC
model [60,61].

26

completion time[m] = ready_times[m] + Z ETC[j]lm] (3)
j€Tasks|schedule[j]l=m

Where schedule is the schedule for machine m and ETC is the Estimated Time to Com-
pute. The objective function consists in minimizing the completion time of all machines.

Resource Utilization is a very important objective. Resource utilization is chal-
lenging due to the disparity of computational resources in the Grid. The following
expression calculates the average utilization of resources, considering an ETC model
[52,60,61].

> completion]i]
i€ Machines (4)

average resource utilization = -
makespan X nr_machines

Where completition is the completition time of the i*® machine and nr_machines is
the number of machines. The objective function consists in maximizing the resource
utilization of the Grid system.

Total Weighted Completion Time is used when user’s tasks have priorities. This
criterion is implemented associating weights to the tasks. The following expression
calculates the total weighted completion time.

Total weighted completion time = Z w; F; (5)
i€Tasks

Where w; is the weight of the it" task and F} is the finishing time of the ith task.

B Planning

Here we present our planning schedule for the implementation of the solution. During
the development process we will use ConceptDraw PROJECT for MacOS X, a project
management software, to monitor the evolution of our work.

27

Planning

Tasks

Detalils

Duration

Introduction to GridSim

- Code Study
- Tutorials and Examples

January (2 week)
Janurary (1 week)

Implementation on GridSim

- Set up network topology
- Implement algorithm

February (1 week)
February (2 weeks)

Implementation on Grid environment

- Install Globus Toolkit

- Set up network topology

- Study WSRF and Globus API’s
- Implement algorithm

March (1 week)
March (1 week)
March (1 week)
March (1 week)
April (4 weeks)

Conclusion of Implementation

- Conclude any unimplemented functionality

May (4 weeks)

Performance Measurements

- Evaluate implemented solution

June (4 weeks)
July (2 weeks)

Thesis final report writing

- Write thesis report

July (2 weeks)
August (4 weeks)

Review and Submission

- Report review and submission

September (2 weeks)

Documentation

- Document design choices, code and tests

January - September

Bi-weekly meetings

- Analyze the progress of the work

January - September

Table 5.

Planning schedule

