
Distributed Prolog Reasoning in the Cloud for

Machine-2-Machine Interaction Inference

Radovan Zvoncek

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Examination Committee

Chairperson: Prof. Pedro Manuel Moreira Vaz Antunes de Sousa
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Resumo

A interligação a ńıvel aplicacional de vastos números de dispositivos não é uma tarefa trivial

devido aos múltiplos protocolos e semânticas usados. O desenho de protocolos de tradução e de

proxies mitigou o problema mas não oferece uma solução completa. O middleware baseado em

ontologias tem o potencial de completar esta omissão.

Neste trabalho propomos o desenho e implementação de um middleware baseado em on-

tologia destinado a aplicação em larga escala. O nosso desenho estende o motor de inferência

convencional Prolog, particionando a sua base de dados através de uma DHT, e realizando

a migração do contexto de avaliação de objectivos entre diferentes instâncias do motor. As-

sim, consegue-se elevada paralelismo através de um modelo de descentralizado de computação

cooperativa.

Os testes realizados demonstram que as penalizações introduzidas são largamente compen-

sadas quando o volume de carga imposto ao sistema é elevado.





Abstract

Application layer interconnection of vast amounts of devices is not a trivial task due to

numerous protocols and semantics devices use. Designing translating protocols and proxies

mitigated the problem but did not provide a complete solution. Ontology-based middlewares

have the potential to complement the gap.

In this work we propose the design and implementation of an ontology-based middleware

aiming for massive-scale deployment. Our design extends a conventional Prolog engine by shard-

ing its database using a DHT and consequently migrating the goal evaluation context among

different engine instances, thus achieving decentralised and collaborative computation model

offering high degree of concurrency.

Experiments performed with our implementation show that overhead introduced by man-

aging a distributed system is compensated once the system load is sufficiently high.
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1Introduction
The vision of invisible or ubiquitous computing (Weiser 1993) of enabling Internet connectiv-

ity to every device that can potentially benefit from being connected has been almost fulfilled.

The number of devices connected to the Internet has reached 10 billion and is expected to

grow (Ericsson 2011). However, providing connectivity to devices without applications that can

utilise it is not sufficient to unlock the full potential of a globally interconnected infrastructure.

While many of the obstacles in connecting the devices have been successfully solved, facil-

itating the actual communication keeps facing several problems. Devices are manufactured by

different vendors and therefore use vendor-specific, non-standardized protocols and semantics.

Consequently, devices using the same protocol families become integrated and tightly coupled

in vertical domains, thus effectively disabling any generic interconnection initiative. As a result,

the devices literally do not understand each other.

Although there has been significant work done regarding designing new protocols and imple-

menting translating proxies aiming to bridge the gaps between different vertical domains (Schilit

& Sengupta 2004), there is at least one more complementary approach. Giving the applications

an ability to reason, learn and interpret observed behaviours in their environment, based on

contextual knowledge, would facilitate horizontal communication without the need of detailed

manual integration of disjoint vertical domains.

However, there is no clear answer on how this ability should be introduced. Imposing

additional computation on the devices themselves is not feasible as they already often strive

to limit resource consumption. On the other hand, the vast number of devices implies strict

performance requirements on systems used to act as middleware attempting to off-load the

computation from the devices.

Previous work done by Ericsson Research resulted in creating the conceptual system of a

platform attempting to develop a system enabling device interoperation on application level.

The system is named Axon and Figure 1.1 illustrates its envisioned 3-layer architecture. In
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Figura 1.1: Illustration of a platform offering reasoning functionality.

its core, Axon contains the knowledge base gathering all the data available in the system (e.g.

sensor readings), as well as additional information about how to utilise the data (e.g. rules and

theories). The second layer is the inference engine consisting of Prolog core facilitating the actual

reasoning about the available knowledge. The outer layer consists of adapters to domain specific

languages for other components present in the system (e.g. applications, machine learning).

In this thesis, we will attempt to develop an implementation of Axon’s knowledge base and

reasoning engine.

1.1 Shortcoming of Current Solutions

A system facilitating the communication of autonomous devices at the application layer

should meet the following requirements:

1. Information must be efficiently accessible for any kind of manipulation regardless its

amount.

2. Interaction of devices must be interactive and happen in the order of few seconds.

3. Devices must not be burdened with excessive overhead.

The main aim of this thesis is to answer the following question:
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Is it possible to design and implement a distributed system, based on the concept of Axon,

that would allow efficient data access and interactive operation without burdening the actual

devices by additional overhead, while providing feasible back-end for facilitating reasoning for

the devices?

1.2 Contributions

Our goal is to find a design and implementation of a system that would demonstrate the

feasibility of using a distributed middleware for device communication based on reasoning.

We will try to accomplish this by showing that the benefit gained from the sound design

and implementation of a distributed middleware will compensate for the inevitable overhead

introduced by distribution in a new system. The gained benefit can be manifested as the ability

to handle more clients and bigger volume of information than a comparable sized centralised

system.

The main contributions of this thesis are:

• Scalable design of a full-featured distributed Prolog engine.

• Decentralised middleware with the ability to sustain operation under a load excessive for

a comparable centralised approach.

• Functioning prototype of to this day only conceptual System.

• Throughout evaluation of the proposed system including the assessment of correctness,

scalability and performance.

In addition, the core ideas presented in this thesis have been partially described in a submis-

sion to Inforum 2013 titled ”Distributed Prolog Reasoning for Cloud-based Machine-2-Machine

Interaction Inference”.

1.3 Structure of the Document

This dissertation is divided into 6 chapters. Chapter 1 serves as an introduction to this thesis.

It explains the background for the problem addressed by this work and positions the work within
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a broader context. It also formulates the main research question, the main contributions, and

key results of this thesis.

The purpose of Chapter 2 is to introduce the underlying concepts this thesis builds on. It

explains the concepts of knowledge and reasoning, describes how they are used for device inter-

operation, and overviews the existing systems addressing the problem of such functionality and

their shortcomings from our point of view.

Chapter 3 presents the decisions made during the process of finding a solution for the

aforementioned question. It is split into sub-chapters, each addressing a major problem that

needed to be solved. The chapter fist provides general overview of the solution, then continues

by introducing the approach taken to build a storage back-end and the description of the related

computational model. Then, the chapter discusses how we approached the trade-off between

consistency, availability and partition-tolerance.

Consequently, Chapter 4 describes the implementation details of the designed system. It

explains the motivation behind the choice of tools used to implement particular aspects of the

proposed system.

Chapter 5 then includes the evaluation of the implemented system. It first introduces the

methodology used for the evaluation with a centralised system used as a reference, and continues

by assessing key parameters of both deployments.

and then focuses on presenting the performance of the system with results describing ob-

served overhead expected to be present in the system and then demonstrates the scalability and

load distribution provided by the implemented system.

Finally, chapter 6 summarises this thesis and draws possible directions for future work.



2Related Work
Axon is aiming to unlock the potential of interconnected devices by introducing concepts

such as knowledge and reasoning, and linking them to logical programming and Prolog in partic-

ular. There is a huge gap between abstract concepts of knowledge and reasoning and actual im-

plementation of Axon. This chapter will try to bridge this gap by explaining the aforementioned

concepts and introducing links necessary to allow understanding and use in implementation.

Section 2.1 will briefly explore how have these concepts been defined in the literature and

how do they relate to Prolog and to the aim of Axon. Next, section 2.2 describes Axon’s

proposed knowledge model and representation. Section 2.3 will shortly recapitulate the concepts

of distributed hash tables. Section 2.4 will present existing systems related to Axon.

2.1 Knowledge and Reasoning

Finding a definition of ”knowledge”has taken countless philosophers countless years and still

has not reached its conclusion. The meanings of other terms are comparably dim. Regardless

the absence of formal definitions, it is still possible to find at least informal explanations.

Brachman et al. (Brachman & Levesque 2004) provide the following explanation of knowl-

edge, representation and reasoning:

• Knowledge is explained as a relation between a knower (i.e. an entity who possesses the

knowledge) and a proposition (i.e. an idea expressed by a simple declarative sentence).

Such relation is usually formulated as ”knower knows proposition”. However, the exact

verb naming the relation can express any attitude (e.g. hopes, regrets, fears or doubts),

which authors call belief. The propositions can be arbitrary declarative sentences but

within the context of this work we will consider only the sentences that can be deemed

true or false.
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• Representation is explained as a relation of elements belonging to two different domains

where the first can represent the second. The relation of representation is usually estab-

lished in order to provide faster or easier manifestation of some concept from the second

domain by its representation from the first domain.

• Knowledge representation is then an effort to use formal symbols to represent a set of

propositions and beliefs.

• Reasoning. Since representation is not meant to express all believed propositions, it is the

role of reasoning to (formally) manipulate the relations of representations and produce

new knowledge.

When talking about knowledge, it is also necessary to introduce the term ontology. Russel

et al. (Russell, Norvig, Canny, Malik, & Edwards 1995) define ontology as ”[Ontology is a]

particular theory of the nature of being or existence. The ontology represents all things that

exists but does not say anything about their specific properties and interrelationships.”This

definition is compatible with the definition of knowledge provided by Brachman et al. in a

sense that both knowledge and ontology provide a static description of a known world. The

difference lies in the scope. While knowledge usually refers to all information present in the

system, ontology can refer to a particular subset of the knowledge.

2.1.1 Knowledge in Computer Systems

Brachman et al. provide explanation and argue the benefits of knowledge representation in

computer systems. The main claimed benefit is the ability to describe the system in a more

appropriate level of detail when higher level of abstraction is useful. This is a valid benefit, as

computer systems can feature complex internal states based on many variables and conditions.

Representing such systems in a different level of abstraction can be more comprehensible for an

external observer or human observer.

Computer systems containing knowledge representation are then called knowledge-based sys-

tems that contain symbolic representations and have the following two properties:

• External observers can understand the systems as standing for propositions. This means

the behaviour of a knowledge-based system can be described by some higher-level goal or
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aim.

• Knowledge-based systems behave according to the knowledge representation they contain.

This means it is always possible to explain why has the system behaved in one way or

another.

Knowledge base (KB) is then defined as the symbolic representation of a knowledge-based

system. KB then constitutes the ontology of the system.

After establishing a definition of knowledge-based systems, Brachman et al. assess the

benefits of keeping the KB external. Their concern is that including the KB into the system

itself would eliminate the need to reason with it during the system’s operation and therefore

make the system operate faster. The downside is that this modification would turn knowledge-

based system into expert systems (Jackson 1990) and effectively remove their ability to cope

with unforeseen and open-ended tasks. Keeping the KB explicit is said to yield the following

benefits:

• Easy addition of new functionality that depends on previous knowledge.

• Possibility to extend existing behaviour by adding new beliefs.

• Ability to analyse faulty behaviour by locating erroneous beliefs.

• Opportunity to fully explain and justify the behaviour of the system.

Another stated benefit of knowledge-based systems is the perseverance of the reasoning

functionality. Reasoning allows a knowledge-based system to act based on what it believes (i.e.

any outcomes of the preliminary reasoning in addition to knowledge explicitly stored in the KB).

In turn, the KB itself can contain only simple and general facts that can be later (re)used in

multiple situations.

Alternatively to the definition of knowledge, Russel et al. introduces the term knowledge-

based agents. They positions them as the next step after problem-solving agents with limited

knowledge embedded in their code, and agents using value-driven decisions of actions to take.

Similar to Brachman, it introduces the term knowledge-base as a set of sentences, where sentence

is an elementary unit of knowledge. He uses the term inference to name aforementioned reason-

ing. Finally, he distinguishes between declarative and procedural knowledge-based agents. The
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prior initiate their operation with blank KBs and build them iteratively during their operation,

while the latter contain desired behaviours as a priori available knowledge.

2.1.2 Logic

Formal logic systems can be used to link abstract concepts of knowledge and reasoning to

practical systems such as Prolog. This section will explain how this can be achieved.

There are various kinds of formal logic (e.g. propositional, first-order, infinitary or intu-

itionistic logic). For the purpose of this thesis, we need to identify what are the characteristic

features they have in common. Every logic defines:

• Syntax determining what sentences belong to the language of a given logic.

• Semantics of the sentences that determine the truth of the sentences with respect to each

model.

In the context of formal logic systems, it is possible to define several other terms.

Definition 1 (Model). A model is a mathematical abstraction that defines truth or falsehood of

every sentence accepted by logic’s syntax.

Definition 2 (Sentence Model). A sentence α is said to satisfy model M when α is true in M .

If sentence α satisfies model M , M is said to be a model of α. All models of α are denoted as

M(α).

Definition 3 (Knowledge Base). Knowledge-base KBα of a formal logic system is a language

that contains sentences accepted by the syntax of of logic α.

Definition 4 (Entailment). The relation of logical entailment is defined as

α |= β ⇐⇒M(α) ⊆M(β)

Informally, sentence α entails sentence β if and only if in every model in which α is true, β

is also true.

Definition 5 (Reasoning). Reasoning with knowledge base KBαβ is the process of establishing

a relation of logical entailment between sentences α and β where α, β ⊆ KBαβ.
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Reasoning with KBs yield sentences that are not necessarily present in the KB thus creating

new knowledge and allowing drawing conclusions from the existing knowledge. This process is

called logical inference.

Definition 6 (Logical Infernece). Logical inference is a process of deriving conclusions from a

KB denoted as

KB `i α

and say inference algorithm i derives α from KB.

Inference algorithms can have the following properties:

• Soundness. An inference algorithm that derives only entailed sentences is called sound.

• Completeness. An inference is algorithm is complete if it can derive any sentence that is

entailed.

Generic logic does not define any inference algorithm. Therefore we will provide examples of

two particular logics. Propositional Logic is included as an example of the simplest practically

usable logic and First Order Logic (FOL) due to its role as the underlying formal model of

Prolog explained later in section 2.1.3.

2.1.2.1 Propositional Logic

Propositional logic is defined by the following syntax (in BNF notation):

Sentence → AtomicSentence

| ComplexSentence

AtomicSentence → Proposition

| True

| False

ComplexSentence → ¬ Sentence

| Sentence Connective Sentence

Connective →
∧

|
∨

| ⇒ | ⇔

Figura 2.1: The syntax of Propositional logic.

The semantics of propositional logic are defined in Figure 2.1.

Propositional Logic introduces several new concepts:
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P Q ¬ P P
∧

P
∨

Q P ⇒ Q P ⇔ Q

False True True False False True True
False True True False True True False
True False False False True False False
True True False True True True True

Tabela 2.1: Semantics of propositional logic.

• Logical equivalence. Two sentences α and β are logically equivalent if they are true in the

same set of models.

• Validity. A sentence is valid if it is True in all models. Valid sentence is called a tautology.

• Satisfiability. A sentence is satisfiable if it is True in at least one model.

Inference algorithms provided by the propositional logic are two. The first one is called

Modus Ponens (MP) and is defined as

α⇒ β, α

β
(2.1)

This means that given sentences α⇒ β and α, it is possible to infer β.

Modus tollens (MT) is an alternative inference rule equivalent to MP available in proposi-

tional logic. MT is defined as
α⇒ β, ¬β
¬α

meaning that given implication α ⇒ β and negation of β it is possible to infer the negation

of α. MT can be converted to MP using the mechanism of logical transposition saying that

antecedent (α) and consequent (β) in a conditional statement (α⇒ β) can be switched provided

both negated. For example

(α⇒ β)⇔ (¬β ⇒ ¬α)

The second rule is called And-Elimination and is defined as

α
∧
β

α
(2.2)

meaning that given a conjunction of two sentences, any of the sentences can be inferred.
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Showing the soundness of Modus Ponens and And-Elimination can be done by considering

all possible values of α and β.

The main benefits of propositional logic is that its sentence are context-independent be-

cause their meaning does not depend on the context. However, propositional logic has limited

expressive power because its models can contain only facts.

2.1.2.2 First-Order Logic

Sentence → Atom

| Sentence Connective Sentence

| Quantifier Variable, · · · Sentence
| ¬ Sentence

Atom → Predicate

| Predicate(Term, · · ·)
| Term = Term

Term → Function(Term,· · ·)
| Constant

| Variable

Connective →
∧

|
∨

| ⇒ | ⇔
Quantifier → ∀ | ∃

Figura 2.2: The grammar of First-Order Logic.

First-order logic is defined in Figure 2.2. To explain the semantics of the FOL syntax, it is

necessary to introduce several new concepts.

• Objects represent real-world elements (e.g. squares, pits, legs).

• Domain is a non-empty set of objects associated to a model of FOL.

• Constant is a reference to a real-world object.

• Relations are tuples of objects that are somehow related in the real world. Relations are

instantiated as predicates and functions.

• Predicate stands for a relation and returns True if its arguments are related in the given

domain.

• Function is similar to predicate, but can return an arbitrary value.
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• Arity is a number of arguments of a predicate or function.

• Interpretation is a specification determining which objects, relations and functions are

referred to constants, predicates and function symbols

• Quantifiers allows expressing properties of collections of objects.

• Variable is a symbol that can represent any object.

• Term is a logical expression that refers to an object. A term can be either function,

constant or variable. Term with no variables is called a ground term.

Inference in first-order logic can be achieved in two ways. The first one is based on converting

the KB to propositional logic and then employing propositional inference defined in equations 2.1

and 2.2. Converting a FOL KB into a propositional KB can be achieved by two rules: Universal

Instantiation and Existential Instantiation.

Definition 7 (Universal Instantiation). Given variable v, sentence α and ground term g,

∀ν α
SUBST ({v/g}, α)

(2.3)

The definition 7 means that we can infer any sentence obtained by substituting a ground

term g for the variable v. The notion of substitution is explained in greater detail in section 8.3

of (Russell, Norvig, Canny, Malik, & Edwards 1995).

Definition 8 (Existential Instantiation). For any sentence α, variable v and constant symbol k

that does not appear elsewhere in the knowledge base,

∃v α
SUBST ({v/k}), α

(2.4)

The second approach (inferring sentences of FOL directly without converting them to propo-

sitional logic) is called Generalized Modus Ponens (GMP). The rule definition is as follows.

Definition 9 (Generalised Modus Ponens). For atomic sentences pi, pi′, and q, where there is

a substitution θ such that SUBST (θ, pi′) = SUBST (θ, pi), for all i,

p1′, p2′, · · · , pn′, (p1
∧
p2

∧
· · ·

∧
pn ⇒ q)

SUBST (θ, q)
(2.5)
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To show the soundness of GMP we first observe that for any sentence p and for any substi-

tution θ

p � SUBST (θ, p)

holds because of definition 7. It holds particularly for θ that satisfies the conditions of defini-

tion 9. Thus, from p1′, p2′, · · · , pn′ we can infer

SUBST (θ, p1′)
∧
· · ·

∧
SUBST (θ, pn′) (2.6)

and from the implication p1 ∧ · · ·
∧
pn ⇒ q we can infer

SUBST (θ, p1)
∧
· · ·

∧
SUBST (θ, pn)⇒ SUBST (θ, q). (2.7)

Substitution θ in GMP is defined so that SUBST (θ, p1′) = SUBST (θ, p1) for ∀i, therefore pi′

exactly matches pi. Hence, SUBST (θ, q) follows Modus Pones that we have shown to be sound.

The GMP rule requires finding substitutions that make different logical expression look iden-

tical. This process is called unification and is more closely explained in section 9.2.2 of (Russell,

Norvig, Canny, Malik, & Edwards 1995).

2.1.3 Horn Clauses and Logical Programming

Inference algorithms for both propositional logic and FOL are powerful due to their provable

soundness and completeness. However, the full power of resolution is not always needed in

practice. Moreover, the computation complexity of these algorithms is often unacceptable.

To overcome these limitations, certain restrictions can be imposed on sentences contained

in KBs. One such restriction is to contain only Horn clauses (Horn 1951), which are clauses

that are disjunctions of literals of which exactly one is positive, for example

¬A
∨
¬B

∨
· · ·

∨
¬C

∨
X (2.8)

Restricting Horn clauses one step further towards less general case gives definite clauses,

which are disjunctions of literals of which exactly one is positive. Definite clauses are used as

the basis of Selective Linear Definite (SLD) resolution algorithm (Kowalski 1973) which is the
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A B C ¬A
∨
¬B

∨
C (A

∧
B)⇒ C

True True True True True

True True False False False

True False True True True

True False False True True

False True True True True

False True False True True

False False True True True

False False False True True

Tabela 2.2: Logical equivalence of definite clauses and their representation as implication.

FOL Prolog

(A
∧
B)⇒ X X :- A, B.

True⇒ X X.

Tabela 2.3: Expressing implications of FOL in Prolog.

fundamental concept of logical programming.

This brings the abstract concept of knowledge and reasoning only one step away possibility

to be implemented by logical programming. The final step needed is to show how definite clauses

can be transformed into equivalent form more understandable for humans and therefore more

appropriate for describing knowledge.

Provided that the operation of disjunction is associative, Figure 2.2 proves that disjunctions

of clauses can be also expressed by logically equivalent implications, for example

¬A
∨
¬B

∨
· · ·

∨
C
∨
X ⇐⇒ (A

∧
B
∧
· · ·

∧
C)⇒ X (2.9)

An implication in equation 2.9 is then understood as ”if A and B, and ... and C is True,

then X is also True”. A and B is then referred to as hypothesis and C is a conclusion. A

hypothesis can be also expressed as

True⇒ C (2.10)

what indicates that conclusion C is unconditionally true.

Implications with the syntax of equation 2.9 are considerably more practical when it comes

to describing knowledge. In practice, they are most commonly expressed in the syntax of the

Prolog programming language. Table 2.3 shows equivalent syntax for implications 2.9 and 2.10.
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Prolog has been widely used for knowledge representation due to its equivalence with definite

clauses and reasoning implemented by inferring new sentences using SLD algorithm.

2.1.4 Additional Terminology

Substantial part of this work extensively uses Prolog and its terminology. Here we will

state the commonly used vocabulary in order to prevent possible misunderstandings. For the

remainder of this thesis, we will use the following vocabulary:

• Atom is a literal with no inherent meaning.

• Number represents decimal or integral value.

• Variable is a string literal with first character capitalised. Variable can represent any term.

• Term is either an atom, number, variable or a compound term.

• Compound term consists of an atom called functor and a number of arguments that are

again terms.

• Clause is Prolog notation of definite clause as defined in equation 2.8 and has the form of

”Head :- Body”.

• Head is equivalent to conclusion, e.g. X in equation 2.9.

• Body is equivalent to hypothesis, e.g. (A
∧
B
∧
· · ·

∧
C) in equation 2.9.

• Fact is a unconditionally true conclusion, e.g. C in equation 2.10,

• Rule is a clause with both hypothesis and conclusion.

• Arity is the number of arguments accepted by a term constituting a head.

2.2 Knowledge Representation and Reasoning in Axon

Previous work done regarding the Axon project has resulted in establishing a model for

knowledge representation and reasoning enabling devices and applications handle contextual

information and reason about their environment. This section will briefly present these concepts.
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Upper 
Ontology

Core Theories

Domain-Specific Theories

Facts Database

Upper Ontology: Abstract Concepts

Core Theories: Space, Time, Causality, …

Facts: Instances

Domain-Specific Theories 

Figura 2.3: Hierarchical knowledge representation in Axon.

Axon assumes hierarchical structure of knowledge based on CYC (Matuszek, Cabral, Wit-

brock, & DeOliveira 2006) illustrated in figure 2.3. On its top, Axon’s knowledge base contains

the Upper Ontology. Upper Ontology contains abstract concepts that do not say much about

the world at all. Instead, it represents very general relations between very general concepts.

For example, it contains the assertions declaring that every event is a temporal thing and that

every temporal thing is a thing. Thing is the most general concept. Everything whatsoever in

the system is an instance of thing.

The second uppermost component contains core theories representing general facts about

space, time and causality. For example, core theories would contain generic expression of the

fact that if event a causes event b, that a precedes b in time. Core theories are the essential

theories to almost all common-sense reasoning.

The third level contains Domain-Specific Theories that are more specific than core theo-

ries. Domain-specific theories apply to special areas of interest like the propagation of disease,

finances, chemistry, etc. They are the theories that make the knowledge base practically useful,

but are not necessary for common sense reasoning. For example, a domain-specific theory can

say that for any person p and any truck t, p driving t for more than 8 hours in a row is illegal

and unsafe.

The bottom level is the Facts Database that contains ground-level facts. These are the

statements about particular individuals in the world. Generalizations do not belong to this level
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any more, as they should be placed in the Domain-Specific Theories. In contrast, this level

contains anything that can be written as a newspaper headline, was obtained as a reading from

a sensor or is a statement about particular individual in the world. For example, Facts Database

would contain facts saying John is a person driving a truck t and t is loaded with 10 tons of

rubber ducks.

Theories in general are sets of assertions (i.e. facts and rules) valid in a specific context.

They can bundle assertions according to several aspects:

• Shared set of assumption on which the assertions’ truth depends on.

• Shared topic (e.g. truck driving theory modelling the activity of driving a truck).

• Shared source (e.g. truck temperature theory representing temperature of various parts of

a truck).

Dynamic

Domain-Specific 
Knowledge

Stable

Common
Knowledge

(a) Static and dynamic knowledge in Axon. (b) Modular representation of dynamic knowledge
in Axon.

Figura 2.4: Decomposition of knowledge in Axon.

The hierarchical organisation of knowledge allows dividing the knowledge-base into two parts

as it is illustrated in Figure 2.4(a):

• Common knowledge composed of the two upper levels. This is the knowledge that is useful

for any application domain and should therefore be always available. This knowledge is

stable and does not change due to system operation. For example, a truck simply can not

redefine the concept of causality.

• Domain-Specific knowledge is dynamic and contains knowledge specific to local domains

(i.e. instances) of the knowledge base. It contains:
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– Theories supplied by applications and devices themselves.

– Facts injected by application providers, device vendors and user themselves.

– Theories learned during the operation in the local domain.

– Facts learned from data generated in live operation, including user behaviour.

The proposed hierarchical structure is beneficial for a multiple of reasons.

At first, the stable parts of the knowledge base are comparably smaller than the dynamic

ones. This is good particularly for distribution purposes as the resulting system is kept rather

compact. Furthermore, independence of the upper-ontology and core theories from the domain-

specific knowledge allows Axon to be applied in various domains.

The second benefit results from the possibility to organise the domain-specific knowledge

in a modular way as it is described in Figure 2.4(b). Different modules of knowledge can be

loaded depending on the given application domain and the devices devices actually present in

the system.

2.3 Distributed Hash Tables

Distributed hash tables (DHTs) originated from the research in the area of distributed

caching by Karger et al. (Karger, Lehman, Leighton, Panigrahy, Levine, & Lewin 1997). In

their principle, they combine the following concepts:

Tables. Tables are conventional data structures implementing efficient lookup functionality.

Tables can be seen as collections of entries, where each entry is assigned some value. This value

is know as key. If the key is known, the entry can be efficiently added or retrieved from the

collection. The main benefit of tables is that the manipulation with entries has constant (O(1))

complexity because it does not require any manipulation (e.g. search) with other entries present

in the table. Depending on particular implementation, one key can be assigned to multiple

entries, or one entry can be placed under multiple keys.

Hashing. Hashing (Knuth 2006) algorithms are functions transforming input of arbitrary

and variable length into output of fixed length. The domains of functional values of hash

functions are typically smaller that the domains of input values, which opens the possibility of
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collisions, i.e. multiple input values being transformed into the same functional value. Hashing

functions are typically easily computable, but it is extremely difficult to find an inverse function

to a hashing function. Hashing functions can be used to obtain keys for entries stored in tables.

Partitioning a table according to some hash function then results in DHT. A DHT is a

collection similar to a table, but the entries are clustered according to the provided hash function.

In practice, this concept is typically implemented as a distributed system featuring multiple

nodes, each responsible for managing disjoint cluster of entries.

DHTs employ a particular kind of hashing called consistent hashing first introduced by

Karger et al. Consistent hashing allows changing the number of nodes participating in a DHT

without the need to re-distribute all entries stored already in the DHT.

The original implementations of DHTs are Chord (Stoica, Morris, Karger, Kaashoek, & Bal-

akrishnan 2001), CAN (Ratnasamy, Francis, Handley, Karp, & Shenker 2001), Tapestry (Zhao,

Kubiatowicz, Joseph, et al. 2001) and Pastry (Rowstron & Druschel 2001). Their comparison

is summarized in figure 2.4. N represents number of nodes in the system, B represents number

base for node identifiers.

Further comparison of different DHT implementations can be found in greater detail

in (Wang & Li 2003) or (Lua, Crowcroft, Pias, Sharma, & Lim 2005).

Architecture Lookup Routing Performance

Chord Uni-directional
circular space

Hashing a key determines the
node responsible for the entry

O(logN)

CAN Multidimensional
space

Hashing key(s) determines
coordinates in multi-
dimensional space

O(d.N1/d)

Pastry Global mesh net-
work

Matching output of the hash-
ing function with the prefix of
node identifiers

O(logB N)

Tapestry Global mesh net-
work

matching the output of the
hashing function with the suf-
fix of node identifiers

O(logB N)

Tabela 2.4: Comparison of different DHT protocols.
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2.4 State of the Art

Even though the work presented in this paper merges concepts of logical programming and

distributed computing, it is not addressing any of the issues of parallel execution of Prolog

programs, such as the ones surveyed in (Gupta, Pontelli, Ali, Carlsson, & Hermenegildo 2001).

Our aim is to provide a support for many concurrent executions of a Prolog programs.

It is also not in the scope of this work to design a full-featured middleware for device inter-

connection such as the ones surveyed and described in (Teixeira, Hachem, Issarny, & Georgantas

2011) and (Bandyopadhyay, Sengupta, Maiti, & Dutta 2011). It is not our aim to deal with

issues such as device discovery but focus solely on the application layer.

More closely related to our work is the effort to build semantic middlewares. Semantic

middlewares facilitate device communication by allowing explicitly expressing the meaning of

information devices exchange. In other words, the devices are allowed to know what given

information means. Examples of semantic middlewares can be found in (Song, Cárdenas, &

Masuoka 2010) and (Gómez-Goiri & López-De-Ipiña 2010).

In (Song, Cárdenas, & Masuoka 2010), the authors pick Semantic Web technologies to imple-

ment a layer of abstraction above heterogeneous devices and thus providing interoperability at

the application layer. However, the available evaluation is limited to an office-scale environment.

To over come the scalability limitations, Semantic Web technologies have been combined

with tuple-spaces due to the aim of bringing de-coupled, asynchronous mode of communication.

Several of these approaches have been surveyed in (Nixon, Simperl, Krummenacher, & Martin-

Recuerda 2008), where authors conclude that semantics-aware tuples and template matching

alone are not enough to implement a semantic middleware.

In (Gómez-Goiri & López-De-Ipiña 2010), the authors propose a system based on the

tuple-based message board communication mechanism extended to support Resource Descrip-

tion Framework (RDF) (Lassila, Swick, Wide, & Consortium 1998) triples in order to support

inter-device communication. Even though the asynchronous communication model is potentially

suitable, the authors conclude the proposed system faces scalability issues.

The major drawback of the semantic middlewares is that they do not allow any manipulation

with the expressed knowledge, such as the process of inference resulting in reasoning with the
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knowledge.

Ontology-based middlewares (Kiryakov, Simov, & Ognyanov 2002) extend the functionality

of semantic middlewares by introducing the ability to reason with the knowledge about the

meaning of the available information. Section 2.4.1 will provide brief description of several

examples of ontology-based middlewares

With the increased scale of considered ontologies, the problem of reasoning becomes more

complex. Therefore, it has been subjected to research endeavours of numerous works attempting

to overcome the encountered limitations introducing concepts of distributed computing into the

reasoning process. A survey of scalable reasoning techniques can be found in (Bettini, Brdiczka,

Henricksen, Indulska, Nicklas, Ranganathan, & Riboni 2010). Section 2.4.2 will provide an

overview of this area.

2.4.1 Existing Ontology-Based Middlewares

In this section we briefly introduce two examples of ontology-based middlewares.

2.4.1.1 SOCAM

SOCAM (Gu, Wang, Pung, & Zhang 2004) is a context-aware middleware based on Web

Ontology Language (OWL) (McGuinness, Van Harmelen, et al. 2004). OWL is used to represent

the context of the environment devices operate in and reason about its changes so that the devices

can adapt accordingly.

The novel feature present in SOCAM is the ability to express the quality of context. Such

functionality is highly desirable in implicitly dynamic nature of pervasive computing and possible

flaws in sensing technology. Expressing quality is achieved by specifically designed extensible

ontology for modelling the quality of information, which assigns number of parameters for a

given context. This information is then included in the reasoning process.

While SOCAM is interesting due to easily obtained extensibility, it is not clear how it would

address the issues originating from massive-scale deployment. Another drawback is that it is

left to the clients and devices to perform the actual reasoning.

In contrast, Axon is built with a large-scale deployment as a primary objective. Additionally,
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Axon will provide the reasoning functionality to its clients. Furthermore, thanks to modular

approach to dynamic knowledge, Axon maintains the ease of extensibility.

The ontology model used by SOCAM is similar to Axon as it also distinguishes between

Upper Ontology and Domain-Specific Ontologies. However, SOCAM is focused on allowing

communication of devices operating in multiple and frequently changing contexts typical to per-

vasive computing envisioned in (Satyanarayanan 2001) and more recently surveyed in (Baldauf,

Dustdar, & Rosenberg 2007). Because of this focus, SOCAM models only concepts such as

Location, Person and Activity, but brings no notion of more general concepts such as time or

causality which are supported in the concept of Axon.

2.4.1.2 Reasoning with Probabilistic First-Order Logic

Similar system for context acquisition, representation and utilisation by applications in

smart spaces is presented in (Qin, Shi, & Suo 2007). The major difference from the previous

example is supplementing OWL with first-order probabilistic logic (FOPL) (Nilsson 1986) into

the formal model used for context description.

The motivation for combining these two approaches comes from the inability to represent

uncertainty present in majority of ontology-based systems and the inability to describe semantic

relationships between context entities by logic-based systems.

Thanks to FOPL, the predicates yield more values than True and False, Instead of discrete

values, they return a probability of given predicate being true or false. Consequently, OWL is

used to define special predicates hasProbValue() with two mandatory arguments: hasContextLit-

eral() representing some other predicate which probability value is examined and hasProbValue()

representing the actual probability value. The hasProbValue() predicate is then used as common

predicate when reasoning about context.

The context reasoning is built on rule-based inference mechanism similar to inference mech-

anism described in section 2.1.2. However, rules are extended by probabilities, constraints and

restrictions of predicates. Constraints express assumptions about environment that are relevant

for the reasoning process. Conditions allow specifying additional predicates that are considered.

Rules are subsequently extended by the definition of a dependency relationship between

the particular data type and OWL object properties. This is beneficial as it allows expressing
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contextual dependencies between different rules.

After evaluating a prototype implementation, the authors conclude their system is applicable

only for usage scenarios that are not time-critical. The reasoning process is highly dependent

on the size of the context data set. A large data set implies processing graphs with high number

of nodes that have proven to be directly responsible for the delays.

Axon does not provide support for probabilistic logic and native expression of dependencies.

However, the notion of dependency can be modelled by designating a particular predicate to

model the dependency. This approach would not induce the need of maintaining and processing

large graphs, and therefore imposes no potential bottlenecks on the overall system’s performance.

2.4.2 Distributed Reasoning

Reasoning with large and/or multiple knowledge bases is a computationally complex task.

With the advance of distributed computing, substantial research effort has been invested into

investigating the possibilities of introducing distributiveness into the problem of reasoning to

allow more efficient operation of reasoning systems. This section will briefly summarize the area

of distributed reasoning.

2.4.2.1 DRAGO

DRAGO (Serafini & Tamilin 2005) is a system aiming to build a scalable ontological reason-

ing tools for the Semantic Web. It implements the distributed reasoning principle by considering

multiple separate ontologies. The novel approach of DRAGO lies in performing reasoning with

partial ontologies separately. The results of local reasonings are then combined via semantic

mappings. The whole reasoning process is a novel tableau-based reasoning procedure developed

by the authors of DRAGO.

The architecture of DRAGO is based on nodes interconnected in a peer-to-peer (P2P)

fashion. Each peer allows creation, modification and removal of ontologies and related mappings.

In addition, each peer offers reasoning services providing access to the reasoning functionality.

Ontologies are identified by URIs used to address peers containing required ontologies.

From (Serafini & Tamilin 2005), it is not clear how exactly are the ontologies distributed

across the peers, as well as what is DRAGO’s overall performance.
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When compared to DRAGO, Axon requires more fine-grained manipulation with knowledge

base based on a per-term basis. In addition, the concept of separate ontologies is not aligned

with the knowledge model of Axon. Even though Axon’s knowledge base is modular, it is still

considered a joint, monolithic knowledge base.

2.4.2.2 Reasoning with MapReduce

The possibility of using MapReduce to implement distributed reasoning in the context of

Semantic Web is explored in (Urbani, Kotoulas, Oren, & Van Harmelen 2009). The reasoning is

implemented using a technique for materializing a closure of a RDF graph based on MapReduce.

The closure of a RDF graph is obtained by iteratively applying RDF inference rules until

no new data is derived. Application of RDF rules is encoded by a sequence of MapReduce

jobs. This approach is evidently inefficient, therefore the authors provide several non-trivial

implementation improvements.

However, due to the nature of MapReduce, the described system is more suitable for off-

line, analytical reasoning with extra-large large ontologies, rather than more interactive mode

of operation required by Axon.

2.4.2.3 DORS

DORS (Fang, Zhao, Yang, & Zheng 2008) is a system attempting to introduce a practically

feasible implementation of a system offering reasoning with large quantities of instance data in

the context of Semantic Web.

In contrast to employing ontology mappings referred to in (Serafini & Tamilin 2005), the

authors propose a distributed ontology reasoning algorithm itself. The core idea is to replicate

frequently applied rules present in the ontology to each of the nodes present in the system, while

letting each node reason using specific sub-set of rules. This leads to the necessity of exchanging

results of the reasoning between separate executions of the reasoning algorithms.

The evaluation of a prototyped DORS system has shown the proposed is able to handle

large ontologies better than previously proposed systems. However, the authors conclude DORS

is not well suited for coping with ontology updates.
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In contrast, a typical use-case scenario of Axon will imply frequent changes of the under-

lying ontology (e.g. new sensor readings), therefore Axon is able to handle frequently-updated

ontologies.

2.4.2.4 P2P Reasoning

The P2P reasoning system presented in (Anadiotis, Kotoulas, & Siebes 2007) also considers

the environment of Semantic Web and distributes ontologies using a DHT. However, the novel

approach lies in aiming for more coarse granularity. Rather than splitting the ontology into

triples, the authors propose to split the overall ontology into multiple smaller ontologies and let

every peer participating in a P2P overlay (determined by DHT) retain control of the ontologies it

is responsible for. This way, the authors attempt to achieve better performance of the reasoning

process.

Better reasoning performance is obtained by splitting an original query into sub-queries and

letting different peers handle each sub-query. Upon combining the sub-results, the system can

decide if the answer is sufficient and optionally reformulate the queries in order to obtain better

answers.

Based on the specific character of used data-set, the authors conclude the increased capacity

to perform complex local reasoning is not fully utilised. On the other hand, the ability to retain

control over ontologies is considered useful.

Axon is similar to the P2P reasoning system in a sense that Axon also splits and distributes

present ontologies according to a DHT, but the partial ontologies are still considered fragments

of globally monolithic ontology. Additionally, the reasoning model of Axon is iterative and it is

not based on partial query resolution.

2.5 Concluding Remarks

The relevant state-of-the-art for this work can be summarized into two categories. The

first one contains ontology-based middlewares aiming on device interoperability but neglecting

the aspects of performance and scalability. The second one addresses the issues of scalable

and distributed reasoning via bulk processing of large knowledge bases with little emphasis on
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Knowledge Representation Reasoning Key Concept

Ontology-based MWs
SOCAM OWL By applications Knowledge facilitates adaptation to context.
FOPL OWL Probabilistic logic Probabilities help dealing with uncertainties.

Distributed Reasoning
DRAGO Description Logic Tableau-based Reasoning with partial ontologies.

MapReduce Reasoning RDF RDF rules Inference as sequence of MapReduce jobs.
DORS OWL Description Logic Local computation and propagation of results.

P2P Reasoning RDF RDF rules Peer cooperate to resolve queries.

Advantages Disadvantages

Ontology-based MWs
SOCAM Extensibility No support for general concepts (e.g. causality)
FOPL Rule dependency modelling Inefficient for large data sets

Distributed Reasoning
DRAGO Well-paralelisible computation model Complex procedure of materialising the results

MapReduce Reasoning Adopted MapReduce Scalability Lack of interactive operation
DORS Efficient work sharing Necessity to transfer a lot of data

P2P Reasoning DHT-based architecture Most of the queries are locally resolvable

Tabela 2.5: Comparisson of investigated ontology-based middlewares and distributed reasoning.

interactive operation. The final comparisons of all investigated solutions can be found in Table

2.5.

In this thesis we will be focused on designing a system that will be positioned between these

two categories. The system we propose will belong to the category of semantic middlewares

because it will allow describing the meaning of the data it contains by expressing it in the

form of Prolog facts and rules. At the same time, the proposed system will be classified as

an ontology-based middleware because the Prolog inference will allow reasoning with the data

contained in the system.

The differentiating aspect of the proposed system will be its distributed character, thanks

to which we will try to remedy drawbacks of both semantic and ontology-based middlewares.

Our system will be designed to offer the reasoning functionality to massive amounts of clients

in an interactive manner while maintaining the capacity to handle large volumes of data.

Summary

In this chapter we have provided an explanation of what is understood under the terms

knowledge and reasoning, how these concepts related to distributed computer systems and logical

programming in particular. Consequently, we included a brief overview of DHTs. Then we have

provided a description of a conceptual system providing a foundation for the implementation of

a prototype presented in this thesis. Finally, we have explained the position of this thesis with

the recent state-of-the-art and identified its differentiating features from other existing solutions.
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In the next section, we will describe the design of a system attempting to answer the research

question being answered by this thesis.
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3System Architecture

In this chapter we describe the solution of the problem addressed by this thesis. The chapter

first provides a general overview of the proposed architecture in section 3.1. The organisation

of the remainder of this section follows the decisions made during the design process. Each

step is explained in detail, including the statement of requirements relevant for the particular

step being described. We chose this approach in order to clearly explain the motivation and

reasoning behind each decision made. In particular, Section 3.2 explains how we tackled the

problem of distributing a Prolog knowledge base. Section 3.3 describes the computational model

of the proposed system. Finally, Section 3.4 discusses particular aspects related to distributed

architecture of the system.

3.1 General Overview

The foundation of the proposed system is constituted by a Prolog engine. As we showed in

Section 2.1, Prolog is a suitable tool for implementing the concepts of knowledge and reasoning.

In our scenario Prolog terms will be used to describe knowledge about the known world. Terms

will appear in form of facts representing simple statements, or as rules representing relations

between facts or describing theories presented in 2.2. The database of Prolog terms will therefore

consitute a knowledge base and Prolog’s inference engine will provide the reasoning with the

knowledge. The actual machine-to-machine communication will be performed by asserting terms

into the knowledge base and issuing queries to the Prolog engine.

The first design idea lies in selecting an attribute of any Prolog term that can be used as

an input for the DHT’s hashing function in order to achieve uniform and therefore efficient

distribution of terms across the nodes in the system. With this approach, it will be possible to

find the location of any given term within the system with constant algorithmic complexity and

consequently ask the identified node to perform the given operation regarding the term.
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Figura 3.1: General system overview.

The motivation for this decision is to limit the data movement which can potentially produce

significant overhead. Instead, comparably smaller context capturing the state of Prolog goal

solving will be migrating among the nodes, thus effectively bringing computation to the data.

The general system architecture can be seen in Figure 3.1. The middleware consists of

multiple nodes interconnected in a ring structure similar to Chord (Stoica, Morris, Karger,

Kaashoek, & Balakrishnan 2001), Dynamo (DeCandia, Hastorun, Jampani, Kakulapati, Lak-

shman, Pilchin, Sivasubramanian, Vosshall, & Vogels 2007) or Cassandra (Lakshman & Malik

2010). Each node is composed of two main components: a storage component and a reasoner

component.

• The Storage component is responsible for managing the persistent storage of the terms

belonging to node’s portion of the DHT key-space range.

• The Reasoner is responsible for answering any incoming requests. This can involve request-

ing a storage operation from the storage module, executing actual computation related to

the solution of the queried Prolog term, or sending the computation to another node if

needed.

The client nodes can issue operation towards any of the middleware nodes, or they pre-

emptively ask for the current middleware topology and issue requests to appropriate nodes
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directly.

3.2 Sharding a Prolog Knowledge Base

This sections explains the concept of splitting a monolithic Prolog knowledge base into parts

and consequently distributing them across nodes present in the system.

3.2.1 Storage-Specific Requirements

In one sentence, the storage back-end must be able to effectively store large number of

relatively small chunks of data (e.g. Prolog terms). This generic requirement can be further

specified by the following properties.

Uniform Load Distribution. Distributed systems aiming for good scalability must ensure

that all nodes participating in the system are uniformly utilised. Applied to the context of this

chapter, this can be rephrased as:

Requirement 1. In a system where N nodes are responsible for storing a total of T prolog

terms, each node holds approximately T/N terms.

Ensuring this property prevents the creation of hot-spots in the system, meaning that there

are no over-utilised nodes. In addition, maintaining this property allows achieving certain degree

of flexibility in the system: it is possible to remove nodes from the system without facing the

risk of disrupting its operation by removing an important node, as well as easily add new nodes

without hitting any limitation imposed by the system architecture.

Explicit Addressing. The data placement mechanism should be exposed and usable by

the rest of the system. There are scenarios where an application can benefit from having the

information about data placement algorithm, for example by delegating any computation using

the data to a node actually storing the data. In the context of the proposed system, this

requirement means that given a Prolog term, it should be possible to determine which node is

responsible for storing it.

Reasonable Granularity. Prolog terms are relatively small chunks of data. Therefore con-

sidering a Prolog term as an elementary unit of data might not prove to be the most efficient

solution. The need for grouping individual Prolog terms into larger chunks is therefore apparent.
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This grouping is different from the one described in Section 2.2 because Axon demands

modularity on a higher level of abstraction (modules of knowledge are oblivious to the actual

implementation). The storage system works on a lower level. It considers the implementation

and distinguishes modules based on syntactical or structural properties of stored terms.

Efficient Lookup. This requirement is closely related to the previous one. When determining

a location of some data, the provided answer should be unambiguous. More specifically:

Requirement 2. Given a Prolog term T , performing operation owner(T ) must return exactly

one answer.

The origin of this requirement lies in Section 2.2. Any knowledge represented by the terms

should be modular, therefore it is desirable to involve as few nodes as possible in the compu-

tation related to the manipulations with terms on the modular level. Moreover, unambiguous

addressing removes the burden of complex routing logic being implemented in the application

and allows a simpler and cleaner solution.

Unique assignment of terms to nodes from the application point of view does not prevent

the storage solution from introducing replication mechanisms and therefore disobeying Require-

ment 2, as long as this remains hidden from the application.

Finally, the actual implementation of the owner(T ) should be inherently efficient. It should

be implemented with the complexity of O(1) and should not introduce unnecessary overhead or

single point of failure, e.g. network communication such as directory lookup.

Persistence and Fault Tolerance. The Prolog terms represent knowledge. As such, the

knowledge is persistent. It is not acceptable for the knowledge to disappear from the system

in case of a failure. The terms should be stored in a persistent way, thus providing resiliency

against temporary crashes and breakdowns of a node responsible for them. Furthermore, in

scenarios when a node fails completely, the terms should be somehow recoverable, for example

from their replicas stored in other nodes in the system.

Easy access. The proposed system is expected to allow high throughput operation. For this

reason, the storage solution should not introduce unwanted overhead on accessing the data. At

the same time, the interface provided to the rest of the application should be kept as simple as

possible, in order to help keeping the application logic minimal and efficient.
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3.2.2 The Choice of Distributed Hash Tables

Having examined several other frameworks, such as MapReduce (Dean & Ghemawat 2008)

and Pregel (Malewicz, Austern, Bik, Dehnert, Horn, Leiser, & Czajkowski 2010), relevant for

processing massive amounts of data led to conclusion that none of them is suitable for building an

interactive system. Existing solutions described in Section 2.4.2 are optimised for batch rather

than interactive mode of operation, i.e. they emphasise the throughput in scenarios where we

low latency is also desirable.

Therefore we chose distributed hash tables as the underlying concept to build our storage

back-end.

As explained in Section 2.3, hash tables work with the key-value pairs. Therefore the first

step in explaining this choice is describing the proposed mapping of Prolog data model onto the

key-value concept.

It has been shown previously in Section 2.1.4 how every Prolog term is described by its

name and arity. One of the core ideas of this work is to propose the following mapping:

Proposal 1. Every Prolog term T named t and of arity a can be stored as a value in a hash

table addressed by a key composed by concatenating t and a.

For example, given three Prolog terms

termA(atom1).

termA(atom1, atom2).

termA(atom2, atom3) :- termA(atom1, atom2).

performing operation get(termA.2) would return only the terms named termA and of arity

equal to 2:

termA(atom1, atom2).

termA(atom2, atom3) :- termA(atom1, atom2).

This example, however, exhibits a collision of multiple values and therefore not completely

fulfilling Requirement 2. Typically, hash tables and applications built atop them strive for

avoiding collisions wherever possible.
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Collisions are, naturally, unwanted phenomenon also for this work. To remedy this situation,

the mapping in Proposal 1 has to be generalised:

Proposal 2. Every group of Prolog terms T1, T2, · · · , TN of name t and of arity a can be stored

as a value in a hash table, addressed by a key composed by concatenating t and a.

This generalisation will remove any collisions introduced by Proposal 1. Moreover, it will

contribute to more efficient preservation of Prolog semantics, as follows.

Preserving Prolog semantics. The division of terms according to their names and arities

is native to Prolog. Any time some computation step is performed, it considers only currently

known predicates of given name/arity. Therefore, grouping multiple values (i.e. terms) under

one key is not problematic but, on the contrary, opens a possibility for the Prolog inference

algorithm to effectively access all terms required for the given step.

Another important semantic aspect of Prolog is the ordering of terms described in Sec-

tion 2.1.4. Because of Proposal 2, all the related terms are already grouped. However, it is left

to the application logic to ensure the correct ordering of terms under a given key. There might

be operations conditioned by runtime context (e.g. deleting terms with variables in arguments)

that require more than just the insertion or removal of first or last term of the given group. It

is therefore impossible for the storage system to provide this functionality.

3.2.3 Fulfilling the Storage-Specific Requirements

It was shown how it is possible to model Prolog data model using DHTs. Now it is necessary

to assess how can the proposed mapping answer the formulated storage-specific requirements.

Uniform Load Distribution. Provided the hashing function of a chosen DHT implementation

is balanced, the DHT will natively provide balanced load distribution. The remaining threat to

disrupting the uniformity can come from actual instances of the stored terms. It might happen

that the terms of certain names and arities will be more frequent than others, thus creating

hot-spots on nodes responsible for storing them. However, it is assumed that the scale and

total amount of terms present in the system will outweigh any imbalance in reall-world use-case

scenarios.
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Figura 3.2: Illustration of the proposed sharding approach.

Explicit Addressing. Name/arity are easily extractable from any prolog term by the appli-

cation. Using this information to address a node responsible for the data is therefore straight-

forward. Alternatively, this mechanism could also be encapsulated in data access libraries.

Reasonable Granularity. The mapping proposed in Proposal 2 ensures the terms will not be

treated separately but rather grouped according to Prolog semantics.

Efficient Lookup. The choice of a key for the key-value pair guarantees there will be exactly

one node responsible for the given key. In addition, hashing function guarantees the desired

lookup complexity.

Persistence and Fault Tolerance. Modern DHT implementations usually provide both per-

sistent storage and fault tolerance. For example, instantiating a Cassandra cluster with a replica-

tion factor extends the out-of-the box persistent storage by replicating the data on neighbouring

nodes.

Easy Access. Due to their distributed character, DHT implementations also usually provide

high throughput, as well as simple API.
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3.2.4 Recapitulation of Proposed Sharding Approach

This chapter described how it is possible to thoughtfully split a potentially very large set

of Prolog terms into a more structured topology that can provide effective and scalable storage

back-end for a distributed system. The ideas of this chapter are illustrated in Figure 3.2.

3.3 Migrating Computation

The storage solution described in the previous section induces implications necessary to be

considered when designing the consequent computational model. This section describes what

the proposed computational model is and how it is integrated in the proposed data model.

3.3.1 Computation-Specific Requirements

The computational model should have the following properties.

Limited Data Movement. It is assumed the system will have to operate with large amounts

of data. In addition, a single user request (e.g. solving a Prolog goal) can potentially require

access to large amount of data (e.g. many terms related to the solution process). This can

potentially lead to several problems:

• Moving data can be slow. The data would have to be sent over a network to a different

node. While this behaviour could be tolerable provided the underlying infrastructure is of

high performance, it is not safe to consider such environment for granted.

• Redundant data replication. In some scenarios, data redundancy can lead to increasing

overall performance of the system. This, however, applies only in specific scenarios, and

particularly in real-domain workloads. Therefore it should be carefully examined whether

this approach is viable solution for the problem being answered by this thesis.

• Excessive memory operation. The expected volume of data present in the system is far

greater than what can be placed in the operating memory of a contemporary computer

system. Relying on all the data necessary for the computation being available locally can

therefore not be achievable.
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Figura 3.3: Prolog goal solving extended with the concept of migrating computation.

• Consistency issues. The proposed data model implies a single node being exclusively

responsible for handling read and write requests regarding terms of given name and arity.

Introducing replication of this data at different nodes would require explicit management

of the replicated data.

It is therefore desirable to strive for limiting the amount of data that needs to be manipulated.

Facilitate Reactive Behaviour. Particular usage scenarios, such the one described in Sec-

tion 2.2, could benefit from reactive mode of operation with low latency. This means that when

some event occurs (e.g. an assert operation renders some Prolog goal solvable), it should be

possible to notify the application.

With the aim of fulfilling most of the properties mentioned above, this work proposes a

computational model based on migrating the computation among the back-end nodes of the

system. The overall operation of the system is illustrated in Figure 3.3.

A Prolog computation will therefore go as follows:

1. A device issues Prolog query asking if goal termB(b, a) is true.

2. A client receives the requests and examines the query. It reads the name and arity of the
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term being queried (termB/2) and determines a back-end node responsible for the term

(Node3 ). The client then forwards the query to the corresponding node.

3. The reasoner at Node3 receives the query and instantiates a new Prolog engine to handle

the query. If the library containing terms termB/2 is not loaded, the reasoner at Node3

loads the the library with the assistance of the storage daemon and then initiates the goal

solving and finds out termB(b, a) is present in the knowledge base. Then it continues with

the next goal, termA(b). However, Node3 is not the owner of terms termA/1.

4. The computation has to be sent to Node2 which is responsible for terms termA/1.

5. Node2 receives the computation, instantiates a new Prolog engine and loads it with the

context related to previous computation. It successfully solves goal termA(b). and dis-

covers this concludes the whole solution process based on the information present in the

computation context received from Node3.

6. Node2 can therefore provide a final answer to the client.

7. Finally, the client can forward the received answer to the device.

The proposed computational model introduces an apparent drawback. The process of de-

termining ownership of terms, as well as sending the context over the network inevitably causes

additional overhead. However, with respect to the thesis stated at the beginning of this work in

Section 1.1, the assumption is that this overhead can be outweighed by the obtained advantages.

The advantages of the proposed computational model are following:

• Splitting the computation needed to answer one query allows sharing the resources of

one node among multiple concurrent queries. This can pay off provided the number of

concurrent queries is sufficiently large.

• Partitioning the computation into smaller steps provides an opportunity for check-pointing

the solution, what makes it possible to introduce fault-tolerance into the system.

• The computation context is far smaller than the data the computation works with. Trans-

ferring smaller amount of data is naturally more efficient. More details about exact infor-

mation constituting the computation context can be found in the relevant implementation

Section 4.2.
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• Keeping the data at one node without any explicit replicas facilitates data consistency.

• The static data is not redundantly stored.

• The proposed approach is relevant for read requests only. Write operations are forwarded

by Clients directly to nodes responsible for terms being inserted or removed.

• Each node can load into memory only the data immediately needed for the computation.

This prevents any problems associated with the memory limitations.

3.3.2 Recapitulation of the Proposed Computation Migration Concept

This chapter has shown how the proposed data model can be supplemented by a compu-

tational model in order to achieve the desired functionality. The core idea is to instantiate a

Prolog engine on each of the nodes present in the system and let each instance execute part

of the computation related to the data already present at the given node, thus achieving the

concept of decentralised and collaborative computation of Prolog Clauses.

3.4 Facing the CAP Theorem

Still, the system described so far suffers from one important drawback. Figure 3.4 illustrates

the problematic scenario.

In the scenario, DeviceA issues a request that initiates a goal solving at Reasoner4 (step 1).

The solution requires to be forwarded to reasoners Reasoner2 and Reasoner1 during steps 2 and

3 respectively. Solution at Reasoner1 then takes longer time, sufficient for another request from

DeviceB to reach Reasoner2 in step 4. This request can potentially change terms related to the

solution of the first request. Therefore, by the time the answer to the first query is returned to

ClientA during steps 5 and 6, the provided answer might no longer be correct.

This situation is a manifestation of the CAP theorem (Gilbert & Lynch 2002). Achieving

consistent results of goal solving is not possible while maintaining the whole system available

and partition-tolerant.

This section describes how is the proposed system preventing this situation to happen.
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Figura 3.4: Example of inconsistent goal solution.

3.4.1 Assessing Consistency, Availability and Partition-Tolerance

The first step towards solving the problem with inconsistent queries was to revisit the

envisioned deployment scenario described in 2.2 and assess what is the relation between Axon

and CAP theorem. It was concluded that:

• Partition-tolerance has the highest priority. One installation of Axon assumes one consis-

tent and monolithic knowledge base. It is therefore mandatory to ensure that every query

has the up-to-date view of the whole knowledge base.

• Consistency has the second highest priority. It was concluded that partial or best-effort

answers are not desirable. Once the system provides answer, it must be guaranteed that

the answer is correct relative to the point when the query was issued.

• Availability has been designated as the attribute with the lowest priority. It is acceptable

for the clients to wait for a reasonable amount of time with no reply from the system.
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3.4.2 Towards Consistent Queries

The data model described in Section 3.2 provides solid foundation for fulfilling the assessed

priority of partition-tolerance, consistency and availability. It can implicitly ensure consistent

data for all nodes provided that read and write requests are managed adequately. This can be

achieved in multiple ways.

The first approach can be described as invalidation propagation. With this approach, the

migrating query resolution would leave behind some footprint, so that it would be possible

to track all queries that used particular term and notify them once the term gets changed.

The main benefit of this approach is the optimistic query resolution. Unless the terms used

in a query actually change, no additional computation is required, what contributes to faster

operation of the overall system. However, in case of frequent term updates, combined with long-

running queries, the frequent invalidation would produce exceeding amount of messaging caused

by the broadcasted invalidate messages, as well as potentially prevent some queries from being

answered completely. Even though availability is the least prioritised attribute, this behaviour

is still unacceptable.

An alternative approach is to introduce certain degree of global synchronisation into the

system. In this approach, the system operation would be split into two phases: a read phase,

and a write phase, what is a division similar to the tuple-based communication described in

Section 2.4. Each phase would allow only one kind of operations to be executed. As a result,

there would be a guarantee that while a read phase is ongoing, the underlying data will not be

changed by any incoming write request. More detailed explanation regarding the implementation

of phase based operation can be found in Section 4.3.

The phase-based operation is rougly equivalent to spanpshot isolation with versioning using

and clocks,

3.4.3 Recapitulation of the Position Against the CAP Theorem

To summarise the position of the proposed system towards the CAP theorem, the proposed

system can be classified as CP because it prioritises consistent data model with no partition

tolerance re-check of partitions at the cost of limited availability because it requires consistent

an monolitihic knowledge base and consistent queries at the cost of limited availability.
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Summary

In this chapter we have described the architecture of the proposed system. For every decision

made we provided detailed description of what were the specific requirements we attempted

to answer with the given decision and how these requirements met. We chose this way of

explanation in attempt to make our decisions more comprehensive.

The proposed distributed system organises nodes in a ring-like structure built atop a DHT,

thus allowing efficient balancing of stored data and performed computation. System operation

is split into two phases in order to ensure consistency of the system at the cost of availability.

In the following section, we will describe several key aspects related to the implementation

of the proposed system.
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In this section we provide more detail on implementation of particular aspects of the system

proposed in Chapter 3. In addition, we mention several early improvements resulting from the

chosen implementations and early observations of the system operation.

The chosen implementation of underlying DHT can be found in Section 4.1. The implemen-

tation details of the migrating computation concept can be found in Section 4.2. Implementation

of phase-based operation is more closely described in Section 4.3. Finally, Section 4.4 presents

several early-made optimisations regarding the implementation of the proposed system.

4.1 Chosen DHT Implementation

As it was stated in Section 2.4, the purpose of this work is to provide a prototype for a

complex system, not to design an application specific storage solution from scratch. Therefore

an existing implementation of DHT was chosen to meet the described requirements.

The solution of choice in this work is Apache Cassandra (Lakshman & Malik 2010). It

is a well-established and well-supported project that brings all the properties desired by the

proposed system.

Namely, it exposes the partitioning functionality it uses for data placement, so that applica-

tions can utilise this information. Moreover, it efficiently handles persistence and fault tolerance.

Therefore it is possible to consider the key proposed in Proposal 2 as equivalent to Cassandra’s

row key.

In addition, Cassandra’s feature of ordering entries by secondary keys can be utilised to

efficiently implement ordering of terms under given key. In order to achieve this, the column

family for storing terms should look like this:

String name/arity primary key
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Long timestamp secondary key

String terms

With this data model, the write(i.e. assert), delete(i.e. retract) and read(i.e. query) opera-

tions can happen according to the following algorithms.

Input : name/arity : String
append : Boolean
timestamp : Long
term : String

Output: void

Procedure:

if not append then
timestamp = (−1) * timestamp;

end
put([name/arirty,timestamp], terms);

Algorithm 1: Term assertion.

The input terms are expected to be ordered correctly by the application with the respect

to the desired append value. Appending terms is implemented by inserting a timestamp greater

than any existing ones. Prepending is implemented by negating the input timestamp resulting

in a number smaller than any existing ones. Ordering on secondary key then ensures the correct

ordering of terms.

Input : name/arity : String

Output: terms : Term[]

Procedure:

terms = get([name/arity ], );
foreach term t in partialTerms do terms ∪ = t ;
return terms;

Algorithm 2: Retrieving terms from the knowledge base as a list.

When queried by primary key only ( character ’ ’ represents arbitrary secondary key), Cas-

sandra returns all known entries for the given key. These entries are correctly ordered thanks to

being properly inserted by algorithm 1 therefore it sufficient to straightforwardly concatenate

them into one block of terms and return this block to the application. The implementation of

the retractTerm() method is done by the underlying Prolog engine, which processes the set of

therms and actually removes the appropriate term.

The storage back-end is not able to perform term retraction autonomously. Therefore the
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Input : term - term to be retracted

Output: none

Procedure:

allTerms = read( term.getNameArity() )
newTerms = allTerms.retractTerm(term)
write( newTerms.getnameArity(), System.getTime(), newTerms)

Algorithm 3: Term retraction

retraction consists of three steps. The application has to load all know terms first, then retract

the appropriate term, and finally write the modified set of terms.

4.2 Migrating Computation Context

We used the tuProlog (Piancastelli, Benini, Omicini, & Ricci 2008) as the basis for our

reasoning engine. We have extended tuProlog with the functionality of checking the solved

terms being locally resolvable and conditionally migrating the solution context to the node

responsible for the next goal. However, built-in predicates such as list constructors or term

true/0 have been replicated in all reasoners in order to prevent unnecessary migration.

In order to implement the computation transfer, the computation context packaged in the

messages exchanged between different Reasoners must contain:

• Any contextual information associated with the Prolog semantics. This includes Prolog

variables (their names and bindings) and sub-goals needed to be solved in order to obtain

a solution for the top-level goal, with the order in which they need to be solved included.

The reasoning modules performing parts of the computation will naturally modify this

context. For instance, they might extend the sub-goals by new sub-goals determined from

local terms, as well as significantly re-order the whole sub-goal set (e.g. due to encountering

the cut operator).

• Identification of the Client node awaiting the final solution.

• Trace of the solved goals. This feature is not natively provided by Prolog and has to be

explicitly supplemented to the context.



48 CAPÍTULO 4. IMPLEMENTATION

4.3 Phase-Based Operation

In order to satisfy the described requirements regarding the CAP theorem, the system

proposed in this work will implement the alternative suggesting phased mode of operation. This

decision brings several implications that require close examination and explanation.

Buffering requests. Execution of each of the phases will inevitably take certain amount of

time. During this time, it is possible that new client requests will arrive. The incoming requests

can not be directly served because continuous arrival of requests matching the current phase

would cause the phase to never terminate. For this reason, the system should allow buffering

the incoming requests, thus delaying their handling until the next instance of relevant phase

begins.

In addition, as implied by Prolog semantics about ordering of terms, the buffers must

preserve the correct ordering of incoming write requests for each group of terms about to be

modified.

Leader Election. The introduction of phase-based operation required node synchronisation.

For this purpose we implemented a leader election algorithm based on the Paxos algorithm (Lam-

port 2001) using the Zookeeper (Hunt, Konar, Junqueira, & Reed 2010) coordination service.

The synchronisation is achieved by nodes reporting end of each phase. The leader node awaits

for reports of all (alive) nodes and triggers a phase change once all nodes have finished their

current phase.

While the leader election procedure is not strictly required in order to implement barrier-

based synchronisation, the role of a leader is potentially useful for the implementation of addi-

tional features, e.g. fault tolerance of query resolution.

4.4 Early Improvements

Already during the first works on implementing the proposed system, several previously

unforeseen problems became apparent. In order to remedy them, multiple optimisations had
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to made even before the proper measurement and evaluation phase could begin. Designing and

implementing these improvements constitutes a substantial amount of work done on this project.

This section will briefly describe the reasons, solutions and impact of some of the most relevant

improvements done to the system.

4.4.1 Asynchronous Messages

Originally the proposed system used exclusively synchronous messages. However, the ne-

cessity to wait for an answer has the potential to drastically impair the overall throughput of

the system. For example, with the phase-based mode of operation introduced in section 3.4, the

front-end node would be allowed to issue at most one operation per phase per back-end node.

This is unacceptable, particularly in case a query phase takes longer time than average.

To answer this issue, the possibility to issue asynchronous requests has been introduced. It is

now possible for the front-end node to decide which mode is necessary to handle client’s request.

Typically, asynchronous messages are relevant for write operations due to high throughput

provided. Read operations, on the other hand, are most suitably implemented using synchronous

messages because consistent and correct result is more desirable than partial best effort answer.

The most significant impact of introducing asynchronous messaging to the rest of the system

lies in the increased complexity of incoming operation buffers presented in Section 4.3.

4.4.2 Managing Request Buffers

The increased rate of impending requests caused by allowing asynchronous messages led

to revisiting how the requests are buffered and processed. The time required to process all

elements in the buffers is proportional to the number of buffers present. Therefore, increased

number of requests led to prolong the query relevant phase execution time, thus allowing even

more requests being buffered for the next execution of the given phase. This led to an avalanche

effect and inevitable stalling of the entire system.

The solution for this problem was the decision to process fixed maximal number of requests

during each phase, thus effectively transforming the buffer into a FIFO queue. The benefits

provided by this approach are double:
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• Fixed amount of processed requests guarantees relatively short phase execution time and

therefore fair alternation of of read and write phases.

• Fluent alternation of phases prevents failures possibly resulting from time-outs originating

in the other parts of the system (e.g. Zookeeper session time-out)

4.4.3 Aggregating Asserts

Processing a batch of incoming write requests opens one more possibility for optimisation.

Rather than writing each incoming term by a separate Cassandra operation, it is beneficial to

group terms of the same name/arity into one insert operation and consequently group multiple

insert operations into one batch.

It is necessary for the aggregation logic to preserve the ordering incoming requests due to

Prolog semantics. This brings additional computational cost, but that cost is compensated by

performance gains achieved from Cassandra batch operations. In addition, the batch opera-

tions are atomic, thus providing means of further improvements regarding the robustness and

resiliency of the whole system.

4.4.4 (Un)Loading Prolog Libraries

There is a certain limit to the amount of Prolog terms that can be placed in the memory of

a running system. Assuming the total amount of terms known by the system can be far larger,

it is important to provide a mechanism allowing manipulation with excessive amount of data.

Grouping the terms by their name and arity offers a straightforward solution. Each group

of terms can be perceived as a Prolog library 1 and swapped in and out of a running Prolog

engine as necessary. The swapping process might be happening quite often, as well as it might

operate on potentially big libraries. For such reasons, the need to design an effective solution is

apparent.

Early observations showed that attempts of manipulating with the libraries using chunks is

not a feasible approach, mostly due to inefficient re-loading of a library chunk into an already

active library.

1Prolog library is a group of terms representing a module of knowledge present in the system.
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The libraries are therefore swapped in and out of the prolog engine atomically. This brings

loading times superior to chunked approach, but helps with maintaining the data consistent. A

downside is that big libraries have to be stored using multiple write operations because they

exceed the size allowance of single insert operations.

4.4.5 Limiting Computation Context State

As described in Section 3.3, one of the core principles of the proposed solution is the mi-

gration of the computational state. Because the need to send the computation to another node

will arise very frequently, the whole process should be as efficient as possible.

The first optimisation possible in this case is limiting the amount of data that needs to be

transferred. There is no need for the entire Prolog engine to be transferred. Instead, only the

data necessary for reconstructing the computational context (such as variable bindings, next

goals to solve, etc.) need to be sent away.

In addition, upon resuming the computation, there is no need to instantiate a new Prolog

engine. Instead, an existing instance can be either duplicated or taken from a pool of available

engines and the received state can be loaded into the engine.

Finally, third-party serialization libraries 2 can be used as a substitute for the native serial-

ization mechanism because they offer superior performance.

4.4.6 Snapshotting System Topology

Both back-end and client nodes need to be aware of the current system topology in order

to address requests. Originally this functionality was obtained by actively querying Cassandra

processes for up-to date information.

This is apparently an overkill, since the node churn in the system is not assumed to be very

high. It is therefore sufficient to regularly take a snapshot of the system topology and refer to it

during normal operation. The snapshot will be refreshed in reasonable intervals. There is also

a possibility to broadcast a snapshot invalidation command by a node that detects a change in

2protostuff - java serialization library, http://code.google.com/p/protostuff/ (accessed at June 13, 2013).
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the topology the quickest from the nodes in the cluster and therefore should notify other nodes

about the detected event (e.g. node failure).

Summary

In this chapter we described the implementation of the proposed system.

First, we have explained the selection of Cassandra as the DHT implementation-of-choice

thanks to its out-of-the-shelf fault-tolerant persistent storage and good scalability. Then we

explained how we implemented the migration of Prolog’s computational context based on de-

termining the location of the next goal to be evaluated by using the underlying DHT. Next,

we showed how we implemented node synchronisation based on phase change announcements

originating from a node elected to act as a leader. Finally, we presented several early-made

improvements.

The following chapter will contain the evaluation of the presented implementation.



5Evaluation
This chapter presents the measurements performed while experimenting with a prototype

of the proposed system. As first, Section 5.1 will describe the methodology used to evaluate

the prototyped system and Section 5.2 will describe the experimental setup we used. Next,

Section 5.3 will focus on the impact of overhead caused by distributed mode of operation.

Following sections will present other attributes describing performance of a distributed system.

Section 5.4 will deal with scalability and section 5.5 will describe load distribution.

5.1 Methodology

The correct way of evaluating a distributed system is to compare it to a comparable cen-

tralised system rather than 1-node installation of the distributed system itself. The centralised

system used as a reference for the evaluation in this chapter was implemented based on the

proposed distributed system, but stripped from any functionality and overhead originating from

the aspects of distributed mode of operation.

In the remainder of the evaluation section of this work, whenever a reference to a one-node

installation of the proposed system is made, it is meant to refer to the reference system described

herein.

The differences of the centralised system include:

• Persistent storage is implemented using regular files (in contrast to using Cassandra).

• There is no need for using Zookeeper for phase synchronisation and leader election.

• The Prolog goal solving is not checking for goals being locally resolvable and does not

implement the migrating computation.
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Besides the aforementioned differences, it is essential to maintain other aspects of operation

equivalent for both centralised and distributed alternatives. The most important features to

maintain are:

• Approach to handling incoming requests. Accepting and processing client requests is

implemented equivalently in both alternatives.

• Prolog goal solving. Besides the notion of locally resolvable goals, the remaining operation

of the Prolog engine is the same and yields the same results.

• Alternating phase-based operation. Even without the concept of migrating computation,

the one-node system must maintain this functionality to be considered comparable. Aban-

doning the phase-based operation would essentially give incomparable system, as well as

compromise the guarantee of consistent queries and fair request handling described in

Section 3.4.

5.2 Experiential Setup

The experiments attempting to evaluate this work were performed on a cluster of five ma-

chines, each offering 4-core Intel Core2 Q9400 CPU operating at 2.66 GHz and 8GB of RAM.

The one-node installation of the system was deployed on one of the cluster machines as well.

The workload was achieved by deploying client instances on the same nodes, thus leveraging

fast local network connectivity of the cluster. Because the backend process was utilising only

one processor core, we were able to instantiate up to 3 client processes per physical node while

minimising the introduced interference between the reasoner and the clients.

The preliminary experiments with the described reference system have shown that, given

the available hardware setup, the one node installation of the proposed system can hold up

400,000 Prolog terms while being able to serve 4,000 requests per second. The absolute values

by themselves provide little information, but are an adequate starting point for evaluating the

performance of the distributed system.

We used two data sets during our experiments, both of which were generated to simulate

a real-life knowledge base. The first one consisted of 400,000 systematically generated Prolog

terms, including averagely 5-hop dependencies among each other, what is the upper limit of
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Figura 5.1: Distribution of read phase durations.

terms sustainable by the one-node system given the available hardware setup. The second data

set consisted of 1,500,000 terms. The terms consisted of both facts and full clauses. The clause

bodies contained other atoms and clauses present in the knowledge base, creating references of

averagely 5 levels. We observed the system behaviour during read and write phases accessing

random terms from the data set.

5.3 Observed Overhead

During this set of experiments, we have measured how the one-node system operates until

the workload exceeds its limits (thus acquiring the information about maximal capacity stated

in Section 5.2). Then we examined how different installations of the distributed system operate

given the same workload. The analysis is split into two parts: the first one for read phases, the

second one for write phases.

5.3.1 Read Phase Analysis

Figure 5.1 shows the distribution of read phase duration for each setup. Table 5.1 provides

numerical comparison of the histograms shown in Figure 5.1. It can be seen that the centralised

version has a majority of phases with the duration in between 0 and 20 milliseconds. The usual

duration of the read phases for distributed installations is between 25 to 100 milliseconds. In
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1 Node 2 Node 3 Node 4 Node 5 Node

Average 25.12 ms 168.40 ms 116.12 ms 102.00 ms 95.17 ms

Median 9.00 ms 125.00 ms 62.00 ms 58.00 ms 59.00 ms

Mode 8.00 ms 24.00 ms 24.00 ms 25.00 ms 33.00 ms

Tabela 5.1: Numercial comparison of histogram shown in figure 5.1.

addition, there is a visible fraction of 12 to 4 % of phases for 2 to 5 node setups, respectively, tak-

ing longer than 300 milliseconds. This is an unfavourable result for the distributed installations

of the system and calls for further examination.

To explain the increased duration of the read phases we show the observed amount of

overhead originating from the synchronisation of nodes. Figure 5.2(a) contains a distribution of

amounts of synchronisation done aggregated per system configuration. Figure 5.2(b) then shows

differences between single installations. The process of synchronisation usually took 20 to 72

ms. It is also possible to see the increase of synchronisation overhead caused by the addition of

more nodes.

Due to the fact that this communication is necessary regardless the number of requests

served during the given phase, all phases are inevitably burdened by the overhead (this includes

also phases which process no requests and only perform the synchronisation), thus effectively

rendering the read phases longer than phases of one node installation.

This observation, however, does not provide any information about the impact of the concept

of migrating computation on the read phase durations. In order to investigate this aspect,

we have removed the synchronisation time from the measured phase durations and obtained

distribution shown in Figure 5.3.

For one node system, approximately 82% of read phases took below 24 milliseconds. For

5-,4- and 3- node setups it was 62%, 56% and 50%, respectively. 2-node set-up had majority of

phases taking longer than 24 milliseconds to complete.

However, there is still a substantial fraction of phases taking longer than 24 milliseconds.

Figure 5.4 in Appendix A further describes this category. It can be seen that the read phase

duration is steadily decreasing for all setups and that the range of 25 to 420 milliseconds ex-

haustively covers the distribution of read phase duration for all setups.

The final comparison of the read phases can be found in Figure 5.5. It can be concluded

that:
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Figura 5.4: Read phase durations greater than 24 ms excluding synchronisation overhead.

• Synchronisation overhead has substantial impact on read phase duration.

• The overhead originating from migrating the computation increases the average read phase

duration by 120 to 60 ms for 2-node to 5-node installation respectively, while keeping the

median and mode favourable for the distributed installation for the system.

• The increased probability of having to migrate the computation, as the number of nodes

increases, does not increase the read phase duration.

5.3.2 Write Phase Analysis

All the results presented in this section exclude time spent in synchronisation. We have

shown in the preceding section this overhead is invariant, and removing it from the measurements

allows gain clearer insight into the performance of the remaining system.

During the process of loading 400,000 terms into the system, we observed write phases of

the durations summarised in Figure 5.6 and Table 5.2. It can be seen the 1-node system handled

most write phases in 72 to 96 ms. The 2-node system handled most phases in 120 to 156 ms.

3- and 4- node systems have shown comparable distribution ranging from 10 to 130 ms with a

minor increase around 60 ms. The 5-node system has a distribution peak around 4 to 6 ms,

while the most write phases took 60 to 110 ms. There is also a notable local maximum of 2 ms

long phases for 1-node system and visible fraction of phases taking longer than 230 ms.
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Figura 5.5: Read phase durations without synchronisation overhead.

1 Node 2 Node 3 Node 4 Node 5 Node

Average 192.54 178.11 96.14 90.39 78.83

Median 78 141 89 73 77

Mode 73 135 119 55 3

Tabela 5.2: Numerical comparison of write phase durations.

Table 5.2 also indicates variance of observed phase durations. One possible explanation of

this variance can be the netwok glitches prolonging the phase durations by various amount of

time, but not exhibiting any explainable distribution.

In Figure 5.6 we have also seen a portion of phases taking substantially longer time. Fig-

ure 5.7 shows these phases in greater detail. It can be seen that for the distributed system

configurations, majority of phases took below 800 ms, while the centralised system suffered 50%

of its long write phases being even longer than 800 ms.

5.4 Scalability

We will demonstrate the observed scalability of the proposed system by assesing the follow-

ing:

1. Dividing computation-intensive operation amongst nodes.

2. Increased throughput.
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Figura 5.6: Distribution of write phase durations.

5.4.1 Computation Sharing

In Section 5.3.2 we analysed write phase durations. Write phases can be further split into

following operations:

• Buffer Swap. Amount of time needed to process the buffer of incoming requests.

• Library Load. Time needed to load libraries from persistent storage into the Prolog engine.

• Aggregation. Time needed to group incoming requests into groups according to their

name/arity. This operation was necessary to improve persistent storage performance.

• Asserts. Time it took to actually assert incoming therms into Prolog engine.

• Persistent Store. Time it took to store the terms into the persistent storage.

Figure 5.8 shows the average durations of each of the aforementioned operations executed

during a write phase. It is clear that storing the incoming terms persistently took the largest

portion of time. 1- and 2-node took similarly average time of 110 ms for this operation. For

3-,4- and 5- node systems this operation took averagely 60, 58 and 50 ms respectively. This im-

provement can be contributed to the performance of the underlying distributed storage solution

when operating with 3 and more nodes. The second and third most time consuming operations

are asserts and library loads taking between 40 and 18 ms for 1-node and 5-node respectively.
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Figura 5.7: Examples of write phases lasting longer than 230 ms.

Figure 5.8 also shows how the average operation time decreases as the number of nodes is

increasing. This can be explained by the fact the workload was constant, and that the nodes

are splitting the computation needed to be done in order to handle the incoming write requests.

This is also the first manifestation of the scalability of our system.

5.4.2 Increased Throughput

Our initial motivation was to build a system that can handle workload exceeding the limits

of a conventional system. In order to evaluate if our system has this ability, we performed

another set of experiments with the larger (1.5M terms) data set.

First we attempted loading the dataset into the system using different inbound throughputs.
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Figura 5.8: Decomposition of write phase duration into separate tasks.

Figure 5.9 shows measured behaviour. The conclusions from these experiments are:

• 2-node system is already able to better handle the same throughput as the 1-node system

• 1-, 2- and 3-node systems crash once the amount of loaded terms in each node exceeds

total capacity of each node, but 2- and 3-node systems can hold twice and trice more

terms, respectively, than the 1-node system

• 4- and 5- node systems are able to hold 1,5M terms as expected

• 5-node system shows better performance than 4-node system in terms of phase duration

being below 100 ms due to less terms being placed on each node.

• 5-node system is able to handle excessive throughput provided the excess is only temporary.

• Constant excessive throughput is not sustainable as it would lead to inbound request buffer

overflow.

• The operations of all observed system exhibits occasional spikes that can be attributed to

Java’s garbage collection.

Once we have loaded 1.5M terms into the 5-node system, we initiated the consequent test of

observing how the system continues its operation. We loaded the system by inbound traffic of

4K operations per second consisting of equal distribution of reads and writes. Figure 5.10 shows
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(a) 1-Node system 4,000 op/s.
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(b) 2-Node system 4,000 op/s.
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(c) 5-Node system 9,000 op/s.

Figura 5.9: Increased throughput of different node configurations.
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Figura 5.10: Operation of the system under heavy load.

distribution of phase durations. It can be seen that despite the rather heavy load, the system

continues to operate with phase durations mostly influenced by the synchronisation overhead

explained in Ssection 5.3.

5.5 Load Distribution

The final aspect we evaluate in this work is the question of load distribution. We have

used two different data sets. Figure 5.11 shows how were the operations based on this data sets

distributed among the nodes in the system. The figure shows the load is distributed uniformly.

The exception are 2- and 3- node installations handling 1.5M data set. Because the input

terms were written in groups that did not follow the uniform distribution visible in 4- and 5-node

installations. Because the system ran out of memory, the groups that would balance the load

did not get written into the system.

Summary

In this chapter we evaluated the prototype of our proposed system. At first, we explained

the evaluation methodology being based on assessing distributed system against comparable cen-

tralised one. Then we examined what is the impact of overhead originating from the distributed
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Figura 5.11: Request distribution per node for both used data sets.

aspects of the system. Then we demonstrated scalability and uniform load distribution.

The observer results can be summarised as follows:

• Synchronisation is the main source of overhead, burdening every phase of the system with

25-110 ms of delay.

• Migrating computation causes tolerable delay.

• The proposed system can handle more load than the centralised system thanks to balanced

load distribution and consequent work-sharing.

• The proposed system effectively scales with more nodes being added.
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6Conclusions and Future

Work

6.1 Conclusions

In this thesis we attempted to develop a prototype of a conceptual system utilising reasoning

to facilitate application-level communication of devices connected to the Internet. The funda-

mental requirements for the system where the capacity to handle large knowledge bases and

high amount of concurrent clients. We tried to meet these requirements by designing and imple-

menting a prototype of ontology-based middleware offering distributed storage of the knowledge

base, and decentralised and collaborative execution of the reasoning algorithm.

Our approach was based on the idea of using strings obtained by concatenation of names

and arities of Prolog terms as the input for the hashing function of the underlying DHT imple-

mentation. This approach is able to split potentially large Prolog KB into disjoint parts while

keeping terms of same name and arity clustered. Grouping of terms by their names and arities is

native to Prolog, therefore this way of storage is well aligned with Prolog’s computation model.

As a consequence of the storage approach, the complete solution of one goal requires in-

volving multiple nodes in the computation. Here is where the second fundamental idea of this

thesis lies. Instead of transferring the terms needed for the computation we let the computation

”travel”to the terms, assuming the computation context needed to be transmitted is smaller

and therefore easier to be transmitted than the required data. The benefit resulting from this

computational model lies in gaining the ability to compute other solutions while not working on

the original one, thus allowing the execution of more concurrent solutions.

The designed architecture assumes phase-based operation that requires node synchronisa-

tion. The employed synchronisation mechanisms cause the distributed system to be about 50 ms

slower than the centralised system on a per-phase basis. The concept of migrating computation

causes overhead of averagely 138 ms to 56 ms for 2-node to 5-node installations of the sys-

tem respectively, therefore refuting the assumption that increased probability of migrating the
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computation would lead to increased solution durations. However, the write operations are not

burdened with the migration overhead and therefore exhibit faster execution times. Moreover,

the experiments also demonstrated scalability of the system in terms of its ability to handle more

inbound operations and larger volumes of data, when increasing number of nodes participating

in the system, while maintaining desired interactive responsiveness.

6.2 Future Work

The possible directions of the future work are numerous.

Parallel Prolog implementations, such as SICStus (Carlsson, Widen, Andersson, Andersson,

Boortz, Nilsson, & Sjöland 1988), offer different level of parallelism and concurrency. Therefore,

it can be investigated what are the ways of merging this approach with the one proposed in

this thesis. The main difficulty would lie in the fact that migrating computation often implies

interrupting the computation, what could effectively prevent any benefit from parallelizing the

solution within one node.

Another possible direction is extending the read phase functionality by caching of (partial)

results. This could improve the overall performance as it would limit the need of repeated goal

solving. Cached items can be used for implementing fault-tolerance as well. However, the main

problem would be maintaining the guarantee of obtaining consistent query solutions.

The current approach to ensuring consistency could also be revisited. The phase-based

operation requires excessive synchronisation. Finding a way of ensuring the consistency without

the synchronisation would remove the inevitable synchronisation overhead observed during the

evaluation of the proposed system.

Finally, it is also possible to improve the choice of input for the hashing function. With a

more sophisticated approach, it would be possible to store not only terms of the same name/arity,

but also terms that are close to each other in a Prolog rule at the same node. This would remove

the need to migrate the computation, especially if multiple hashing inputs would be combined

and used together, but has the potential to threaten the uniform load distribution.
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(1988). SICStus Prolog user’s manual, Volume 3. Swedish Institute of Computer Science.

Dean, J. & S. Ghemawat (2008). Mapreduce: simplified data processing on large clusters.

Communications of the ACM 51 (1), 107–113.

DeCandia, G., D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasub-

ramanian, P. Vosshall, & W. Vogels (2007). Dynamo: amazon’s highly available key-value

store. In ACM Symposium on Operating Systems Principles: Proceedings of twenty-first

ACM SIGOPS symposium on Operating systems principles, Volume 14, pp. 205–220.

Ericsson (2011, February). More than 50 billion connected devices. http://www.ericsson.

com/res/docs/whitepapers/wp-50-billions.pdf. Whitepaper.

Fang, Q., Y. Zhao, G. Yang, & W. Zheng (2008). Scalable distributed ontology reasoning

using dht-based partitioning. In The Semantic Web, pp. 91–105. Springer.

69
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