TECNICO
LISBOA

Energy4Cloud - Energy-aware Scheduling with Docker
Containers

Sérgio da Silva Mendes

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Luis Manuel Antunes Veiga
Co advisor: José Simao

Examination Committee

Chairperson: Prof. Ana Teresa Correia de Freitas
Supervisor: Prof. Luis Manuel Antunes Veiga
Members of the Committee: Prof. Nuno Filipe Valentim Roma

November 2017

Acknowledgments

| would like to say a special appreciation note professor Luis Veiga for all the enthusiasm, dedication
and help provided throughout the thesis development. This thesis would not be the same without his
advisory. A special thanks to Sérgio Esteves for the help and comprehension provided throughout the
implementation of my thesis. Another special thanks to José Siméo for all the support and availability to
provide assistance throughout the thesis. A final note to thank my family and friends for all the support
provided.

Abstract

The ever increasing size of data centers and their energy demands brought the attention of the academia
and a panoply of research exists regarding this area, however the problem persists. The emergence of
containers brought new opportunities and the advantages they provide, can, and should, also be ex-
tended with energy concerns. Surprisingly, there is still not much work with containers where energy
is concerned. To this end, in this thesis, a thorough analysis is performed on the state-of-art regard-
ing the different types of containers, OS and application containers, their orchestrators, as well as the
approaches that have been proposed by the literature to improve the energy efficiency on cloud environ-
ments, energy-aware mechanisms and strategies.

Having analyzed the different container platforms, the different orchestrators and the different strate-
gies to optimize energy efficiency, this thesis proposes an extension to Docker’s orchestrator, Docker
Swarm, with an energy-efficient scheduling algorithm, based on maximizing resources utilization to lev-
els where the energy efficiency is maximized. This solution improved CPU utilization by 5.6 p.p and 8.2
p.p over Spread and Binpack (Docker Swarm strategies) respectively, and improved memory utilization
by 15.8 p.p and 18.9 p.p over the same strategies, during an one hour evaluation. Despite the compar-
atively longer scheduling times w.r.t other approaches, this is largely compensated due to the fact that
our solution manages to allocate more requests, having obtained a successful allocation rate of 83.7%
against 57.7% and 56.5% of Spread and Binpack respectively.

Resumo

O tamanho cada vez maior dos centros de dados e as suas necessidades energéticas chamou a
atencao do mundo académico e existe uma pandplia de pesquisa sobre essa area, no entanto, o prob-
lema persiste. O aparecimento de containers trouxe novas oportunidades e as vantagens que eles
fornecem, pode, e deve, também ser extendido com preocupacgoes energéticas. Surpreendentemente,
ainda nao existe muito trabalho relativamente a preocupacgdes energéticas com containers. Para este
fim, nesta tese, € feita uma andlise minuciosa ao estado da arte em relagédo aos diferentes tipos de con-
tainers, OS e application containers, e os seus orquestradores, bem como as abordagens que foram
propostas pela literatura para melhorar a eficiéncia energética em ambientes em nlvem, mecanismos
e estratégias que melhorem a eficiéncia energética.

Tendo analisado as diferentes plataformas de containers, os diferentes orquestradores e as difer-
entes estratégias para otimizar a eficiéncia energética, esta tese propde uma extensao ao orquestrador
do Docker, Docker Swarm, com um algoritmo de escalonamento eficiente energéticamente, com base
na maximizagdo da utilizagao de recursos em niveis onde a eficiéncia energética € maximizada. Esta
solucao melhorou a utilizagao de CPU em 5.6 p.p e 8.2 p.p sobre o Spread e Binpack (estratégias de
escalonamento do Docker Swarm) respetivamente, e melhorou a utilizagdo da meméria por 15.8 p.p e
18.9 p.p sobre as mesmas estratégias, durante uma avaliagdo de uma hora. Apesar dos tempos de
escalonamento serem comparativamente superiores as outras abordagens, isso € amplamente com-
pensado pelo facto de que a nossa solugao consegue alocar mais pedidos tendo obtido uma taxa de

sucesso de 83.7% contra 55.7% e 56.5% do Spread e Binpack respetivamente.

Keywords

Cloud; Energy efficiency; Scheduling; Docker; Containers; Resource utilization; Resource monitoring;

Palavras Chave

Cloud; Eficiéncia energética; Escalonamento; Docker; Containers; Utilizacao de recursos; Monitorizagao

de recursos.

Contents

1 Introduction 2
1.1 Currentsolutions o e e e 3
1.2 Challenges e e e e e 3
1.3 Objectives o e e e 4
1.4 Contributions L e e e 5
1.5 Documentroadmap e e e 5

2 Related work 6
2.1 From Componentsto Containers e e 6

2.1.1 Components e e e e e e e 6
2.1.2 Containers e e e e 8
2.1.3 Orchestration platforms e 12
2.2 ENergy-awarenessS v i i e e e e e e e e e e e e e e e e e e 16
2.21 Energy Mechanisms e e 16
2.2.2 Energy-aware optimization strategieso oo oL 19
2.3 Related Relevant Systems e e e 23
2.3.1 Energy Mechanisms e e 23
2.3.2 Energy-aware optimization strategies o L o oL 26

3 Proposed solution 33
3.1 USeCase i 33
3.2 Architecture L e e 34

3.2.1 Components e e e 35
3.2.2 Componentsinteraction e 36
3.3 Datastructures e 38
3.3.1 HostRegistry e e e 39
3.3.2 TaskRegistry e e e 42
3.4 Algorithms e e e e e e e e 43
3.4.1 Overall algorithm o e e 43

4

3.4.2 Cutalgorithm e
3.4.3 Killalgorithm e

Implementation

41 Systemsetupandoperation.
4.1.1 DISCOVEIY SEIVICE . . . v i o it e e e e e e e e e e e e e e
4.1.2 Inter-components communications oo e

4.2 COMPONENtS . . . o o i i e e e e e e e e
421 Scheduler e e e
4.2.2 HostRegistry and Task Registry o o o e
423 Monitor e e

4.3 Software architecture e e e e e e

Evaluation

5.1 Experimentalsetup e
5.1.1 Workload generation e e
5.1.2 Metricscollection e
5.1.3 Evaluationexecution e

5.2 Evaluationresults. e e
5.2.1 Successful and failed allocations
5.2.2 Resources utilization L
52.3 Schedulingdelays e
5.2.4 Responsetimes e e
525 CutsandKills e

Conclusion
6.1 Future Work e e e e e e

Docker Swarm extensions
A.1 Scheduler.go extension e e e e
A2 Cluster.go extension e e e

A3 ENgiNe.go extension e e e e e e

vi

2.1
2.2

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

A
A2
A3
A4

List of Figures

Docker Architecture! 11
Mesos Architecture? e 12
USECase e e 34
System Architecture e e e 35
Host Registry data structures 40
Task Registry data structures L 42
Host Registry endpoints L e 51
Task Registry endpoints e 52
Software architecture containing the Scheduler, Host Registry and Task Registry 60
Monitor software architecture 61
Spread - hosts CPU utilization e 69
Binpack - hosts CPU utilization 70
Energy - hosts CPU utilization. e 71
Average hosts CPU utilization of each solution 72
Spread - hosts Memory utilization. 74
Binpack - hosts Memory utilization o 75
Energy - hosts Memory utilization 76
Average hosts memory utilization with each solution 77
Scheduler.goextension e 87
Clustergoextension 1 i i e e e e e e 89
Cluster.go extension 2 i i e e e e e e e 90
Engine.goextension L e 90

Vii

2.1
2.2

5.1
5.2
5.3
5.4

List of Tables

Orchestrators summary e e e 16
Relevant related works summary o e e 32
Successful and failed allocations e 68
Average CPU and Memory utilizations, 71
Schedulingdelays e 73
Responsetimes e 75

viii

List of Algorithms

3.1 Overallalgorithm e 44
3.2 Cutalgorithm e e 47
3.3 Kill algorithm

API

laaS

(O]

PaaS

loT

CSPs

VMs

SLAs

CORBA

DCOM

COM

OSGi

BSD

LXC

ACR

ACI

ACD

IPC

Application Program Interface
Infrastructure as a Service
Internet Protocol

Operating System

Platform as a Service
Internet of Things

Cloud Service Providers
Virtual Machines

Service Level Agreements

Common Object Request Broker Architecture

Distributed Component Object Model

Component Object Model

Open Services Gateway Initiative

Berkeley Software Distributed
Linux Containers

App Container Runtime

App Container Image

App Container Discovery

Inter Process Communication

Acronyms

DNS
AWS
DVFS
PDUs
PMCs
MIPS
PM
LLC
oaql
NAS
AC
KOB
RA
CaaS
laaS
PaaS
LEE
DEE
EED
REST

Sigar

Domain Name System

Amazon Web Services
Dynamic Voltage Frequency Scaling
Power Distribution Units
Performance Monitor Counters
Millions Instructions Per Second
Physical Machine

Last Level Cache

Oracle Query Interface

Network Attached Storage
Admission Control

Knowledge DB

Risk Assessment

Container as a Service
Infrastructure as a Service
Platform as a Service

Low Energy Efficiency

Desired Energy Efficiency
Energy Efficiency Degradation
Representational State Transfer

System Information Gatherer And Reporter

Introduction

Hardware equipment throughout the years has been improving and we can expect that trend to
continue. Despite this continuous improvement, the current hardware resources cannot deal with the
ever increasing data processed, which consumes more and more hardware resources (e.g. Big Data
applications [1]) and with the emergence of Internet of Things (IoT) [2] we can expect that even more

resources will be required.

A solution to the insufficient hardware resources was the adoption of Cloud [3], which led to the cre-
ation of massive data centers with tens of thousands or even more, servers. This solution is appealing
for businesses and people, who, instead of buying the hardware infrastructure, can rent it and continu-
ously adapt it to their needs, with elasticity. Without Cloud, businesses would have to buy the hardware
infrastructure and if they had a workload peak, they had two options, buy hardware that would only be
used for a short period of time or do not buy the hardware and provide a poor user experience. However,
as mentioned in the previous paragraph, due to emerging trends, more hardware resources are going

to be required, consequentially increasing the size of data centers.

Besides operations costs, this increase will also reflect on the energy consumed by these massive
infrastructures, which already consume a significant amount of energy, incurring high costs for Cloud
Service Providers (CSPs) [4]. This recent report [5] shows that data centers consumed almost 416.2
terawatt hours of energy in 2015. To understand how big this value is, this is higher than the yearly
United Kingdom energy consumption. Besides the costs for CSPs, this amount of energy required
has significant environmental consequences [6]. These issues bring the urgent need for energy-aware

policies for cloud environments [7].

Cooling accounts up to 50% of the energy costs, servers (and storage) for 26%, 11% for power
transformation, 10% for network network equipment and 3% for lighting [8]. Cooling costs are highly
correlated with machine energy costs. If we can reduce the energy consumption or maximize the en-
ergy efficiency of a machine, besides reducing energy costs, less heat will be dissipated, requiring less

cooling, thus reducing cooling costs.

1.1 Current solutions

On traditional cloud environments (e.g. data centers), virtualization using Virtual Machines (VMs) has
been extensively used to enhance resource utilization [9—11]. This enhancement of resources provided
by VMs, rose as an opportunity for many different solutions for improving the energy efficiency and/or
reducing energy consumption (e.g. VM consolidation) to be proposed, as will be seen in more detail on
Section 2.2.

However, containers [12] have been proposed as an alternative to VMs to virtualize resources. Con-
tainers are more lightweight than VMs, containing only the required application binaries to run a specific
process and nothing more, not requiring a full guest Operating System (OS) instance. Since they are
significantly more lightweight than VMs, a better resource utilization can be achieved using containers.
Achieving an even better resource utilization than VMs and considering that VM energy-aware strate-
gies already provide a significant reduction on energy costs, containers are an excellent opportunity to

further increase this reduction.

1.2 Challenges

Having energy concerns also has drawbacks that need to be considered. There is always, at least,
one tradeoff that is inevitable. It can either be, longer time to schedule requests or reduced Quality of
Service (QoS), regarding response times of the workloads that were scheduled. These tradeoffs have
to be mitigated, even if the solution improves energy efficiency/consumption significantly, because of
the clients. Clients don’t necessarily care about energy savings for the CSP, if it does not benefit them.
In order to enforce these policies, the client must either be compensated (e.g. reduced price) or the
tradeoffs must be completely mitigated or transparent, which is hard due to the complexity of making

such decisions as will be seen.

Choosing the energy strategy must also be carefully deliberated, being dependent on many factors
that need to be considered. The first and most important is, what is aimed to improve, maximizing energy
efficiency or reducing energy consumption. These might seem the same but, there are completely
different strategies for either of these two types of improvements in the literature, so it is important
to distinguish them. In the literature, most of the works focus on improving the energy efficiency of
the machines, which is mostly achieved through maximizing resource utilization, making better use of
the energy being spent. If the goal is to reduce energy consumption, some different approaches are
required such as turning off application components that are not being used or turning off machines
to save energy. However, both approaches could be combined. For example, if resource utilization is

maximized, thus increasing energy efficiency, fewer machines are required to run the same requests,

therefore the energy consumption also lowers.

Another important factor that needs to be taken into consideration is the size of the environment.
While public clouds have a very dynamic environment, where the workloads executed and resources
used vary arbitrarily, there are private clouds that have a static environment. Therefore, the strategy is
highly dependent on the environment and must adapt to it. But not only on the environment, on the type
of workload as well. Approaches where the strategy relies on estimations on environments where the
workloads are constantly changing [13, 14], might result in slow scheduling decisions since it is always
resorting to estimations and it may also not produce the expected results. If the estimations are wrong

by a simple value as 1%, in a big environment, this could have significant consequences.

The last major factor that needs to be considered are the monitoring tools to be used. As will be
seen on Section 2.2.1, there are different solutions to choose from. The approach to choose, again,
depends on some factors. For example, there are approaches that are suitable for private clouds but not
for public clouds, since they are intrusive, requiring changes to the internal of VMs. Another aspect to
be considered is what should be monitored, yet again depending on many factors. As an example, if the

workloads are only CPU intensive, there is no point in monitoring memory consumption.

The aforementioned challenges are for VMs but all of them apply to containers since they are used
for a similar purpose. Despite already existing many solutions for all these different challenges, the state-
of-the-art regarding energy-aware strategies for cloud environments mostly focus on using VMs and not
containers. In our research, we only managed to find two works that takes both energy and containers
into consideration [13, 15]. The first has some limitations due to the of usage computationally intensive
computations (through the use of X-means) which can be an overkill on real cloud environments. The
second work approach can lead to hosts not serving any requests due to using a static amount of hosts
for profiling and others for long duration requests. Therefore, if there are no requests to be profiled or
there are only short duration requests, those hosts will not be used, wasting energy. Both these works
will be addressed in detail on Section 2.3.

Energy is also not considered on the current platforms for managing containers (e.g. Docker, Rocket).

Their decisions, e.g. scheduling a container, do not use any energy-aware strategy.

1.3 Objectives

The lack of state-of-the-art approaches to schedule containers, taking into consideration such an im-
portant issue as is energy, provides a good opportunity to contribute to the literature with a solution that

provides energy-aware scheduling for containers on cloud environments. Thus, we propose a schedul-

ing algorithm that promotes energy efficiency in the context of cloud environments, managed by Docker
containers, based on maximizing resource utilization according to levels of energy efficiency, without
violating Service Level Agreements (SLAs). We have developed a prototype of the solution in order to
evaluate it in a realistic environment. The evaluation was performed according to a set of relevant met-
rics drawn from related work such as CPU and Memory utilization over time, comparing with relevant

related systems.

As could be seen on previous section, to improve energy efficiency, many factors have to be consid-
ered, depending on the case at hand. Therefore, producing a solution that works well on all scenarios is
impossible. However, we established a middle-ground and proposed a solution to works wells on most
cases, independent of the environment and the type of workload. The strategy proposed on the previous

paragraph, was also selected with this concern in mind.

1.4 Contributions

With the challenges and objectives identified, this thesis makes the following main contributions:

» An analysis about containers. How they came to be, which platforms exist to deploy them and

which platforms exist to orchestrate them;

+ Athorough analysis of the different energy-aware strategies and the mechanisms that complement
these strategies, and how they are applied in works performed by the academia;

+ Functional prototype of the proposed solution;

+ The cut concept, increasing even further the resources utilization levels provided by an overbook-
ing strategy. The kill concept preventing machine resources from being exaggeratedly used and
maintaining QoS levels;

+ An evaluation that highlights the urgent need to deal with the resource inefficiency that currently

exists in cloud environments.

1.5 Document roadmap

This thesis is organized as follows: Our research on the related work about our proposal is described
thoroughly on Chapter 2. Chapter 3 presents our proposed solution to accomplish the objectives pro-
posed on this Section. Chapter 4 details how our solution is implemented. Chapter 5 presents how
we evaluated our proposed solution. Chapter 6 concludes and addresses some system limitations and

future work.

Related work

In this section we present our research on the most relevant topics regarding our work. First, on Sec-
tion 2.1, we provide an overview about components and containers. Next, on Section 2.2, we present
the relevant topics to energy-awareness, such as energy monitoring and mechanisms, finishing with ad-
dressing energy-aware optimization strategies. Finally, on Section 2.3, we present the relevant systems

to our work based on what was described earlier.

2.1 From Components to Containers

To understand components and containers, we need to go all the way back to the 1970s where the
concept of modular programming started to appear, with extensions to the ALGOL language. In the late
1970s, the first modular programming languages were developed, Mesa [16] and Modula [17]. The con-
cepts of modular programming of that time are still valid today. Modular programming is the process of
dividing a computer program into separate programs (called modules). These modules are independent
from each other and can be reused to serve other applications besides the one that it was originally

designed to.

It's interesting to have modular applications since they are simpler to design, develop, load and
share. Their main purposes are to improve flexibility, comprehensibility and reusability [18]. These
characteristics of modules also characterize components and containers and are their basic building
blocks, however, the former serve different purposes than the latter. While modules are only used to add
functionality to an application, components and containers can also be used to directly deploy/launch an

application, as we will see next.

2.1.1 Components

When developing an application, if we want to implement a certain functionality, in many cases,
someone else already implemented it. Given this, there is no need to waste time reinventing the wheel,
we just have to search for that functionality. This functionality is usually referred to as a component.

Components motivated the creation of component models. Their purpose was integrating different com-

ponents and managing them. They define how components are constructed, specified, deployed and
connected among each other. Using these models, components are more resource efficient by having
a simplified resource management that enables control over the application life-cycle. In these compo-
nent models, components interact with each other by calling methods through a standard Application

Program Interface (API), therefore allowing different components to interact with each other.

Common Object Request Broker Architecture (CORBA) ' was launched in 1991 by the OMG (Ob-
ject Management Group). It was the first component model. CORBA’s purpose was to enable software
components written in any programming language, to be able to work together, regardless if they are
running on a single machine or if it is distributed (also regardless of the underlying operating system).

Their main goal was to make everything compatible with each other.

Microsoft’s response to CORBA was Distributed Component Object Model (DCOM), a distributed
version of Component Object Model (COM) [19]. Its purpose was the same as CORBA, communication
between software components, but less ambitious than CORBA since DCOM only worked in Windows
systems. However both, CORBA and DCOM, and other versions of component models created at that
time, Koala [20] and SOFA [21], had significant limitations mainly due to their implementation complexity
and scalability problems [22]. Despite these partially failed approaches, they inspired other component

models to be implemented [23]. The one presented next, OSGi, is the most successful to date.

Open Services Gateway Initiative (OSGi)? was created by the OSGi Alliance in 1999. OSGi pro-
vides a Java framework for integrating Java-based components and is the only component model that
provides a dynamic component system [23].

Bundles is the OSGi definition for components that provide services that can be used by other bun-
dles. Bundles are deployed on an OSGi framework, which is the bundle runtime environment. Each
bundle has its context isolated from other bundles. Services are Java objects and bundles can register
them in the Service Registry, which keeps track of the services registered within the framework [24],
allowing other bundles to use that service.

The framework is responsible for controlling the life-cycle of bundles and here is where they achieve
the dynamic properties that no other component model has. In OSGi®, bundles can be installed, started,
stopped, updated and uninstalled without restarting the application, while preserving the dependencies
with others bundles. They refer to the Execution (runtime) Environment as a collaborative environment

since bundles run in the same Java VM and can share code among each other.

Thttp://www.corba.org/
2hitps://www.osgi.org/
Shitps://www.osgi.org/developer/benefits-of-using-osgi/

OSGi has the limitation that it only allows Java applications to be deployed. Containers are much
more flexible and allow a much broader range of applications to be deployed only depending on the

underlying OS.

2.1.2 Containers

It all started in 1982 when the chroot command was added to Berkeley Software Distributed (BSD)
systems and later to the other Unix-based OSs. The purpose of this command was to create an isolated
environment for processes, still sharing the same kernel. This was achieved by using chroot to change
the root directory to the base directory that contains all the system files required for that process to run.
This new root directory is also called chroot jail.

In 2000, FreeBSD explored this idea with jails, having more security features. Using chroot, pro-
cesses are limited only to the part of the file system that they can access, everything else is still shared
between processes. Jails virtualizes access to the file system, set of users and the networking sub-
system [25]. The virtualization achieved by FreeBSD was very promising and new technologies quickly
started to appear, e.g. Solaris zones [26].

The concept of zones was introduced by Solaris in 2004 [27]. A zone is a virtualized OS environment
created within the Solaris OS. In zones, applications are completely isolated from each other and access
to OS resources are centrally managed and administered. While jails has limitation on what it virtualizes
as mentioned before, zones provide full virtualization of an instance of the Solaris OS.

Jails and zones were the basic building blocks for the containerization-based technologies we know
today. The state-of-the-art container technologies can be categorized in three ways: mechanisms,
platforms and orchestrators. We will start by describing mechanisms (which we will refer from now on
as OS containers), then we will go into the platforms (which we will refer from now on as application
containers) which are the most widely known type of containers (e.g., Docker). Finally we will cover the

orchestrators (also known as schedulers) that allows application containers to be efficiently deployed.

OS containers: OS containers (also known as system containers) are very similar, in principal, to
VMs. Like VMs, one can install and run different applications and also as VMs, everything is isolated
from other VMs that run on the host OS. The main difference from VMs, is that instead of having its
own kernel (i.e., a guest OS), each OS container shares the same kernel (the host kernel) with other
OS containers, making them more lightweight than VMs. This isolation is provided through cgroups
(control groups) and namespaces [28]. cgroups provides resource management mechanisms where it

is possible, for example, to limit the amount of memory used by an OS container. Namespaces provides

sandboxing, limiting system resources access, i.e., not allowing a certain OS container to interfere with
another OS container’s system resources running on the same host. FreeBSD Jails and Solaris Zones
mentioned before, are examples of OS containers. Other examples include Linux Containers (LXC),
OpenVZ* and Linux VServer®.

The most popular OS container is LXC® and it served as a basis for the applications containers that
we will explain in the next. IBM launched LXC at 2008. Its purpose is to create and manage Linux con-
tainers which share the underlying kernel, each one being isolated from each other, which is achieved

through the use of cgroups and namespaces, as explained before.

Application containers As mentioned before, in OS containers, multiple processes can be launched.
Using application containers, only one process is launched per container. This is the main difference
between these two types of containers.

In the previous subsection, we mentioned that applications could be built through the combination of
different components. This can also be achieved with application containers and it actually outperforms
component-models. This component-based containerization can be achieved by creating different con-
tainers for each component and when that component is no longer required, the container terminates
making the application more lightweight, and in contrast, using OSGi for example, all components must
always stick with the application until it ends, even though they may no longer be required.

Like OS containers, application containers are built from images. Each application will have its
own image, containing only the required application binaries for it to run and nothing else, making it
lightweight. If it is required to run the same application multiple times, all the containers used to launch
that application can use the same image.

Next, we will describe in detail, the state-of-the-art in application container technologies: Rocket and
Docker. We describe their architectures, their main features and what is a container in each approach’s

perspective.

Rocket: CoreOS launched in 2014, an alternative to the already popular Docker, called Rocket (or
rkt) providing, essentially, more security guarantees than Docker, thanks to their daemon-less approach.
In Rocket, a container is specified through an App Container’ with the following three modules: App
Container Image (ACI) , App Container Runtime (ACR) and App Container Discovery (ACD). ACI
specifies the image that the container will use to run its application. ACI can be encrypted providing
further security and allowing them be shared in a secure fashion. ACR defines the environment and

facilities that a container runtime should provide, like, devices, environmental variables and privileges.

“https://github.com/OpenVZ
Shttp://www.linux-vserver.org/
Shttps:/linuxcontainers.org/
7https://coreos.com/rkt/docs/latest/app-container.html

ACD is the protocol to find and download an application container image (e.g. a NGINX server).

The deployable and executable unit in the App Container specification explained above are pods®. A
pod is a list of applications that are going to be launched together sharing an execution context. Pods
allows applications to perform Inter Process Communication (IPC), they can use the same Internet Pro-

tocol (IP) and port space, applications are aware of each other and they share a hostname.

Running a container in Rocket involves three stages. In stage 1, the container is prepared, creating
the filesystem for the container and downloading the ACI into the directory that was just created for the
container. Stage 2 is responsible for adding isolation (different levels of isolation can be configured) to
the container and other configurations, e.g., the maximum amount of RAM it can use. This is achieved
by configuring cgroups, namepsaces and mount points. Now everything is set up and the application

inside the container, is ready to be launched which is done in stage 3.

Docker: When it was launched in 2013, Docker used LXC as its execution environment; however
two years later, at version 0.9, they created libcontainer and made it the default execution environment,
LXC is still supported though. Libconrtainer® provides more security (enabling the use of AppArmor'®)
than LXC and made the execution environment more stable since Docker can now manipulate cgroups,
namespace and other configurations without depending on LXC. This also allowed to avoid problems

concerning different versions and distributions of LXC.

Docker has two major components: the Docker Engine, which is the containerization platform, which
we describe next explaining its architecture, and the Docker Hub.

Docker architecture is depicted in Fig. 2.1. Rocket is daemon-less, that is, when a command is
issued in Rocket, it executes directly under the process that started it. Docker does things differently
and uses a client-server architecture where the Docker Client issues commands to a Docker Host, where
there is a long-running process running called daemon. This daemon is responsible for performing all
the configurations required to launch a container.

Docker images are a read-only template from which Docker containers are instantiated (e.g., Nginx
image). When a container is created, a new layer is added to the base image. All changes made to the
running container only affect the added layer. This allows multiple containers to share the same base
image because any changes they make only affect the layer added when that container was created,

therefore not effecting the base image. When the container ends its job, this added layer is also deleted.

8https //github.com/appc/spec/blob/master/spec/pods.md
9https://github.com/opencontainers/runc/tree/master/libcontainer
Ohttps://help.ubuntu.com/lts/serverguide/apparmor.html
" https://docs.docker.com/engine/understanding-docker/

10

DOCKER_HOST

docker build .- —,i-I Docker dasmon |
$ N\ Sl - M
docker pull -| [: . S

j| [Containers — \.\ @—?— N

docker run —

Figure 2.1: Docker Architecture'’

An image is automatically built by reading instructions from the Dockerfile'?. We can edit the Dock-
erfile to configure the image, like adding file/directories or adding environmental variables.

As mentioned previously, when a container finishes, the layer corresponding to that container is
deleted. Volumes can be used to store data persistently on the Docker host, even after a container
finishes. A data volume is a directory or file in the Docker host’s filesystem that is mounted directly into
a container. It is possible for multiple volumes to be mounted for a container and multiple containers
can share one or more volumes. Docker registries are libraries of images and can have private or public

access. An example of a public registry is Docker Hub.

Other important components of Docker are Docker Machine'® and Docker Compose'“. Using Docker
Machine it is possible to install and manage Docker Engines (or Docker Hosts) on virtual hosts and
manage them, whether it is locally, at a data center or a CSP. Docker Compose is a tool for defining
and running multi-container Docker applications, configured through the Compose File. This is Docker
approach for implementing the component-based containerization as mentioned when we introduced
Application containers. Docker Compose therefore allows a single application to be built from multiple

containers, defining how they work together and how are they linked.

Analysis: Due to being daemon-less and not executing as root (as opposed to Docker which the
daemon runs as root), Rocket provides more security guarantees than Docker. It is also simpler than

Docker as could be seen above by the number of the different features Docker has in comparison with

2https://docs.docker.com/engine/reference/builder/
3https://docs.docker.com/machine/overview/
4https://docs.docker.com/compose/overview/

11

MESOS MASTER QUORUM

Framework A
Framework A
Master Executor
Scheduler areen OFFER ——
LEADER
ZK Slave 1
Framework B
Framework B ZK ZK
STA : STA B Executor
< N B 3 B
Scheduler OFFER ST TASTSY OFFER
TASK
Master Master
Slave N

Figure 2.2: Mesos Architecture'®

Rocket. However this simplicity is also one of Rocket disadvantages, since the extra features in Docker
can be very useful. As an example, Docker layering although it introduces a (small) overhead, its benefits
(e.g. reducing disk usage) in allowing the reuse of images, compensate for that overhead. Also, Rocket

is still in the process of maturation while Docker is already a stable solution.

2.1.3 Orchestration platforms

Now that we know what are the current mechanisms and platforms for deploying containers, next, we
will look into the state-of-the-art orchestration platforms that allow the creation and management of clus-
ters of containers: Mesos, Kubernetes and Docker Swarm. We will categorize them in terms of the most
important features of an orchestrator: architecture, fault-tolerance capabilities, scheduling algorithm(s),

and service discovery.

Mesos: Apache Mesos [29] is a cluster manager and was released in 2011. We will also present
Marathon'® which is the most widely used framework for managing container orchestration for Mesos.
Fig.2.2 presents Mesos architecture.

The Mesos Master is responsible for managing Mesos Agents running on each cluster node and
Mesos frameworks (which in this case is going to be Marathon, other examples include Hadoop) that
run tasks on the agents. The frameworks are composed of schedulers and executors. The former
registers with the master to be offered resources (e.g., amount of RAM available) while the latter is a
process that is launched on agent nodes to run the framework’s tasks. The master decides how many

resources to be offered to each scheduler according to policies, such as fair sharing or strict priority [30].

Shitps://mesosphere.github.io/marathon/
8https://www.digitalocean.com/community/tutorials/an-introduction-to-mesosphere

12

Once the framework schedulers receives the offers, taking into account the policy chosen, the scheduler
selects which of the offered resources to use. Once they're chosen it passes to the master a description
of the tasks it wants to run on them and finally, the master, launches the tasks on the appropriate agents.
Mesos uses Apache Zookeeper [31] for providing fault-tolerance guarantees.

Marathon, like Kubernetes and Docker Swarm, provides scalability to the cluster by automating most
of the monitoring and management tasks. It provides the following features: Constraints'’ control
where the container is going to run. The constraints consists of three parts: a field name, an operator
and optional value field. The field name can consist of the agent hostname or an agent attribute (a tag
on the agent node). An operator can be of several types such as: UNIQUE (forces uniqueness, e.g.,
through this, we can ensure that there is only one application instance running globally); MAX PER (can
be used to limit tasks across nodes).

Health checks'® is another fault-tolerant implementation. It provides detailed information about the
status of applications and allows the developers to specify what should happen if an application fails a
health check (e.g.,terminate it and launch a new one on another node).

Service discovery'® is required in order to send data to containers, from containers of the same
cluster or from external sources. Mesos already offers a service discovery mechanism called Mesos-
DNS which like the name indicates, uses Domain Name System (DNS). Marathon also provides a
service discovery which implements a TCP/HTTP proxy on each host, transparently forwarding connec-

tions to the static service port on localhost, to the dynamically assigned port of the tasks.

Kubernetes: Google released Kubernetes in 2014 as another solution for orchestrating contain-
ers. A year later, Google donated the project to the Cloud Native Computing Foundation, which is a
partnership from Google and the Linux Foundation.

The basic working unit of Kubernetes are pods®®. A pod is a group of one or more containers that
can be, one or more applications, which are tightly coupled. This leads to containers inside a pod to be
scheduled to the same host and share the same context, which means they share volumes and an IP
address space, therefore being able to connect with each other via localhost.

Kubernetes architecture is composed of Master Components®'. Master Components provide cluster
management, being responsible for making global decisions about the cluster (e.g., scheduling) and,
detecting and responding to cluster events (e.g., when a failure occurs, deal with that failure). It consists

of the following main components:

— Eted;

17 https://mesosphere.github.io/marathon/docs/constraints.html
8https:/mesosphere.github.io/marathon/docs/health-checks.html
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
20hitp://kubernetes.io/docs/user-guide/pods/

21 hitp://kubernetes.io/docs/admin/cluster-components/

13

— API Server;
— Controller Manager;
— Scheduler.

Etcd is a distributed key-value store. Kubernetes uses it to store configuration data that can be used
by nodes. It can also be used for service discovery. API/ Server is one of the core components of
Kubernetes. Through it are performed pods and workloads configurations. The Controller manager is
responsible for running and managing controllers, which are background threads that regulate the state
of the cluster and adjust to it. It also handles routine tasks in the cluster, such as: Node Controller -
responsible for detecting nodes that fail and deal with that failure; Replication Controller - ensures that
the correct number of replicas of pods are up.

The process of assigning pods to nodes is performed by the Scheduler. To perform this assignment,
two steps are required. First, all nodes are filtered according to predicates. Kubernetes has predicates
based on volumes (e.g. Amazon Web Services (AWS) volumes), resources (e.g. if memory available
meets pod’s requirements) and host information (e.g. host with a certain port). Predicates are similar to
Marathon’s constraints but different rules are used by both. The purpose of this filtering is to filter out
nodes that do not meet the requirements of the pods, therefore making the scheduling algorithm simpler
since it has less alternatives to schedule the pod to. The next and final step after filtering, is applying
priorities to the filtered nodes. The priority function will rank the node from 0-10, 0 being least preferred
and 10 being most preferred. The node with the highest score is the one the pod is assigned to. Kuber-
netes provides multiple scheduling functions to be used. As an example, BalancedResourceAllocation
purpose is to put the pod into a node such that the CPU and Memory utilization is balanced after the

pod is deployed.

Docker Swarm: Developed by Docker, it aims to be the standard orchestrator for Docker containers.
Its architecture comprises of manager nodes and worker nodes. Like Mesos and Kubernetes, Docker
Swarm?? is also a centralized orchestrator and that role is played by the manager nodes, which are
responsible for scheduling containers to worker nodes, and managing them.

Like any other centralized approach, fault-tolerant mechanisms are required for the manager nodes
otherwise it would be a single point of failure. Docker Swarm uses the Raft consensus algorithm [32] for
fault-tolerance.

Docker Swarm uses a distributed key/value store for service discovery, which they recommend to use
their own implementation, libkv>®. However, others are also supported, e.g., Consul. They also support

DNS for service discovery.

22hitps://docs.docker.com/swarm/overview/
23hitps://github.com/docker/libkv

14

As mentioned earlier, the manager node is responsible for scheduling containers to the workers
nodes. The scheduling algorithm used by Docker Swarm is similar to Kubernetes’s algorithm, it also
has two steps. It starts by filtering the worker nodes before applying the scheduling algorithm. For
this purpose, it has two types of filters*, (similar to Marathon’s constraints and Kuberneter's predicates)
node filters, which filters based on characteristics of the worker nodes, and container configuration filters,

which filters based on characteristics of the containers. There’s currently three types of nodes filters:
- Constraint
— Health
— Containerslots

Worker nodes can be tagged, having an associated key/value pair to it. The constraint filter can be
used to select worker nodes with a certain tag (e.g. type of OS). The health filter prevents running
containers on unhealthy nodes, that is, if the node is down or can’t communicate with the cluster store.
Containerslots filter can be used to limit the amount of containers on a worker node. The other type of

filters, container configuration filter, also have three types:
— Affinity
— Dependency
— Port

The affinity filter is used to schedule containers next to containers that can fill the following criteria:
container name or id; an image; a custom label applied to the container. The dependency filter is used
to schedule containers that depend on other containers. This dependency is related to having a shared
volume, or a certain container is dependent on another to run or being on the same network. A port filter
is used if we want to run a container on a specific port.

After the worker nodes are filtered, they go through one of the three scheduling algorithms®°. Ran-
dom is one of the algorithms, and as the name indicates, the worker node is chosen randomly. Spread
strategy chooses the worker node dealing with fewest containers. The last strategy is Binpack, which
causes Docker Swarm to choose the node that is most packed (i.e., has the minimum amount of
CPU/RAM available).

Analysis: Table 1 presents the summary on the orchestrators described above. From our study we
can conclude that Docker Swarm has the simplest architecture with just two entities, manager nodes

and worker nodes, while Kubernetes has the more complex architecture having at least four separate

24hitps://docs.docker.com/swarm/schedulerfilter/
25hitps://docs.docker.com/swarm/scheduler/strategy/

15

Orchestrator Architecture Scheduling algorithm Fault-Tolerance Service Discovery Docker API
Two step algorithm.

: Manager Distributed
Manager and Also uses filters o .
Docker Swarm worker nodes to couple similar replication using) key-value store Yes
. Raft consensus algorithm | or DNS

containers

Resource offering-based
Mesos (Five step algorithm). Apache Zookeeper DNS-based or
(using Marathon framework) Mesos Masters and Agents Also uses constraints to | and health-checks TCP/HTTP proxy No

couple similar containers
Kubernetes Master components Two step algorithm Controller Manager Distributed key-value store | No

Table 2.1: Orchestrators summary

entities. Regarding scheduling, Kubernetes has the simplest algorithm thanks to pods, which avoids the
usage of filters (by Docker Swarm) and constraints (By Mesos) to co-relate similar containers. Docker
Swarm is the less robust only replicating manager nodes while Mesos with Zookeeper and with health-
checks provide a good reliability. Kubernetes and Docker Swarm use a similar approach for service
discovery while Mesos uses DNS and TCP/HTTP proxy which can provide a slightly bigger overhead
than the distributed key-value store approach. Finally Docker Swarm uses the standard Docker API

which simplifies the development.

2.2 Energy-awareness

Energy consumption in Cloud environments (e.g., data centers) is a problem that persists throughout
the years despite all the efforts done by companies and academia [33]. Servers have been identified
has the main source of power consumption in data centers [34] and they also contribute to cooling costs
due to the energy to the heat they generate and needs to be dissipated.

To try and deal with this issue, energy-aware mechanisms and energy-aware optimization strategies
have been proposed. In this subsection, we will describe the state-of-the-art regarding those two areas

for Cloud environments.

2.2.1 Energy Mechanisms

Before applying strategies to schedule workloads in an energy-efficient manner, it is necessary to
have mechanisms that help us make decisions. Throughout this section we will describe these mecha-
nisms, starting with mechanisms for monitoring energy consumption and finishing with Dynamic Voltage

Frequency Scaling (DVFS), which is an intervention mechanism.

Energy-Aware Monitoring: A real and accurate monitoring can only be achieved through monitor-
ing hardware. At the OS layer, we can also achieve an accurate monitoring since its reproducing metrics
collected from the hardware. There are other approaches that measure energy consumption at the Mid-

dleware and Application layer. At these layers there are two possibilities, either they are reproducing

16

metrics collected from the OS and the hardware, or it involves estimating energy consumption. How-
ever, it is hard to measure energy consumption at the Middleware and Aplication layer, as an example
consider an application using a library. There is nothing at the hardware layer that identifies the library
therefore estimation is required. Before the library is called, we take a measurement of the current en-
ergy being consumed by the machine, then when the library is ran, we take another measurement and
compare them both. This is a very primitive approach but is useful to highlight what could go wrong in
estimations. Between measurements, other processes could be launched, there could be a workload
peak, many situations can occur that will influence the measurement. Even harder is to estimate in a
cloud environment where the machine is shared between different VMs, some of which, we may not

have control and know what they are running.

There are three main challenges in monitoring the energy consumption of VMs [35]. Typical ap-
proaches for measuring service power accurately cannot be directly used for VMs and there is no hard-
ware that can measure the energy consumption of each VM. Second, the power consumption of a
VM can be seen as the sum of the energy costs of all the hardware resources consumed by the VM.
However, the power consumption of hardware is not static and changes significantly from application to
application, so, it is not easy to measure the energy consumption of hardware resources. As mentioned
in the previous paragraph, a machine is shared among several VMs. The energy consumption of a
VM is affected by co-located VMs and is very difficult to distinguish which VM is using which hardware
resources. The final challenge, energy consumption of a server can be divided into two parts: static
and dynamic power [36] and these must be taken into account when measuring energy consumption.
Static power is consumed whenever a server is turned on (e.g., in an idle state), while Dynamic power
is consumed when the server executes instructions or other operations.

Despite all these challenges, some research has been done on this area and several approaches
have been proposed: white-box, black-box and other relevant approaches. All these ideas share these

common steps [35]:

1 Collect resource information (usually CPU and memory) for calculating the energy consumption.
Measuring physical server energy consumption can be done through an external meter, normally Power
Distribution Units (PDUs), but there are others approaches [37]. An alternative to external meters, are
internal meters such as power sensors or a special motherboard. External meters have the advantage
that they are non intrusive, meaning that attaching or detaching them do not affect the system. However
its unfeasible for cloud environments where thousands of servers are used. On the other hand, inter-
nal meters are intrusive, since they will influence the information measured. However contrasting with

external meters, they are easily deployed and managed. Performance Monitor Counters (PMCs) 26 are

26 hitps://www.codeproject.com/Articles/8590/An-Introduction-To-Performance-Counters

17

counters that are often used. They record the accumulation values of registers or events of the system.

2. After we got the raw information (resource usage), we must run this information through a power
model which will convert this information into the energy consumption. There are numerous power
models in the literature, including CPU [38], memory and CPU [39], and more [8].

3. The final step consists in estimating the energy consumption of each VM using the information

collected in 1 and the model chosen in 2.

White-box approaches: These techniques use information collected inside the VM to create power
models that indicate the energy consumption of each VM. To achieve this, a proxy program is inserted
into each VM to collect resources utilization or PMC events. The proxy will send the information collected
to an external module, which collects that information and information from the host. Once it has enough
information from both the VM and the host, the external module will send both information to a different
module that is responsible for using a power model and estimate the energy consumption.

This is a simple technique but has a problem. The proxy program must be inserted into VMs and
that is not possible in public clouds, unless authorized by clients. Also, the accuracy of the information

collected from the VMs is difficult to predict.

Black-box approaches: In this approach, information from each VM is collected at the host OS
and/or at the hypervisor, without VM modification. The difficulty lies in distinguishing which information
belongs to each VM. There are several works using this approach. They differ from the type of infor-
mation used, some CPU, memory and I/O [40], in this case and most cases, the only 1/0 operations
considered are disk since others are small and can be neglected. Other approaches use only CPU and
memory, arguing that I/O operations are small and can be neglected [41], other techniques only use

PMCs and many more different techniques as can be seen here [35].

Other approaches: The problem of the two approaches above is that they introduce additional
overhead because of all the extra mechanisms required to use those models. Also, those models are
chosen assuming that the VM always has the same characteristics. As an example, if a VM is only
running CPU-intensive applications, then a power model taking only CPU into consideration is enough,
but if the VM suddenly runs an application that is more memory-intensive than CPU-intensive, the energy
consumption measurement for that VM would be completely wrong.

Using software instrumentation on source code, it is possible to know at runtime if it is a CPU-
intensive application, memory-intensive, etc, and choose the appropriate power model based on that.
The problem of instrumentation is that it cannot be done on cloud environments since CSPs cannot

instrument applications running on VMs, unless authorized by the clients, but even so, instrumentation

18

itself would add more overhead to the application and would impact the energy consumption of the VM.

Analysis: At which layer to perform the monitoring depends on the situation. If, for example, we want
to perform migration of applications depending on their resource utilization, then we need to monitor ap-
plications at the Middleware or Application layer. Using external meters to monitor energy consumption
is not feasible in cloud environments due to the vast number of external meters that would be required.
White-box and software instrumentation approaches are also not feasible for Cloud environments due to
their intrusiveness. In our view, the only approach that is feasible in cloud environments, is the black-box

approach since it is not intrusive and does not require additional hardware.

DVFS: It is incorporated into almost every processor and is a classical mechanism for decreasing
energy consumption. However, it is still used in recent works and achieves promising results [42-44]. It
is a mechanism that can dynamically change the frequency and the voltage of a CPU and/or memory.
Although CPU is usually what consumes more energy, memory, also consumes an amount of energy
that should not be neglected [45]. Being dynamic, allows it to adjust to the current demand, limiting clock
frequency and voltage in periods of low demand or idle items, increasing it back when necessary.

This mechanism must be carefully used since reducing CPU frequency (for example) can have sig-
nificant performance penalties and can violate SLAs, which can cause discontent among CSP clients.
If used carelessly, it can even increase energy consumption since tasks would require much more time
to complete, therefore potentially consuming more energy. The overall challenge is choosing the right
setting in order to lower energy consumption and at the same time, sacrificing the less performance

possible and not violating SLAs.

2.2.2 Energy-aware optimization strategies

There is a lot of work performed on this area and many approaches are proposed as can be seen
here [46], where the main goal is generally optimizing resource utilization which consequently, improves
energy efficiency and allows less hosts to be used, saving energy costs. Virtualized approaches are the
main contributors for energy-aware optimization strategies as we will see next, however there also other

approaches. For the remainder of this subsection we will describe these strategies.

VM Placement: Here we will address the initial placement of the VM which plays a critical role. If
the VM is misplaced (e.g., to an overloaded host), we are just wasting resources, since that will cause
that or another VM to be migrated (or another energy-aware strategy to be executed) to reduce the load
at the overloaded server. The work in [46] identifies two types of main VM placement strategies: cen-

tralized and hierarchical. Centralized approaches assume the existence of a centralized structure that

19

has information about the whole infrastructure. They take advantage of this centralized information to
make the decision on what is the Physical Machine (PM) to place the VM on. A typical Cloud architec-
ture however, does not have this type of centralized structure and it has a hierarchical infrastructure. It
consists of a cloud controller that controls several cloud sites (if it is a distributed data center), which the
clients connect to, and clusters controllers (several at each cloud site), which control a certain amount of
PMs (typically hundreds), which are controlled by a node controller [47]. Hierarchical approaches take
advantage of this architecture since the node controller has information about each PM, it can pass that
information to the cluster controller which can also pass the information to the cloud controller. There-
fore placement decisions could be made at different levels, either at the cluster controller or at the cloud

controller.

Consolidation: The hypervisor technology enables consolidation of VMs on PMs granting many
advantages, being one of them, increasing energy efficiency. We can identify two types of VM consoli-
dation: static which is not adaptable to the current resource usage and dynamic which is adaptable to
current workload. In [46], they divide consolidation in three sub-problems, where different consolidation

strategies emerge to solve these problems. They are the following:
— When to migrate;
— Which VM to migrate;
— Where to migrate.

One of the main problems of consolidation is, when to migrate. Migrating too early can lead to
pointless migrations, wasting even more energy because migration also has its costs and they can’t be
ignored. Migrating too late, can lead to performance degradation due to overloaded servers, which also
increases energy consumption since tasks are going to take more time to finish. Therefore, the right time
to trigger the migration is very important. This “right time” can be found either by defining static [48, 49]
or dynamic thresholds [50]. These thresholds are usually the % of CPU utilization but can also be other

metrics, e.g., % of Memory utilization.

Which VM to migrate is easier in some situations and harder on others. When a PM is under-loaded,
all VMs should be migrated and the PM can be shut down or put into a sleep mode to save energy. For
overloaded PMs, only a few VMs should be migrated. In these cases, there are some solutions to pick
which VMs should be migrated.

The simplest solution is randomly choosing VMs to be migrated. Correlated solutions pick VMs that
have similar workloads to other VMs on different PMs. The VM to be migrated can also be selected

according to the time it takes to migrate it. Another popular solution is called Minimization of Migrations

20

which selects the least number of VMs to migrate to achieve a low migration overhead. A final possibility
for choosing what VM to migrate is called Highest Potential Growth. This technique chooses VMs with
the lowest CPU usage compared to their requested amount. Its purpose is to ensure that SLAs are

respected. According to [46], the Minimization of Migration solution is the one that provides best results.

Now that we know when and which VMs to migrate, the question that remains is, where do we
migrate these VMs to. Care must be taken to avoid overloading servers or placing them in under-utilized
hosts. VM placement strategies explained above could be, potentially, used at this step however, those

approaches do not take into account the migration cost of a VM.

Co-located VMs “fight” for resources and besides from decreasing performance, it can also increase
energy consumption. This is known as performance interference [51]. The first strategy takes this prob-
lem into account and it selects the PM where less performance interference will occur. Other strategies
take into account the types of resources and workloads that are being used by each server and places
VMs according to that. These strategies can have advantages such that this can reduce bandwidth
utilization since resources can be shared among co-located VMs and it may not be necessary to access

resources outside the PM.

To perform the migration of PMs these algorithms usually use one of these three types of migrations
depending on the applications: cold migrations shuts down the VM before migrating it to the new host
and restarts it on the new host; warm migration suspends the VM, copies RAM and CPU registers and

continues on the new host; live migration copies across RAM while VM continues to run.

Overbooking: When using cloud services, cloud users tend to pick more resources than they ac-
tually need, either because CSPs only accept pre-defined sizes or because they want to have more
resources to prevent overload situations. CSP can take advantage of this and use a strategy called
Overbooking. VM Sizing is another strategy that on the literature is described in a very similar way to
overbooking, however VM Sizing approaches have different goals than overbooking. These approaches
normally rely on load predictions and adjust the resources provided to the user taking into account the
predictions. As an example, if a user requests 2 GB of RAM for its application and the algorithm es-
timates that the application only consumes 1.5 GB of RAM, a little bit more of 1.5 GB RAM will be
provided for that user. Besides being beneficial for the cloud provider which will have more resources to
use, therefore able to put more VMs on that PM, it is also beneficial for the cloud users because, since

they are using less resources, they will pay less (if its not pre-defined sizes).

However, this is a risky strategy [14]. It relies on prediction, which is prone to mistakes, even good
prediction algorithms. These mistakes could result in SLA violations which are unacceptable. Another

situation that can occur is overloads. If suddenly, in an overbooked host, the applications start to use

21

more resources than they were estimated to use, it will overload the host, violating SLAs and increasing
energy consumption. The core of this strategy is therefore its estimation algorithm and in the literature
it has been researched several ways of doing this estimation based on CPU utilization or a combination
of CPU, Memory and I/O. To avoid SLAs violations, CSP and clients can, a priori, agree on parts of
the application (or even the whole application) which can have degraded performance and in exchange,

clients will pay significantly less.

Application strategies: In the literature we can also find energy-aware scheduling that do not focus
on VMs, but rather on applications. These include application placement and consolidation. The work
in [52] uses a bin-packing strategy to place applications and also performs application consolidation.
Most strategies focus on consolidating applications in the minimum amount possible of PMs so that
more PMs can be shut down, therefore saving energy. Such an approach is described in [53] but this
work in particular, they try to consolidate the workloads based on their type of workload to try and avoid

SLA violations.

When all the PMs are overloaded, consolidation and DVFS cannot be used because there is no
place to consolidate to, and using DVFS would have severe performance penalties. To solve these
issues some works use the concept of brownout [54]. Brownout is an intentional drop in voltage or
complete shut down on power grids in case of emergencies to avoid short circuits, for example. This can
be applied to achieve energy saving by shutting down components of applications that are not important,

reducing fidelity but clients can be compensated financially.

Container strategies: In the literature, to our knowledge, we could only find one work regarding

containers [13]. This work performs VM sizing for hosting containers and is going to be described later.

Analysis: On this analysis we are including DVFS, because despite being a mechanism, it is often
used as a strategy to decrease the energy consumption. As was mentioned throughout this section,
some strategies do not work on overloaded scenarios, which might be a limitation, although it is rare
for data center to be completely overloaded. The only strategy that works on overload environments
is brownout. Overbooking can be partially used to increase resource utilization, however care must be
taken to avoid SLA violations. We say it can be partially used because at a certain point, there are no
more resources that we can extend.

VM placement is the most limited strategy since it only considers the initial scheduling of VMs, which
does not provide the opportunity to achieve significant reductions on energy consumption. VM con-
solidation is one of the most popular approaches but is also one of the most complex due to its three

sub-problems. DVFS is another popular solution but it has the significant disadvantage that applying

22

DVFS on a host, it affects all the VMs on that host. For this reason DVFS is, usually, used together with
another strategy. Overbooking has the big potential of solving the CSPs problems associated with the
fixed sizes VMs which lead to significant resource wastage.

There is no single strategy better than all the other and what should be used, depends on the envi-

ronment and the goals. Some might even be used together, e.g., DVFS and VM Placement [55].

2.3 Related Relevant Systems

In this section we will describe works performed on the topics described in the last section, which will
be important to identify challenges and opportunities to our solution. We will follow the same structure
as the previous subsection, starting with Energy-Aware Mechanisms and finishing with Energy-Aware

Strategies.

2.3.1 Energy Mechanisms

As in Section 2.2, we will address first energy-aware monitoring and then DVFS with a representa-
tive system. As related work regarding energy monitoring, we’ve selected a work that measures energy

consumption at the OS/hypervisor level and another that measures at the application layer.

Joulemeter: There are many possibilities in the literature to measure energy consumption at the
OS/hypervisor layer, however most use linear models or a fixed non-linear model. Cloud environments
require adaptive models since the workload is very susceptible to changes. Joulemeter [40] solves all
the problems mentioned on Section 2.2. It does not require any external meter, additional hardware or
software instrumentation. It uses a power model that adapts when application characteristics change. As
mentioned above, Joulemeter does not require additional instrumentation leveraging existing hardware
instrumentation (e.g. motherboard or power supply power sensors) to measure PM energy consumption.
They track the resources used by each VM and convert into energy using power models. The hypervisor
is responsible for scheduling hardware resources for each VM, they leverage this to associate each
hardware resources being used to each VM.

In order to provide a good estimation, they use CPU, memory and disk to estimate the energy con-
sumption of each VM. To estimate the CPU energy consumption, they track the CPU active and sleep
times, using for example, Linux commands such as top. To know which VM is currently using the CPU,
they track when a VM is active on a certain CPU core. Their approach for creating memory power mod-
els requires that Last Level Cache (LLC) miss counter is available. However if it is not available they deal
with it as will be seen later. For the disk power model, they use the bytes written/read tracked by the hy-

pervisor for each VM. To create their models they use an additional factor they called unobserved states.

23

These are states that can increase (for example) CPU utilization and are not being accounted on the
power models. If for example, LLC is not available, it will be considered an unobserved state. To cope
with this, since unobserved power states are highly correlated to the observed ones, the model based
on a small number of observed states will capture the energy usage more accurately. Each unobserved

state will be a separate variable to be used at the models.

As mentioned above, their power models are adaptive to the VM current workload. To achieve this,
they introduce coefficient variables that change depending on the workload. This is achieved by con-
tinuously tracking the error between the sum of estimated power values for all VMs and the measured
server power. If the error exceeds a threshold, then it means that the power model must be adapted to

the new characteristics of the application.

Wattapp: An application-aware power meter [39] which has an architecture with the following main
components: a Model Builder that reads system and application logs (energy and throughput values)
and creates power models for each application based on the concepts that are going to be explained
later; a Configuration Orchestrator which has the job to identify applications and PM types that do
not have a power model at the required virtualization ratio (explained later) and performs calibrations to
generate the required log data to create the power models; a Oracle Query Interface (OQI) which is
used by Power Managers (provides a PMs list) which provide a PM and applications (along with their
required throughput) as input, and the OQI returns an energy estimation, calculated using the models
created by the Model Builder.

They start by making a power model for a PM running an application in a non-virtualized environment.
Their power model is based on the intuition that the energy consumption by different resources have (as
explained in Section 2.2) a static component independent of usage and a dynamic component. Since
the static component is independent of usage, they only need to worry about the dynamic component

which is explained next.

In their experiments they saw that energy consumption has a linear relationship with application
throughput (application progression), hence they use application throughput as the basis for the power
model. They also use two constant variables that are application dependent, since different applications
may have different energy impacts. From their studies they confirm that both, memory and CPU, have a
linear relationship with application throughput, therefore application throughput is an accurate source to
create the power models and estimate the energy consumption of a PM. For virtualized environments,
they introduce the VM overheads in their power models, which are mainly caused due to I/O operations
and cache contention [56]. They observed that the impact of virtualization depends on the characteristics
of the application and they conclude that applications with high I/O operations or low working set (cache

contention issue) are impacted by virtualization while applications with low I/O operations and large

24

working set have a negligible impact from virtualization.

Since the impact of virtualization depends on the characteristics of the application, they add a virtu-
alization ratio (from 1 to 7) to the power model they defined when virtualization was not considered. This
model was created assuming a single type of application is run on the PM. Since the static component
is independent of usage, they use only the largest static energy component among all co-located appli-

cations. For the dynamic power, they add the standalone dynamic energy of each co-located application.

Analysis: These two works provide some interesting insights. Joulemeter claims that using linear
power models is not good for estimating energy precisely, while Wattapp says the opposite. The inter-
esting note is that both achieve good energy estimations. The truth is that non-linear models strategies
portray energy consumption in a more realistic way, however they are inherently much more complex
than linear power models strategies. This complexity can itself cause estimation errors due to the over-

head caused by the extra complexity.

CoScale: As a representative system of DVFS, we chose CoScale [57] because it takes CPU and
memory into account therefore allowing to have a perspective on the implications of considering both
CPU and memory when using DVFS. As they show in their evaluation, considering CPU and memory
separately when using DVFS, have implications since they will conflict. If for example, we lower CPU
frequency/voltage and do not have memory in consideration, the traffic to the memory would be reduced
and therefore the memory manager could deduce that memory is being under-utilized, reducing memory

frequency when it was not supposed to, causing a significant performance degradation.

Depending on the situation, they apply DVFS to one or more cores. Regarding memory, they apply
DVFS on the memory bus, which will influence the Memory Controller and the Dual In-Line Memory
Modules. Their approach is based on program slack: a target performance penalty to save energy. To

avoid excessive performance degradation, they establish a limit slowdown.

CoScale uses fixed-size epochs to determine when to profile the system and then select cores and/or
memory frequencies in order to minimize full system energy, while maintaining performance within the

target. In the profiling phase, performance counters are read to make energy estimations.

Their algorithm starts by estimating performance assuming that cores and memory are at their high-
est frequencies. It then starts by decreasing frequencies, CPU or Memory depending which provides
more benefits, until performance slack is reached. This algorithm keeps repeating epoch after epoch
and, off course, provides an extra overhead to the system. This can be dealt by increasing the epoch

time.

25

2.3.2 Energy-aware optimization strategies

In this section we will describe some relevant and state-of-the-art related works on the strategies
explained in Section 2.2.

Dynamic consolidation algorithm: In [58] the authors propose an efficient adaptive algorithm for
dynamic VM consolidation according to the current utilization of resources by VMs, leveraging live migra-
tions. For their power model, they account for CPU, defined by Millions Instructions Per Second (MIPS),
memory and network bandwidth. As was mentioned, disk can have a significant impact on energy con-
sumption, however they do not consider because they assume that the PMs do not have physical disks
and the storage is provided by a Network Attached Storage (NAS), which is what is normally used on
cloud environments and facilitates VM live migrations.

The main components of their architecture are global and local managers. The global manager is on
the master node and collects information from local managers which reside on nodes gathering resource
utilization information. The local managers besides sending resource utilization to the global manager,
they also have the job of resizing the VMs according to their resources needs and they decide when
and which VMs should be migrated. They calculate that the cost of migrating a VM depends on the total
amount of memory used by the VM and the network bandwidth. The image and data of the VM is stored
at the NAS so it is not necessary to transfer it between VMs. Regarding their dynamic consolidation

algorithm, they split it into three steps:

1. As mentioned on Section 2.2, the first problem regarding consolidation is when to migrate the
VM. To address this issue, they define two adaptable thresholds: a lower utilization threshold that when
its met, all the VMs from this host have to be migrated to another PM so this PM can be shut down or
switched to sleep mode to conserve energy; an upper threshold which if exceeded, VM(s) have to be
migrated to reduce resources utilization and avoid SLA violations. To have adaptable thresholds they
use a statistical analysis of historical data collected during the lifetime of the VMs. Their proposal is to
adapt the thresholds depending on the strength of the deviation of the CPU utilization. The higher the
deviation, the lower the upper threshold is going to be, because if we have a high deviation and high
upper threshold, a 100% CPU utilization could quickly occur and the algorithm would not react quickly
enough, potentially causing SLA violations.

2. Next it is necessary to decide which VM(s) are going to be migrated. They have three policies
which are applied iteratively. The first policy is Minimum Migration Time and selects the VM(s) that
take the less time to be migrated. The migration time, as mentioned before, is estimated considering the
amount of RAM and the network bandwidth. If several VMs are chosen from the first policy, the second

policy selects one randomly. They called the final policy Maximum Correlation. It is based on the idea

26

that the higher the correlation between resource usage by applications, the higher the probability the

server overloading due to competition for resources. So they select the ones with less correlation.

3. The last problem to solve is where to migrate the VM(s) to. They start by sorting VMs (that were
selected to be migrated) in the decreasing order of their current CPU utilization. They take the first VM
from the top of the list and allocate it to a host that provides the least increase of the energy consumption

caused by the allocation. They do the until the list is empty, i.e. all the selected VMs were migrated.

Autonomic risk-aware overbooking: This work [59] uses an Overbooking approach with overload-
ing risk concerns. Their system autonomously readjusts the risk threshold, allowing more or less VMs

to be overbooked.

When a request arrives, the Admission Control (AC) module decides if this request should be ac-
cepted or not. To make this decision, it takes into account the current and predicted status of the system,
and the long term impact this service is going to have on the overall data center. These assessments
require further information about the data center status and, if available, the request prediction resource
utilization. This information is available at the Knowledge DB (KOB) and is passed to the Risk As-
sessment (RA) module that, based on fuzzy logic programming [60], determines the risk associated in
accepting this request. If this risk is bellow a given threshold, the AC will accept this request, otherwise

the request is rejected.

The KOB is an important module since it holds vital information for the success of this algorithm. It
has to measure and profile different requests behavior as well as keeping up-to-date the current data
center resource status. They profile a request based on the following resources: CPU, memory and
I/0O. Therefore it holds information about each PM and VM resources utilization. To profile, they have
a simulation and emulation module integrated in the KOB. To monitor they allow monitor tools (e.g.,

Nagios) to be integrated in KOB.

When a request is accepted, they now have to deal with the issue of, which PM to put this request.
This is done by the Smart Overbooking Scheduler module. It selects the best PM to allocate the VM
(used to serve the request). They use a worst-fit algorithm that schedules a VM to the least overbooked

PM. This has the goal of improving overall utilization and reducing the overbooking impact.

To avoid overloading and SLA violation scenarios, AC decisions must be carefully considered. The
RA plays a crucial role here. The risk calculation is based on three parameters: Req - CPU, memory and
I/O required by the request; UnReq - the difference between total data center capacity and the capacity
requested by all running requests; Free - the difference between the total data center capacity and the
capacity used by all running services. If Req < UnReq, then there is no risk and if Req > Free then there
is no space for this request and it must be rejected. If UnReq < Req < Free then the risk is calculated by

(Reg— UnReg)/ (Free— UnReq) and if its below the risk threshold it is accepted otherwise it is rejected.

27

The final decision to be made is to decide what is the threshold. Like was mentioned in the beginning,
this is a dynamic threshold which depends on the system behavior, and the desired utilization levels, i.e.,
if more or less risk should be considered.

Energy efficient brownout enabled algorithm: This work proposes a brownout approach [54], that
can reduce energy consumption on overloaded scenarios. To exploit brownout, they model an applica-
tion as components, having mandatory and optional components. Mandatory components are crucial
for the application and cannot be deactivated. Optional components can be dynamically deactivated/ac-
tivated to achieve energy savings. The optional components are selected by developers/customers.
These optional components are controlled by a dimmer value, which is used to determine the adjust-
ment degree of power consumption. In addition, there is a brownout controller that controls the activation
and deactivation of optional components. To note that prior to applying brownout, they require a VM
placement algorithm to be used [61].

Components may have dependencies. To identify these dependencies they express them as con-
nections. They consider if a certain optional component is deactivated, then all the optional components
that connected to this component are also deactivated. Mandatory components even though they might
connected, they will not be deactivated.

For the power model, they use static power, which is constant for all VMs, and dynamic power which
they assume as being linear to the total utilization of VMs on a particular host. The utilization of each
VM is modeled as summing up all the application utilization on a particular VM. Their algorithm consists

of six steps:

1. First, the CSP has to define what is the power threshold, a value if surpassed, indicates that a
host is overloaded, and the dimmer value.

2. The algorithm starts by checking all hosts and counts the ones that are above the defined power
threshold.

3. Next, the dimmer value is adjusted according to the number of hosts that surpassed the power
threshold. The dimmer value ranges from 0 to 1. It is 1 when all the hosts are overloaded, it is 0.5 if half
the hosts are overloaded and it is 0 when no host is overloaded.

4. According to the dimmer value, the amount of reduced utilization of applications at the over-
loaded host is calculated. For example, if an application is executing at 100%, if the reduced utilization
calculated is 40%, then optional components will be removed to achieve a utilization of 60%.

5. Now the optional components to be deactivated (and consequently their connections) need to be

selected and they are chosen according to policies:

— Nearest Utilization First Component Selection Policy - it finds the nearest component to

28

the reduced utilization. If the reduced utilization is much larger than a single component, more
components need selected to achieve the reduced utilization and since this policy only selects

one, different policies have to used;

— Lowest Utilization First Component Selection Policy - selects the component with less uti-
lization. This policy follows the assumption that the component with less utilization is less impor-
tant;

— Lowest Price First Component Policy Selection - Selects the policy which provides the less
discount, to benefit the CSP;

— Highest Utilization and Price Ratio First Component Selection Policy - considers both
utilization and discount together. The object is to deactivate components with the higher utilization

and smaller discounts.

6. If there is no host above the power threshold, optional components that were deactivated are

reactivated.

VM sizing for hosting CaaS: Container as a Service (CaaS) is a recent trend which CSPs are
leveraging. This new service type falls between Infrastructure as a Service (laaS) and Platform as a
Service (PaaS). In this service type, instead of having a VM for each different application, only one VM
is deployed and then, multiple containers (containing different applications) are deployed sharing the
same underlying VM kernel.

The authors of [13] propose finding efficient VM sizes for hosting containers in such way that the
workload is executed with minimum wastage of resources. The challenge is therefore finding an optimal
size such that applications have enough resources to be executed. To achieve this, they propose a
system model with multiple different components. They first require the user submitting the tasks to also
indicate an estimation of the required resources for that task.

They identify two phases in their proposal: pre-execution and execution. In the pre-execution phase,
some components need to be tuned before the system runtime. The Task classifier is the entry point to
the system which receives task submissions by the users. It is responsible for categorizing the submitted
tasks to classes using X-means. It also has the responsibility of identifying tasks with similar usage
patterns (e.g., CPU utilization). The tasks are categorized based on: Task length - the time during
which the task was running on a machine; Submission rate - the number of times a task was submitted
to the data center; Scheduling class - how sensitive to latency is the task; Priority - how important a
task is; Resource usage - based on CPU, Memory and disk utilization.

The VM type definer defines VM sizes based on the information provided by the Task classifier. The

determination of optimal VM sizes requires analysis of the historical data about usage patterns of the

29

tasks. For each group of classes created, to determine the VM size, the average amount of resources
(CPU and Memory) required per hour for serving the user requests during a 24 hours observation period
is estimated. They do not account for disk because in their study the tasks required small amount of
storage so they assume the disk size to be 10 GB. This component then outputs VM sizes to the VM

types repository.

Now we are going to describe the components used by the system during the execution phase.
The Task classifier also sends information to the Container mapper, which maps a task to a container
and tries to assign them to an available VM. The main responsibility of this component is to estimate
the number and type (looking at the VM types repository) of new VMs to be instantiated to support
the arriving tasks. This component also has the responsibility of rescheduling tasks that are stored in
the Rejected task repository. These are tasks that were rejected because the available VMs could not
support them. Virtual machine instantiator instantiates a group of VMs according to the specifications
sent by the Container mapper. The Virtual machine provisioner is responsible for the placement of new
VMs on the available PMs or if no PMs is available, turn on PMs so the VMs can be placed. The Host
controller runs on each PM and periodically monitors resource usage and identifies underutilized PMs
and registers them in the Available resource repository which is is checked by the VM provisioner, when
attempting to place a VM. The Virtual machine controller runs on each VM and monitors the VM usage
and if the resource usage exceeds the VM limit, it kills some containers with low priority, to avoid starva-
tion, the controller takes into account the number of times a task was killed. The killed tasks are sent to

the rejected repository to be rescheduled by the Container mapper.

GenPack: In [15], the authors propose GenPack, a framework to schedule containers extending
Docker Swarm. The general idea is to have the hosts divided into three distinct groups, which they refer

to as generations. The containers will run on each generation depending on their resource profile.

Containers that have not been profiled before, i.e. whose workload is unknown, are placed into the
nursery generation. During the time the containers spend in this generation, their resource requirements
and power consumption are monitored. The hosts in this generation are static, that is, regardless if they

are servicing containers or not, the hosts are always running.

Once those containers are fully profiled, the containers are migrated to a host on the young gen-
eration, if their execution as not completed yet. Hosts in this generation are in charge of containers
whose lifetime is short and if the container lifetime surpasses a defined threshold, it advances to the
next generation, the old generation. Their reasoning behind this solution is that a significant portion of
containers are expected to have a short lifetime. Since this is the generation that will experience more

load, it provides elasticity mechanisms, scaling up or down according to the current load. On the old

30

generation, the containers are consolidated in such a way that the minimum number of hosts are used.

The amount of hosts in this generation is also static as in the nursery generation.

Periodically, containers running in the nursery are selected and hosts in the young generation are
selected to host each of these containers. The containers are first converted into container envelopes
according to its raw resources metrics. These envelopes categorize the type of workload of the contain-
ers (e.g. a CPU/Memory-intensive envelope contains CPU/Memory intensive containers). Within each

envelope, containers are ordered per decreasing resource consumption score.

The algorithm used by their solution to select a host in the young generation, starts by homoge-
neously blending the content of the envelopes, into a single list, to increase the diversity of the containers
per node. After this phase, it iterates over each blended container and picks the first host that matches
the resources requirements of the container. This resource matching does not only check if the host as
enough resources to couple with the container. It also considers the properties and requirements of the
containers. For example, imagining that a host has full CPU and disk resources but a container is only
memory intensive and uses little CPU and disk, then this container can be scheduled at this host. This
why the containers are first sent to the nursery, to understand if they are CPU-intensive, Disk-intensive,
etc, in order for these matches to be performed, achieving a more efficient resource utilizations since the
containers do not compete for the resources. The hosts are ranked according to resource availability,
where least available nodes are first. This allows to find the best fitting host for a container, minimizing

the number of hosts required to be up.

After a host is selected for a container, its resource availability and rank are updated. The container
is then asynchronously migrated from its host at the nursery generation to its new host at the young
generation. If none of the available nodes fits for the container, a new host is provisioned in the young

generation and the container is allocated to it.

Analysis: To better understand the differences and similarities between the different works we stud-
ied, we present Table 2.2. As we can see, CPU is considered on all works and memory in all but one.
CPU and memory are indeed the dominant factors contributing for increases in energy consumption and
both should be considered [45]. I/O impact is considerable when using disks, however in cloud environ-
ments, hosts normally do not have disk since they use NAS. Network bandwidth can also have some
impact but should only be considered for workloads that produce intensive network communications.

As expected, a common tradeoff of applying energy-aware policies is performance. However some
strategies could also have overload problems such as consolidation and overbooking. This particular
overbooking work however, does not have overload issues, because they make some efforts in avoiding

them, again at the expense of performance.

31

Work Strategy Resources considered | Implications Limitations
- Does not on overload
CoScale [57] DVFS CPU and memory Performance environments

- Continuous estimations

Dynamic consolidation
algorithm [58]

Consolidation

CPU, memory and
network bandwidth

Possible overloads
and performace

- Does not work on overload
environments

Autonomic risk-aware

CPU, memory and

- Simulation and emulations

overbooking [59] Overbooking 11O Performance required
Energy efficient
brownout enabled VM Placement CPU Performance - Limited functionality
. and brownout
algorithm [54]
VM Sizing for hosting . CPU, memory and . .
CaaS [13] VM Sizing /o Performance Heavy calculations
VM Consolidation | CPU, memory, /O) .
GenPack [15] and VM Placement | and network bandwidith Performance Under utilized hosts
Table 2.2: Relevant related works summary
Summary

This chapter introduced the concept of components and how it evolved into today’s containers, which
are divided into two: OS and application containers. The most used type are application containers
through Docker, however an alternative is starting to arise, Rocket, and we can expect more in the future
due to the significant advantages over VMs as explained. There are multiple platforms to orchestrate
containers. We introduced the three most relevant ones in the market, where none is significantly better
than the other. However, none of them was designed with energy or resource utilization concerns,
granting an opportunity to extend these platforms with these concerns in mind. The chapter proceeded
with the study of the different strategies that could be used in this extension, complemented with energy
mechanisms, vital to these strategies. This chapted finished with the study of related relevant systems,
presenting how these strategies and mechanisms could be applied. The lack of work in the literature
regarding energy optimization with containers lead us to proposing a solution, presented in the next

chapter, to contribute to the literature in this scarce, but promising, area.

32

Proposed solution

Taking into consideration the analysis of the solutions presented at the end of Section 2.1.2, we
choose Docker as the container technology for being more mature than Rocket. For orchestration, none
of the three solutions is significantly better than the others, in fact, they only differ on small aspects as
could be seen by our analysis at the end of Section 2.1.3. We choose Docker Swarm because it has the
closest architecture to the one we propose next.

Our proposed solution consists of an extension to Docker Swarm to schedule Docker containers
in an energy-efficient manner, based on resource utilization levels, also taking into consideration SLA
agreements with the clients. Of the strategies presented on Section 2.2, we opted for an overbooking
strategy, because the amount of resources that are wasted due to fixed size requests imposed by CSPs
are a significant source of energy inefficiency, therefore creating an opportunity for increasing the energy
efficiency by maximizing resource utilization. A report by Shehabi et al. [62] shows that approximately
30% of the servers on a data center are either idle or under-utilized, highlighting even further how an
overbooking approach can be important to solve this important problem by being able to allocate beyond
the machine nominal capacity.

On the following sections, we will explain in more detail how we will accomplish this but first, on
Section 3.1 we present a use case to explain how the system works at a higher level. Then on Section
3.2 we detail our architecture that supports our data structures and algorithms that are presented next,

on Section 3.3 and 3.4 respectively.

3.1 Use case

At high level our system consists of two components, a manager and hosts, similarly to other Cloud
scheduling platforms like Docker Swarm. The process is depicted at Fig. 3.1, it starts by a client submit-

ting a request, indicating the following requirements for the request:

Number of CPU shares (e.g. 1024 shares represents 1 core);

Memory required;

— Request image (e.g. NGINX);

Request type;

33

— Request class;

The request type refers to a service (does not have a finite execution time, e.g. a web server) or a
job (if it has a finite execution time, e.g. calculating a factorial). As for the request class, it refers to the

maximum overbooking the client is willing to tolerate. We provide four classes for the client to choose:
— Class 1: No overbooking;
— Class 2: 120% overbooking;
— Class 3: 150% overbooking;
— Class 4: 200% overbooking.

Class 1 requests do not tolerate overbooking. These requests must run on hosts that are not expe-
riencing overbooking. As for the other classes, they tolerate 1 - (100/requestClassValue) overbooking.
As an example, for a class 3 request: 1— (100/ 150) = 0.33, therefore these request classes can run on
hosts that have up to 33% more resources allocated than its nominal capacity. The overbooking values
will also have another use to help maximize resource utilization as will be seen on Section 3.4.2.

After this process, the Manager receives this information and according to it, among all hosts, it se-

lects the one which maximizes overall resource utilization, allocating the request to it.

Cloud environment

Waorker 1

Allocate request
PR Manager
Request \
Client Warker M

Figure 3.1: Use case

3.2 Architecture

Fig. 3.2 describes in more detail, the components inside the Manager and the hosts, and how they
interact with each other. When a request arrives, it goes directly to the Scheduler (which runs our

scheduling algorithm) and, if possible, it will schedule that request into one of the N hosts. Before

34

explaining in more detail how each of the components on Fig. 3.2 interact, we will start by explaining

each component.

Request
arrives
Manager
¥
P T
re"é?;tw | Scheduler
S .
b, r
Worker 1 Worker i /
Monitor reT;sslt(nr < Monitar re;r;iilt(ry
[Docker }.‘. ‘;[Docker]

Figure 3.2: System Architecture

3.2.1 Components

Scheduler: The Scheduler is the first component the request interacts with. This component is
Docker Swarm, which was extended to include our scheduling algorithm, the remaining components are
new. Our algorithm (Section 3.4) is responsible for deciding which host is the best fit for the incoming
request, with the goal of better resource utilization in mind, but also taking into consideration the over-

booking limits presented on Section 3.1.

Host Registry: The Host Registry is a complex, but crucial, component responsible for performing
several different tasks concurrently, in order to keep its data structures strictly organized, vital for the per-
formance of the Scheduler. It keeps general information about the hosts (e.g. total resource utilization
of each host) on these data structures, which are carefully explained on Section 3.3. Due to restric-

tions imposed by Docker, this component is also responsible for rescheduling tasks (sends them back

35

to the Scheduler) that are killed by the Scheduler and updating task information when a cut is performed.

The cut means that we are decreasing the resources assigned to that task. This is different from
overbooking, because overbooking affects all the tasks on a host, while a cut affects a single task. This
is useful for example, imagining that in a class 1 host there is 2GB RAM available and comes a class 4
request which requires 3 GB RAM, if we put the request there, it would increase the overbooking factor
over 1 which is unacceptable on a class 1 host. But if we cut it (e.g. to 2GB RAM), then we can fit it
there without bringing the overbooking factor over 1. The cut is equal to the overbooking that a class
tolerates, so, for example, a class 2 task, would have its resources decreased by 16% (Section 3.1).

Kills refer to tasks that are killed (being rescheduled to another host) in order to allow lower level
classes to be allocated to the host. The main purpose of resorting to Kills is to avoid the hosts to reach
extremely high resource utilization levels which would reflect in a degradation of energy efficiency. This

approach will be more detailed on Section 3.4.3.

Task Registry: This component contains more specific information about each host (e.g. current
tasks being served by the host), also with strictly organized data structures (Section 3.3). It is also re-
sponsible for killing the tasks chosen by our algorithm and for removing any disk space used by the task,
which Docker does not remove by default and would occupy considerable disk space after many tasks
were executed. The other Docker Swarm scheduling algorithms, which we will compare our solution

with on Section 5, do not have this concern.

Monitor: In order to make the best scheduling decisions, the Host Registry and the Task Registry
must be constantly updated. For this purpose, the Monitor is responsible for measuring resource uti-
lization on each host and each task, and sending updated information to the Host Registry and Task

Registry.

Next we will explain in detail what messages are exchanged between the components in order to

keep the overall system functioning properly.

3.2.2 Components interaction

All the interactions are depicted on Fig. 3.2, but for more clarity and better understanding the following
explanation of each interaction and why, we present a summary of all the interactions following typical

task life-cycle:

1. Host Registry = Scheduler: Send list of hosts. Contains the following information about each

host: IP, host class, region, total resources utilization, CPU utilization, memory utilization, allocated

36

10.

11.

12.

13.

CPU shares, allocated memory, overbooking factor, total memory, total CPUs;

Task Registry = Scheduler: Sends list of tasks. The tasks currently running on the host this
Task Registry is running. The following information about each task is provided: task ID, task
class, task image, CPU shares, memory, CPU utilization, memory utilization, task type, amount of

cut resources;

Scheduler = Host Registry: Update host information. When a request is scheduled to the
respective host. It sends all the request information provided by the client explained on Section
3.1,

. Scheduler = Task Registry: Create Task. When a task is created. Sends information about the

task to the respective host;

Scheduler = Host Registry: Cut tasks. Sends tasks that will be cut due to the cut algorithm

decision;

Scheduler = Task Registry: Update Tasks. When a task is cut. It sends the new CPU and
memory of the task;

Scheduler = Task Registry: Kill Tasks. Sends tasks that will be killed;

Scheduler = Host Registry: Reschedule tasks. Sends tasks that will be rescheduled due to the

kill algorithm decision;

Scheduler = Task Registry: Terminated task. Informs the Task Registry that a task has termi-

nated so its data structures are updated;

Task Registry = Host Registry: Terminated Task. Informs the Host Registry that a task has

terminated;

Monitor = Host Registry: Create host. When a host is added to the Cloud environment, the
monitoring component sends the host information (IP, number of CPUs, memory amount) to the

Host Registry;
Monitor = Host Registry: Update resources utilization. Update host resources utilization;

Monitor = Task Registry: Update resources utilization:. Update task resources utilization;

To make decisions, besides the information regarding the request, the Scheduler requires additional

information about the hosts (message 1 and 2). This is provided by the Host Registry and the Task

Registry. Information on the Host Registry is the first to be considered (explained in more detail in the

next subsection), therefore being directly available at the Manager to avoid communication overheads.

37

However, more specific information might be needed about what is running on each host. When that is
the case, the Scheduler will request that information from the Task Registry of the host it requires that

additional information.

Besides requesting information, the Scheduler also sends information to both registries. When a
request is scheduled, the Scheduler informs the Host Registry (message 3) to which host the request
was scheduled and the corresponding request information (resources requirements, request type and
request class). It also informs the Task Registry (message 4) that a task was just created sending the
same information as message 3. Upon receiving this information, each Registry will update its data
structures accordingly as will be seen on Section 4.2.

Messages 5, 6, 7 and 8 are sent when a decision is made either by the cut or kill algorithm. The
reasoning behind these messages will be clarified on Section 3.4.3.

The Scheduler component is also responsible for detecting finished tasks. Upon detecting that a task
has finished, it will send the task ID (message 9) to the Task Registry so it can update its data structures

and remove any data left by the task.

The Monitor component monitors resource utilization of both host and the tasks running on that host.
It updates them (message 12 and 13) when some conditions apply as will be seen on Section 4.2.3.

Upon receiving message 7 (due to a task being killed) or 9 (due to a task have finished) and after
dealing with them accordingly, it will inform the Host Registry so the host allocated resources are up-
dated.

One of the goals of our work was to extend Docker Swarm with our scheduling algorithm without
interfering with the other scheduling algorithms, which we managed to achieve. In order to accomplish
this, we had to make some adaptations to our algorithm, which affected the components interaction. For
example, detecting that a task has finished (message 9) or that a host has joined the Cloud environment
(message 11), could be performed by the Scheduler, however it would involve changes to the code that

would affect the other algorithms. This is why these two messages are not sent by the Scheduler.

3.3 Data structures

As was mentioned on the previous section, the data structures play an important role in the per-
formance of the algorithm, but also in its scalability. Since cloud environments tend to have tens of
thousands of machines, it is important that our solution is scalable. We designed our data structures

with this concern also in mind.

38

These two requirements bring tradeoffs in terms of complexity of the data structures as shall be
seen next. This added complexity is the reason why we decided to build two extra components to keep
the data structures organized, since it would stress the Scheduler too much if this computation was
performed there. We will start by covering the internals of the Host Registry and finish this section with

the Task Registry.

3.3.1 Host Registry

Our strategy for achieving better resource utilization and consequently, better energy efficiency, is
based on the study performed by [63], which states that the energy consumed is proportional to the
resource utilization and that energy efficiency starts degrading at high levels of resources utilization.
Based on this, we decided to have three regions which map resource utilization (CPU and Memory) with

energy efficiency:
— Low Energy Efficiency (LEE): 0-50% total resources utilization;
— Desired Energy Efficiency (DEE): 50-85% total resources utilization;
— Energy Efficiency Degradation (EED): > 85% total resources utilization;

The LEE region refers to the region that has the lowest energy efficiency, due to under-utilized re-
sources, having a significant energy inefficiency. We want to transit hosts on that region to the DEE
region as quickly as possible, where an optimal energy efficiency is achieved. Our goal is to keep the
hosts at region DEE, because heavily used resources (hosts at region EED) have a negative impact
on the energy efficiency, increasing the energy consumption. How all this is achieved will be seen on
Section 3.4, for the remainder of this section we will explore how these regions are designed in terms of
data structures and how they are organized.

Organization: The Host Registry will maintain updated lists containing the hosts at each of these
regions. For each region, we will have four lists, one for each overbooking class as illustrated by Fig. 3.3.
What defines a host class is the lowest level class task currently running at that host. For example, if a
host is serving tasks of classes 2, 3 and 4, then this host will be classified as a class 2 host.

Each host will have the following information associated with it: IP; Class; Region; Total resources
utilization; CPU utilization; Memory utilization; CPU shares allocated; Memory allocated; Over-
booking factor; Total memory; Total CPU shares.

The region a host belongs depends on the current total resources utilization of the host as was
previously explained. The total resources utilization is represented as max{ % of CPU utilization, % of

memory utilization}, since the highest of these two values is what is restraining more the utilization of

39

Host registry

! v v

LEE DEE EED

| Class 1 hosts I I Class 1 hosts
m Class 3 hosts
Class 4 hosts Class 4 hosts Class 4 hosts

Figure 3.3: Host Registry data structures

the overall host resources. The overbooking factor is the max{ CPU shares allocated/Total CPU shares,
Memory allocated/Total memory}. Again, we use the max because it is what is the most restraining. As
an example, if the overbooking factor is 1.3, it means we have 30% more resources allocated on that

host than the total amount of resources of that host.

Ordering: The lists on the regions LEE and DEE are ordered by descending order of total resources
utilization and EED by ascending order. The hosts on the LEE region are ordered by descending order,
because the goal is to make the hosts leave this region of energy inefficiency, bringing them up to the the
DEE region as quickly as possible. Therefore the scheduling algorithm will try to schedule the requests
on the first elements of the list since they are closest to the DEE region.

Since the DEE region is the desired region for hosts to be, we order its lists by descending order,
to use a best fit approach, i.e. put as much requests on a host to maximize it but at same time avoid
entering the EED region.

The EED list will only be used for kills (explained on Section 3.4). The hosts on that region are ex-
periencing high resource utilization, therefore we don’t want them to be receiving more requests which
would only aggravate their energy efficiency. What we want is to bring them down to the DEE region,

therefore we order the lists by ascending order so that the first on the list is the closest to the DEE region.

This a very dynamic environment since the hosts can switch the data structure they belong either
due to a region change or a class change. This requires not only an efficient insertion algorithm but also
a rigorous synchronization, in order to ensure the data structures are always consistent. The former will

be explained on Section 3.4 and the latter on Section 4.2.2.

Updating: The data structures that compose the Host Registry can suffer changes if the following

40

events occur:

— A request is scheduled to a host. When this event occurs, the host to which the request was
scheduled, will be updated accordingly at the Host Registry, updating its allocated resources and
overbooking factor. This event can also result in a host class change in case the request class is
lower than the current host class. If, for example, the host class is 3 and the request scheduled is

a class 1, then the host class must be updated to 1;

— Cuts are performed to tasks. When cuts are performed to tasks, the allocated resources of the
host those tasks belong to will be reduced, meaning they need to be updated. The overbooking
factor will also decrease so it needs to be updated. This type of event does not trigger a class or

region change since it does affects neither of them;

— A task terminates. As was covered on Section 3.2.2 a task terminates either because it finished
or it was killed. In either case, the event is treated the same way. Since the task terminated, the
allocated resources and overbooking factor of that host are reduced, so it needs to be updated. It
can also imply a class change since the task terminated could be the last one restricting the host
class. For example, if the host has one class 2 task and several class 4 tasks, if the task being

terminated is the class 2 task. The host class must be updated to 4;

— Utilization resources are updated. When the CPU and/or memory utilization is updated, be-
sides updating CPU and memory utilization, we must also update the total resources utilization
of that host, by choosing the max between CPU and memory as was explained earlier. If the to-
tal resources utilization changes, then it might be required to make a region change. A check is
performed to see what region the host falls in with the new total resources utilization value. If it
is a different region than the current one, then we must update it. Otherwise there is no need to
update. As will be seen on Section 5.2.2, these updates won'’t occur often since we managed to
keep the hosts resources utilization stable over time, mainly the CPU, which is normally the max
between CPU and memory utilization.

As depicted on Fig. 3.3, the host class is a sub-structure of the region structure. To update a host
class, we first must remove it from the current host class structure and insert it, properly ordered (Sec-
tion 4.2.2), on the new host class structure, under the same region structure. As an example, consider
the case that a host X, currently on region LEE, with class 4, receives a class 2 request, the update that
happens is as follows:

[LEE][class 4][host X] host X moves to [LEE][class 2][host X], where [LEE][class 4] and [LEE][class

2] contains all hosts in region LEE and are class 2 and 4, respectively.

41

When a region update occurs, the procedure is the same. We just need to remove it from the host
class sub-structure from the current region structure and insert it, again properly ordered, under the
same host class sub-structure but under the new region structure. Picking the same example as before,

but now, instead of a class update, with a region update, changing from LEE to DEE:

[LEE][class 4][host X] host X moves to [DEE][class 4][host X], where [LEE][class 4] and [DEE][class

4] contains all hosts in region LEE and DEE respectively, with class 4.

3.3.2 Task Registry

As mentioned earlier, the Task Registry contains specific information about the tasks running on the
host. Per host, there will exist four lists, one per overbooking class as shown in Fig. 3.4. Each task
will have the following information associated with it: ID, Class, Image, CPU shares, Memory, Total
resources utilization (calculated the same way as for the Host Registry), CPU utilization, Memory
utilization, Task type, cut received.

Task Registry

Class 1tasks Class 2tasks Class 3tasks Class 4tasks

Figure 3.4: Task Registry data structures

Ordering: The information of the Task Registry will only used for the cut or kill algorithm (Section
3.4). Since the objective is to maximize resource utilization, priority is given to cutting or killing tasks
that are using less resources. To achieve this, the data structures represented on Fig. 3.4 are ordered

by ascending order of their total utilization resources.

Updating: The data structures that compose the Task Registry can suffer changes if the following

events occur:

— A request is scheduled to a host. When a request is scheduled to a host, the Task Registry of

that host, will create an entry for that request and insert it at the end of the data structure of the

42

request class. Since the task was just created and there is no information about its total resources

utilization, it is inserted at the end;

— Cuts are performed to tasks. When cuts are performed to tasks, the allocated resources of those

task will be reduced, therefore an update to those tasks information is required;

— A task terminates. As for the Host Registry, this type of event is treated the same way for a
task that was killed and for a task that has finished. This task needs to be removed from the data

structures;

— Utilization resources are updated. When the CPU and/or memory utilization is updated, besides
updating CPU and memory utilization, we must also update the total resources utilization of the
task. As with the hosts total resources utilization, it is the max between CPU and Memory utiliza-
tion. If the total resources utilization changes, then we must resort the task position within its data

structure;

Resorting the whole data structure is unpractical due to the amount of tasks it can hold, although,
depending on the workload, these updates might not occur often. To avoid resorting the whole data
structure because of a single change, when a change is required, we decided to remove the task from
its current data structure and re-insert it again into its new position. As the Host Registry, this could lead
to potential inconsistencies which need to be avoided through synchronization, as will be covered on
Section 4.2.2.

On the following section we are going to approach the algorithm that uses the data structures ex-

plained on this section. In fact, our algorithm is divided in three sub-algorithms as will be seen next.

3.4 Algorithms

There are three core algorithms. The first, tries to schedule the request, taking some restrictions into
consideration. However, if the request does not fit with the first algorithm, there are two options, either
cut or kill tasks in order for the request to fit. We will also present the cut and kill algorithm but first, we

start by presenting the overall algorithm which contains the first simple algorithm.

3.4.1 Overall algorithm

The goal of the overall Algorithm 3.1 is, first, to try and schedule the request either in the LEE or in
the DEE region, without resorting to cuts or kills. It starts by getting the hosts that are in the LEE region,

then the hosts on the DEE region are appended to that list (line 2). For example, if LEE has two class

43

1 hosts and one class 2 host, and DEE has three class 1 and one class 4, the list would be as follows:
1121114.

We prioritize scheduling in the LEE region so that those hosts can leave that region of energy in-
efficiency. Since the lists are ordered by descending order of total resources utilization, as we saw on
Section 3.3.1, the first elements of the lists are always the best candidates in order to achieve the goals
of the hosts on each region. In the case for hosts in LEE, to bring them to the DEE region, and hosts in
DEE to use a best fit approach and keep them in that region.

The hosts retrieved must respect this condition: request.CLASS = host Class and aggregate them
by ascending order of the class. This is to try and aggregate class 1 requests so that they are not spread
among the hosts, which would cause more energy inefficiency since no overbooking is allowed on class
1 hosts. This also benefits in avoiding pointless searches. For example, if a class 1 request arrives,
there is no point in searching hosts whose class is greater than 1, because it would probably not fit there
without resorting to cuts or kills. The next step is trying to schedule the request. requestFits function
checks if the host has enough resources to couple with the resources the request demands. It also
checks, if after the allocation, the overbooking allowed by the host is not violated (i.e. overbooking factor

< host class).

Algorithm 3.1 Overall algorithm

1: function SCHEDULEREQUEST(request)

2 listHostsLEE DEE = getHostsListsLEE _DEE()
3 for listH ostsLEE _DEE as selectedH ost do

4 if requestF its(selectedH ost, request) then

5: allocateRequest (selectedH ost, request)

6: return

7 listHostsLEE _DEE = getHostsListsLEE DEE()
8: if cut(listH ostsLEE _DEE, request) then

9: allocateRequest(selectedH ost, request)

10: return

11: listHostsEED DEE = getHostsListsEED _DEE()
12: if kill(listH ostsEED _DEE, request) then

13: allocateRequest(selectedH ost, request)

14: return

15: warnClient()

If the request cannot be scheduled in any of those hosts, we must resort to cut or kill. We first try to
cut. We do not cut tasks on the region EED. Cutting a task and putting a request there, it would increase
the overbooking on that host, worsening the decrease of energy efficiency that is already felt by hosts
on that region.

On line 7 (still on Algorithm 3.1) a lists of hosts is fetched again. This time, the hosts are aggregated
differently than before. Here, the lists are fetched respecting this condition: request.CLASS < host

Class. We do not try to cut on class hosts that are bellow the request class, because there, it will be

44

unlikely that there is something we can cut (because we only cut tasks that are greater or equal than the
incoming request). Although there could be tasks greater or equal than the request, we believe it is not
worth the cost of searching all these hosts. Like line 2, they are also aggregated by classes, following an
ascending order. Again, this is done to promote class 1 tasks aggregation and also because if a class 1
request is to be put at a class 3 host, for example (which might happen if it does not fit on class 1 and
2 hosts), it would have to cut everything there to put the overbooking factor from 1.5 to 1, to respect the

overbooking limit that class 1 tolerates.

If we cannot cut anything to fit the request, our last chance is to try and kill tasks in order to fit the
request (line 11). On line 10 the list of hosts on regions EED is obtained and we append the hosts on
region DEE. Priority is given to killing tasks on region EED, because by killing tasks and assigning a new
request to it, we could bring that host back to the DEE region. Since kill is our last resort to fit a request,
all the hosts on that region are considered regardless of their class. They are also aggregated differently
than before. Considering two tasks of each class in a host, this list would be aggregated as follows: if
an incoming request is 1: 11223344; if it is 2: 22334411; if it is 3: 33442211; if it is 4: 44332211. This
is done to avoid the problem that was mentioned at the end of the last paragraph. Next we will look into

the cut algorithm and then finish with the kill algorithm.

3.4.2 Cut algorithm

Before explaining Algorithm 3.2, it is important to mention some restrictions to cutting. First, there
are two choices, either cut the request being scheduled or cut tasks currently running on the host. We
give priority to cutting the incoming request rather than the already running tasks, because cutting a task
involves more overhead than cutting a request, due to the updates that have to be performed at the data
structures as we saw on Section 3.3. Second, we have to be careful with the cuts. Since overbooking
affects all the tasks on a host, imagine that a class 2 request receives a cut, then gets assigned to a
host that is currently experiencing 120% overbooking, this request would have its SLA violated since it
would be affected by more than 16% overbooking. To avoid this situation, we can only allow requests
that have been cut to be assigned to hosts with a class lower than the task class. However, if we cut a
class 3 request by 33%, it would only be allowed to run on a host class 1, same for a class 4 request.
To avoid this limitation, the cuts applied for class 3 and 4 requests, depend on the host they are at. For
example, if a task class 3 is running on class 2 host, the cut would be of 17% (33% (class 3 overbooking
toleration) - 16% (class 2 overbooking toleration)), since the remaining 16% would be inflicted indirectly

by the overbooking tolerated by that host. All the restrictions are as follow:

— Class 1 requests do not receive cuts;

45

— Class 2 requests can only receive a cut if they are assigned to a class 1 host;

— Class 3 requests can receive a full cut if they are assigned to a class 1 host. If they assigned to
class 2 host, they can only receive a cut equal to: 33% (class 3 value) - 16% (class 2 value), i.e.
17%. They cannot receive cuts for class 3 and 4 hosts;

— Class 4 requests can receive a full cut if they are assigned to a class 1 host. If they are assigned
to class 2 host, they can only receive a cut equal to: 50% (class 4 value) - 16% (class 2 value), i.e.
34%. If the task is at a class 3 host then they can only receive a cut equal to: 50% (class 4 value)

- 33% (class 3 value), i.e. 17%. They cannot receive cuts for class 4 hosts.

Having understood what a cut is, its restrictions and its benefits, we can finally look into Algorithm
3.2. At line 6 it starts by checking if the request fits considering the same conditions as in Algorithm 3.1
at line 4. Although this check is done at the previous algorithm, this is done again because the selected
hosts for the simple algorithm are different from the hosts selected ones for the cut algorithm, for the
reasons stated on the previous section. Therefore, it might be possible to allocate on these hosts without

resorting to cuts, thus avoiding cutting unnecessary tasks.

If this first check fails, the next step is to try to fit the request by cutting it and checking if it fits (line
9). When making this check, it is always taken into consideration the current class of the host to try and
leverage as much overbooking as we can, in order to achieve a better resource utilization. If it does fit,
then the request is cut (line 10) and allocated to that host.

Otherwise, if the request class is higher than the host class (line 13), it continues to the next host
because it is not worth to cut at this host. This is the case because, if the request class is higher than the
host class, then it is likely that this host contains a majority of tasks that are below the request class (we
only allow tasks to be cut if they are higher or equal than the request class) therefore not being worth

the time searching this host for tasks to cut.

As was explained previously, the request can only be cut if the host class is lower than the request
class. For the same reason, tasks can only be cut if their classes are lower than the host class. There-
fore, if the host class is greater or equal than the request, only tasks whose class is higher than the
request (because if the request is assigned successfully, the class of the host would change and the
classes would have their overbooking levels violated) (lines 16 and 17) can be cut. To illustrate this, an
incoming class 3 request can only be cut if it is being assigned to either a class 1 or 2 host. As another
example, if an incoming class 2 request is being assigned to a class 1 host, it cannot be cut and only
class 3 and 4 tasks that are active on that host can be cut.

A check is also performed for class 4 requests because there are no tasks higher than class 4. Oth-

46

erwise, we are safe to cut classes equal or higher than the incoming request, if it is not a class 1 request,

because we cannot cut class 1 requests (lines 18 and 19).

Algorithm 3.2 Cut algorithm
1: function cuT(listH ostsLEE D EE, request)
2 for listH ostsLEE _DEE as selectedH ost do
3 cutLI ST = null
4: listTasks = null
5:
6: if requestF its(selectedH ost, request) then
7 returntrue
8: if request.CLASS != 1 and af ter CutRequestF its(sel ectedH ost, request) then
9: newRequest = cutRequest(request)
10: return true
11: else if request. CLASS > selectedH ost.CLASS then
12: continue
13:
14: if selectedH ost.CLASS > = request.CLASS and request.CLASS != 4 then
15: listTasks = getListTasksH igher ThanRequestClass()
16: else if request. CLASS !=1 then
17: listTasks = getListTasksE qualH igher ThanRequestClass()
18:
19: memor yReduction = 0
20: cpuReduction = 0
21:
22 for listTasks as task do
23: cpuReduction+ = task.CPU «task.CutToReceive
24: memoryReduction+ = memory.CPU = task.CutToReceive
25: cutL | ST.Append(task)
26: if f itsAf ter CUT (request, couReduction, memor yReduction) then
27 cutRequests(request, cutL| ST)
28: return true
29: end for
30: end for
31: return f alse

When the list of tasks from the Task Registry (lines 17 or 19) is retrieved, the lower classes are
appended to the higher ones, so that it attempts to cut from the higher classes first. Since the list is
ordered by total resources utilization (done by the Task Registry) and by class, the first of the list is the
best candidate for a cut.

Line 28 checks if the request fits taking into consideration the overbooking restrictions described
earlier. The tasks are checked iteratively until the request fits or does not fit at all, trying the next host.
This is done iteratively instead of checking all of them at once, to avoid cutting unnecessary tasks.

To reduce the amount of tasks the Scheduler needs to check for a request to fit, the Task Registry

only sends the tasks that respect the cut restrictions explained earlier on this section.

47

If one reaches line 34, it means that we cannot cut enough tasks at any host to allocate this request,

therefore we must try to kill tasks to fit this request (algorithm 3.3).

3.4.3 Kill algorithm

Regarding Algorithm 3.3, only tasks with their class higher than the request can be killed (line 4
and 5, the check on 4 is because there are no classes higher than 4). This provides the opportunity to
co-locate similar task classes, leaving other hosts to be able to have more overbooking, increasing the
overall energy efficiency. However, class 4 tasks that are services, since they are most likely not to be
utilizing their resources fully, we decided to kill them if the request is a job, that is more likely to use the

resources more efficiently than a service (line 7).

The reasoning beyond the remainder of the algorithm is similar to Algorithm 3.2, checking if the
requests fits by killing the tasks obtained from the Task Registry, if not, move to the next host. Killed
tasks are rescheduled to other hosts (line 18). If after checking all hosts the request does not fit in any,

then it cannot be allocated and we warn the client.

Algorithm 3.3 Kill algorithm

1: function KILL(listH ostsD E E, request)

2 for listH ostsEED _DEE as selectedH ost do

3 possibleKillL1 ST = null

4: if request.CLASS !=4 then

5: possibleK illLI ST = selectedH ost.getListT asksH igher ThanRequest CLASS()
6: else

7 possibleK ilILI ST = selectedH ost.getListT asksClass4N ond o)
8: killL1 ST = null

9: memor yReduction = null

10: cpuReduction = null

11:

12: for possibleKillLI ST as task do

13: cpuReduction+ = task.CPU

14: memor yReduction+ = memory.CPU

15: KillL1 ST += task

16: if requestFits(request, killL1 ST) then

17: Kill(killL1ST)

18: reschedule(killLl ST)

19: return true
20: end for

21: end for
22: return f alse

48

Summary

As could be seen by the previous chapter, there are different strategies to optimize energy efficiency,
each with its advantages and disadvantages. This chapter presented our proposal to extend Docker
Swarm with an overbooking strategy, maximizing its advantages and minimizing its disadvantages. We
maximize its advantages by going further than the overbooking strategies found in the literature, adding
the concept of cuts. In order to minimize the disadvantages, we propose a kill algorithm that mitigates
the issue of extremely high resources utilization, a risk of using an overbooking strategy. The solution
aims at increasing resource utilization based on resource utilization regions that provide different energy
efficiency levels. The next chapters continues with more details about our solution, this time at lower

level of abstraction, with the implementation details.

49

Implementation

In the previous chapter we saw how our solution was designed and why, at a higher level of abstrac-
tion. In this chapter we will go to a lower level of abstraction, by first describing the overall system setup,
presenting how all components are integrated with Docker Swarm for example. Then we will go into
important aspects of the components implementations, vital for the overall performance of our solution.

We finish with the software architecture and what extensions were added to Docker Swarm.

4.1 System setup and operation

At this section is described the important configurations for hosts discovery and for communications

between components.

4.1.1 Discovery service

In order to start containers on remote hosts, Docker Swarm uses a discovery service. As seen on
Section 2.1.3, Docker Swarm provides a default discovery service but also supports different discovery
services, such as key-value stores or DNS. We started using the default discovery service but soon
came to realize that it was too slow and a different approach was required. The default discovery
service required constant communications with the Docker Hub (Section 2.1.2), which is a slow process
when compared to using a local discovery service without requiring external connections outside of the
cloud environment.

We decided to use a key-value store discovery service for being better supported by Docker Swarm
than a DNS discovery service. We opted to use Consul’, for being simple to learn and having a good
integration with Docker Swarm.

4.1.2 Inter-components communications

Now that Docker Swarm can communicate with the hosts, the next step is to make Docker Swarm
be able to communicate with the components we introduced on the previous chapter. As described on

Section 2.1.3, Docker Swarm does not have any of the components presented on the previous chapter.

Thttps://www.consul.io/

50

The components communicate with each other using Representational State Transfer (REST) endpoints.
These endpoints represent the interactions exchanged between components explained Section 3.2.2.
Throughout the remainder of the section, when we refer to messages, we refer to the ones of Section

3.2.2. Lets start with the Host Registry endpoints presented on Fig. 4.1.

Host Registry

1-hostlistfrequestclassi&{listtype} (GET)

2 - Ihostlistkill{requestclass} (GET)

3 - /hostlupdateclass/irequestclass}&ihostip} (GET)

4 - hostlupdateresourcesi{hostip}&f{cpul&{memory} (GET)

5 - lhosticreatehosthostip}&ftotalmemory}&{totalcpu} (GET)

6 - /hostiupdatetaskiftaskidi&{newcpuli{newmemand&{hostipl&{cpucuti&{memorycut} (GET)
7 - hostireschedule (POST)

8 - lhostikilltask (POST)

9 - fhostlupdatebothi{hostipi&{cpul&imemory} (GET)

10 - ihostiupdatecpui{hostip}&{cpu} (GET)

11 - Ihostlupdatermemaoryi{hostip}&{memaory} (GET)

Figure 4.1: Host Registry endpoints

Endpoints 1 and 2 refer to message 1. They are used by the Scheduler when it requests hosts to
attempt to schedule the request. The first endpoints gets hosts for the simple or cut algorithm (Section
3.4) based on the listtype value provided. Endpoint 2 gets hosts for the kill algorithm (Section 3.4.3).

When a request is scheduled (message 3), the Scheduler sends information to the Host Registry via
endpoints 3 and 4. The former checks if the host class should be updated based on the request class
sent by the Scheduler, while the latter updates the allocated resources of the host identified by the IP.

Endpoint 5 is used by the Monitor to communicate to the Host Registry that a new host joined the
cloud environment and can now be considered for scheduling decisions.

When cuts are performed at tasks, the Scheduler uses endpoint 6 to send the new CPU shares and
memory value for the task after the cut, so the Host Registry can update it (Section 4.2.2). It also sends
the amount of CPU shares and memory value that was cut so the allocated resources of that host are
updated. This endpoint corresponds to message 5.

For the reasons stated on Section 3.2.1, the Host Registry is responsible for rescheduling tasks that
were killed. Endpoint 6 serves this purpose, while endpoint 7 is used to update the allocated resources
of the host. The whole task information (Section 3.1) is sent via POST. Both refer to message 8.

The remaining endpoints refers to message 12 and are used by the Monitor when a resource utiliza-
tion update is required. Why there are three different endpoints for this purpose will be seen later on
Section 4.2.3.

51

The Task Registry defines the remaining endpoints shown at Fig. 4.2

Task Reqistry

1 - ftaskifrequestclassPOST)

2 - taskihighercutfrequestclass} (GET)

3 - taskiequalhigherfrequestclassi&ihostolass) (GET)

4 - ftask/higher{requestclass} (GET)

5 - ftaskiclass4d (GET)

G - taskiremoveftaskid: (GET)

7 - taskiupdatetaskiftaskclassi&inewcpuliinewmemondiftaskidi&{cutreceived} (GET)
8- taskiupdatebothiftaskidi&inewcpulé{newmemory} (GET)

9 - taskiupdatecpuftaskidi&{newcpu} (GET)

10 - taskiupdatememoryftaskidi&{newmemond (GET)

Figure 4.2: Task Registry endpoints

The first endpoint refers to message 4. The Scheduler uses it to send all the request information in
order for the Task Registry to create an entry for it, on its data structures. Endpoints 2 - 5 refer to mes-
sage 5 when the Scheduler requests a list of tasks for the cut or the kill algorithm. The first two are used
by the cut algorithm and the last two by the kill algorithm. When a task has terminated (message 9), the
Task Registry is warned by the Scheduler via endpoint 6. When a cut decision is made, the Scheduler
uses endpoint 7 to tell the Task Registry which task must have its allocated resources updated. This
refers to message 6. The last three endpoints are the same reasoning as the last three endpoints of the
Host Registry and will be explained later at Section 4.2.2.

4.2 Components

On this section we provide more details about the implementation of the components that comprise

our solution, starting with the Scheduler, Host Registry and Task Registry, and finishing with the Monitor.

52

4.2.1 Scheduler

As seen on Section 2.1.3, Docker Swarm has filters that can be used to restrict the number of hosts to
which a request can be scheduled. This is not useful for our case since we use more complex restrictions
that cannot be performed through the use of filters, which are only intended for simple restrictions.
However, we leverage filters to pass information to our algorithm which otherwise would be required to
be passed with the image, which is not acceptable because, if for example, a client wants to start an
Ubuntu desktop, it doesn’t make sense for him to edit the image to include the information required for
the request to be scheduled.

The information required to make a scheduling decision was first introduced at Section 3.1. The
number of CPU shares, memory and the request image the client provides is accessible inside Docker
Swarm. However, the request class and type are custom and these are the two types of information that

we use filters to make them accessible inside Docker Swarm.

4.2.2 Host Registry and Task Registry

The Host Registry is responsible for many different concurrent tasks (Section 3.3.1), making it sus-
ceptible to bottlenecks and having inconsistencies within its data structures. The Task Registry is more
lightweight (Section 3.3.2), although it also deals with constant changes within its data structures. Both
solutions that we found for these problems are applied at both registries in a similar way, therefore we
present them both together at this section. However there are some differences that are highlighted

when relevant.

Sorting: The constant insertions could result in bottlenecks and scalability problems since the data
structures will grow very large in real cloud deployments. Therefore a quick, but simple insertion algo-
rithm is required.

Both registries contain data structures ordered by ascending order of total resources utilization (EED
region for the Host Registry, Section 3.3.1), but Host Registry also contains data structures ordered by
descending order of total utilization resources (LEE and DEE region), so two versions are required, one
for ascending and another for descending ordering.

Binary search [64] is a common and simple algorithm used to find elements in a list with O(log N)
complexity. We decided to adapt this algorithm to, instead of searching for an element, to search for an

index position indicating the place we want to insert.

Our adaption for the ascending order works as follows. As the search value we use total resources

53

utilization. When the lower bound is greater than the upper bound it means we have reached the de-
sired position. However, since the order matters, an additional check is required, because at the current
index, there could be a host/task that contains a total resources utilization higher than the host/task total
resources utilization that we want to insert. In case the search value is lower then that of the point to
be inserted, then it can return the current index position. If the search value is higher, then it is inserted
at index + 1 position because at the index position, the host/task has a total resources utilization higher
than the host/task we want to insert. If the current host/task at the index position has a total resources
utilization equal to the search value, then the search has also finished. It returns the index position but it
could also be index position + 1 since they have the same total utilization resources, it would not make

a difference.

The algorithm for sorting in descending order has the same rationale but the checks are reverted,
that is, when the lower bound is lower than the upper bound, then we’ve reached the desired position,

also performing the two additional checks as in the ascending algorithm.

Data structures implementation: Now we are going to look in more detail at how the data struc-
tures are actually implemented, with the goal of achieving the fastest insertion, deletion and updating
times. First, we will look at the Host Registry then at Task Registry because they are implemented dif-

ferently.

Host Registry: As seen on Section 3.3.1, each region will have 4 lists, one for each overbooking
class. For a quick access, each region will be accessed through a map (e.g. named regions) where the
key is a string with the region (LEE, DEE or EED) and the value is a struct (similar to C++ structs, there

are no classes in Go) as follows:

struct {
classHosts map[string] []*Host

}

ClassHosts is another map whose key is a string with the host class (1,2,3 or 4) and the value is a
pointer to a slice of a Host struct. This struct contains all the information regarding a host (e.g. its IP,

total resources utilization, resources allocated, etc).

Docker Swarm is implemented in Go®. Instead of arrays, they have slices which is similar to arrays
but has a dynamic size, i.e. we can add or remove elements. For example, a slice of ints would be

declared as : [Jint. So in this case, a slice of a pointer to a struct named Host is: [J*Host.

2https://golang.org/

54

These maps grant a very quick access to the hosts we want to access, useful for example, when
the Scheduler asks for lists of hosts with restrictions about region and class as seen on Section 3.4.
As an example, if we want to access all the class 3 hosts at region EED, we simply use the following:
regions["EED"].classHosts["3’].

However, this approach is very inefficient if we want to access a single host (to update the utilization of
resources for example). To change the resources of a certain host at region DEE, class 1, we would have
to iterate through the slice regions[’DEE”"].classHosts["17][i], where i is initially O and is incremented until
we reach the host we wanted. Besides having a complexity of O(N), it also has the additional overhead

of accessing two maps, despite being quick, it is not negligible.

To solve this problem we decided to create another map (e.g. named hosts) with the host IP as key
(since it is unique) and as a value, we use a pointer to a Host struct, the same Host struct as above. To
access a host cpu utilization and update it we can now simply use: hosts[” 193.146.164.10"].CpuUtilization =
0.23.

The changes performed at the hosts map will also be reflected at the regions map (and vice-versa)
since they share the same pointer to the Host struct. Using this approach also increases concurrency,
consequently increasing overall performance. If we did not use a separate map (hosts) to access hosts
in a single fashion, in order to make an update to a host, besides iterating through all hosts within the
regions map, we would also have to lock that map in order to ensure it remains consistent, allowing only

one host to be updated at a time which has severe performance implications.

In the regions map, we have to use a slice for the hosts, because the hosts at that map need to be
ordered in order to maximize the performance of the scheduling algorithm (Section 3.4) and we can not

order values in a map.

Task Registry: The Task Registry data structures are simpler than Host Registry’s (Section 3.3), but
the rationale is the same. Again, for a quick access, we use a map (e.g. named classTasks) whose key
is a string (1, 2, 3 or 4, representing the task class) and the value is a pointer to a slice of a struct called
Task. This struct Task, contains all the information regarding a task (e.g. its ID, allocated resources,
etc). If we to want to access all class 2 tasks we can simply use classTasks[’2’]. Again, we have to use
a slice because the tasks need to ordered (Section 3.4).

The same problems mentioned for the Host Registry also exist here. To deal with this, we also have
another map (e.g. named tasks) with the task ID as key (since it is unique) and as a value, we use a
pointer to a Task struct, the same as above. To access a task and update its allocated memory, we can
change it directly: tasks["af4848743”]. Memory = 5004328974 , where af4848743 is the task ID.

As for the Host registry, the changes performed at the tasks map will also be reflected at the

classTasks map since they share the same pointer.

55

Synchronization: Throughout the chapters it was mentioned several times that the data structures
need to be properly synchronized in order to avoid inconsistencies within the data structures. An in-
evitable tradeoff of applying synchronization is performance penalties. However, the data structures
need to remain consistent so there is a tradeoff we need to couple, but we can try to diminish it as much
as possible.

To accomplish this, we defined fine-grained locks so the data structures locked are the minimum to
have everything consistent. The synchronization performed at the Host and Task Registry are different

but the concept is the same.

To achieve these fine-grained locks mentioned in the previous paragraph, we resort to maps and
structs again. There is a map (e.g. named mapLocks) with a string key representing the host class

(LEE, DEE or EED) and as a value the following Lock struct is used:

struct {
classHosts map[string] *sync.Mutex

lockRegion *sync.Mutex

Using the above struct, we can have more coarse-grained locks (using lockRegion) by locking at re-
gion level if required, or more fine-grained locks by locking at class level through the classHosts map,
whose key is a string representing the host class (1,2,3 or 4) and the value is Go’s internal lock.
As an example of a coarse-grained lock, if we want to lock all hosts on region LEE we can use:
mapLocks["LEE"].lockRegion.Lock(). If we want to use a more fine-grained lock to lock all hosts on

region DEE and class 3 we can do the following: mapLocks[’"DEE’].ciassHosts[”3”].Lock().

The Task Registry uses the exactly same procedure for synchronization but since it has simpler data
structures, it uses a single map (e.g. named lockTasks) with a string key representing the task class
(1,2,3 or 4) and as a value Go’s internal lock. So in order to lock access to class 4 tasks for example,

we use: classTasks["4’].Lock().

4.2.3 Monitor

To finish the components implementation description, we are going to describe how the monitor
measures resource utilization and how it decides when to send an update or not, to the Host Registry
or the Task Registry.

The Monitor has two threads, one to monitor the host resources utilization and the other to monitor

tasks resource utilization. First, lets look into how the host’s resources utilization are measured.

56

Host resources monitoring: Every 30 seconds, it is checked if an update should be sent to the
Host Registry. However, measurements are not collected every 30 seconds, which could lead to errors.
For example, imagine that between measurements (in a 30 seconds interval), the CPU utilization is 50%
but at the very last second it spikes to 90%, and the next second (at 31 seconds), would drop again to
50%. The measurement collected would be 90% and it shouldn’t because it was just a CPU spike during
1 second. This sort of issues would have significant consequences to the algorithm, because it would
state that the host was under a heavy load when it actually wasn’t, and we must wait another 30 seconds
for the correction to be fixed (if there isn’t another spike), loosing many requests in the meantime.

To deal with this issue, between the 30 seconds interval, samples are collected every 3 seconds.
At the end of the 30 seconds, we average all the samples collected during that interval and use those

values (CPU and memory) to check if an update should be sent.

In order for the update to be sent to the Host Registry, a condition must be verified. The difference
(either CPU or memory) between the last update sent and the current measurement must be higher than
a threshold, otherwise it is not worth to send the update, which would result in wasted communications
between the components. The threshold is defined at 10 p.p. That is, an update is only sent if there
is a different from at least 10 p.p between the last measurement sent and the current measurement.
To illustrate this, consider that 30 seconds ago, a CPU measurement of 31% was sent. If the current
measurement is 42%, an update is sent. However, if the current measurement is 35%, that measurement
is not sent.

To avoid sending two messages, if both the CPU and memory threshold are exceeded, then both
updates are sent together in the same message. Otherwise it sends an individual message for each
update.

The threshold, the time between samples and the time between measurements are configurable and
can be adapted to the environment or the type of workloads that the cloud environment deals with. For
a highly volatile environment with constant variations, these configuration values can be lowered. In an
environment where the workloads are constant, the configuration values can be increased significantly
to avoid wasting resources by taking constant measures that do not change. We decided our configura-

tion values based on a middle ground between a high volatile environment and a constant environment.

To collect resource usage information we use System Information Gatherer And Reporter (Sigar)®. It
provides a simple and efficient way to access OS/hardware information. It has another significant advan-
tage that it is cross platform (i.e, works in Windows and Unix based systems). This is important because,

although Docker is still in beta version for Windows and Mac, it is just a matter of time for it to be widely

Shitps://github.com/hyperic/sigar

57

available at those systems. Therefore we had the concern to make this component cross-platform. The

other components do not have this concern because they do not use any software platform dependent.

Tasks resource monitoring: The rationale behind tasks resource monitoring is the same as of the
host monitoring. The configuration values are also the same except that the time between measure-
ments is 45 seconds instead of 30. We increased the value because tasks resource utilization is not as

volatile as the hosts resources utilization.

A single thread is used to measure every tasks since it is not practical to have a thread for each
task and also because Docker has a command called stats*, that returns a live stream resource usage
statistics of all the containers running on a certain host. We leverage this command to get CPU and
memory utilization of each task.

At the next Section we will see how the structs mentioned on this section are implemented as well

as many of the information presented on Chapter, such as the communication components.

4.3 Software architecture

Represent by Fig. 4.3 is our software architecture composed by the Scheduler, the Host Registry
and the Task Registry. For space reasons, the Monitor software architecture is represented separately
at Fig. 4.4. At Fig. 4.3 is detailed everything that was explained on the current and the previous chapter.
On this Section we will approach details that were not covered yet, for full clarity about our solution. We

also present our extensions to Docker Swarm in order for our solution to be implemented.

At the bottom of the figure are the structs that contain information about the tasks and the hosts,
shared between different components. At the Task struct the Original CPU and Original Memory are
used when kills are performed. Imagine the case that a task receives a cut, but then is killed conse-
quently being rescheduled. It needs to be rescheduled with its original values (pre-cut), and these are

stored at Original CPU and Original Memory.

At the top of the figure are the structs mentioned on the previous Section. At the left top is a struct
called TaskResources. As seen, the Host Registry is a complex component, all the computation we can
take away from it, the better for the overall system performance. This struct is used with this in mind.

As referred on Section 3.3.1, when a task has terminated, the host class might need to be updated.

The Task Registry has all the information required to perform this check since it has information about

“https://docs.docker.com/engine/reference/commandline/stats/

58

all the current active tasks on the host. Therefore, once a task has terminated and is the most restrictive
task running on the host (the lower class task), it is checked if there are more tasks with the same class
as the one that was terminated still running on the this host. If there aren’t, Update is set to true, Previ-
ousClass to the task class that terminated, and the NewClass to the next task class running on this host.
If there are still tasks with the same class as the one that was terminated, Update is set to false and
do not set any value for PreviousClass and NewClass since they will not be used. As for the CPU and
Memory values, they are used in the struct because, the Host Registry needs to update the resources
allocated, independently if Update is true or false. IP is used to identify the host as seen on Section 4.1.2.

At the top right of the figure are all the extended packages and the respective class files.(identified by
the .go extension). Our algorithm presented on Section 3.4 is extended in the Strategy package where
the other Docker Swarm scheduling algorithms also reside. We are now going to look at the necessary
modifications performed at Docker Swarm original source code. These extensions are presented and

the rationale behind the extensions can be found on the Appendix of this document.

To finish this section, the Monitor software architecture is illustrated at Fig. 4.4. Everything presented
was already covered on previous sections, such as currentTasks for example, seen on Section 3.2,

which maintains the active tasks on the host the Monitor belongs to.

Summary

This chapter presented the details about the implementation of our proposed solution, including
configurations to Docker Swarm and the components. It started by detailing how the internals of the
components were implemented, with performance, scalability and consistency concerns in mind. Next,
was presented a detailed description of our software architecture, which included all our components,
shared data structures between components and extensions performed to Docker Swarm. In the next
chapter we present the evaluation results of the solution presented in this and the previous chapter,

comparing with the different Docker Swarm scheduling algorithms.

59

struct’

CPU:ints4
Memory intg4
PreviousClass : string
NewClass : string

Update : bool

IP - string

Use

structlock

Tsync hutex
[classHosts : map(string][I*Host

lock : *synchiutex

Task Registry

tasks: map[String] Task

classTasks: maplstring)*Task map{string]
Iocks: maplstringl*syne Mutex

ip: string

MAX_CUT_CLASS2: float
MAX_CUT_CLASS3: float
MAX_CUT_CLASS4: float

Sort(["Task, float64) int

InsertTask(|[*Task, int, *Task):[['Task

RemoveTask(nitp. RespanseWriter, *http Request) - vaid
CreateTask(http.ResponseWriter, *http.Request): void
UpdateTask(htip.ResponseWriter, *hitp.Request): void
UpdateBoth(htip ResponseWriter, *hitp.Request) void
UpdateCPU(http.Response\riter, *hiip. Request) :void
UpdateMemory(hity ResponseWriter, *http Request) - vaid
UpdateTotalRes ourcesUtilization(fleatg4, floatd4, int, string) : void
UpdateList(string) : void

GefClass4Tasks hitp.ResponseWriter, “http Request) : [[*Task
GetHigherTasks (htip.ResponseWriter, *hitp.Request) : [[Task
GetEqualHigherTasks(htip ResponseWriter, *http.Request) : [I'Task
GetHigherTasks CUT(hitp.ResponseWriter, *http.Request): [*Task
taskToBeCul(['Task, string): [[*Task

taskCanBeCut([['Task, string): (bool floatba)
executeDockerCommandi(] string): void
sendinfoHosRegistry(*TaskResources) void

ServeSchedulerRequests() : void

s

Host Registry

regions: map[StringJRegion
hosts: maplstring[*Host

locks: map[string]Lock

Docker Swarm

Scheduler packagi——- Strategy package
Schedulergo

Engine.go

Cluster package — Swarm package —3 Clustergo

Extends Strategy

Proposed solution

Sort(I*Host, floatd4): int

ReverseSort([["Hest, floaté4) : int

InsertHost{ [*Host, int, *Host) :[*Host
UpdateHostList(string, string, *Host) : void
UpdateHostRegion(string, string) - void
UndateHostRegionList(string, string, *Host) : vid
CheckifRegionUpdate(string) : bool

TerminatedTas kihttp.ResponseWriter, *htip Request) : void
CreateHost(http. ResponseWriter, *htp Request) : void
UpdateHostClass(http.Responsewriter, *hitp.Request): void

UpdateTaskResources(http.ResponseWriter, *hitp Request) : void

A . *htip.Request) : void

L . *hitp.Request) : void
UpdateCPU(http. ResponseWriter, *hitp. Request) : void
UpdateMemory(hitp.ResponseNiriter, *hitp.Request): void
UpdateTotalResourcesUtilizationifloat64, floatd4, int, string) - void
UpdateResources(intd, int84, string) : void
GetlistHostsLEE_DEE (hitp.ResponseWriter, *http Request) :[*Host
GetListHostsEED_DEE(nitp.ResponseWriter, *htip.Request) : [I*Host
GetHostsLEE_normal(string) - []*Host
GetHostsLEE_culstring) - [1*Host
GetHostsDEE_normal(string) : [I*Host
GetHostsDEE _cut(string) : [J*Host
GetHostsDEE _kill(string) : [[Host
GetHostsEED(string) [["Host

ServeSchedulerRequests() : void

MAX_OVERBOOKING_CLASS1 : float
MAX_OVERBOOKING_CLASS2 : float
MAX_OVERBOOKING_CLASS3 : float
MAX_OVERBOOKING_CLASS4 float
MAX_CUT_CLASS2: float
MAX_CUT_CLASS3 : float

MAX_CUT_CLASS4 : float

CheckOverbookingLimit(*Host, int64, inté4, int64, inte4, string)
RankAndSort(“cluster.ContainerConfig, [*node.Mode, [stringl*node.Node) :

([1*node.Node, error, string, string, floatd4)

requestFitsAfterKills(*Host, *cluster.ContainerConfig, string, int34, int34) . bool

reschedule(([Task) : void
reschedulingTasks(string, string, string, string, string) : void

killTasks({ TTask string) : void

cut(l *Host, string, *cluster.ContainerConfig) : (*Host, boal, floatf4)
fitafterCuts(*Host, intf4, int64, string, int64, int6} : bool

cutRequests((ITask, string) : void

amMoUntToCut(string, string) - fioats

appiyCut(string, clusterContainerCanfig, string) - (int64, int64, boal)
afterCutRequestFits(string, *Host, *cluster.ContainerConfig, string): baol
UpdateTask(stiing) : void

GetTasks(string) : [[Task

GetHosts(string) : ['Host

SendinfoHosl(string) : void

Use

struct.Task

[TaskiD : string
[TaskClass : string

Image : string

[CPU :intB4
[TotalResources Ulilization : floatsd
Memory - intéi4
[CPUUilization : float6d.
MemaryUtilization - float64
[TaskType : string
[CutReceived : floats4
[CulToReceive : floaté4

lOriginalCPU - int64

[OriginalMemory : inté4

HostiP : string
HostClass : string

Region : string
TotalResourcesUtilization floats4.
CPU_ Utiization : floats4
WemaryUtilization - float64
Allocatedtemory : floatd
AllocatedCPUs : floate
OverbookingFactor : float6d
Totalllemory : int64

TotalCPUs :int64

Figure 4.3: Software architecture containing the Scheduler, Host Registry and Task Registry

60

Monitor

lastCPUMeasureSent: double
lastMemoryMeasureSent. double
threshold: double

currentTasks: HashMap=5tring, Task=

GetTasksInfo(int): void

SendinfoHostRegistry(): void
SendlUpdateTask(double, double, int, String); void
sendUpdate(double, double, int): void

getCPU{): double

getMemaory(): double

getlP(); String

Figure 4.4: Monitor software architecture

61

Evaluation

This chapter describes the experiments carried out to evaluate the proposed solution agaisn’t the
three Docker Swarm scheduling algorithms, random, spread and binpack, as seen on Section 2.1.3.

We start by describing how the evaluation was carried out, followed by its results.

5.1 Experimental setup

Evaluating cloud solutions, in order to be realistic, requires thousands of machines. Unfortunately,
for academic purposes, these amounts are normally not available to students, which have to resort to
simulation. However, simulations have many drawbacks, such as being in closed, safe environments
not susceptible to "noise” as in real deployments, therefore not producing realistic results. Since the
proposed solution is focused on cloud environments, susceptible to different kinds of disturbances, we
decided not to use simulation, instead making a real deployment.

However, our solution was deployed on 6 hosts only, provided by INESC-ID. This is not ideal but
we preferred it over simulation to see how it would behave in a real environment, not susceptible to the
drawbacks provided by simulations. We thought at some point to complement our real deployment with
a simulation deployment but it would be another work to incorporate realistic resource usage variance in
the simulation. Although, it is open for future work has all the other things that could have been improved

with more time as will be seen on Section 6.1.

As already mentioned, our solution was deployed on 6 hosts. These hosts are powered by an Intel
Core i7-2600K CPU @3.40GZ, 11926 MB RAM and HDD 7200RPM SATA 6GB/s 32MB cache. One
host (host 2) will serve as the Manager (Section 3.1) and the remaining hosts will serve as workers,

executing client’s requests.

Our goal, was to evaluate our solution in the most realistic environment possible. To this end, we also
intended to use real workload traces. However, there are none available for Docker Swarm, which also
hinders realistic simulation with reduced overhead. There has not been many research on benchmarking
Docker Swarm either. We only managed to find benchmarking tools that evaluate scheduling speed and

not scheduling quality (e.g. scheduling decisions). Due to this, we had to create our own custom

62

workload and extensions to collect metrics. These are presented next.

5.1.1 Workload generation

Using a custom workload is never as realistic as real workload traces, however we tried to mitigate
this difference as much as possible by attempting to design representative workloads for testing. Making
it unbiased was also our concern, that is, so it does not favor our solution against the ones we are
comparing with. Our evaluations lasted one hour in order to have as much variability as possible. The
workloads generated were saved and used on all attempts on the different scheduling algorithms so
that they are tested with the same conditions. The following requirements for each workload had to be

generated:

— CPU requirement;

Memory requirement;

Request makespan;

Workload type;

Request rate;

Request class;

The CPU and Memory requirements are the amount of resources the clients requests for that work-
load. These are generated using an exponential distribution. We decided to use an exponential distribu-
tion since it provides a good variability. An exponential distribution provides this opportunity because in
a real environment, we can expect more small requests than large ones.

The number generated by the exponential distribution was mapped to a CPU and memory value. For
CPU, the minimum value depends if it was a service or a job. If it is job, the minimum CPU assigned
was 204 CPU shares (equal to approximately 20% of a single core utilization). This value was chosen
because if a client choses a job, then a CPU lower than 20% would be unrealistic. If it was a service,
the minimum CPU shares was 2, because services do not require as much CPU as jobs. As for the
maximum, it was 1024 CPU shares (equal to 100% of a core utilization). For Memory requirements, the

limits are the same for jobs and services, the minimum was 256 MB and maximum was 2GB.

The request makespan was also generated by the exponential distribution. This makespan was used
to control workload’s lifetime. Since the evaluations lasted one hour, we needed to limit the duration of
the workloads so that new requests could be scheduled. After this makespan elapsed, the task was

terminated. The minimum value was 30 seconds and the maximum was 30 minutes. Again, through the

63

exponential distribution, we ensure there are more requests with small makespans than requests with
makespans close to 30 minutes. If we had more long requests than small ones, we could not test the
quality of our solution since the machines would have their resources fully occupied for a long period of

time.

The workload type was chosen randomly between the four types of workloads that we have selected.

The types and respective application used for that type are the following:
— CPU-intensive (job): FFMPEG'
— Memory-intensive (service): Redis?®
— CPU and Memory intensive (job): Deep-learning®
— Non-intensive (service): Timeserver*

For each of these application’s types, we have selected real and popular Docker applications (with
the exception of the non-intensive), in order to be representative of each type. For CPU-intensive we
have chosen FFMPEG, a video encoding application. Video encoding is usually also memory intensive
but from our tests, FFMPEG’s memory usage is minimal and it uses considerable CPU, therefore we
use it as being CPU-intensive. The requests that have this workload type, enconded a video big enough

so that the job only terminated after the makespan had elapsed.

We used Redis as the memory intensive application. Redis is an in-memory key/value store. When
a request with this workload type was scheduled, a Redis server was launched at a certain port and
was filled with random data. A short-while after, requests were issued to that Redis Server (such as,

checking if a key exists, retrieving values, etc).

For the CPU and memory intensive, we have chosen a Deep-learning application, where a neural
network is trained to zoom in images. As for the CPU intensive application, this application must not be
concluded before the makespan elapses. For this reason, we have chosen a high-resolution image that

the application will zoom in.

Finally for the non-intensive application, we created a Docker application called Timeserver which

simply returns the time when requested.

Thttps://hub.docker.com/t/jrottenberg/ffmpeg/
2https://hub.docker.com/r/redis/
Shitps://hub.docker.com/r/alexjc/neural-enhance/
“https://hub.docker.com/r/sergiomendes/timeserver/

64

Besides a better resource utilization, we have to ensure that our solution does not break any SLAs.
To ensure that this is not the case, as will be seen on Section 5.1.3, we evaluated how long the jobs
took to execute and how long the services took to respond to requests. For this purpose, we defined
requests rates to continuously issue requests to the services to the test the quality of our solution. Until
the services makespan expired, requests (based on the request rate) were issued every 10 seconds.
The request rate was defined based on the memory (since one of the two types of services was memory
intensive and the other is non-intensive) assigned to the service we are going to evaluate. The higher
the memory the higher the request rate:

— < 500MB: 20 requests;
— < 1GB: 40 requests;
— < 2GB: 80 requests;

The last thing to was generated was the request class. We have given more probability for classes 2
and 3 because we believe that these would be the most used in a real situation. Class 4 since it has a
big depreciation, it would be less used than classes 2 and 3, however in our view, it would still be more
used than class 1 requests due to the lack of benefits (in terms of compensation) this class provides.

The probabilities for a request to be a certain class is then the following:
— Class 1: 10%;
— Class 2: 30%
— Class 3: 45%
— Class 4: 15%

Next we will see which and how metrics are collected in order to produce the results presented on
Section 5.2.

5.1.2 Metrics collection

To evaluate our work, we focused mostly on comparing our solution with the current existing ones by
comparing: scheduling speed; failed/successful allocations; resource utilization (CPU and Mem-
ory) throughout the experiment; job makespans; services response times. We also did an individual

evaluation to our solution, to see how much it resorts to cuts and Kkills.

For measuring the scheduling speed, we used an already existing Docker Swarm benchmark tool,

swarm-bench®. This tool launches requests and measures the time it takes for them to be scheduled.

Shitps://github.com/aluzzardi/swarm-bench

65

We extended this tool to also measure successful and failed allocations.

For the remaining metrics, there were no existing tools. To gather information, we had to extend our
components to gather this information. The resource utilization information was gathered by the Host

Registry whenever an update comes from the Monitor.

Measuring job makespan consists in measuring the amount of time the job takes to execute. As
already mentioned on this Chapter, we terminate the job before it finishes based on the makespan
value generated. In order to measure job makespan, we launched specific jobs with a known makespan
(measured previously) without that makespan value so they are not finished beforehand. Every 5 min-

utes we launched these jobs, alternating between the CPU-intensive job and CPU/Memory intensive job.

To measure services response times, we made requests to those services. However, we did not
know beforehand where those services would run and which port they would use since it depended on
the scheduling decision performed by the Scheduler. We created a web server at the Manager, that
received from the Task Registries, information on where to issue requests. This web server measured
the amount of time it took to receive all responses. Once a request was allocated, the Task Registry
read the request rate value and sent a GET request to the web server with, the port number that service
was using, if it was redis or timeserver (because the type of request for each was different, therefore they
need to be differentiated) and the IP of the Task Registry. Now the web server has all the information it

needs to issue requests to services.

When a cut or kill occurred, the Host Registry counted those occurrences. It also gathered how much

CPU and memory was cut for posterior analysis.

5.1.3 Evaluation execution

As was previously mentioned, the evaluation lasted 1 hour. For each scheduling algorithm (including
our solution), each evaluation was ran three times and averaged at the end, in order to avoid extreme

results. All evaluations will used the same traces.

Sending all requests at once is not realistic so we decided to send two requests per second to the
Manager. We kept sending requests until a memory or CPU limit is reached. The full memory capacity
of the 5 hosts combined is roughly 60GB and the full CPU capacity is 40970 CPU shares. We defined
the limit as being 50% (i.e. 200% overbooking) more than the full capacity. So the limit was 90GB for

Memory and 61440 CPU shares for CPU. We impose these limits because if we kept sending requests

66

regardless of these limits, they would just be discarded because there would be no resources available
to cope with them.

While sending requests, we saved the makespan values for each request. When either of the limits
are reached, we averaged all the makespan values and waited for that value before resending requests
again. By waiting this period of time, we ensured that there were resources available when we restarted

sending requests.

Now that we have seen how the traces are generated, how the metrics are collected and how the

evaluation is executed, the next section presents the results of the evaluations carried out.

5.2 Evaluation results

The previous sections presented the different types of evaluations carried out. At this Section, is
presented the results of those evaluations, starting with the results related to the main objective of our
work, achieving a better resource utilization to maximize energy efficiency. We will see that our solution
allows significantly more requests to be allocated, achieving an overall better resources utilization. A
natural and unavoidable tradeoff of our solution is a comparatively slower scheduling speed to the other
solutions, these differences will be exposed. As seen on Section 2.2.2, another tradeoff of overbooking
could be that jobs or services, can take longer times to finish or to respond, respectively. We will see
if this is the case in our solution. To finish, the cuts/kill ratio is presented and we will see how they are

useful, especially the cuts, in order to increase the amount of requests that can be allocated.

We intended to evaluate our solution against the three Docker Swarm scheduling algorithms. How-
ever, it was not possible to evaluate the random strategy. This is due to the fact that this strategy does
not check for resources constraints when making scheduling decisions. It keeps allocating requests
regardless if the CPU or memory limit of the machine has been reached. So, in these circumstances, it

makes no point in testing if it as it would severely overallocate and degrade performance.

5.2.1 Successful and failed allocations

The results obtained are presented at Table 5.1. We can quickly see that our solution (hnamed as
Energy) has a significantly higher success rate than the two solutions provided by Docker Swarm. By
having such high fail rates, the other solutions would require more machines than our solution does,
consequently using more energy. A natural (but outside of the scope) extension to our work, producing

even better energy gains would be to have machines be turned on/off dynamically, according to the

67

Successful allocations | Failed allocations | Success rate | Failure rate
Spread 1229 904 57.7% 42.3%
Binpack | 1256 967 56.5% 43.5%
Energy | 1404 274 83.7% 16.3%

Table 5.1: Successful and failed allocations

overall resources usage. By having such a high success rate we could have much less machines turned
on compared with the other solutions.

From the results presented at Table 5.1 we can also see that our solution deals with less requests
than the other two approaches, in an one hour evaluation. This derives from the fact that our algorithm is
comparatively slower than the other solutions (Section 5.2.3), due to our solution keeping the resources
almost fully utilized for a longer period of time as will be seen on the next Section.

This tradeoff is compensated by the high success rate and higher absolute value of successful al-
locations, since it managed to successfully allocate more requests than both solutions, despite dealing
with less requests than those solutions. As will be seen on Section 5.2.3, these values would be lower if

more machines were added as can be extrapolated by the data presented on that Section.

5.2.2 Resources utilization

On this Section is presented the results regarding resource utilization. This is an important evaluation
because in order to achieve the best energy efficiencies, the hosts must be in the DEE (between 50%
and 85% utilization rates, where the desired rates are closest to 85%) region the most time possible.
This evaluation shows how the different solutions behave. We start by analyzing CPU usage, followed

by memory usage.

CPU usage: Since we only use 5 hosts (1 of the 6 is the Manager), we present the results for CPU
utilization for the 5 hosts individually, for each of the solutions: Spread is represented by Fig. 5.1, Bin-

pack by Fig. 5.2 and Energy by Fig. 5.3.

By looking at the graphs, we can see that our solution (Energy) besides achieving a better overall
CPU utilization, it is also more consistent than the other approaches. Spread and mainly Binpack, have
many fluctuations between high and low CPU utilizations. By looking at Fig. 5.2, we can see several
periods of time where there are under-utilized hosts (below 50% CPU utilization), for example, between
0-10 minutes and more severe between 20-40 minutes. Spread, Fig. 5.1, is not as bad as Binpack but
we can also detect several points with a moderate CPU utilization, such as between 0-10 minutes and
from 20-30 minutes.

These two are examples of how overbooking can be very useful in maximizing resource utilizations.

68

Despite having the resources fully allocated, since they are not being used 100% of the time (services
only receive requests from time to time as was explained), this resource inefficiency happens. This is
even more salient in real life scenarios, where clients after ask for much more resources than they ac-
tually need. This clearly indicates that more resources could be allocated to some of the hosts to make
them more efficient. This is illustrated by the results of our solution, Fig. 5.3, where most of the time,
the hosts have more than 70% resource utilization. There are some exceptions however, for example
for host 1 at roughly 5 minutes and some hosts between 20-30 minutes. However these lower peaks are
still significantly higher than the peaks of Spread and Binpack. The former lower peaks can drop lower
than 40% and the latter bellow 30% while ours does not go bellow 50%. Besides the lower peak being

significantly higher, they are also shorter. They quickly go up to good CPU utilization levels.

o 7NN

CPU usage (%)

| [
60 | | (AL - 1
J |

. i \ =5 | “\#Jl
20 |

|

I

4

ﬂ:
0 10 20 30 40 50 60

Elapsed time [(minutes)

Host 1 Host 3 Host 4 Host3 =——Hosth

Figure 5.1: Spread - hosts CPU utilization

To provide an easier comparison, a graph is presented with the average CPU utilization of all the
hosts of each solution, Fig. 5.4. As expected from the previous results, we can see that our solution
(green line) is more consistent than the other two, fluctuating most of the time between 75% and 88%.
The Binpack solution (blue line) is most of the time bellow 80%. Spread (orange line) is better than
Binpack, as expected as seen on the previous graphs, but worse than our solution, most of the time it is
bellow the green line, with some exceptions.

However, the results presented by this graph can be elusive. If we looked at this graph without looking
at the previous graphs, we could deduce that Spread has a good performance and Binpack as well (on
this graph Binpack is always above 50%). But, as we saw on the previous graphs, Spread and Binpack,
while they have hosts with a good CPU utilization, they have other hosts with a bad CPU utilization and

the average balances both, hiding the fact that there hosts with significant resource inefficiency.

69

120

3

a0

&0

40

CPU usage (%)

20

0 10 20 30 40 30 60

Elapsed time (minutes)
—Host1 = -Host 3 Host 4 Hos5t 5 = HOst 6

Figure 5.2: Binpack - hosts CPU utilization

Memory usage: For the same reasons as for the CPU evaluation, we start by presenting the memory
utilization of each host individually for each solution and the end, present a graph for the average memory
utilization of all the hosts. Spread hosts memory utilization is represented by Fig. 5.5, Binpack’s by
Fig. 5.6 and Energy’s by Fig. 5.7.

Again, our solution presents better results than the existing solutions provided by Docker Swarm. As
for CPU, Binpack has the worst performance, where only one host (Host 3 at the 3rd minute) manages
to surpass 60% memory utilization and only for a short period of time. Spread is more consistent in the
40-60% zone than Binpack, especially after the 30 minutes mark, but it only goes up more than 60% a
few times along the whole evaluation.

Our solution in terms of memory results, does not provide consistent results at the same level as
the CPU utilization results. But it performs significantly better than our competitors. The other solutions
surpassed the 60% mark briefly. Our solution achieves it throughout the whole evaluation as can be

seen, and it even goes over 80% memory utilization at some points.

Fig. 5.8 presents the results regarding the average hosts memory utilization of each solution. Despite
being more inconsistent as we saw on Fig. 5.7, our solution provides bigger improvements regarding
memory utilization over CPU utilization as can be seen by at Table 5.2. We can see at this table that
our solutions provides a 5.6 p.p improvement over Spread and 8.2 p.p over Binpack, regarding CPU
utilization. The memory utilization improvement is much more significant, achieving an improvement of
15,8 p.p over Spread and 18,9 p.p over Binpack.

Despite this big improvement, the desirable result would be a more consistent one, as with CPU
utilization, illustrated at Fig. 5.3. Also, 55.7%, despite being in the DEE region, is still very close to

70

120

100 =
Fiq m; "\-/-q. Iﬁl (bf\\?/‘ﬁ » - " A p "_""w.___
3 77 ; yi A ——BAN [N
£ 80 | T\\j,l‘{ X L '_/‘-\T\\Hll '_‘;’w 7 \yr’{'};f\(:\:f \-ﬁ"t
g'll:- | \ .ll 1J . 1_/
2 60 fif \“r
> f
5 40 ||[
20 i
|
i il
0 10 20 30 40 50 60
Elapsed time (minutes)
Host 1 —Host 3 Host 4 Host 5 Host 6
Figure 5.3: Energy - hosts CPU utilization
Average CPU utilization | Average Memory utilization
Spread | 74.9% 39.9%
Binpack | 72.3% 36.8%
Energy | 80.5% 55.7%

Table 5.2: Average CPU and Memory utilizations

the LEE region, therefore improvements are still required to push this value higher, maximizing memory

utilization.

5.2.3 Scheduling delays

The significant improvements analyzed in the previous two sections, unfortunately, do not come
without a price. This section presents the results regarding the scheduling delays, i.e. the time to
schedule requests. One of the tradeoffs of our solution is the extra time it takes to schedule a request,
due to having more resources allocated and being more complex than the other two solutions. Table 5.3
has detailed information about the time it takes to schedule throughout the evaluation of each solution.
The type of information is divided into: average scheduling time, the 50th, 90th and 99th percentiles.
The values are calculated between the elapsed times. For example, the average time for 0-5 minutes is
the average time it takes to make scheduling decisions between that period.

By looking at the average values, as expected, our solution performs worse than Spread and Binpack.
Despite being more complex, our solution is only slightly slower when the system has more resources
free, has can be seen by the 50th percentile at 0-5, 25-30 and 50-55. This last note shows that this
scheduling delay can be decreased if more machines are added.

Looking at the extreme results, the 90th and 99th percentiles, we can see that these values are

71

120

100

CPU usage (%)
(=3} co
(== (==

s
[==]

20

0 10 20 30 40 50 60

Elapsed time (minutes)

Energy

-Spread Binpack

Figure 5.4: Average hosts CPU utilization of each solution

significantly higher than the 50th percentile for all solutions, but more emphasized on our solution. Al-
though only 10% of the requests suffer from this long scheduling time, in a real environment, 10% could
represent millions of requests, potentially bringing financial repercussions to the CSP. To deal with this
issue, priorities could be given to classes, in order that class 4 requests were the ones that fall into the

90th and 99th percentiles and the lower class requests would always fall under the 50th percentile.

5.2.4 Response times

By using an overbooking strategy, allocating more resources than the limits of the machines, there
are risks regarding the response times provided by both jobs and services. Our solution, as explained on
Section 3.4.1, was designed to avoid these issues by giving priority to schedule requests on hosts that
are on the LEE region and the DEE region, where a best-fit approach is used to try and avoid those hosts
to enter the EED region where besides, starting to experience less energy efficiency, the response times
could also be affected due to the high utilization of resources. For this purpose, the kill algorithm is re-
sponsible to try and bring the host back to the DEE region, avoiding both these problems just mentioned.

On this Section we will see that despite allocating more requests as was seen on Section 5.2.1, our
solution is close to our competitors response times, therefore, we can safely claim that we increased re-
source utilization, improving energy efficiency, without significant penalties regarding Quality of Service,

avoiding SLA violations.

72

Solution (ms)

/Elapsed time (minutes) Spread Binpack Energy
Average: 2904,87 | Average: 5278.21 | Average: 18469.96
0-5 50th: 9.90 50th: 10.19 50th: 11.94
90th: 10002,95 90th: 18696.95 90th: 72720.68
99th: 22974,34 99th: 27176.24 99th: 128048.71
Average: 3354,43 | Average: 3846.83 | Average: 55869.52
5-10 50th: 10,215 50th: 9.23 50th: 2190.31
90th: 11422,62 90th: 14873.89 90th: 193995.17
99th: 44155,3 99th: 29386.84 99th: 222260.83
Average: 5720,64 | Average: 4821.98 | Average: 32865.09
10-15 50th: 9,64 50th: 10.1 50th: 1467.7
90th: 14440,4 90th: 20066.55 90th: 113716.57
99th: 68623,37 99th: 37442.99 99th: 150872.68
Average: 5720.68 | Average: 4233.91 | Average: 33644.27
15-20 50th: 9.64 50th: 10.37 50th: 838.11
90th: 16972,52 90th: 16680.14 90th: 121751.3
99th: 68623.37 99th: 35839.41 99th: 169663.67
Average: 4287.1 Average: 6569.64 | Average: 45443,75
20-25 50th: 10.1 50th: 10.16 50th: 1107.14
90th: 12138.77 90th: 22410.08 90th: 185867.72
99th: 56623.41 99th: 61825.73 99th: 273002.71
Average: 4281.98 | Average: 4368.09 | Average: 33264.43
25-30 50th: 10.49 50th: 10.09 50th: 15.31
90th: 14833.28 90th: 18108.94 90th: 13997.85
99th: 33677.65 99th: 28256.79 99th: 202526.65
Average: 4561.09 | Average: 4630.1 Average: 37849.88
30-35 50th: 10.77 50th: 9.56 50th: 1464.58
90th: 14162.09 90th: 13269.16 90th: 145200.94
99th: 51546.53 99th: 40586.64 99th: 204593.55
Average: 4979.68 | Average: 4518.57 | Average: 55226.02
35-40 50th: 9.98 50th: 10.45 50th: 1139.49
90th: 20431.98 90th: 17867.58 90th: 199052.23
99th: 64590.9 99th: 36027.47 99th: 225747.18
Average: 6165.39 | Average: 5677.06 | Average: 42314.51
40-45 50th: 10.09 50th: 9.13 50th: 735.23
90th: 12955.69 90th: 20915.75 90th: 315134.33
99th: 97868.28 99th: 50454.16 99th: 173454.34
Average: 3762.55 | Average: 7112.71 | Average: 32578,95
45-50 50th: 10.74 50th: 9.52 50th: 1323.67
90th: 13457.83 90th: 20472.89 90th: 142789.02
99th: 24530.57 99th: 85855.37 99th: 234586.78
Average: 4685.35 | Average: 6079.21 | Average: 23251.23
50-55 50th: 10.35 50th: 9.73 50th: 13.79
90th: 14950.33 90th: 22136.46 90th: 19237.15
99th: 51035.95 99th: 51136.6 99th: 223237.94
Average: 5376.25 | Average: 6011.39 | Average: 31247.08
55-60 50th: 10.95 50th: 9.86 50th: 1024.541

90th: 19209.29
99th: 51372.29

90th: 24105.28
99th: 57326.5

90th: 153109.42
99th: 202359.59

Table 5.3: Scheduling delays

73

100

30

60

40

Memory usage (%)

20

0 10 20 30 40 50 60

Elapsed time {minutes)

m—Hpst 1 - =Host 3 Host 4 Host 5 = Host 6

Figure 5.5: Spread - hosts Memory utilization

Table 5.4 presents the response times obtained for each type of workload used. Redis - 20 indicates
that a request rate of 20 to access Redis was used, the same applies for the following columns. For the
CPU-intensive workloads, FFMPEG, we can see that our solution has a better average time than the
other two, although it has a higher 50th percentile compared with Binpack. We achieve better response
times at this type of workload because of what was explained on the last paragraph. By leveraging the
kill algorithm, we avoid extremely (not always though as can be seen by Fig. 5.3, there are periods where
the utilization goes above 90%) high CPU utilization rates, which would lower response times. This can
be seen by the results obtained by Spread, which are significantly higher than Binpack since it has much

higher CPU utilization rates as was seen on Section 5.2.2.

For the CPU/Mem intensive workloads, Deep-learning, we can see that our solution no longer has
the best results, but is still better than Spread (better average and 75th percentile results). This decrease
in performance compared with Binpack and Spread for this type of workload is unavoidable, because

we have significantly more memory utilization rates than the other solutions.

Next we have the Redis results, the memory-intensive workload. Redis produced some unstable
results as can be seen by the fact that Redis-80, for Binpack, has better results than Redis-40 and
Redis-20, which should not be the case, since Redis-80 is twice the request rate of Redis-40, and
four times Redis-20. We thought this could be due to coincidences, such as Redis-80 requests are
performed at certain periods where the hosts are experiencing low resources utilization, although this
would be unlikely since three tests were performed. To see if this was the case, we did an extra one
hour test for each solution, just gathering Redis metrics, but again produced these unstable results. If the
results were consistent, we could expect increasing times from Redis-20 to Redis-40, and from Redis-

40 to Redis-80. We assume that our solution here would achieve worse times than the other solutions

74

100

20
&
&
= 60
155}
=
&
o 40
E
L
=
20
)
0 10 20 30 40 50 60
Elapsed time (minutes)
Host 1 - Host 3 Host 4 Host 5 Host 6
Figure 5.6: Binpack - hosts Memory utilization
;V;L';'I‘;zd M)/ | FempEG Deep-learning | Redis - 20 Redis - 40 Redis - 80 Timeserver-20 | Timeserver-40 | Timeserver - 80
Average: 333.43 | Average: 151.41 | Average: 480.53 | Average: 560.48 | Average: 455.08 | Average: 1126.04 | Average: 2193.75 | Average: 3460.5
Spread 50th: 273 50th: 140 50th: 115 50th: 168 50th: 322 50th: 800 50th: 1645 50th: 3208
75th: 485 75th: 177 75th: 587 75th: 619.5 75th: 880 75th: 944 75th: 2513.25 75th: 3477.25
Average: 266.51 | Average: 146.76 | Average: 365.28 | Average: 335.91 | Average: 239.4 | Average: 1475.67 | Average: 2380.2 | Average: 3544.22
Binpack 50th: 189.5 50th: 137 50th: 166 50th: 197 50th: 244 50th: 818 50th: 1669 50th: 3196
75th: 402.5 75th: 163.5 75th: 413 75th: 220 75th: 284 75th: 1126.75 75th: 2047 75th: 3477.25
Average: 250.87 | Average: 149.56 | Average: 313.2 | Average: 393.67 | Average: 436.14 | Average: 1727 Average: 2547.48 | Average: 3570.33
Energy 50th: 199 50th: 140 50th: 247 50th: 149 50th: 276 50th: 804 50th: 1768 50th: 3332
75th: 367 75th: 171 75th: 393 75th: 528 75th: 242 75th: 1315 75th: 2817 75th: 3782

Table 5.4: Response times

because of what was seen with CPU/Mem-intensive workloads due to the memory impact, potentially
worsening as the request rates increased.

Finally we have the non-intensive workloads, the Timeserver. Here our solution performs slightly
worse than the other solutions at all requests rates. The positive note is that the degradation does not
increase as the request rates increase. It actually got closer to the other two solution at the highest
request rate (Timeserver-80), as can be seen by difference the between the average times, which is

lower than at Timeserver-20 and Timeserver-40.

5.2.,5 Cuts and kills

To finish this chapter, we will look into the two parts of our solution that are crucial to the operation of
whole system, cuts and kills. Cuts play an important role in allowing more requests to fit on the hosts.
On this Section, we will see how much we resort to cuts and how much resources do we gain by lever-
aging this approach. Then we will look at how many kills, important to keep the system balanced, were

executed throughout the evaluation.

75

100

80

60

40

20

Memaory usage (%)

0 10 20 30 40 50 60

Elapsed time (minutes)

——— HOSt 1 = - Host 3 Host 4 Host 5 Host 6

Figure 5.7: Energy - hosts Memory utilization

A total of 636 cuts were performed throughout the evaluation. This resulted in 112736 CPU shares
and 189.3919 GB memory being cut. These values are the reason why we achieve such a high allo-
cation successful rate (Section 5.2.1). If we resorted only to overbooking such as other approaches in
the literature, the successful allocation would be lower because 112736 CPU shares and 189.3919 GB

memory could not have been allocated.

This approach is our biggest contribution because, as can be seen by these results, if it has such
a big impact with just 5 machines in an hour experiment, with more machines and more time, we can
expect this approach to be even better. However, it depends on the willingness of the client to have its
resources cut. This could be arranged by compensating the clients based on the class they choose.
The higher the class, the higher the compensation. Another possibility is to have a more sophisticated
Manager, which dynamically cuts and undoes the cuts, according to how much resources the tasks are
currently using, always leaving a safety margin in case there is a peak in utilization, which the Manager

is not quick enough to react.

Kills are important to avoid the hosts from entering extremely high utilization values. However, as for
the cuts, the clients must be willing to accept their tasks to be killed, again being properly compensated.
Only 202 kills (14,4% of the successfully allocated requests) were executed throughout the experiment.
Even if those 202 tasks that were killed could not be successfully rescheduled and if we considered
them as not being allocated, we would still have a higher successful allocation rate than Docker Swarm’s
solutions. This approach has two limitations. The first one was already mentioned, and it is that tasks
that were killed may not have been successfully rescheduled, this happened with 36 (18,2%) of the

killed tasks and 2.56% of all the tasks. To fix this issue, if the task that was killed could not be allocated

76

100

gé 80
18]
o 60 ‘N-m—/\\/j\—\
“ &
[
= 20

]

0 10 20 30 40 50 60

Elapsed time (minutes)
—fnergy - =Spread Binpack

Figure 5.8: Average hosts memory utilization with each solution

twice, we lowered the request class in order to compensate for the delay in rescheduling. However this
brought a problem which we did not had time to fix so we did no go forward with this solution. This
produced a cascading effect, that is, this was making all tasks eventually go to class 1, because the
ones being rescheduled, since their class decreased, they were killing tasks and those killed would have
their classes reduced and kill more tasks and so on, until they all reached class 1, where we could not
apply overbooking or cuts. Another possible solution is to keep it on hold until it can be scheduled,
providing the client with proper compensation for the time his requests are not being serviced. However
this solution is still not ideal and perhaps could be combined with priorities, in order to be more fair with
the clients that had their requests successfully scheduled. However this requires further consideration
and is left as future work, as the purpose of this proposal is to show the potential of the kill algorithm in
order to keep the system resources balanced.

A second limitation is regarding jobs. When a job is killed, it must start what it was doing from the
beginning. As future work, this could be solved by using live migrations, therefore not requiring the job
to start from the beginning when it is allocated to a new host, it is a simple matter of the orchestrator,

issuing a migration or a checkpoint instead of a kill.

Summary

Despite being a commercialized solution for some years, there are no benchmarks that evaluate
Docker Swarm’s scheduling decision quality, only its scheduling speed. For this reason we had to create

our own benchmarks to evaluate our solution and extend it to Docker Swarm’s scheduling strategies

77

in order to perform a proper comparison between each solution. Therefore the chapter starts with a
detailed description of how the evaluation was setup, executed and evaluated. The chapter finishes
with the evaluations results together with an explanation of the reasoning beyond those results. The
first results are a comparison between the solutions, where our solution managed to achieve a higher
success allocation rate, which contributed to the higher CPU utilization and even higher memory utiliza-
tion rates comparing to our competitors, still offering similar QoS results. A drawback of our solution is
the time it takes to schedule a request, although, this is unavoidable as could be seen throughout this
chapter. Finally results obtained regarding the cut and kill algorithm are presented, crucial for both the
good results and maintaining QoS levels, important to avoid SLA violations. The next chapter concludes
by summarizing the document and pointing out some limitations and how they can be dealt with in future

work.

78

Conclusion

Despite all the effort done by academia, the problem of energy consumption in data centers persists
and needs to be addressed. In this work we started by identifying the current solutions that exist and
their challenges, in order to identify opportunities so that we can contribute to the literature. Due to
the lack of work regarding containers, we defined our objective, develop an energy-efficient scheduling
algorithm using Docker. To understand containers, we started by studying their predecessors, modules
and components. Afterwards, we synthesized the different types of containers and their orchestrators,
analyzing them after their study. Throughout the years, many mechanisms and strategies for energy-
awareness were proposed. We wrapped them up, describing and analyzing them accordingly.

The analysis of the related work enabled us to make our design choices, choosing Docker as con-
tainer platform, Docker Swarm as the orchestration platform and overbooking as the strategy to achieve
the proposed goal of this thesis. Due to the simplicity of Docker Swarm scheduling algorithms, simply
applying an overbooking strategy would be enough to achieve better results. However, we decided to
go further than this, proposing the cut concept. The cut combines perfectly with the overbooking strat-
egy, although some concerns have to be taken into consideration as was seen, to avoid prejudicing
the clients. The kill algorithm demonstrated its potential in keeping the system resources balanced,
avoiding global SLA violations. However, it still needs more improvements in order to be viable in a real
deployment.

The results obtained in the evaluation revealed that there are many allocated resources wasted due
to not being fully utilized. These results highlight the opportunity for applying an overbooking strategy
and this thesis shows that it is possible to push further the allocated resources, achieving a better energy

efficiency, using less machines, which itself allows for more energy savings.

6.1 Future Work

Some limitations were already pointed out throughout the chapters but here, they are wrapped up.
The main limitation is the increased time to schedule requests, especially for extreme cases. Despite
being an unavoidable consequence due to our solution keeping the resources almost fully utilized, dif-
ferent solutions to mitigate this issue have been proposed on Chapter 5 and can be applied depending

on the environment the solution is deployed.

79

Another limitation that was already pointed out, was regarding the rescheduling of tasks for two
reasons. The first being that jobs had to be stopped and then started from the beginning in a new host
and the second being that they may not be successfully rescheduled. We tried to fix the second problem
but it resulted in the problem mentioned on Section 5.2.2. In that Section we also provide suggestions
that can be used as future work to fix these issues. With these issues fixed, we could increase the
amount of times the algorithm resort to kills, decreasing even further the amount of time hosts spend in
the EED region, achieving a better energy efficiency and better QoS results, regarding jobs and services
response times.

The Manager is a centralized solution as others orchestrators. For cloud environments with thou-
sands of hosts, a centralized approach would not be viable. As future work, this solution can easily be
extended to a distributed solution, by having several managers assigned to a certain amount of hosts.
For example, Manager 1 deals with hosts0-host100, Manager2 with hosts 101-200 and so on, with some
coordination between them, ensuring that the requests are evenly distributed between them, avoiding
under-utilized hosts.

The results presented at Section 5.2 highlighted how an overbooking strategy combined with cuts
and kills can improve significantly resource utilization and allocation rates. Thus, it would be interesting
to perform studies on how much CSPs would benefit from this approach by having real container traces
provided by CSPs. Another study that could be performed is that if clients would be interested in such
an approach, where their requests resources are reduced or placed on hosts experiencing overbooking,
and how much they would gain from it.

Unfortunately when the evaluations were performed, there were not enough power meters available
so we could not measure the energy consumption of the hosts, leaving it for future work, evaluating with
the suggestions proposed for future work already implemented. However, based on the work of [63] and
since we achieved utilization rates close to the ones mentioned at that work that provide the better energy
efficiency, we can assume that the goal was achieved, although it is still an assumption. Assumptions
a side, we did achieve better utilization rates with both CPU and memory, a relevant result in itself,
having significantly more requests allocated thanks to a high allocation successful rate, thus requiring

less machines than the others solutions, which would in turn consume more energy.

80

Bibliography

[1] C. L. Philip Chen and C. Y. Zhang, “Data-intensive applications, challenges, techniques and tech-
nologies: A survey on Big Data,” Information Sciences, vol. 275, pp. 314-347, 2014.

[2] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of Cloud computing and Internet
of Things: A survey,” Future Generation Computer Systems, vol. 56, pp. 684-700, 2016.

[38] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, and A. Rabkin, “A view of cloud computing,” Communications of the ACM, vol. 53,
no. 4, p. 50, 2010.

[4] W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Trends
in worldwide ICT electricity consumption from 2007 to 2012,” Computer Communications, vol. 50,
no. 0, pp. 6476, 2014.

[5] T. Bawden, “Global warming: Data centres to consume three times as much energy in next decade,
experts warn,” Independent, 2016. [Online]. Available: http://www.independent.co.uk/environment/
global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.
html

[6] B. Whitehead, D. Andrews, A. Shah, and G. Maidment, “Assessing the environmental impact of
data centres part 1: Background, energy use and metrics,” Building and Environment, vol. 82, no.
December 2014, pp. 151-159, 2014.

[7] T. Kaur and I. Chana, “Energy Efficiency Techniques in Cloud Computing: A Survey and
Taxonomy,” ACM Computing Surveys, vol. 48, no. 2, pp. 1-46, 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2830539.2742488

[8] M. Dayarathna, Y. Wen, and R. Fan, “Data Center Energy Consumption Modeling : A Survey,” IEEE

Communications Surveys & Tutorials, vol. 18, no. September, pp. 1—1, 2015.

81

[9] J. Simao and L. Veiga, A Taxonomy of Adaptive Resource Management Mechanisms in Virtual

Machines: Recent Progress and Challenges. Cham: Springer International Publishing, 2017, pp.
59-98. [Online]. Available: https://doi.org/10.1007/978-3-319-54645-2_3

[10] J. E. Smith and R. Nair, “The architecture of virtual machines,” Computer, vol. 38, no. 5, pp. 32-38,
2005.

[11] J. Simao and L. Veiga, “Partial utility-driven scheduling for flexible sla and pricing arbitration in
clouds,” IEEE Transactions on Cloud Computing, vol. 4, no. 4, pp. 467—480, Oct 2016.

[12] S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-based operat-
ing system virtualization: a scalable, high-performance alternative to hypervisors,” ACM SIGOPS
Operating Systems Review, vol. 41, no. 3, p. 275, 2007.

[13] S. F Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “Efficient Virtual Machine Sizing
for Hosting Containers as a Service,” Proceedings - 2015 IEEE World Congress on Services,
SERVICES 2015, pp. 31-38, 2015.

[14] L. Tomas, C. Klein, J. Tordsson, and F. Hernandez-Rodriguez, “The straw that broke the camel’s
back: Safe cloud overbooking with application brownout,” Proceedings - 2014 International
Conference on Cloud and Autonomic Computing, ICCAC 2014, pp. 151-160, 2015.

[15] A. Havet, V. Schiavoni, P. Felber, M. Colmant, R. Rouvoy, and C. Fetzer, “GENPACK: A generational
scheduler for cloud data centers,” Proceedings - 2017 IEEE International Conference on Cloud
Engineering, IC2E 2017, pp. 95-104, 2017.

[16] T. Mitral, “Early Experience With Mesa,” no. April, p. 138, 1977.
[17] N. Wirth, “Hochschule Eidgenéssische Technische Hochschule Ziirich,” 1976.

[18] D. Parnas, “On the Criteria To Be Used in Decomposing Systems into Modules,” Information

Processing, vol. 71, no. 5, pp. 339-344, 1972.
[19] D. Box, Essential COM. Addison-Wesley, 1997.

[20] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, “The Koala component model for

consumer electronics software,” Computer, vol. 33, no. 3, pp. 78-85, 2000.

[21] F. PIasil, D. Balek, and R. Janec, “SOFA / DCUP : Architecture for Component Trading and Dynamic
Updating Faculty of Mathematics and Physics Department of Software Engineering ™ zi,” Proc.
Fourth Int'l Conf. Configurable Distributed Systems (ICCDS '98), pp. 43-52, 1998.

82

[22] B. I. Page and B. B. Economist, “The Rise and Fall of CORBA,” 21st Century, vol. 12, no. July, pp.
319-350, 2007.

[23] I. Crnkovic, S. Sentilles, a. Vulgarakis, and M. R. V. Chaudron, “A Classification Framework for
Software Component Models,” IEEE Transactions on Software Engineering, vol. 37, no. 5, pp. 593—
615, 2011.

[24] A. L. Tavares and M. T. Valente, “A gentle introduction to OSGi,” ACM SIGSOFT Software
Engineering Notes, vol. 33, no. 5, p. 1, 2008.

[25] The FreeBSD Documentation Project, The FreeBSD Handbook, 2016, no. 48818. [Online].
Available: http:/ftp.freebsd.org/pub/FreeBSD/doc/en/books/handbook/book.pdf

[26] S. J. Vaughan-Nichols, “New approach to virtualization is a lightweight,” Computer, vol. 39, no. 11,
pp. 12—14, 2006.

[27] Introduction to Oracle Solaris Zones, 2015, no. September. [Online]. Available: http://docs.oracle.
com/cd/E53394_01/pdf/E54762.pdf

[28] R. Morabito, J. Kjallman, and M. Komu, “Hypervisors vs. lightweight virtualization: A performance
comparison,” Proceedings - 2015 IEEE International Conference on Cloud Engineering, IC2E 2015,
no. October, pp. 386—-393, 2015.

[29] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker, and
I. Stoica, “Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center,” Proceedings
of the 8th USENIX conference on Networked systems design and implementation, pp. 295-308,
2011.

[30] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica, “Dominant Resource
Fairness : Fair Allocation of Multiple Resource Types Maps Reduces,” Ratio, vol. 167, no. 1, p. 24,
2011.

[31] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free Coordination for Internet-

scale Systems,” USENIX Annual Technical Conference, vol. 8, p. 11-11, 2010.

[32] D. Ongaro and J. Ousterhout, “In Search of an Understandable Consensus Algorithm,” Atc ’14,
vol. 22, no. 2, pp. 305-320, 2014.

[33] J. Koomey, “Growth in Data Center Electricity use 2005 to 2010,” Analytics Press., pp. 1-24, 2011.

[34] A. Greenberg, J. Hamilton, D. a. Maltz, and P. Patel, “The Cost of a Cloud : Research Problems
in Data Center Networks,” ACM SIGCOMM Computer Communication Review, vol. 39, no. 1, pp.
68—73, 2009.

83

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

C. Gu, H. Huang, and X. Jia, “Power metering for virtual machine in cloud computing-challenges
and opportunities,” IEEE Access, vol. 2, pp. 1106-1116, 2014.

Z. Jiang, C. Lu, Y. Cai, Z. Jiang, and C. Ma, “VPower: Metering power consumption of VM,
Proceedings of the IEEE International Conference on Software Engineering and Service Sciences,
ICSESS, no. October 2016, pp. 483—486, 2013.

L. Liu, H. Wang, X. Liu, X. Jin, W. B. He, Q. B. Wang, and Y. Chen, “GreenCloud,” Proceedings
of the 6th international conference industry session on Autonomic computing and communications
industry session - ICAC-INDST 09, no. June, p. 29, 2009.

M. Kurpicz, A. C. Orgerie, and A. Sobe, “How Much Does a VM Cost? Energy-Proportional Ac-
counting in VM-Based Environments,” Proceedings - 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, PDP 2016, pp. 651—658, 2016.

R. Koller, A. Verma, and A. Neogi, “WattApp : An Application Aware Power Meter for Shared Data
Centers,” International Conference on Autonomic Computing, p. 10, 2010.

A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual Machine Power Metering and
Provisioning,” 1st ACM Symposium on Cloud Computing (SoCC ’10), pp. 39-50, 2010.

B. Krishnan, H. Amur, A. Gavrilovska, and K. Schwan, “VM power metering,” ACM SIGMETRICS

Performance Evaluation Review, vol. 38, no. 3, p. 56, 2011.

A. K. Sahoo, “Energy Efficient Scheduling Using DVFS Technique in Cloud Datacenters,” vol. 4,
no. 1, pp. 59-66, 2016.

Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, “An Energy-Efficient Task Scheduling Algo-
rithm in DVFS-enabled Cloud Environment,” Journal of Grid Computing, vol. 14, no. 1, pp. 55-74,
2016.

G. Wang, S. Wang, B. Luo, W. Shi, Y. Zhu, W. Yang, D. Hu, L. Huang, X. Jin, and W. Xu, “Increas-

ing Large-scale Data Center Capacity by Statistical Power Control,” Proceedings of the Eleventh

European Conference on Computer Systems, pp. 8:1-8:15, 2016.

H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory Power Management

via Dynamic Voltage/Frequency Scaling,” Proceedings of the 8th ACM International Conference on

Autonomic Computing, pp. 31-40, 2011.

S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “A Survey and Taxonomy of Energy
Efficient Resource Management Techniques in Platform as a Service Cloud,” IGI Global, pp. 410-
454, 2016.

84

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

M. H. Kabir, G. C. Shoja, and S. Ganti, “VM Placement Algorithms for Hierarchical Cloud Infrastruc-
ture,” 2014 IEEE 6th International Conference on Cloud Computing Technology and Science, pp.
656—659, 2014.

A. Beloglazov and R. Buyya, “Energy efficient allocation of virtual machines in cloud data centers,”
CCGrid 2010 - 10th IEEE/ACM International Conference on Cluster, Cloud, and Grid Computing,

pp. 577-578, 2010.

D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Resource pool management: Reactive versus

proactive or let’s be friends,” Computer Networks, vol. 53, no. 17, pp. 2905-2922, 2009.

A. Beloglazov and R. Buyya, “Adaptive Threshold-Based Approach for Energy-Efficient Consolida-

tion of Virtual Machines in Cloud Data Centers,” Proceedings of the 8th International Workshop on

Middleware for Grids, Clouds and e-Science, no. December 2010, p. 6, 2011.

I. S. Moreno, R. Yang, J. Xu, and T. Wo, “Improved energy-efficiency in cloud datacenters with

interference-aware virtual machine placement,” Autonomous Decentralized Systems (ISADS), 2013

IEEE Eleventh International Symposium on, pp. 1-8, 2013.

B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “EnaCloud: An energy-saving application live

placement approach for cloud computing environments,” CLOUD 2009 - 2009 IEEE International

Conference on Cloud Computing, pp. 17—24, 2009.

V. M. Raj and R. Shriram, “Power aware provisioning in cloud computing environment,” 2011
International Conference on Computer, Communication and Electrical Technology (ICCCET), pp.
6-11, 2011.

M. Xu, A. V. Dastjerdi, and R. Buyya, “Energy Efficient Scheduling of Cloud Application Components
with Brownout,” CoRR, no. August, 2016.

W. Huang, Z. Wang, M. Dong, and Z. Qian, “A Two-Tier Energy-Aware Resource Management for
Virtualized Cloud Computing System,” Scientific Programming, vol. 2016, 2016.

A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic placement of HPC applications,”
Proceedings of the 22nd annual international conference on Supercomputing ICS 08, no. Novem-
ber, pp. 175-184, 2008.

Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini, “CoScale: Coordinat-
ing CPU and memory system DVFS in server systems,” Proceedings - 2012 IEEE/ACM 45th
International Symposium on Microarchitecture, MICRO 2012, pp. 143—154, 2012.

85

[58] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers,’

Concurrency Computation Practice and Experience, vol. 24, no. 13, pp. 1397-1420, 2012.

[59] J. Tordsson, L. Tom, L. Tomas, and J. Tordsson, “An Autonomic Approach to Risk-Aware Data

Center Overbooking,” IEEE Transactions on Cloud Computing, vol. 2, no. 3, pp. 292-305, 2014.

[60] P. Vojtas, “Fuzzy logic programming,” Fuzzy Sets and Systems, vol. 124, no. 3, pp. 361-370, 2001.

[61] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for efficient
management of data centers for Cloud computing,” Future Generation Computer Systems, vol. 28,
no. 5, pp. 755-768, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.future.2011.04.017

[62] A. Shehabi, S. J. Smith, D. A. Sartor, R. E. Brown, M. Herrlin, J. G. Koomey, E. R.
Masanet, N. Horner, I. L. Azevedo, and W. Lintner, “United States Data Center Energy
Usage Report,” Lawrence ..., no. June, 2016. [Online]. Available: https://eta.lbl.gov/publications/

united-states-data-center-energy

[63] L. Sharifi, N. Rameshan, F. Freitag, and L. Veiga, “Energy efficiency dilemma: P2P-cloud vs. Data-
center,” Proceedings of the International Conference on Cloud Computing Technology and Science,
CloudCom, vol. 2015-Febru, no. February, pp. 611-619, 2015.

[64] D. Knuth, The Art of Computer Programming. Addison-Wesley, 1971.

86

Docker Swarm extensions

A.1 Scheduler.go extension

This class has functions that initiate the process of selecting a host to schedule the request to. The
selectNodesForContainer function initiates this process by applying filters (Section 2.1.3) to narrow
down the list of possible of hosts to simplify the algorithm. Since our solution does not use filters, we
had to edit this function to skip this process. This illustrated by Fig. A.1. From lines 48-50 is visible our
extension to this code. The condition at line 48 exists in order to make sure the other algorithms are not
affected by our extension. Only when the strategy selected for Docker Swarm is energy (our solution),
then the filters check are skipped (performed at line 52).

At the parameters list for this function we also included nodesMap, an important optimization for our
algorithm which does not affect the other scheduling algorithms since they do not use it, nodesMap will
be explained next.

func (s *Scheduler) selectNodesForContainer(nodes []*node.Mode, nodesMap map[string]*node.Node, config *cluster.ContainerConfig, soft bool) ([]*
if s.Strategy() == "energy” {
return s.strategy.RankAndSort(config, nodes, nodesMap)

1

accepted, err := filter.ApplyFilters(s.filters, config, nodes, soft)
if err != nil {
return nil, err,”@", "7, 0.0

iy

if len(accepted) == 8 {
return nil, errNoNodeAvailable, "8", ™", 8.8

¥

Figure A.1: Scheduler.go extension

A.2 Cluster.go extension

After a host has been selected for the request, the code flow returns back to cluster.go, who is re-
sponsible for creating the container at the selected host. This had to be extended this code for two

different reasons. The first change is because the request to be scheduled can have suffered a cut,

87

therefore we must edit its CPU shares and memory before creating the container, illustrated by Fig. A.2
between lines 256-263. Since a request has been successfully scheduled to a host, as seen on Section
3.2.2, the Task Registry must be updated. This is done at line 279 which calls a function we created
who is responsible for making all the preparations to send the whole task information to the the Task

Registry. This code snippet belongs to function createContainer.

We had to make an additional extension at this class, this time at the listNodes function. This is
due to a limitation in our approach, which limits our scheduling performance slightly. When making a
scheduling decision, the default Docker Swarm algorithms have access to the hosts directly through
internal mechanics and make decisions based upon it. For portability reasons, we access the hosts not
through internal mechanics, but through the Host Registry. However, the Host Registry does not contain
all the host information. When host is selected for allocating the request, we need to map it with the one
Docker Swarm has in its internal mechanics. For this reason, we created nodesMap which contains as
key, the host IP and as value, the host. When a scheduling decision is done, based on the IP of the host
selected, we use nodesMap to retrieve the host and return it, in order for Docker Swarm to continue the
scheduling procedure.

We don'’t use the Docker Swarm internal mechanics for host information as the other scheduling
algorithms because the hosts need to be sorted based on their total resources utilization. Changing the
internal mechanics to allow this sorting was possible, but having this computation and all the others Host
Registry performs at the Scheduler would stress it too much.

Our extension to listNodes can be seen at Fig. A.3, where at line 904 nodesMap is declared having
a string as key (the host IP) (line 914) and as a value the host, which at Docker Swarm is represented

by *node.Node.

A.3 Engine.go extension

This class has functions responsible for managing the whole system, such as creating and updating
containers. We leverage this class function refreshContainer, which is responsible for refreshing the
state of a container, to detect when a task has finished and send a message to Task Registry, informing
it (Section 3.2.2).

Our extension is pictured at Fig. A.3. Line 789 checks if the container has terminated (represented
by the state being equal to exited). The first condition, exists, is there to ensure that we do not send the
information to Task Registry twice. For some reason we could not understand, sometimes the exited
status would occur more than one time for the same container, therefore creating inconsistencies on

Task Registry if this check is not performed.

88

if strategy == "energy” {
//if this condition is true then we must apply a cut to the request in order to fit it
if cut !'= 9.0 {
config.HostConfig.CPUShares = int64(float6d(config.HostConfig.CPUShares) * cut)
config.HostConfig.Memory = int64(float64(config.HostConfig.Memory) * cut)

cutReceived = 1 - cut

¥
c.scheduler.Unlock()

container, err := engine.CreateContainer(config, name, true, authConfig)

if err 1= nil {

log.WithFields(log.Fields{"NodeName": n.Name, "NodeID": n.ID}).WithError(err).Error("Failed to create container™)
} else {

containerFlag := name

if containerFlag == "" {

containerFlag = stringid.TruncateID(container.ID)

¥

log.WithFields(log.Fields{"NodeName": n.Name, "ModeID": n.ID}).Debugf("Scheduling container %s to ", containerFlag)
¥
if strategy == "energy” &8 err == nil{

go SendInfoTask(container.ID, requestClass, config.HostConfig.CPUShares, config.Image, config.HostConfig.Memory, requestType, ct

Figure A.2: Cluster.go extension 1

At lines 792 and 793 the IP of the host this container was running is retrieved. The remaining of the

code is to create the code to access, through a GET request, the endpoint at Task Registry, responsible

for dealing with terminated tasks (Section 3.2.2).

89

// listNodes returns all validated engines in the cluster, excluding pendingEngines.
func (c #*Cluster) listNodes() ([]*node.Node, map[string]*node.MNode) {

c.RLock()

defer c.RUnlock()

//for faster lockup when making a scheduling decision

var nodesMap map[string]®*node.Node = make(map[string]*node.Node)

out := make([]*node.Node, 8, len(c.engines))
for _, e := range c.engines {
node := node.Newhode(e)
for _, pc := range c.pendingContainers {

if pc.Engine.ID == e.ID && node.Container(pc.Config.SwarmID()) == nil {
node . AddContainer(pc.ToContainer())

i
nodesMap[node.IP] = node

out = append(out, node)

return out, nodesMap

Figure A.3: Cluster.go extension 2

787 //if these conditions verify then the container has finished and we must alert the task registry
//because it cannot be performed here.
if(lexists && containers[@].State == "exited") {

lastIDSent[ID] = ID

hostInfo := strings.Split(e.IP,™:™)
hostIP := hostInfo[@]

//to task registry to be removed

req, err := http.NewRequest("GET", "http://"+hostIP+":1234/task/remove/"+ID, nil)
req.Header.Set("X-Custom-Header", "myvalue")

req.Header.Set("Content-Type", "application/json™)

client := &http.Client{}

resp, err := client.Do(req)
if err != pil {

panic(err)

b

defer resp.Body.Close()

Figure A.4: Engine.go extension

90

