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Abstract. With Cloud Computing, access to computational resources
has become increasingly facilitated, and applications can offer improved
scalability and availability. However, those properties are supported by
an energy consumption that is not proportional to the workload, and a
pricing model that cannot be tailored to different types of users. One way
of improving energy efficiency is by reducing the idle time of resources
- resources are active but serve a limited useful business purpose. We
present FairCloud, a Cloud-auction scheduler that facilitates the allo-
cation by allowing the adaptation of Virtual Machines (VM) requests
(through conversion to other VM types and resource degradation), de-
pending on the user profile. Additionally, this system implements an in-
ternal reputation system, to detect providers with low Quality of Service
(QoS). FairCloud was implemented using CloudSim and the extension
CloudAuctions. It was tested with the Google Cluster Data. We ob-
served that we achieve faster allocations and increased CPU utilisation,
translating in more requests satisfied, improved energy efficiency and a
higher provider profit. Our reputation mechanism proved to be effective
by lowering the ranking of the providers with lower quality.
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1 Introduction

Cloud Computing is defined as a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction.

The following paragraphs describe two Cloud Computing issues that will be
discussed in this article: energy consumption and cloud pricing models.

Energy Consumption Datacenters have a high energy consumption, but studies
suggest that 30% of the servers are on idle, with less than three percent average
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daily utilisation [4]. They still consume energy but serve a limited useful business
purpose. During periods of low service demand, servers cannot be terminated
because they still run background tasks. On the other hand, applications cannot
run on fully utilised servers, as even non-significant workload fluctuation will
lead to performance degradation.

Cloud Pricing Cloud providers can apply different pricing models. In the Pay-
as-you-go model, often referred as On-Demand, the user is charged hourly
without any long-term commitments or upfront payments. In the Subscription
model, the total price is reduced but an upfront payment and a long-time com-
mitment (e.g. one year) are required. Another commonly implemented model is
Pay-for-resources. The price is based on resource consumption (e.g. DiskRead-
Ops, NetworkIn). Recently, providers developed a pricing model for Virtual Ma-
chine (VM) without a minimum Quality of Service (QoS) guaranteed, but at a
lower fixed price.

1.1 Objectives

The proposed objectives are:

– Analyse previous research works in Cloud-auctions and related topics (e.g.
auction theory, scheduling, energy efficiency).

– Formulate a taxonomy and classify the systems according to it;
– Propose, implement and evaluate an algorithm respecting the desired proper-

ties (i.e., improve energy efficiency, reduce allocation time, and use a dynamic
pricing);

1.2 Document Structure

This work is organised as follows: Section 2 presents and analyses the related
work. Section 3 describes FairCloud, including the main entities and their in-
teraction, algorithms, and implementation. Section 4 explains the evaluation
methodology and presents the results. Lastly, Section 5 presents some conclud-
ing remarks.

2 Related Work

In this section, we describe the cloud-auctions taxonomy and illustrate it with
examples of research and commercial systems. We constructed the taxonomy
by analysing the literature and the differences between systems. Any system,
including the one we will develop, can be described based on this taxonomy. The
main participants in a cloud-auction are the user and the provider.
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2.1 Resource Type

The first aspect to consider when designing a cloud-auction is what will be
traded. The majority of systems, [6,7,10,12,13] and Amazon Web Services (AWS)
Elastic Compute Cloud (EC2), focus on VM. The system Ginseng [1] trades
physical memory. Finally, OptiSpot [2] considers applications as a whole and
not its resources individually.

2.2 Negotiation

The negotiation contains two dimensions, participants and bidding scheme.

Participants In single auctions, only one participant (either user or provider)
submits bids. There are four types of single auctions that are used in non-
automated contexts [5]: English, Dutch (or Open descending price), Sealed first-
price and Vickrey (or Sealed second-price.). The commercial system AWS EC2
Spot Instances implements a single Sealed auction. In double auctions, both
participants bid until an agreement is reached. This type of auctions is con-
ducted by an independent participant — the auctioneer. The majority of the
research system, namely [6, 10–12], use a double strategy.

Bidding Scheme Bidding scheme defines the process of submitting bids, and
the possibility of improving a bid if it was not successful.

In the systems with unique bidding [2, 6, 10], each bid is only submitted
once. A multi-round scheme is implemented in [1,11,12]. A Price and Time-slot
Negotiation (PTN) system, proposed in [9], implements a direct negotiation
scheme. The downside of the multi-round and direct negotiation is the partici-
pants need to be active after submitting the initial bids if they wish to improve
the bid.

2.3 Time

Regarding the time dimension, auctions can be classified according to the reser-
vation policy and the market type. The reservation can be on spot or forward.
In spot auctions, the allocation starts immediately, unlike forward auctions. The
algorithms [1,2,6,11,12] are spot auctions. In [3,9], the user can bid for a future
spot.

The market is denominated call if it waits for a set of bids and processes
them as a batch. Ginseng [1] is a call auction. AWS EC2 Spot Instances is also
a call market but with shorter call periods (e.g. 5 minutes). In continuous auc-
tions, also called online, the bid is processed as soon as it arrives. The examples
are [2, 6, 7, 9–11].
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2.4 Bid Representation Language
A bid representation language is necessary to capture the participant’s features.
The four main points are resources, quality constraints, time restrictions, and
price.

The participant can choose the resource type and the amount. An auction
is called combinatorial if the participants can bid in combinations of items (i.e.,
bundles). Recently, the auctioneers started to tailor their algorithms to user’s
quality constraints and the characteristics of the providers. Compatible On-
line Cloud Auction (COCA), proposed in [10], implicitly considers three types of
users: (I) job-oriented, (II) resource-aggressive, (III) time-invariant.
Depending on the type of user, the time restriction and price parameters in the
bid language are different. The system [2] requires the user application workload
and the provider’s specification (number of resources and the request process
rate).

The bid representation language in [13] requires only the provider energy
consumption per VM type. The system proposed in [12] requires the provider
QoS metrics (e.g. latency, uptime).

In most systems, particularly in spot auctions, time restrictions cannot
be specified [1, 6, 7, 11, 12]. However, in [3, 9, 10, 13], it is possible to specify
the available time (i.e., when it is possible to start the job), deadline and job
duration.

Some systems allow the specification of a bid total price [3, 6, 7, 9, 11]. In
[10, 13], it is possible to specify a price function based on elapsed time, usually
with a constant price if the execution concludes before the deadline and a penalty
for each time unit passed after the deadline.

Goals The auction algorithms try to find a compromise to satisfy the user and
the provider goals. The most common factors are:

Equilibrium Price The equilibrium price calculation is important, and both
participants are interested that their bid is reflected in the calculation. The
most straightforward approach is doing the average between user and provider
price [6, 11, 12]. In PTN, the participants have total control on the final price
as they have to accept it. Ginseng [1] implements an exclusion compensation
principle. In other words, it measures what would be the remaining users’ al-
located amount, if a particular user did not join the auction. Additionally, the
user pays a fixed price for the base allocation. OptiSpot [2] constructed a pricing
resource model (with a bid value as the input parameter) and populated it using
a third-party pricing history. The final price is the bid that optimises the model
dimensions.

Truthfulness Truthfulness is the property of algorithms that incentive partici-
pants to reveal their true valuation. Some systems could formally prove that they
are truthful [7, 10, 12, 13]. Finally, [2] and AWS EC2 Spot are not truthful, but
they consider non-truthful bidding should also be allowed as the participant’s
strategy.
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Social Welfare Social welfare is not only related to having the QoS met but
also the service quality and the auctioneer utilities and features. In Ginseng [1],
there is only a guaranteed base (i.e., if the bid is not successful, a minimum
memory is guaranteed). In [12], the providers are rated and order by QoS. Other
systems support different categories of users. In PTN, [9] the participants can
reject the price and time slot before the allocation starts. Some systems, like
[11], implement strategies to converge the user and provider bids through belief
functions (i.e., the chance of a bid getting accepted). AWS EC2 and Google
Cluster provide a price history for the user to perceive the typical trading prices,
but the VM terminates if the spot price increases above the bid. Finally, OptiSpot
[2] decides what resources to rent and how to map them to the application
modules.

3 FairCloud

In this section, we present FairCloud, a Cloud-Auction system. After analysing
the state-of-the-art, we extracted the desired properties and formulated the re-
quirements. Then, we will present the FairCloud bid representation language,
data structures and detail the core auctioneer algorithms. Also, in this section,
we classify FairCloud using our taxonomy. Finally, we present the main imple-
mentation details of FairCloud.

3.1 Desirable Properties

FairCloud has three types of entities: User, Auctioneer and Provider. Their main
iterations are to send bids and the allocation results. It is crucial that a Cloud-
Auctions system be continuous, combinatorial and truthful. A continuous auc-
tion is vital to reduce the user allocation time, as the bids are processed as soon
as they arrive. Cloud applications are composed of multiple indispensable com-
ponents, and it should be possible to specify them in one bid (i.e., combinato-
rial). Furthermore, some architectures require that all components be allocated.
Therefore, a roll-back is necessary if all resources are not allocated. Truth-
fulness is also fundamental. As the auctioneer does not know the participant
real valuation, truthfulness is the best method to prevent market manipulation.
Additionally, FairCloud should facilitate the resource allocations. There-
fore, it must consider QoS requirements, in particular: degradations (i.e., only a
minimum of guaranteed resources), conversions (i.e., receive the preceding lower
capacity machine), heuristics and reputation mechanism.

3.2 Data Structures

FairCloud is supported by four data structures. The ”UserBidList” and ”Provider-
BidList” are managed by the auctioneer and contain all the user and provider
bids, respectively. When a new bid is placed, the auctioneer adds it to the corre-
sponding list. Later, when the auction is in progress, the auctioneer sorts, iter-
ates, and updates the bids in the lists. The ”AllocationManager”, also managed
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by the auctioneer, maps, for each user, a list of ”AllocationEntry”. An ”Allocatio-
nEntry” contains the following information: provider ID, allocated VM, amount,
profile, reputation score and unit price. It is reset before each auction execution
and committed at the end when the allocations are sent to the providers. Lastly,
the ”ReputationMap” maps, for each provider, a queue of 20 values, representing
the last 20 scores awarded to that provider (i.e., quality for the allocations).

3.3 Auctioneer Algorithms

FairCloud implements multiple algorithms. The Bid Sorting and Matching al-
gorithm receives and matches the user and the provider bids, and invokes the
Update Heuristics algorithm and the Auction Engine Algorithm. After the allo-
cations are decided, the Auction Engine calls the Assignment Protocol. Finally,
it implements the reputation operations: Update and Calculation.

3.4 Bid Sorting and Matching

The first step is to initialise the ”AllocationManager”. Initially, the ”UserBidList”
is ordered descending by bid density. Then, a join operation is made between
”ProviderBidList” and ”ReputationMap”. The ”ProviderBidList” is ordered as-
cending by BidDensity

Reputation . By using this ratio, if two providers have the same price,
the one with more reputation is preferred. The bid density is a measure of how
much a participant bids per unit of allocation.

For each ”UserBid”, the algorithm selects the current bids and updates
the heuristics. Then, the algorithm iterates the ”ProviderBidList”, focusing on
”ProviderBids” where the ”UserBid” minimum reputation is assured, and the
Auction Engine executes. FairCloud should be able to degrade bids to increase
the number of allocations, but only when necessary. To avoid compromising the
algorithm execution speed, we will use heuristics. They are a practical method
not guaranteed to be optimal or perfect but consume far less computational re-
sources. Lastly, the roll-back is executed. First, it checks if it is necessary and
if it is, the allocations regarding that broker on the ”AllocationManager” are
cleared. In the other case, the allocations are committed and sent to the partici-
pants when the auction ends. The reputation is only updated and committed in
this step.

3.5 Auction Engine

First, the Auction Engine iterates the requested VM list and checks if the user
price is higher than the provider price and if the requested amount is positive.
The profile is the maximum between the suggested by the heuristic and the
user requested profile. The available amount is calculated by dividing the total
capacity and each VM requested capacity, considering the degradation factor.
Particularly, the conversion assign amount considers the profile value as 0.5
because each VM computational power is half of the following type.
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The assigned amount is the minimum between the requested and available
amount. Finally, if the user accepts conversions and the heuristic suggest a con-
version, an ”AssignVMsConversion” takes place. Otherwise, an ”AssignVMs”
takes place.

3.6 Assignments

The assignment protocol (i.e., Algorithms ”AssignVMsConversion” and ”Assign-
VMs”) are composed of two steps: price calculation and reputation award. After
the last step, the information regarding the allocation is added in the ”Alloca-
tionManager”.

Price The first step in the assignment is to determine the final price. The final
unit price is calculated with Formula 1.

Average(UserPrice, ProviderPrice) · degradationFactor · compensation (1)

The degradation factor is the real amount of resources allocated. The discount
was introduced in [8], and it is a compensation for the users with a performance
degradation. Consider the following example: the user profile is demanding and
the provider (i.e., the assigned profile) offered a conversion. The degradation
will be 0.5 and the compensation 0.6 (obtained from the matrix).

Reputation The second step is to award the reputation score. It depends on
the quality offered: demanding - 1, restricted - 0.98, relaxed - 0.95, and
conversion - 0.93. We chose these values considering the degradations factors
(i.e., 100%, 80%, 60%, 50%).

3.7 Classification using our Taxonomy

To summarise the architecture, we will assess our system according to the tax-
onomy proposed in Section 2. First, FairCloud trades general-purpose VMs of
five predefined types.

It is a double auction, and the bidding scheme is unique. Regarding the time
dimension: the auctioneer makes spot reservations and operates in a continuous
market.

The bid representation language supports the specification of the requested
amount for each type. However, the provider can only specify its total capacity,
regarding Million of Instructions per Second (MIPS) and Random Access Mem-
ory (RAM). FairCloud supports a variety of quality parameters: degradation
profile (i.e., demanding, restricted, relaxed), conversions and minimum rep-
utation desired. The only time restriction is the timestamp representing when
the bid is visible to the auctioneer. The user and provider prices are per unit
per hour.

The equilibrium price is obtained by multiplying the user and provider av-
erage price, the real amount of allocated resources and the compensation. We
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can argue that our system is truthful, and it does not consider privacy preserva-
tion. Regarding the Service Level Agreement (SLA), FairCloud implements an
internal reputation mechanism to order the providers and filter those under a
minimum threshold. Furthermore, the reputation does not depend on metrics
collected by the provider that could be easily forged. Finally, by implementing
an auction, we can reduce the final price paid per VM increasing the utilisation
and the energy efficiency. The algorithm always chooses the first available spot.

3.8 Implementation

The FairCloud implementation has three layers: CloudSim, CloudAuctions
(extension) and bid representation language. CloudSim is a simulator that is
widely used in works related to cloud energy efficiency, work-flows, scalability and
pricing policies. This layer offers the Application Programming Interface (API)
for VM management and for running the user cloudlets (i.e., user code). It
also provides metrics (e.g. utilisation, energy consumption). We used the third-
party extension CloudAuctions, proposed and used in [6]. This extension was
updated to the latest CloudSim version, fine-tuned and new functionalities were
implemented. Finally, a bid representation language was created, to support the
user and provider bid API.

4 Evaluation

To evaluate FairCloud, we used a subset of the Google Cluster Data (2011 2).
This data provides information regarding Machines, Jobs and Tasks, and Re-
source Usage. We prepared eight datasets with different goals and character-
istics. They differ in the distribution of providers, user degradation profiles,
conversions, minimum reputation required and the price.

The evaluation metrics are the following: average price per VM, allocation
time, execution time, CPU utilisation, number of allocations per profile,
and providers rating order.

We compare our system with one research work, CloudAuctions, and one
commercial system, AWS EC2 On-demand.

4.1 Results

In this section, we explore the allocation time and the Central Processing Unit
(CPU) Utilisation.

Allocation Time The first remarkable difference is that FairCloud is faster than
CloudAuctions in all datasets and faster than AWS in Datasets 1 and 2. This
time decrease is due to FairCloud allowing degradations in the requests. After
Dataset 3, with heterogeneous prices, AWS is the fastest algorithm allocating
requests, but with a cost, requests are rejected.
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Dataset 4 introduced one of our features, conversions, and it decreased the
allocation time by 25%. It is important to notice that the reputation mechanism
does not affect the allocation time (Dataset 4b). The highest allocation time
is observed in Dataset 5. This is caused by the users requesting a minimum
reputation score — the user bids need to wait for a provider with quality to
be available. On the other hand, the allocation time is the lowest in Dataset 6.
With a single high capacity provider, the FairCloud heuristic is optimal. Finally,
the heterogeneous providers increase the fragmentation, slightly reducing the
heuristic effectiveness.

CPU Utilisation We produced a graphic that represents for each time instant,
the overall CPU utilisation. Regarding Dataset 2, we observe that CloudAuctions
and AWS EC2 On-demand have very close values. After the first hour, FairCloud
has slightly less utilisation (53.9% vs 46.7%). This is because the requests are
compacted and allocated sooner. On the other hand, in Dataset 3, AWS overall
utilisation is the lowest: 29.8%.

4.2 Benefit to participants

After analysing the results, it is important to relate them and see what kind of
participants benefit from using FairCloud. Starting with the users:

– Low/medium-end — by accepting to receive partial service, they get a dis-
count and less execution time;

– High-end — they should specify in the bid that their profile is demanding
to receive full service. They will have maximum priority (i.e., user bids are
sorted descending by price) and will, shortly, receive their resources.

On the other hand, ultra-high users can opt for a traditional system, like AWS
EC2 On-demand, for a swift allocation time and a predefined price.

Similarly, cloud providers have advantages in bidding in FairCloud. They
receive more requests, increase the CPU utilisation and, consequently, their en-
ergy efficiency. The reputation mechanism assures that the providers with better
quality receive the most requests. The price per VM will be lower, but the over-
all profit will increase. They still have control over the price. FairCloud pricing
formula considers both the user and provider price.

5 Conclusion

We started this work by exploring the energy consumption in cloud comput-
ing and ways of optimising it (i.e., increased energy consumption but producing
relatively more output). We identified the taxonomy core categories: resource
type, negotiation, time, bid representation language, and the goals. FairCloud
facilitates resource allocations and considers QoS requirements, in particular,
degradations, conversions, heuristics to maximise allocations and their quality,
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and a reputation mechanism. The core algorithms are the bid sorting and match-
ing, update heuristics and auction engine.

We concluded that our system benefits low/medium-end users because, by
accepting a partial service, they get a discount and less execution time. High-end
users can specify that their profile is demanding to receive full service. Providers
receive more requests, increasing their profit and energy efficiency. They also
maintain partial control over the price.

Some suggestions for improvements are: FairCloud could allow geographic
preferences and a pricing history. To enrich the pricing model, we could imple-
ment subscription and a variable request duration. We could improve the evalu-
ation by adding a third benchmark — AWS EC2 Spot Instances, and measuring
the energy consumption, using the CloudSim power consumption models.
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