
Reliable and Locality-driven scheduling in Hadoop

Phuong Tran Anh

Institute Superior Tecnico

Abstract. The increasing use of computing resources in our daily lives leads to data being gener-
ated at an astonishing rate. The computing industry is being repeatedly questioned for its ability
to accommodate the unpredictable growth rate of data, and its ability to process them. This has
encouraged the development of cluster based data-intensive applications. Hadoop is a popular open
source framework known for its massive cluster based data processing power. Hadoop is widely
used in the computer industry because of its scalability, reliability, ease of use, and low cost of
implementation.
Cloud computing in the recent years has gained increasingly popularity by its cost-efficient and
flexible way to leverage the power of commodity hardware. Hadoop based services on the Cloud
have also emerged as one of the prominent choices for smaller businesses. However, evidence in
the litera- ture shows that faults on the Cloud do occur and normally result with performance
problems. Hadoop hides the complexity of discovery and handling failures from the schedulers, but
the expenses of fail- ure recovery rest entirely on users, regardless of root causes. We systematically
assess these expenses through a set of experiments, and argue that more effort to reduce this cost
to users is desirable.
We also analyze the drawback of current Hadoops mechanism in prioritizing failed tasks. By trying
to launch failed tasks as soon as possible regardless of locality, it significantly increases the execution
time of jobs with failed tasks, due to two reasons: 1) available slots might not be free up as quickly
as expected and 2) the slots might belong to machines with no data on it, introducing extra cost
for data transfering through network, which is normally the most scare resource in nowadays data
centers.
This thesis then introduces a new algorithmic approach called the waste-free preemption. The
waste-free preemption saves Hadoop scheduler from choosing solely between kill, which instantly
re- leases the slots but is wasteful, and wait, which does not waste any previous effort but falls for
the two above mentioned reasons. With this new option, a preemptive version of Hadoops default
scheduler (FIFO) is implemented. The evaluation demonstrates the effectiveness of the new feature
by comparing its performance with the traditional Hadoops mechanism.

Keywords: Distributed systems, Hadoop, scheduling, preemption

1 Introduction

Data insight forms an essential part in today’s decision making process. The massive growth in the amount
of data, and the need to analyze data motivated the development of data intensive applications. In this
context, Hadoop MapReduce [6] is a big data processing framework that has rapidly gained popularity
in both industry and academia. Many enterprises also claim to have Hadoop clusters of various sizes:
while most of the enterprises have clusters of size less than 100 machines, some consist up to hundreds
of machines. The main reasons of such popularity are the ease-of-use, scalability, and failover properties
of Hadoop MapReduce.

The unprecedented growth in data center technologies and services in the recent years allow smaller
companies to take advantages of the ”cloud-based” infrastructure. Well-known Cloud providers such as
Amazon Web Services, Google App Engine and Microsoft Azure respond to the need of data processing by
equipping their software stack with MapReduce-like systems. Amazon Elastic MapReduce is a platform
that facilitate large-scale data applications and perhaps a very successful example of scalable MapReduce
on Cloud.

Regarding reliability, user of Cloud services often have to face the threat of failures. In fact, researchers
interested in fault tolerance have accepted that failure is becoming a norm, rather than an exception.
With respect to MapReduce-Cloud, Cloud providers rely completely on the fault-tolerance mechanisms
which is provided by Hadoop. Currently, Hadoop handles failures by simply re-executing all the failed
tasks. However, all these efforts to handle failures are entirely entrusted to the core of Hadoop and hidden
from the task schedulers. To our knowledge, there has been no scheduler that explicitly copes with failure.
This potentially leads to degradation in Hadoop’s performance. In this study, we address the problem of
failure in Hadoop, and present our approach to improve Hadoop performance under failure.

2 Reliable and Locality-driven scheduling in Hadoop

Contribution and structure

This thesis contributes to the field of data-intensive applications in several ways. First, it systematically
assess the Hadoop architecture, focusing on the fault tolerance mechanisms that Hadoop employs. A set
of experiements were conducted to illustrate the limitations of its default mechanism. Second, it explores
the possibility of improving the performance by introducing a new Preemption scheduling heuristic in
Hadoop. This new option is accompanied with a new scheduler that explicitly deal with failures in Hadoop.
Finally, it performs evaluation of the new scheduler and discusses other possibilities to fully utilize the
new feature in different scenarios.

This thesis is organized as follows. Section 2 provides background into the Hadoop framework, its fault
tolarance mechanism and the effect of failure on Hadoop’s performance. Section 3 discusses recent works
that share the same similar objectives in improving the fault tolerance mechanism in Hadoop. Chapter
4 and 5 open new possibilities to improve Hadoop performance by introducing the work-conserving
preemption mechanism with its implementation details. Chapter 6 analyzes the performance of the new
feature in comparison with the default scheduler in terms of execution time and data locality. Finally,
chapter 7 concludes the thesis with some ideas on how to further improve Hadoop’s performance with
the introduced feature.

2 Background

2.1 Hadoop framework

Hadoop is an open-source implementations of the MapReduce programming paradigm which was de-
signed to process and generate large data sets. The MapReduce abstractions allows users to express their
computation as a series of Map and Reduce functions. Map function processes a series of < key, value >
pairs to generate a set of intermediate < key, value > pairs, and Reduce function aggregates all interme-
diate values that associate to the same intermediate key to produce the final output, also in the form of
< key, value > pairs.

Each Hadoop cluster contains one Job Tracker. Job Tracker is responsible for (a) querying the un-
derlying HDFS for the block locations, (b) scheduling the tasks on the slave which is hosting the tasks
blocks, and (c) monitoring the successes and failures of the tasks. Equivalent to the slave workers are Task
Trackers, who executes the tasks as directed by the Job Tracker. Each Task Tracker is set up with certain
numbers of Map and Reduce slots respectively i.e. a Task Tracker cannot have more than these numbers
of Map or Reduce tasks running simultaneously. Each Map (or Reduce) task is a separate program that
contains the user-defined map (or reduce) function and can be missing (Map-only jobs).

2.2 Fault tolerance in Hadoop

Detection of failures Hadoop employs a static timeout mechanism for the detection of fail-stop failures.
It keeps track of each Task Trackerś last heartbeat, so that should a Task Tracker has not sent any heart
beat in a certain amount of time, that Task Tracker will be declared Failed. Each Task Tracker sends a
heart beat every 0.3s (many literatures have claimed that the heart beat interval is 3 seconds, however
here we use the value we found in the source code). The Job Tracker checks every 200s for any Task
Tracker that has been silent for 600s. Once found, the Task Tracker is labeled as a failed machine, and
the Job Tracker will trigger the failure handling and recovery process.

Failure handling and recovery Tasks that were running on the failed Task Tracker will be restarted
on other machines. Map tasks that completed on this Task Tracker will also be restarted if they belong to
jobs that are still in progress and contain some reduce tasks. Completed Reduce Tasks are not restarted,
as the output is supposedly stored persistently on HDFS.

Hadoop prioritizes failed tasks to run first over pending (non-running) tasks when it comes to assigning

new tasks. The aim of this decision is to quickly discover any jobs”́internal failures”. Hadoop jobs”́internal
failures” are failures that are specific to a certain job and cannot be tolerated by re-execution mechanism.
One example of internal failures is corrupted input files. While each task consumes a certain amount of
resources (disk space, computational cycles, memory...), faster discovery of internal failures allows Hadoop
to quickly purge those failed jobs and release the resources for other waiting jobs, hence achieve better
utilization of resources.

Reliable and Locality-driven scheduling in Hadoop 3

Although Hadoop pays much effort to achieve locality for Map tasks in normal situation (it tries
to assign as many local tasks as possible, while only assign at most 1 non-local tasks regardless of the
number of available slot at each time), it completely ignores locality when it comes to failed tasks. As
long as there are failed (Map) tasks, any Task Tracker that has free slots will be assigned the maximum
number of tasks that it can handle. This leads to degradation in the performance of Hadoop when there
are many failed tasks, as the number of non-local tasks might become very high.

2.3 Failures effect on Hadoop execution

(a) Execution time (b) Locality

Fig. 1: Performance of Hadoop in 3 scenarios: Normal, Mix Stress and Failure

Figure 1a presents the total execution time in 3 different scenarios: Normal, Mix Stress and Failure
in a cluster of 21 nodes with 6 Hadoop jobs of different sizes. In Normal scenario, we allow Hadoop run
on dedicated nodes without introducing any stress or failure. The Mix Stress scenario has some CPU-
intensive and IO-intensive processes launched on one node to simulate sporadic overloading situations.
Failure scenario has 1 node fail after abitrarily 80 seconds (by simply killing the Task Tracker process
running on that node). As we can see from Figure 1a, stress slightly degrades Hadoop’s performance a
little, while failures prolong the execution of Hadoop jobs by a significant amount of time as much as
56 seconds (roughly 22.5%) in case of Capacity scheduler. Fair scheduler appears to suffer the least: its
execution time is prolonged for only 29 seconds (10.4%), and it also finishes the fastest among the three
schedulers under failure (278 seconds compared to 294 seconds for FIFO, and 305 seconds for Capacity
scheduler).

Figure 1b shows the percentage of locally executed tasks over the total number of tasks in the same
scenarios. Fair scheduler still enjoys the highest number of locality, even though this number is decreasing.
FIFO and Capacity scheduler shows some degradation, though this degradation is rather small compared
to Fair scheduler (3% and 1% compared to 9%). To explain this phenomenon, remember that Fair
scheduler was designed based on the assumption that most tasks are short and therefore, nodes will
release slot quickly enough for other tasks get locally executed. However, in case of failure, the long
failure detection time (expiry time) creates the illusion of long-lasting tasks on failed node. These ”fake”
long tasks break the assumption of Fair scheduler, leading to high degradation.

3 Related works

There exists a problem regarding the failure handling mechanism of Hadoop that often gets overseen.
When a task is declared failed, it gets ”special treatment” in the manner that, failed tasks will be launched
as soon as any slot becomes available, regardless of data locality. In a cluster where Data Node and Task
Tracker processes co-reside, a machines failure will reduce the replication factor for those data splits
originally on that node. Providing that Hadoop tries its best to provide locality for tasks in normal

4 Reliable and Locality-driven scheduling in Hadoop

situation, it is likely that the failed tasks will have one less machine to run locally, which in turn leads to
lower locality in general.

Providing locality for tasks is crucial for performance of Hadoop in large clusters because network
bisection bandwidth becomes a bottleneck [1]. Besides, since most of the Hadoop usage is for small
jobs (jobs with small number of map tasks), it is difficult for a small job to obtain slots on nodes with
local data. Data then has to be transferred through the network, which might significantly increase the
execution time if network bandwidth is scarce. Providing locality for these jobs will greatly increase the
performance of Hadoop in term of time and resource preserving.

Unfortunately, achieving high locality is not easy. Zaharia et al [2] introduces the Delay technique
inside the Fair scheduler to improve locality of tasks. Instead of strictly following the order of jobs, Fair
scheduler allows behind jobs launch their tasks first if the head-of-line job fails to launch a local task.
However, Fair scheduler relies on the assumption that tasks are mostly short and slots are freed up
quickly. In case of long tasks that occupy the slots, a node may not free up quickly enough for other jobs
to achieve locality.

In the effort to overcome the above-mentioned problems, we propose preemption. Preemption allows
a task to quickly release the slot for more urgent task. Locality can be assured with the employment of
preemption. Also preemption allows the scheduler to have better control on the resources (i.e. the task
slots) so that optimal efficiency can be obtained. Shorter tasks can preempt a longer one to achieve fast
response time.

Preemption in Hadoop

To our knowledge, there has been not much work aiming at providing the preemption feature for Hadoop:
Li Liu [3] introduces a Preemptive Deadline Constraint Scheduler (PDCS), which aims at minimizing

the total completion time of jobs under deadlines. Traditional non-preemptive schedulers have to wait
for previously assigned jobs completion or halt. This delays the execution of production jobs, sometimes
renders them violating their deadlines. To avoid this, PDCS employs the Hadoop built-in preemption
mechanism (kill) to provide slots for near deadline jobs. Upon submission, jobs are checked whether they
can finish under its deadline or not using estimation. Jobs then are scheduled if the number of available
slots meets the requirement. Otherwise, the scheduler would determine whether these jobs are legal to
preempt the slots that have been already allocated.

Yandong Wang [4] introduces the Fair Completion Scheduler (FCS) that supports Reduce Task pre-
emption. A long Reduce task would occupy the reduce slot, and significantly increase the completion
time of shorter jobs. By check pointing the Reduce task, the reduce slot can be passed on to a different
shorter job. After the short job finishes, the long Reduce task picks up the work from where it was left
off, and continue until the end.

Pastorelli [5] proposes to leverage the already available POSIX signals such as SIGTSTP and SIGCONT

to suspend running tasks. In Hadoop, Map and Reduce tasks are regular Unix processes running in child
JVMs spawned by the TaskTracker. This means that they can safely be handled with the POSIX signaling
infrastructure. The state of tasks is implicitly saved by the operating system, and kept in memory. If not
enough physical memory is available for running tasks at any moment, the OS paging mechanisms saves
the memory allocated to the suspended tasks in the swap area.

Pastorelli’s approach save the state of the JVM and can be applied seamlessly to abitrary tasks
regardless of types. However a suspended process can only be resumed on the same machine it was
suspended on. If the same task gets scheduled on a different machine, it has to be restarted from scratch,
losing work done so far: in that case, the suspend is effectively analogous to a delayed kill.

Although very interesting, the above mentioned efforts all suffer from some drawbacks. The Preemptive
Deadline Constraint Scheduler approach employs the naive Kill primitive from Hadoop, which incurs a
large amount of waste work. The Fair Completion Scheduler only concerns about preempting Reduce
tasks but ignores the case of Map tasks. Pastorelli’s OS-assisted preemptive primitives allow a seamless
preemption mechanism for all types of tasks, but do not support migration, i.e. restarting the preempted
tasks on a different node. These drawbacks limit the usage of these approaches. In the next chapter,
we will discuss more about the choices between preemption styles, and our approach to overcome these
drawbacks.

4 Pause and Resume mechanism

Preemption is a highly desirable feature in many cases. It allows schedulers to quickly reallocate resources
between jobs for fair sharing. In other cases, preemption can reclaim resources from long running tasks

Reliable and Locality-driven scheduling in Hadoop 5

and give them to shorter one. Providing local execution to short tasks helps reducing response time as
well as lowering the network traffic between nodes in the same cluster. In this study, we introduce our
preemption mechanism that is both fast and light-weight.

4.1 Map task preemption

Each Map task belonging to a Hadoop job is assigned a split of the data to process. Once all the input
< key, value > pairs have been processed, the Map task reports back to the Job Tracker, and the map
output is entrusted to the local Task Tracker to serve to Reduce tasks.

Although the name is pause and resume, our Map preemption mechanism is inplemented in a struc-
tually different manner. There is no pause in Map task preemption, but we actually split the map tasks
into 2 sub-tasks at the boundery between input < key, value > pairs. The first sub-task covers all the
map input < key, value > pair that the task has processed so far. This sub-task is considered Completed
and will report back to the Job Tracker as a normally completed task. The second sub-task includes
all the map input < key, value > pair that has not yet been processed. This sub-task will be treated
as a new independent task with almost no difference compared to any other non-running tasks. The
independence between < key, value > pairs of the Map Reduce programming paradigm gurantees that
our mechanism works correctly and does not produce any extra (or lose any) < key, value > pair, thus
ensuring correctness.

A Map task now does not simply loop through every single < key, value > pair like in the original
source code. At every < key, value > pair, it needs to make sure the pair falls inside the tasks covering
range. A simple comparison between starting key, ending key and the current key at each round serves the
purpose. Besides, Map task now needs to actively listen to the signal from the Task Tracker in order to
stop at any time. Finally, before committing the map output, Map task needs to mark the last processing
input < key, value > pair, so the Job Tracker can know whether this task has completely finished or
needs to be split into sub-tasks. Algorithm ?? illustrates the new Map tasks workflow.

The creation of sub-tasks does not modify the underlying data splits structure. Sub-tasks still require
the same data split to process compared to its parental original task. This poses a drawback in our
mechanism regarding the efficiency of data usage: the range of a sub-task might only cover, for example,
10% of the data, but the same amount of data (1 chunk = 64 MB by default) will be required to transfer.
It is then advisable not to split the task into too many small sub-tasks, as the network and computational
waste would be high.

4.2 Reduce task preemption

A Reduce task is divided into 3 different phases. The Shuffle phase fetches all the segments that belong to
it from intermediate Map Output data. The Sort phase performs a sort operation on all the fetches data,
which was kept in < key, value > pair format. Finally, the Reduce phase applies the user-defined reduce
function on each of the Reduce-input < key, value > pairs. Since the 3 phases are heavily dependent on
each other, a similar splitting approach like in Map task preemption is unviable. We instead choose the
traditional pause and resume approach where, at the moment of pausing, all the data of the Reduce task
is stored in the local storage of the Task Tracker and, at the moment of resuming, data is loaded back to
the memory.

Our mechanism allows a Reduce task to preempt itself at any time during the course of the Shuffle
phase, and at the boundery of other phases. The Sort phase is usually very short due to the fact that
Hadoop launches a separate thread to merge the data as soon as they become available. Preempting
Reduce task during Reduce phase is also feasible, however we will consider this in future work.

Pause During the Shuffle phase, a Reduce task fetches all the segments that belong to it from all
intermediate map outputs. According to the sizes of the segments, Reduce Task stores them either to local
disks or in memory. Meanwhile, multiple merging threads merge fetched data into larger segments and
store them in an ordered structure that later can be popped out to feed to Reduce function. Preserving
the state of Shuffle phase means to keep track of the shuffling status of all segments. Upon receiving
preemption request, Reduce task stops all the fetching and merging thread gracefully: it allows the
threads to finish the last unit of work they are currently on. Fetching threads can finish fetching the last
segment of Map output, while Merging threads can finish merging the current segment.

After stopping all communication and sorting threads, the Reduce task flushes all the in-memory data
to the disks while leave all the on-disk segments untouched. In-memory data includes in-memory segments

6 Reliable and Locality-driven scheduling in Hadoop

and other data to keep track of the progress (number of copied segments, number of sorted segments...).
These data is kept in files stored in each task attempts specific folder so that later re-launched attempt
can access to these files and resume operation.

Preemption at the phases boundery follows exactly the same procedure. Data is flushed to disks, and
all the information needed to re-create the running task is also stored in files. After that, the Reduce
task preempts itself and releases the slot. The task reports back to the Job Tracker with a new status
of SUSPENDED. Suspended task will go through almost the same procedure as Failed task, except
increasing the count for failed tasks. It is also added back to the pool for later resume.

Resume The information about the previously launched Task Tracker is stored inside the task. Upon
re-launch, the Reduce task checks to see if it has been launched somewhere before. The location can be
either local (task is re-launched on the same Task Tracker) or remote (task is re-launched on a different
Task Tracker). The task then tries to fetch the already processed data from the previously launched Task
Tracker before resuming to the point where it left off.

Our mechanism is incremental in the sense that it allows the task to be preempted multiple times.
However, we do not allow the re-launched task to be preempted during the period when it fetches data
from previously launched Task Tracker. Task needs to finish resuming to the previous state before being
able to be preempted again. This is to prevent having flushed data on too many Task Trackers, which
will make the resuming process complex and inefficient.

5 Preemptive locality-driven scheduler

In order to demonstrate the effectiveness of out new mechanism, we design a new scheduler, namely the
Preemptive Locality-driven scheduler (PLS), that employs this new option to provide better locality for
Map Reduce jobs. In normal situations without any failure, PLS behaves similarly to the default FIFO
scheduler of Hadoop. However, when failures occur, PLS actively leverages the preemption mechanism to
provide local execution for failed tasks.

Upon a tasks failure, PLS assembles a list of Task Trackers that has local data to the failed task (if
it was of Map type), or simply list of all running Task Trackers (if it was of Reduce type). If any of these
task trackers has a free slot of the right task type, PLS simply allows the task to be launched from that
task tracker at the next heartbeat. If no free slot is found, PLS tries to find appropriate task from all the
currently running tasks on those task trackers to preempt. Figure 1 illustrates the logic of finding a task
to preempt:

Algorithm 1 Finding a task to preempt

/*get the list of all suitable Task Trackers*/
List taskTrackers = getListOfTaskTracker();
/*get the list of all tasks running on those task trackers*/
List tasks = getListStatusesOfTasks(taskTrackers);
/*sort the tasks in the reverse job order*/
tasks.sort();
for {Task t : tasks} do

if (t belongs to jobs of lesser priority
AND t.progressScore < THRESHOLD
AND !t.isCleanUp() AND !t.isSetUp()
AND !preemptList.contains(t) then

preempt task(t);
preemptList.add(t);
return;

end if
end for

PLS only allows failed tasks to preempt tasks from later submitted jobs. To respect the FIFO order,
PLS prioritizes preempting tasks that belong to the latest submitted jobs. However, not all tasks would
be considered for preemption. Preempting a task at, for example, 0.99 progress score would not be
advisable, as it only introduces unnecessary waste which is more costly than waiting for that task to
end (and perhaps the task will be already completed by the time of the next heartbeat). We impose a

Reliable and Locality-driven scheduling in Hadoop 7

THRESHOLD of progress score so that almost complete tasks will not be considered for preemption.
This THRESHOLD value is configurable via mapred-site.xml file, and the default value is set to 0.8.

In case PLS cannot find any task to preempt (for example, tasks all belong to the same or higher
priority jobs, or all tasks are close to completion), PLS let the task to be launched at any arbitrary Task
Tracker that has free slot the earliest. This is similar to the original FIFO schedulers procedure. This is
to avoid having to wait for too long for a local slot.

6 Evaluation

In order to prove the efficiency of Pause and Resume preemption mechanism, we present the result from
selected experiments. The goal is to demonstrate how the Preemptive Locality-driven scheduler manages
to help jobs under failures. For this purpose, we concern about the execution time of jobs that suffer the
failure, as well as their localities.

We performed our experiment on Grid5000 testbed, with a cluster of 21 nodes (1Master and 20 Slave
nodes). Each node has 2 Map and 2 Reduce slots. Replication factor is set to 2. For timely reason,
expiry time is set at 30 seconds. Speculation is turned off for correct evaluation of Pause and Resume
mechanism’s effeciency.

Jobs For simplicity, we only run 2 jobs of WordCount application with the same input size of 30GB.
Failure is injected at 150 seconds to maximize the number of failed tasks from job 1.

Execution time

Fig. 2: Finish time of jobs with different schedulers

Figure 2 shows the finishing time of each job in the 4 different schedulers: the three readily available
schedulers of Hadoop (FIFO, Fair and Capacity scheduler) and Preemptive Locality-driven scheduler

8 Reliable and Locality-driven scheduling in Hadoop

(PLS). There is little difference in the total execution time of the two jobs (represented by the finishing
time of the seconds job), but the trend is that PLS has to pay the most time to finish the set of jobs.
However, PLS shows good improvement in the finishing time of job 1 - the job that suffers from the
failure. PLS only requires 256.4 seconds to finish job 1, roughly 14 seconds (5.2%) faster than in Capacity
and about 20 seconds (7.2%) when compare to FIFO scheduler. Fair scheduler performs poorly on this
metrics, as jobs share the resources of the cluster. In fact, job 1 takes more time to finish than job 2 does
in Fair scheduling. This can be explained by the fact that job 1 starts first and has more failed tasks than
job 2.

To further understand about the efficiency of PLS, as well as the actual behavior of Pause and Resume
preemption feature, we perform the same experiment with 3 different flavors of PLS. We omit completely
the preemption function of PLS and mimic the FIFO scheduler in a flavor called FIFO*. FIFO* still has
to pay the overhead of allowing Pause and Resume at any time (this overhead will be discussed later).
The Kill-PLS uses the Kill primitive provided by Hadoop instead of Pause and Resume. Finally, the PLS
that leverages the Pause and Resume function is also included.

Fig. 3: Execution with different flavors of PLS

Figure 3 compares the execution of Hadoop with different flavors of PLS. The FIFO* enjoys the best
performance due to the fact that there is no killing or preemption overhead. Tasks are launched and finish
naturally without any waste work (from killing) or delay (from splitting and re-launching a task).

Though witnessing some degradation in the total performance, Kill-PLS and PLS gain some improve-
ment in term of Job 1’s execution time. Both of Kill and Preemption finish the first job faster than that
of FIFO*, in the order of roughly 19 (11.2%) and 7 (2.5%) seconds, respectively. Kill-PLS outperforms
the other 2 competitors thanks to the fact that kill command can instantly rescue the slots from cur-
rently running tasks, while preemption command needs to pay some delay so that running tasks can save
the states and release the slots. However, PLS manages to save some work from preempted tasks. PLS

Reliable and Locality-driven scheduling in Hadoop 9

only requires an extra 102 seconds to finish the second job, compared to 120 seconds in Kill-PLS (an
improvement of 15%).

Data locality of the first job

Fig. 4: Locality of the first job

Figure 4 shows the locality of the first jobs in the three different flavors. FIFO* has the lowest value
of data locality (90.4%) due to the fact that failed tasks are assigned regardless of locality. Kill-PLS
and PLS observe higher locality in Map tasks and equal each other with the values of 94.8% and 95.4%,
respectively. This means PLS manages to improve the locality of Map tasks by almost 5%. Out of 12
failed tasks (tasks that were initially launched on the failed node), FIFO* assigns all 12 tasks remotely
(rack-locally), while Kill-PLS and PLS assigns only 3 remotely (as in table 1).

FIFO* Kill-PLS PLS

0/12 (0%) 9/12 (75%) 9/12 (75%)

Table 1: Number of local re-executed tasks

7 Conclusion

This thesis addresses the problem by investigating the fault-tolerance mechanism of Hadoop, a popular
implementation of MapReduce. It presents some results to illustrate Hadoop’s behaviors under different
situations. The intent was to confirm the mechanism and analyze the drawbacks of how Hadoop handles
failures.

We proposed the designed of a new feature for Hadoop: the waste-free preemption function. By
allowing a task to preserve its state and release the slot in a timely manner, Hadoop can have more
control over resources. This in turn will help increase the performance of Hadoop under the occurrence of
failure. The preemption feature was implemented not only with the intention of improving performance
under failure, but also to open new possibilities for further improvement under other circumstances.

Finally, we evaluated the effectiveness of the new feature considering some basics metrics such as
execution time and data locality. In this work, we compare the original Fifo scheduler with a preemptive
version. Experiments show that our new feature improves the execution time of Hadoop job when failure
occurs. Although the preemption mechanism imposes some overhead, if wisely used, it can greatly improve
Hadoop’s performance.

10 Reliable and Locality-driven scheduling in Hadoop

Future work

Our work suffers from some concerns regarding the usability, as well as efficiency. Firstly, the Reduce
Pause and Resume mechanism should be further extended to allow preemption during Reduce phase.
This allows a more fine-grain control over Reduce tasks. Secondly, it would be interesting to evaluate
the cost of preempting a Reduce task, in comparison with Killing. Killing instantly releases the slot, but
wastes the effort, while Preemption may take sometime before the slot is released. Also, upon resuming,
Reduce tasks also require some extra time to load up the data from the local storage. These two delays
add up and in some cases, it is more beneficial to decide to Kill rather than Preempt a Reduce task.

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Communications of the
ACM, 107–113 (2008)

2. Zaharia, M. , Borthakur, D., Sen, S.J., Elmeleegy, K., Shenker, S., Stoica, I.: Delay scheduling: a simple
technique for achieving locality and fairness in cluster scheduling: Proceedings of the 5th European conference
on Computer systems, 265–278 (2010)

3. Liu, L., Zhou, Y., Liu, M., Xu, G., Chen, X., Fan, D., Wang, Q.: Preemptive hadoop jobs scheduling under
a deadline, In: Semantics, Knowledge and Grids (SKG), 2012 Eighth International Conference, IEEE, 72–79
(2012)

4. Wang, Y., Tan, J., Yu, W., Meng, X., Zhang, L.: Preemptive reducetask scheduling for fair and fast job
completion In: Proceedings of the 10th International Conference on Autonomic Computing, ICAC, 13 (2013)

5. Pastorelli, M., Dell’Amico, M., Michiardi, OS-Assisted Task Preemption for Hadoop: IN: arXiv preprint
arXiv:1402.2107, (2014)

6. Apache Hadoop Welcome page, http://http://hadoop.apache.org

