Energy4Cloud

Sergio Mendes
INESC-ID
Instituto Superior Tcnico

Abstract— The ever increasing size of data centers and their
energy demands brought the attention of the academia and
a panoply of research exists regarding this area, however the
problem persists. The emergence of containers brought new
opportunities and the advantages they provide, can, and should,
also be extended with energy concerns. Surprisingly, there is
still not much work with containers where energy is concerned.
To this end, we propose and implement an extension to
Dockers orchestrator, Docker Swarm, with an energy-efficient
scheduling algorithm, based on maximizing resources utilization
to levels where the energy efficiency is maximized. our solution
improved CPU utilization by 5.6 p.p and 8.2 p.p over Spread
and Binpack (Docker Swarm scheduling strategies) respectively,
and improved memory utilization by 15.8 p.p and 18.9 p.p over
the same strategies, during an one hour evaluation. Despite the
comparatively longer scheduling times w.r.t other approaches,
this is largely compensated due to the fact that our solution
manages to allocate more requests, having obtained a successful
allocation rate of 83.7% against 57.7% and 56.5% of Spread
and Binpack respectively.

I. INTRODUCTION

Hardware equipment throughout the years has been im-
proving and we can expect that trend to continue. Despite
this continuous improvement, the current hardware resources
cannot deal with the ever increasing data processed, which
consumes more and more hardware resources (e.g. Big Data
applications [1]) and with the emergence of Internet of
Things (IoT) [2] we can expect that even more resources
will be required.

A solution to the insufficient hardware resources was the
adoption of Cloud [3], which led to the creation of massive
data centers with tens of thousands or even more, servers.
However, as mentioned in the previous paragraph, due to
emerging trends, more hardware resources are going to be
required, consequentially increasing the size of data centers.

Besides operations costs, this increase will also reflect
on the energy consumed by these massive infrastructures,
which already consume a significant amount of energy,
incurring high costs for Cloud Service Providers (CSPs) [4].
This recent report [5] shows that data centers consumed
almost 416.2 terawatt hours of energy in 2015. These issues
bring the urgent need for energy-aware policies for cloud
environments [6].

On traditional cloud environments (e.g. data centers),
virtualization using Virtual Machines (VMs) [7], has been
extensively used to enhance resource utilization. This en-
hancement of resources provided by VMs, rose as an oppor-
tunity for many different solutions for improving the energy
efficiency and/or reducing energy consumption (e.g. VM
consolidation) to be proposed [8].

However, containers [9] have been proposed as an alter-
native to VMs to virtualize resources. Containers are more
lightweight than VMs, containing only the required appli-
cation binaries to run a specific process and nothing more,
not requiring a full guest Operating System (OS) instance.
Since they are significantly more lightweight than VMs, a
better resource utilization can be achieved using containers.
Achieving an even better resource utilization than VMs and
considering that VM energy-aware strategies already provide
a significant reduction on energy costs, containers are an
excellent opportunity to further increase this reduction.

Having energy concerns also has drawbacks that need to
be considered. There is always, at least, one tradeoff that is
inevitable. It can either be, longer time to schedule requests
or reduced Quality of Service (QoS), regarding response
times of the workloads that were scheduled. These tradeoffs
have to be mitigated.

Despite already existing many solutions for all these dif-
ferent challenges, the state-of-the-art regarding energy-aware
strategies for cloud environments mostly focus on using
VMs and not containers. In our research, we only managed
to find two works that takes both energy and containers
into consideration [10], [11]. The first has some limitations
due to the of usage computationally intensive computations
(through the use of X-means) which can be an overkill on
real cloud environments. The second work approach can
lead to hosts not serving any requests due to using a static
amount of hosts for profiling and others for long duration
requests. Therefore, if there are no requests to be profiled or
there are only short duration requests, those hosts will not
be used, wasting energy. Energy is also not considered on
the current platforms for managing containers (e.g. Docker
Swarm, Kubernetes). Their scheduling decisions, are not
energy-aware.

The lack of state-of-the-art approaches to schedule con-
tainers, taking into consideration such an important issue
as is energy, provides a good opportunity to contribute to
the literature with a solution that provides energy-aware
scheduling for containers on cloud environments. Thus,
we propose a scheduling algorithm that promotes energy
efficiency in the context of cloud environments, managed by
Docker containers, based on maximizing resource utilization
according to levels of energy efficiency, without violating
Service Level Agreements (SLAs). We have developed a
prototype of the solution in order to evaluate it in a realistic
environment. This evaluation was performed according to a
set of relevant metrics drawn from related work such as CPU
and Memory utilization over time, comparing with relevant

related systems.

This paper is organized as follows: Our research on the
related work about our proposal is described on Section 2.
Section 3 presents our proposed solution to accomplish the
objectives pro- posed on this Section. Section 4 details the
algorithms that support the proposed solutions. Section 5
presents how we evaluated our proposed solution and Section
6 concludes.

1I. RELATED WORK

As was mentioned on the previous section, our goal is to
optimize energy efficiency where containers are concerned.
In order to do so, some decisions have to be made, such
as which scheduling strategy to use. These decisions were
made based on our analysis of the related work.

The first important decision was deciding which container
technology to use. The two most mature open-source so-
lutions are Docker' and Rocket’ (or rkt). Due to being
daemon-less and not executing as root (as opposed to Docker
which the daemon runs as root), Rocket provides more secu-
rity guarantees than Docker. It is also simpler than Docker,
since Docker provides significantly more different features
such as Docker Compose®, in comparison with Rocket.
However this simplicity is also one of Rocket disadvantages,
since these extra features Docker provides can be useful in
different scenarios. Also, Rocket is still in the process of
maturation while Docker is already a stable solution, already
being deployed on production environments. For being more
mature, we chose Docker as the container technology.

To schedule containers on cloud environments, there are
three major orchestrator platforms: Mesos [12], Kubernetes*
and Docker Swarm®. From our study we can conclude that
Docker Swarm has the simplest architecture with just two
entities, manager nodes and worker nodes, while Kubernetes
has the more complex architecture having at least four
separate entities. Regarding scheduling, Kubernetes has the
simplest algorithm thanks to pods, which avoids the usage
of filters (by Docker Swarm) and constraints (By Mesos)
to co-relate similar containers. Docker Swarm is the less
robust only replicating manager nodes while Mesos with
Zookeeper and with health-checks provides a good reliability.
Finally Docker Swarm uses the standard Docker API which
simplifies the learning curve. None of the three solutions is
significantly better than the others, in fact, they only differ
on small aspects as could be seen by this brief analysis. We
chose Docker Swarm because it has the closest architecture
to the one we propose on the next section.

The last step is choosing a strategy for scheduling in an
energy efficient manner. As was already mentioned on the
previous section, we only managed to find two works that
schedule containers in an energy efficient manner. However,
VM strategies for scheduling VMs in an energy-efficient way

Uhttps://www.docker.com/
Zhttps://coreos.com/rkt/
3https://docs.docker.com/compose/overview/
“https://kubernetes.io/
Shttps://docs.docker.com/swarm/overview/

can be leveraged for containers since both VMs and contain-
ers serve similar purposes. A panoply of strategies exist [8]
but the most significant strategies are VM Placement [13],
Consolidation [14], Overbooking [15], Brownout [16] and
VM Sizing [10]. There is no single strategy better than all the
other and what should be used, depends on the environment
and the goals. Some might even be used together, e.g., DVFS
and VM Placement [17]. Of these strategies we opted for
an overbooking strategy, which consists on allocating more
resources beyond the hosts nominal capacity. The amount of
resources that are wasted due to fixed size requests imposed
by CSPs are a significant source of energy inefficiency,
therefore creating an opportunity for increasing the energy
efficiency by maximizing resource utilization. A report made
on the USA [18] shows that approximately 30% of the
servers on a data center are either idle or under-utilized,
highlighting even further how an overbooking approach can
be important to solve this important problem by being able
to allocate beyond the machine nominal capacity.

The other two works that perform energy-efficient schedul-
ing with containers use different approaches. The authors
in [10] use a VM Sizing approach. They propose finding
efficient VM sizes for hosting containers in such way that the
workload is executed with minimum wastage of resources.
The challenge is therefore finding an optimal size such that
applications have enough resources to be executed.

GenPack [11] uses a VM Consolidation and VM Place-
ment strategy. The authors propose a framework to schedule
containers extending Docker Swarm. The general idea is to
have the hosts divided into three distinct groups, which they
refer to as generations. The containers will run on each
generation depending on their resource profile. Containers
that have not been profiled before, i.e. whose workload is
unknown, are placed into the nursery generation for profiling
resources requirements and energy consumption. The hosts
in this generation are static, that is, regardless if they are
servicing containers or not, the hosts are always running.
Once those containers are fully profiled, the containers are
migrated to a host on the young generation based on resource
matching (if the host as enough resources host the container
and it also considers the properties and requirements of the
containers,e.g. if it is CPU intensive container). Hosts in this
generation are in charge of containers whose lifetime is short
and if the container lifetime surpasses a defined threshold, it
advances to the next generation, the old generation. On the
old generation, the containers are consolidated in such a way
that the minimum number of hosts are used. The amount
of hosts in this generation is also static as in the nursery
generation.

Next we will describe the architecture of our solution,
providing a high level view of it.

III. ARCHITECTURE

At high level our system consists of two components,
a manager and hosts, similarly to other Cloud scheduling
platforms like Docker Swarm. The process is depicted at
Fig.1. It starts by a client submitting a request, indicating

the request requirements. The request type refers to a service
(does not have a finite execution time, e.g. a web server) or
a job (if it has a finite execution time, e.g. calculating a
factorial). The image refers to what the container is going to
execute (e.g. an Apache web server). As for the classes, we
provide four classes for the client to choose:

- Class 1: No overbooking;

- Class 2: 120% overbooking;

- Class 3: 150% overbooking;

- Class 4: 200% overbooking;

Class 1 requests do not tolerate overbooking. These re-
quests must run on hosts that are not experiencing over-
booking. As for the other classes, they tolerate 1 - (100/re-
questClassValue) overbooking. As an example, for a class 3
request: 1(100/150) = 0.33, therefore these request classes
can run on hosts that have up to 33% more resources
allocated than its nominal capacity. After this process, the
Manager receives this information and according to it, among
all hosts, it selects the one which maximizes overall resource
utilization, allocating the request to it.

Cloud environment

_cBU Worker 1
- Memory

- Type

- Image
- Class

- Manager
Request

Client

AHocate requesr

\

Use case

Fig. 1.

1) System Architecture: Fig.2 describes the architecture
in more detail, the components inside the Manager and the
hosts, and how they interact with each other. Next is provided
a brief overview of each component.

Request
arrives

Manager

Host ||/

iy " Scheduler H

Worker N

Task
registry
Dacker

Worker 1

—
sk |

| registry ‘

Dacker

Monitor

Manitor

Fig. 2. System Architecture

Scheduler: The Scheduler is the first component the

request interacts with. This component is Docker Swarm,
which was extended to include our scheduling algorithm
which is presented on the next Section.

Host Registry: This component maintains general infor-
mation about the hosts (e.g. total resource utilization of
each host) on these data structures. This component is also
responsible for rescheduling tasks (sends them back to the
Scheduler) that are killed by the Scheduler and updating task
information when a cut is performed.

The cut means that we are decreasing the resources
assigned to that task. This is different from overbooking,
because overbooking affects all the tasks on a host, while
a cut affects a single task. This is useful for example,
imagining that in a class 1 host there is 2GB RAM available
and comes a class 4. request which requires 3 GB RAM, if
we put the request there, it would increase the overbooking
factor over 1 which is unacceptable on a class 1 host. But
if we cut it (e.g. to 2GB RAM), then we can fit it there
without bringing the overbooking factor over 1. The cut
is equal to the overbooking that a class tolerates, so, for
example, a class 2 task, would have its resources decreased
by 16%. Kills refer to tasks that are killed in order to allow
lower level classes to be allocated to the host. The main
purpose of resorting to kills is to avoid the hosts to reach
extremely high resource utilization levels which would reflect
in a degradation of energy efficiency.

Task Registry: This component contains more specific
information about each host (e.g. current tasks being served
by the host). It is also responsible for killing the tasks chosen
by our algorithm.

Monitor: In order to make the best scheduling decisions,
the Host Registry and the Task Registry must be constantly
updated. For this purpose, the Monitor is responsible for
measuring resource utilization on each host and each task,
and sending updated information to the Host Registry and
Task Registry.

To make decisions, besides the information regarding the
request, the Scheduler requires additional information about
the hosts. This is provided by the Host Registry and the Task
Registry. Information on the Host Registry is the first to be
considered, therefore being directly available at the Manager
to avoid communication overheads. However, more specific
information might be needed about what is running on each
host. When that is the case, the Scheduler will request that
information from the Task Registry of the host it requires
that additional information.

Besides requesting information, the Scheduler also sends
information to both registries. When a request is scheduled,
the Scheduler informs the Host Registry to which host the
request was scheduled and the corresponding request infor-
mation (resources requirements, request type and request
class). It also informs the Task Registry that a task was
just created sending the same information. Upon receiving
this information, each Registry will update its data structures
accordingly. Next we will see how these data structures are
built.

A. Key Data Structures

Our strategy for achieving better resource utilization and
consequently, better energy efficiency, is based on the study
performed by [19], which states that the energy consumed
is proportional to the resource utilization and that energy
efficiency starts degrading at high levels of resources utiliza-
tion. Based on this, we decided to have three regions which
map resource utilization (CPU and Memory) with energy
efficiency:

- Low Energy Efficiency (LEE): 0-50% total resources
utilization;

- Desired Energy Efficiency (DEE): 50-85% total re-
sources utilization;

- Energy Efficiency Degradation (EED): >85% total
resources utilization;

The LEE region refers to the region that has the lowest
energy efficiency, due to under-utilized resources. We want
to transit hosts on that region to the DEE region as quickly
as possible, where an optimal energy efficiency is achieved.
Our goal is to keep the hosts at region DEE, because heavily
used resources (hosts at region EED) have a negative impact
on the energy efficiency, increasing the energy consumption.

Host Registry: This component will maintain updated
lists containing the hosts at each of these regions. For each
region, we will have four lists, one for each overbooking
class. What defines a host class is the lowest level class task
currently running at that host.

The region a host belongs depends on the current total
resources utilization of the host. The total resources uti-
lization is represented as max{ % of CPU utilization, % of
memory utilization}, since the highest of these two values
is what is restraining more the utilization of the overall
host resources. The overbooking factor is the max {CPU
shares allocated/Total CPU shares, Memory allocated/Total
memory}. Again, we use the max because it is what is the
most restraining. As an example, if the overbooking factor
is 1.3, it means we have 30% more resources allocated on
that host than the total amount of resources of that host.

The lists on the regions LEE and DEE are ordered by
descending order of total resources utilization and EED by
ascending order. The hosts on the LEE region are ordered
by descending order, because the goal is to make the hosts
leave this region of energy inefficiency, bringing them up
to the the DEE region as quickly as possible. Therefore the
scheduling algorithm will try to schedule the requests on
the first elements of the list since they are closest to the
DEE region. Since the DEE region is the desired region for
hosts to be, we order its lists by descending order, to use
a best fit approach, i.e. put as much requests on a host to
maximize it but at same time avoid entering the EED region.
The EED list will only be used for kills as will be seen on
the next section. The hosts on that region are experiencing
high resource utilization, therefore we dont want them to be
receiving more requests which would only aggravate their
energy efficiency. What we want is to bring them down to
the DEE region, therefore we order the lists by ascending

order so that the first on the list is the closest to the DEE
region.

Task Registry: As mentioned earlier, the Task Registry
contains specific information about the tasks running on the
host. Per host, there will exist four lists, one per overbooking
class. The information of the Task Registry will only used for
the cut or kill algorithm. Since the objective is to maximize
resource utilization, priority is given to cutting or killing
tasks that are using less resources. To achieve this, Task
Registry data structures are ordered by ascending order of
their total utilization resources.

The next section presents the algorithms that leverages
these data structures.

IV. ALGORITHMS

There are three core algorithms. The first, tries to schedule
the request, taking some restrictions into consideration. How-
ever, if the request does not fit with the first algorithm, there
are two options, either cut or kill tasks in order for the request
to fit. We will also present the cut and kill algorithm but
first, we start by presenting the scheduling algorithm which
contains the first simple algorithm.

A. Scheduling algorithm

The goal of the scheduling Algorithm 1 is, first, to try
and schedule the request either in the LEE or in the DEE
region, without resorting to cuts or kills. It starts by getting
the hosts that are in the LEE region, then the hosts on the
DEE region are appended to that list (line 2). We prioritize
scheduling in the LEE region so that those hosts can leave
that region of energy inefficiency. Since the lists are ordered
by descending order of total resources utilization, as we saw
the previous section, the first elements of the lists are always
the best candidates in order to achieve the goals of the hosts
on each region.

Algorithm 1 Scheduling algorithm
1: function SCHEDULEREQUEST(r equest)
2: listHostsLEE DEE = getHostsLEE _DEE()
3 for listH ostsLEE _DEE as selectedH ost do
4 if requestF its(selectedH ost, request) then
5 allocateRequest(selectedH ost, request)
6: return
7
8
9

listHostsLEE DEE = getHostsLE _DEE()
if cut(listH ostsLEE _DEE, request) then
: allocateRequest(selectedH ost, request)
10: return

11: listHostsEED DEE = getHostsLEE DEE()
12: if kill(listH ostsEED DEE, request) then

13: allocateRequest(selectedH ost, request)

14: return

15: warnClient()

The hosts retrieved (line 2) must respect this condition:
request. CLASS = host Class and aggregate them by as-
cending order of the class. This is to try and aggregate class
1 requests so that they are not spread among the hosts, which

would cause more energy inefficiency since no overbooking
is allowed on class 1 hosts. The next step (line 4) is to
try and schedule the request. requestFits function checks if
the host has enough resources to couple with the resources
the request demands. It also checks, if after the allocation,
the overbooking allowed by the host is not violated (i.e.
overbooking factor < host class).

If the request cannot be scheduled in any of those hosts,
we must resort to cut or kill. We first try to cut. We do not
cut tasks on the region EED. Cutting a task and putting a
request there, it would increase the overbooking on that host,
worsening the decrease of energy efficiency that is already
felt by hosts on that region.

On line 7 a lists of hosts is fetched again. This time,
the hosts are aggregated differently than before. Here, the
lists are fetched respecting this condition: request. CLASS <
hostClass. We do not try to cut on class hosts that are bellow
the request class, because there, it will be unlikely that there
is something we can cut (because we only cut tasks that are
greater or equal than the incoming request). Like line 2, they
are also aggregated by classes, following an ascending order.

If we cannot cut anything to fit the request, our last chance
is to try and kill tasks in order to fit the request (line 11). On
line 10 the list of hosts on regions EED is obtained and we
append the hosts on region DEE. Priority is given to killing
tasks on region EED, because by killing tasks and assigning
a new request to it, we could bring that host back to the
DEE region. Since kill is our last resort to fit a request, all
the hosts on that region are considered regardless of their
class.

B. Cut and kill algorithm

Before explaining Algorithm 2, it is important to mention
some restrictions to cutting. We give priority to cutting
the incoming request rather than the already running tasks,
because cutting a task involves more overhead than cutting a
request, due to the updates that have to be performed at the
data structures. The following restrictions are due to the fact
that when combining overbooking and cutting, class SLAs
could be violated if these restrictions are not followed:

. Class 1 requests do not receive cuts;

- Class 2 requests can only receive a cut if they are

assigned to a class 1 host;

- Class 3 requests can receive a full cut if they are
assigned to a class 1 host. If they assigned to class 2
host, they can only receive a cut equal to: 33% (class
3 value) - 16% (class 2 value), i.e. 17%. They cannot
receive cuts for class 3 and 4 hosts;

- Class 4 requests can receive a full cut if they are
assigned to a class | host. If they are assigned to class
2 host, they can only receive a cut equal to: 50% (class
4 value) - 16% (class 2 value), i.e. 34%. If the task is
at a class 3 host then they can only receive a cut equal
to: 50% (class 4 value)- 33% (class 3 value), i.e. 17%.
They cannot receive cuts for class 4 hosts.

Having understood what a cut is, its restrictions and its

benefits, we can finally look into the Cut Algorithm. At

line 6 it starts by checking if the request fits considering
the same conditions as in Algorithm 1 at line 4. Although
this check is done at the previous algorithm, this is done
again because the selected hosts for the simple algorithm are
different from the hosts selected ones for the cut algorithm,
for the reasons stated on the previous section. Therefore, it
might be possible to allocate on these hosts without resorting
to cuts, thus avoiding cutting unnecessary tasks.

Algorithm 3.2 Cut algorithm

1: function cuT(list Hosls LEE_DEE, request)
2 for listHostsLEE_DEFE as selectedHost do

3 cul LIST = null

4 listT'asks = null

5

6: if request Fits(selected Host, request) then

7 returnirue

8 if request.CLASS = 1 and afterCut Request Fits(selected H ost, request) then
o: new Request = cut Request(request)

10: return true
11: else if request. CLASS > selectedHost.CLASS then
12: continue

14; if selecledHosl.CLASS >= requesl.CLASS and requesl.CLASS '= 4 then
15: lislTasks = gel LisiTasks HigherThan RequestClass()

16: else if request. CLASS =1 then

17: listTasks = getListTasksEqual HigherThan RequestClass()

18:

19: memoryReduction = 0

20: cpuReduction = 0

21:

22: for listTasks as lask do

23: epuReduction+ = task.CPU * task.CutToReceive

24 memory Reduction+ = memory.C PU * lask.CulToReceive

25 cut LIST. Append(task)

26 if fitsAfterCUT (request, cpulleduction, memoryReduction) then
27: cut Requests(request, cut LIST)

28: return true

29 end for

30 end for

31 return false

If this first check fails, the next step is to try to fit the
request by cutting it and checking if it fits (line 9). If it does
fit, then the request is cut (line 10) and allocated to that host.
Otherwise, if the request class is higher than the host class
(line 13), it continues to the next host because it is not worth
to cut at this host. This is the case because, if the request
class is higher than the host class, then it is likely that this
host contains a majority of tasks that are below the request
class therefore not being worth the time searching this host
for tasks to cut.

As was explained previously, the request can only be cut
if the host class is lower than the request class. For the same
reason, tasks can only be cut if their classes are lower than
the host class. Therefore, if the host class is greater or equal
than the request, only tasks whose class is higher than the
request can be cut (lines 16 and 17).

A check is also performed for class 4 requests because
there are no tasks higher than class 4. Otherwise, we are safe
to cut classes equal or higher than the incoming request, if
it is not a class 1 request, because we cannot cut class 1
requests (lines 18 and 19)

When the list of tasks from the Task Registry (lines 17 or
19) is retrieved, the lower classes are appended to the higher
ones, so that it attempts to cut from the higher classes first.
Since the list is ordered by total resources utilization and
by class, the first of the list is the best candidate for a cut.

Line 28 checks if the request fits taking into consideration
the overbooking restrictions described earlier. The tasks are
checked iteratively until the request fits or does not fit at
all, trying the next host. This is done iteratively instead of
checking all of them at once, to avoid cutting unnecessary
tasks. To reduce the amount of tasks the Scheduler needs
to check for a request to fit, the Task Registry only sends
the tasks that respect the cut restrictions. If one reaches line
34, it means that we cannot cut enough tasks at any host to
allocate this request, therefore we must try to kill tasks to fit
this request.

Regarding the kill algorithm, its rationale is very similar
to the cut algorithm except for some cases. Only tasks with a
higher class than the request can be killed. This provides the
opportunity to co-locate similar task classes, leaving other
hosts to be able to have more overbooking, increasing the
overall energy efficiency. However, class 4 tasks that are
services, since they are most likely not to be utilizing their
resources fully, we decided to kill them if the request is a
job, that is more likely to use the resources more efficiently
than a service. Killed tasks are rescheduled to other hosts. If
after checking all hosts the request does not fit in any, then
it cannot be allocated and we warn the client.

V. IMPLEMENTATION

In Section 3 we saw how our solution was designed and
why, at a higher level of abstraction. In this section we will
go to a lower level of abstraction,looking at how the system
is setup and the components implemented.

A. System setup

In order to start containers on remote hosts, Docker Swarm
uses a discovery service. Docker Swarm provides a de-
fault discovery service but also supports different discovery
services, such as key-value stores or DNS. The default
discovery service requires constant communications with the
Docker Hub®, which is a slow process when compared to
using a local discovery service without requiring external
connections. We decided to use a key-value store discovery
service for this purpose, Consul’, for being simple to learn
and having a good integration with Docker Swarm.

Next we will go a little deeper into the components to
understand how they are implemented.

B. Components

The Host Registry is responsible for many different con-
current tasks, making it susceptible to bottlenecks and having
inconsistencies within its data structures. The Task Registry
is more lightweight, although it also deals with changes
within its data structures. Both solutions that we found for
these problems are applied at both registries in a similar
way, therefore we present them both together at this section.
However there are some differences that are highlighted
when relevant.

Shttps://hub.docker.com/
7https://www.consul.io/

Sorting: The constant insertions could result in bottlenecks
and scalability problems since the data structures will grow
very large in real cloud deployments. Therefore a quick, but
simple insertion algorithm is required.

Binary search [20] is a common and simple algorithm
used to find elements in a list with O(log N) complexity.
We decided to adapt this algorithm to, instead of searching
for an element, to search for an index position indicating the
place we want to insert.

Data structures implementation: Now we are going to
look in more detail at how the data structures are actually
implemented, with the goal of achieving the fastest insertion,
deletion and updating times. For both registries the rationale
is the same with only slight differences.

As seen on Section 3, at the Host Registry, each region
will have 4 lists, one for each overbooking class. For a quick
access, each region will be accessed through a map (e.g.
names regions) where the key is a string with the region
(LEE, DEE or EED) and the value is a struct (similar to
C++ structs, there are no classes in Go, which is the language
Docker Swarm is implemented) as follows:
struct {
classHosts map[string] [
}

ClassHosts is another map whose key is a string with the
host class (1, 2, 3 or 4) and the value is a pointer to a
slice® of a Host struct. This struct contains all the information
regarding a host (e.g. IP).

These maps grant a very quick access to the hosts we
want to access, useful for example, when the Scheduler
asks for lists of hosts with restrictions about region and
class. As an example, if we want to access all the class
3 hosts at region EED, we simply use the following: re-
gions[EED].classHosts[3]. However, this approach is very
inefficient if we want to access a single host. To solve this
problem we decided to create another map (e.g. named hosts)
with the host IP as key (since it is unique) and as a value, we
use a pointer to a Host struct, the same Host struct as above.
To access a host cpu utilization and update it we can now
simply use: hosts[193.146.164.10].CpuUtilization=0.23.

Using this approach also increases concurrency, conse-
quently increasing overall performance. If we did not use
a separate map (hosts) to access hosts in a single fashion, in
order to make an update to a host, besides iterating through
all hosts within the regions map, we would also have to lock
that map in order to ensure it remains consistent, allowing
only one host to be updated at a time which has severe
performance implications. The same rationale is used to
implement the data structures on the Task Registry.

Synchronization: The data structures need to remain
consistent despite the concurrent changes. To accomplish
this, we defined fine-grained locks so the data structures
locked are the minimum to have everything consistent.

To achieve these fine-grained locks mentioned in the
previous paragraph, we resort to maps and structs again.

] *Host

Shttps://blog.golang.org/go-slices-usage-and-internals

There is a map (e.g. named mapLocks) with a string key
representing the host class (LEE, DEE or EED) and as a
value the following Lock struct is used:

struct

classHosts map[string]*sync.Mutex

lockRegion *sync.Mutex

}

Using the above struct, we can have more coarse-grained
locks (using lockRegion) by locking at region level if
required, or more fine-grained locks by locking at class
level through the classHosts map, whose key is a string
representing the host class (1,2,3 or 4) and the value is Go
internal lock.

The Task Registry uses the exactly same procedure for
synchronization but since it has simpler data structures, it
uses a single map (e.g. named lockTasks) with a string key
representing the task class (1,2,3 or 4) and as a value Go
internal lock. So in order to lock access to class 4 tasks for
example, we use: classTasks[4].Lock().

To finish the components implementation description, we
are going to describe how the Monitor measures resource
utilization and how it decides when to send an update to the
Host Registry or the Task Registry.

Host resources monitoring: Every 3 seconds samples
are collected. After 30 seconds, we average all the samples
collected during that interval and use those values (CPU and
memory) to check if an update should be sent.

In order for the update to be sent to the Host Registry,
a condition must be verified. The difference (either CPU
or memory) between the last update sent and the current
measurement must be higher than a threshold. The threshold
is defined at 10 p.p.

To collect resource usage information we use System
Information Gatherer And Reporter (Sigar)®. It provides a
simple and efficient way to access OS/hardware information.

Tasks resource monitoring: The rationale behind tasks
resource monitoring is the same as of the host monitoring,
except that the time between measurements is 45 seconds
instead of 30. We increased the value because tasks resource
utilization is not as volatile as the hosts resources utilization.
We leverage Docker built-in command, stats!?, to get CPU
and memory utilization of each task.

VI. EVALUATION

This chapter describes the experiments carried out to
evaluate the proposed solution against the two Docker Swarm
scheduling algorithms, spread and binpack. We start by
describing how the evaluation was carried out, followed by
its results.

A. Experimental setup

Evaluating cloud solutions, in order to be realistic, requires
thousands of machines. Unfortunately, for academic pur-
poses, these amounts are normally not available to students,
which have to resort to simulation. However, simulations

“https://github.com/hyperic/sigar
10https://docs.docker.com/engine/reference/commandline/stats/

have many drawbacks, such as being in closed, safe envi-
ronments not susceptible to noise as in real deployments,
therefore not producing realistic results. Since the proposed
solution is focused on cloud environments, susceptible to
different kinds of disturbances, we decided not to use simu-
lation, instead making a real deployment.

Our prototype was deployed 6 hosts only, provided by
INESC-ID!!. These hosts are powered by an Intel Core
i7-2600K CPU @3.40GZ, 11926 MB RAM and HDD
7200RPM SATA 6GB/s 32MB cache. One host served as
the Manager and the remaining hosts served as workers,
executing clients requests.

Due to the lack of tools to benchmark Docker Swarm
scheduling decision quality, we only managed to find bench-
mark tools to evaluate scheduling speed, we had to create
our own custom workload and extensions to collect metrics.

Our evaluations lasted one hour in order to have as much
variability as possible and three evaluations were executed
for each solution. The workloads generated were saved and
used on all attempts on the different scheduling algorithms
so that they were tested with the same conditions.The fol-
lowing requirements for each workload was generated: CPU
requirement; Memory requirement; Request makespan;
Workload type; Request rate; Request class.

CPU and memory requirements are generated using an
exponential distribution. We decided to use an exponential
distribution since it provides a good variability. The number
generated by the exponential distribution was mapped to a
CPU and memory value. For CPU, the minimum value de-
pends if it was a service or a job. If it was job, the minimum
CPU assigned is 204 CPU shares (equal to approximately
20% of a single core utilization). If it was a service, the
minimum CPU shares was 2, because services do not require
as much CPU as jobs. As for the maximum, it was 1024 CPU
shares (equal to 100% of a core utilization). For Memory
requirements, the limits are the same for jobs and services,
the minimum was 256 MB and maximum was 2GB.

The request makespan was also generated by the ex-
ponential distribution. This makespan was used to control
workloads lifetime. Since the evaluations lasted one hour,
we needed to limit the duration of the workloads so that new
requests could be scheduled. After this makespan elapsed, the
task was terminated. The minimum value was 30 seconds and
the maximum was 30 minutes.

The workload type was chosen randomly between four
types of workloads that we have selected. For each of
these applications types, we have selected real and pop-
ular Docker applications (with the exception of the non-
intensive), in order to be representative of each type. The
types and respective application used for that type were
the following: FFMPEG'? is the CPU-intensive workload, a
video encoding application. We used Redis'® as the memory
intensive application which is an in-memory key/value store.

Uhitps:/iwww.inesc-id.pt/
2https://hub.docker.com/t/jrottenberg/ffmpeg/
Bhttps://hub.docker.com/t/redis/

For the CPU and memory intensive, we have chosen a Deep-
learning'# application, where a neural network is trained to
zoom in images. Finally for the non-intensive application,
we created a Docker application called Timeserver!> which
simply returns the time when requested.

The last thing to be generated was the request class. We
give more probability for classes 2 and 3 (30% and 45%
chance respectively) because we believe that these would be
the most used in a real situation. Class 4 (15% chance) since
it has a big depreciation, it would be less used than classes 2
and 3, however in our view, it would still be more used than
class 1 requests (10% chance) due to the lack of benefits (in
terms of compensation) this class provides.

‘We compared our solution with our competitors using the
following metrics: scheduling speed; failed/successful allo-
cations; resource utilization (CPU and Memory) through-
out the experiment;job makespans;services response times.
We also did an individual evaluation to our solution, to see
how much it resorts to cuts and Kills, as well as how much
CPU and memory was cut.

Sending all requests at once is not realistic so we decided
to send two requests per second to the Manager. We kept
sending requests until a memory or CPU limit was reached.
The full memory capacity of the 5 hosts combined is roughly
60GB and the full CPU capacity is 40970 CPU shares. We
defined the limit as being 50% (i.e. 200% overbooking) more
than the full capacity. So the limit is 90GB for Memory and
61440 CPU shares for CPU.

Now that we have seen how the traces are generated, which
metrics are used and how the evaluation is executed, the next
section presents the results of the evaluations carried out.

B. Evaluation results

We will see that our solution allows significantly more
requests to be allocated, achieving an overall better resources
utilization. A natural and unavoidable tradeoff of our solution
is a comparatively slower scheduling speed to the other
solutions, these differences will be exposed. A possible
consequence of overbooking could be that jobs or services,
can take longer times to finish or to respond, respectively.
We will see if this is the case in our solution. To finish,
the cuts/kill ratio is presented and we will see how they are
useful, especially the cuts, in order to increase the amount
of requests that can be allocated.

Successful and failed allocations: The results obtained for
the successful and failed allocations are presented at Table
1. We can quickly see that our solution (named Energy) has
a significantly higher success rate than the two solutions
provided by Docker Swarm. By having such high fail rates,
the other solutions would require more machines than our
solution does, consequently using more energy. We can also
see that our solution deals with less requests than the other
two approaches, in an one hour evaluation. This derives from
the fact that our algorithm is comparatively slower than the

14https://hub.docker.com/r/alexjc/neural-enhance/
I5https://hub.docker.com/r/sergiomendes/timeserver

Successful allocations | Failed allocations | Success rate | Failure rate
Spread 1229 904 57.7% 42.3%
Binpack | 1256 967 56.5% 43.5%
Energy 1404 274 83.7% 16.3%
TABLE I

SUCCESSFUL AND FAILED ALLOCATIONS

other solutions, due to our solution keeping the resources
almost fully utilized for a longer period of time as will be
seen afterwards.

This tradeoff is compensated by the high success rate
and higher absolute value of successful allocations, since it
managed to successfully allocate more requests than both
solutions, despite dealing with less requests than those so-
lutions. As will be seen later these values would be lower
if more machines were added as can be extrapolated by the
data presented on that Section.

Resources utilization: By looking at the graph at Fig.4,
which represents the average CPU utilization of the worker
hosts throughout the evaluation, we can see that our solution
(Energy) achieves an overall better CPU utilization. We can
see that our solution (green line) is more consistent than the
other two, fluctuating most of the time between 75% and
88%. The Binpack solution (blue line) is most of the time
bellow 80%. Spread (orange line) is better than Binpack, but
worse than our solution, most of the time it is bellow the
green line, with some exceptions.

120

CPU usage (%)

0 10 20 30 40 50 60

Elapsed time (minutes)

- Spread Binpack Energy

Fig. 3. Average hosts CPU utilization of each solution

Despite Spread and Binpack having the resources fully
allocated, since they are not being used 100% of the time,
this resource inefficiency happens. This is even more salient
in real life scenarios, where clients after ask for much more
resources than they actually need. This clearly indicates that
more resources could be allocated to some of the hosts to
make them more efficient. This is illustrated by the results
of our solution, where most of the time, the hosts have more
than 70% resource utilization.

Memory: Again, our solution presents better results than
the existing solutions provided by Docker Swarm. The other
solutions never surpass the 60% mark. Our solution achieves

Average CPU utilization | Average Memory utilization
Spread 74.9% 39.9%
Binpack | 72.3% 36.8%
Energy 80.5% 55.7%

TABLE II
AVERAGE CPU AND MEMORY UTILIZATIONS

it constantly throughout the whole evaluation as can be seen
on Fig.4.

100

80

40

Memory usage (%)

20

0 10 20 30 40 50 60

Elapsed time (minutes)

Energy Spread Binpack

Fig. 4. Average hosts memory utilization of each solution

Despite being more inconsistent than CPU, our solution
provides bigger improvements regarding memory utilization
over CPU utilization as can be seen by at Table II. We can see
at this table that our solutions provides a 5.6 p.p improvement
over Spread and 8.2 p.p over Binpack, regarding CPU
utilization. The memory utilization improvement is much
more significant, achieving an improvement of 15.8 p.p over
Spread and 18.9 p.p over Binpack.

Scheduling delays: The significant improvements ana-
lyzed previously, unfortunately, do not come without a price.
This section presents the results regarding the scheduling
delays, i.e. the time to schedule requests.

Table III presents a summary about the time it takes
to schedule a request on each solution. By looking at the
average values, as expected, our solution performs worse
than Spread and Binpack. Despite being more complex, our
solution is only slightly slower when the system has more
resources free, has can be seen by the 50th percentile at 0-5,
25-30 and 50-55. This last note shows that this scheduling
delay can be decreased if more machines are added. For
the remaining elapsed time, the 50th percentile oscillated
between 735.23 and 2190.91 seconds.

Response times: Now we will see that despite allocating
more requests as was seen previously, our solution is close
to our competitors response times.

Table 3 presents the response times obtained for each type
of workload used. Redis - 20 indicates that a request rate
of 20 to access Redis was used, the same applies for the
following columns.

For the CPU-intensive workloads, FFMPEG, we can see
that our solution has a better average time than the other

Solution (ms)
/ Elapsed time | Spread Binpack Energy
(minutes)
Average: 2904,87 | Average: 5278.21 | Average: 18469.96
0-5 50th: 9.90 50th: 10.19 50th: 11.94
90th: 10002,95 90th: 18696.95 90th: 72720.68
99th: 22974,34 99th: 27176.24 99th: 128048.71
Average: 5720.68 | Average: 5720.68 | Average: 33644.27
1520 50th: 9.64 50th: 9.64 50th: 838.11
90th: 16972,52 90th: 16972,52 90th: 121751.3
99th: 68623.37 99th: 68623.37 99th: 169663.67
Average: 4281.98 | Average: 4368.09 | Average: 33264.4
2530 50th: 10.49 50th: 10.09 350th: 15.31
90th: 14833.28 90th: 18108.94 90th: 13997.85
99th: 33677.65 99th: 28256.79 99th: 202526.65
Average: 4685.35 | Average: 6079.21 | Average: 23251.23
50-55 50th: 10.35 50th: 9.73 50th: 13.7
90th: 14950.33 90th: 22136.46 990th: 19237.15
99th: 51035.95 99th: 51136.6 99th: 223237.94

TABLE III
TIME TO SCHEDULE REQUESTS

two, although it has a higher 50th percentile compared
with Binpack. For the CPU/Mem intensive workloads, Deep-
learning, we can see that our solution no longer has the
best results, but is still better than Spread (better average
and 75th percentile results). This decrease in performance
compared with Binpack and Spread for this type of workload
is unavoidable, because we have significantly more memory
utilization rates than the other solutions.

Next we have the Redis results, the memory-intensive
workload. Redis produced some unstable results as can be
seen by the fact that Redis-80, for Binpack, has better results
than Redis-40 and Redis-20, which should not be the case,
since Redis-80 is twice the request rate of Redis-40, and
four times Redis-20. We assume that our solution here would
achieve worse times than the other solutions because of what
was seen with CPU/Mem-intensive workloads due to the
memory impact, potentially worsening as the request rates
increased.

Finally we have the non-intensive workloads, the Time-
server. Here our solution performs slightly worse than the
other solutions at all requests rates.

Cuts and kills: A total of 636 cuts were performed
throughout the evaluation. This resulted in 112736 CPU
shares and 189.3919 GB memory being cut. These values
are the reason why we achieved such a high allocation
successful rate. If we resorted only to overbooking such as
other approaches in the literature, the successful allocation
would be lower because 112736 CPU shares and 189.3919
GB memory could not have been allocated.

Kills also play and important role, avoiding the hosts
from entering extremely high utilization values. Only 202
kills (14,4% of the successfully allocated requests) were
executed throughout the experiment. Even if those 202 tasks
that were killed could not be successfully rescheduled and
if we considered them as not being allocated, we would still
have a higher successful allocation rate than Docker Swarms
solutions.

g‘;‘;:i‘il;?d (ms) / FFMPEG Deep-learning Redis - 20 Redis - 40 Redis - 80 Timeserver - 20 | Timeserver - 40 | Timeserver - 80
Average: 333.43 | Average: 151.41 | Average: 480.53 | Average: 560.48 | Average: 455.08 | Average: 1126.04 | Average: 2193.75 | Average: 3460.5
Spread 50th: 273 50th: 140 50th: 115 50th: 168 50th: 322 50th: 800 50th: 1645 50th: 3208
75th: 485 75th: 177 75th: 587 75th: 619.5 75th: 880 75th: 944 75th: 2513.25 75th: 3477.25
Average: 266.51 | Average: 146.76 | Average: 365.28 | Average: 33591 | Average: 239.4 Average: 1475.67 | Average: 2380.2 Average: 3544.22
Binpack 50th: 189.5 50th: 137 50th: 166 50th: 197 50th: 244 50th: 818 50th: 1669 50th: 3196
75th: 402.5 75th: 163.5 75th: 413 75th: 220 75th: 284 75th: 1126.75 75th: 2047 75th: 3477.25
Average: 250.87 | Average: 149.56 | Average: 313.2 Average: 393.67 | Average: 436.14 | Average: 1727 Average: 2547.48 | Average: 3570.33
Energy 50th: 199 50th: 140 50th: 247 50th: 149 50th: 276 50th: 804 50th: 1768 50th: 3332
75th: 367 75th: 171 75th: 393 75th: 528 75th: 242 75th: 1315 75th: 2817 75th: 3782
TABLE IV

RESPONSE TIMES

VII. CONCLUSION

Despite all the effort done by academia, the problem of
energy consumption in data centers persists and needs to be
addressed. In this work we started by identifying the current
solutions that exist and their challenges, in order to identify
opportunities so that we can contribute to the literature. Due
to the lack of work regarding containers, we defined our
objective, develop an energy-efficient scheduling algorithm
using Docker.

The analysis of the related work enabled us to make
our design choices, choosing Docker as container platform,
Docker Swarm as the orchestration platform and overbook-
ing as the strategy to achieve the proposed goal of this
thesis. Due to the simplicity of Docker Swarm scheduling
algorithms, simply applying an overbooking strategy would
be enough to achieve better results. However, we decided
to go further than this, proposing the cut concept. The cut
combines perfectly with the overbooking strategy, although
some concerns have to be taken into consideration as was
seen, to avoid prejudicing the clients. The kill algorithm
demonstrated its potential in keeping the system resources
balanced, avoiding global SLA violations.

The results obtained in the evaluation revealed that there
are many allocated resources wasted due to not being fully
utilized. These results highlight the opportunity for applying
an overbooking strategy and this thesis shows that it is
possible to push further the allocated resources, achieving
a better energy efficiency, using less machines, which itself
allows for more energy savings.

REFERENCES

[1] C. L. Philip Chen and C. Y. Zhang, “Data-intensive applications,
challenges, techniques and technologies: A survey on Big Data,”
Information Sciences, vol. 275, pp. 314-347, 2014.

A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of
Cloud computing and Internet of Things: A survey,” Future Generation
Computer Systems, vol. 56, pp. 684-700, 2016.

M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson, and A. Rabkin, “A view
of cloud computing,” Communications of the ACM, vol. 53, no. 4,
p- 50, 2010.

W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet,
and P. Demeester, “Trends in worldwide ICT electricity consumption
from 2007 to 2012,” Computer Communications, vol. 50, no. 0, pp.

[2]

3]

[4]

64-76, 2014.

[S] T. Bawden, “Global warming: Data centres to consume
three times as much energy in next decade,
experts warn,” Independent, 2016. [Online]. Available:

[6]

(7]
(8]

[l

[10]

[11]

10 (12

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

http://www.independent.co.uk/environment/global-warming-data-
centres-to-consume-three-times-as-much-energy-in-next-decade-
experts-warn-a6830086.html

T. Kaur and I. Chana, “Energy Efficiency Techniques in
Cloud Computing: A Survey and Taxonomy,” ACM Computing
Surveys, vol. 48, no. 2, pp. 1-46, 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2830539.2742488

J. E. Smith and R. Nair, “The architecture of virtual machines,”
Computer, vol. 38, no. 5, pp. 32-38, 2005.

S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “A
Survey and Taxonomy of Energy Efficient Resource Management
Techniques in Platform as a Service Cloud,” |Gl Global, pp. 410—
454, 2016.

S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” ACM S GOPS Operating
Systems Review, vol. 41, no. 3, p. 275, 2007.

S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya,
“Efficient Virtual Machine Sizing for Hosting Containers as a Service,”
Proceedings - 2015 IEEE World Congress on Services, SERVICES
2015, pp. 31-38, 2015.

A. Havet, V. Schiavoni, P. Felber, M. Colmant, R. Rouvoy, and
C. Fetzer, “GENPACK: A generational scheduler for cloud data
centers,” Proceedings - 2017 IEEE International Conference on Cloud
Engineering, IC2E 2017, pp. 95-104, 2017.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center,” Proceedings of the 8th
USENIX conference on Networked systems design and implementation,
pp. 295-308, 2011.

M. H. Kabir, G. C. Shoja, and S. Ganti, “VM Placement Algorithms
for Hierarchical Cloud Infrastructure,” 2014 |EEE 6th International
Conference on Cloud Computing Technology and Science, pp. 656—
659, 2014.

A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in Cloud data centers,” Concurrency
Computation Practice and Experience, vol. 24, no. 13, pp. 1397-1420,
2012.

J. Tordsson, L. Tom, L. Tomas, and J. Tordsson, “An Autonomic Ap-
proach to Risk-Aware Data Center Overbooking,” |EEE Transactions
on Cloud Computing, vol. 2, no. 3, pp. 292-305, 2014.

M. Xu, A. V. Dastjerdi, and R. Buyya, “Energy Efficient Scheduling of
Cloud Application Components with Brownout,” CoRR, no. August,
2016.

W. Huang, Z. Wang, M. Dong, and Z. Qian, “A Two-Tier Energy-
Aware Resource Management for Virtualized Cloud Computing Sys-
tem,” Scientific Programming, vol. 2016, 2016.

A. Shehabi, S. J. Smith, D. A. Sartor, R. E. Brown, M. Herrlin, J. G.
Koomey, E. R. Masanet, N. Horner, I. L. Azevedo, and W. Lintner,
“United States Data Center Energy Usage Report,” Lawrence ..., no.
June, 2016. [Online]. Available: https://eta.Ibl.gov/publications/united-
states-data-center-energy

L. Sharifi, N. Rameshan, F. Freitag, and L. Veiga, “Energy efficiency
dilemma: P2P-cloud vs. Datacenter,” Proceedings of the International
Conference on Cloud Computing Technology and Science, CloudCom,
vol. 2015-Febru, no. February, pp. 611-619, 2015.

D. Knuth, The Art of Computer Programming. Addison-Wesley, 1971.

