
Ginger-Video-3D - Adaptação de uma ferramenta de rendering

gráfico/codificação vídeo para execução paralela em sistema peer-to-

peer de partilha de ciclos.

João Cruz Morais

Rua Alves Redol 9 1000-029 Lisboa Portugal

joao.c.morais@ist.utl.pt

Abstract

Grid computing is a concept usually associated with institution-driven networks assembled with a clear

purpose, namely to address complex calculation problems or when heterogeneity and geographical

dispersion of the participants is a key factor. In this context, and given the cost of setting up such an

infrastructure, a regular home user willing to take advantage of distributed processing is left without a

viable option. Even if Grid access was open to the general public, a home user would not be able to

express task decomposition without clearly understanding the program internals. In Ginger, this issue is

addressed in a different manner. Users are not required to modify an application they already use,

needing instead to access an available format description of the application input/output, in order to

decompose a job in smaller tasks that may be distributed and executed in cycle-sharing machines. In

the context of this research, an architecture is proposed on which an application can be transparently

adapted based solely on input and output data formats. A first phase analyses content and builds sub-

tasks that are deployed over the network. In converse fashion, results are analyzed and aggregated

according to the output format. The work was tested with a video compression application as well as a

ray-tracing renderer, with positive results, especially in the last one, since it is a CPU-intensive

application and its I/O has a smaller data load when compared with video compression.

Keywords: grid computing, load-balancing, cycle-sharing, video encoding, video format analysis

1. Introduction

In this day and age, a quick observation that can be made about personal computer usage is that they

are either inactive or active with a very small load which means that most CPU cycles are wasted

without any relevant operation being made over them. Along with the Internet growing, in recent years

several applications have appeared that try to leverage this wasted cycles to perform useful processing

of CPU-intensive applications, the most known being the SETI@Home [2] project. However most of

these projects have a limited scope on how the Grid resources can be used. In most cycle sharing

projects users freely give their resources and are not allowed to run their applications. In such cases the

user is motivated to give their CPU time when there’s either monetary compensation involved (Plura

[12]) or the project’s purpose is the humanity’s greater good. (Folding@Home, Seti@Home)

In projects like Ourgrid [3] and Integrade [4] work has been done to actually allow any user to enter a

cycle-sharing Grid and submit jobs to other peers, but nevertheless there’s still a high barrier of entry

since these projects leverage the grid to execute bag-of-tasks applications leaving at the users hands

how to create those tasks. If the user has a good understanding of the application internals it can be

relatively easy create these tasks, but otherwise the user is restricted on acting on its inputs/outputs.

Ginger-Video-3D acts upon this last restriction: the user either doesn’t have access to the application

source code or doesn’t have the knowledge or time to study it, in order to discover how to distribute the

computational flow to other peers. Since the application will remain unmodified it’s required to change

paradigm and instead of having a modified application receiving the same input at every peer, there will

be an unmodified application in every peer each one receiving a small portion of the global input. These

smaller inputs are constructed from an XML format description that tells Ginger how to parse and

decompose the files. This format can be written by the user or there might be the case that it has

already been written and published by someone else. A great advantage of working with smaller inputs

is expressed when the original file is large and the work is leveraged to peers connected through low

bandwidth links. In the case of video for example, each peer will receive and process a small scene of

the whole video. The results are then gathered and merged at the source and finally written to the

output file.

2. Related Work

GiGi [1] is the predecessor of this work and as such some ideas have passed along but in this paper we

enter in more detail regarding the steps required to fully adapt computational intensive applications.

APST-DV [8] has a case study with MPEG4 encoding which has also explores input division load

techniques similar to our approach but uses external programs to do the file splitting/merging. BOINC

[2] is a middleware and infrastructure for developing distributed computing applications, which became

popular for hosting SETI@Home. BOINC projects have a restricted scientific scope and rely heavily on

the processing power of voluntary peers around the world and although the unit of work is presented as

a concept, every project uses the same unit when there are clearly units from different projects don’t

have the same computational cost. The Globus Toolkit [10] is an important reference, since it is the lead

implementation for OGF (Open Grid Forum) standards and organizes the many components usually

found in a Grid such as job scheduling, resource sharing, peer monitoring and user authentication,

behind a SOA layer which can be integrated with workflow modelling. Butt et al. [11] purposes a

prototype for executing applications over P2P overlays such as Pastry [9] focusing on easy resource

discovery and a fair reputation system. This system is restricted to Java applications since it relies on the

JVM has a sandbox while our project doesn’t have this restriction. Ourgrid [3] aims to allow any user to

run bag-of-tasks applications over a Grid of federated clusters. Applications are executed over a sandbox

and fair resource usage is handled with a network of favours that rewards users according to their

contribution to the Grid. Integrade [4] has similar goals but works on a client-server model where each

job must be routed through the cluster server to other peers. It also allows for MPI application

execution over a checkpoint system for handling incomplete jobs. Both these projects have failed to

reach major acceptance since there is yet to be ported any useful application to work on top of this grid

infrastructures. CCOF [11] is a cycle-sharing P2P architecture that purposes solutions for computational

intensive problems like the ones faced by the SETI@Home project. The application load is distributed by

the Wave Scheduler which organizes the resources by geographic regions in order to take advantage of

night periods which usually have less activity and although a generic P2P infrastructure like ours is

suggested, no programming model is available yet. Regarding multimedia processing over a distributed

environment, Ewert [6] suggests applying grid technologies for analyzing multimedia content for

detecting transitions, faces, text, etc. in video files. In this work a video is submitted to a job manager

service which splits the video in smaller scenes according with its bit-rate and picture dimensions and

schedules the jobs for execution in a cluster of nodes that work together to extract all the information

from that video. This application has a similar approach to ours, but splitting video for transition

detection might require more work than simply looking for key frames. Concerning the adaptation of

existing applications, de Lara et al. [7] details transparent adaptation mechanisms through APIs, such as

controlling the fidelity of components (low-res images when displaying content over low-bandwidth

links) and applying a range of policies to a group of programs. It is also presents a new system for

interfacing with production applications from different vendors with the objective of simplifying the

design of new policies and features.

3. Architecture

Figure 1. Ginger pipeline

At the moment, Ginger must be explicitly invoked through the command line before the application that

is being adapted. Next the application is analyzed in order to discover which are its inputs and outputs

what are its arguments and if other requirements are met. All these properties are read from an

application descriptor. Knowing what the input file and its format is, the next step consists in parsing the

file and constructing an auxiliary tree for subsequent transformation. The parsing is done according to a

format descriptor which includes a grammar that accepts any file of this format as well as the operations

required to split and merge files of this format.

3.1. Format Analysis

Figure 2. File parsing process

If the grammar recognizes the file we get as result a tree representation in which the leaf nodes are

pointers to parts of the file. As an example, suppose we which to recognize a text file which contains a

list of people names and locations, each property being stored in a contiguous chunk <ID, Size,

Value>.

FN6JohnnyLN5BravoCY6LisbonCT8Portugal

Is an example that respects such a format for a single person. You can see the grammar that recognizes

this input string on the left, and the result tree on the right.

Figure 3. Sample grammar and the tree output for recognized input “FN6JohnnyLN5BravoCY6LisbonCT8Portugal”

The interleave pattern allows that the enclosed patterns match in any order and as such we can either

have any combination of the 4 properties with a restriction - both ‘last-name’ and ‘country’ must appear

after ‘first-name’ and ‘city’ respectively, since they are grouped. Note that the data patterns ‘id’, ’size’,

’value’ are enclosed inside a block pattern. This pattern blocks the interleaving, forcing the enclosed

pattern to completely match, or otherwise the block fails. In practice when an ‘id’ is matched against the

input, a new processing loop starts running only on that block. This loop ends when either there are no

patterns left or there are none that match input. Also note that the tree is being dynamically created

and as such we can use XPath at any time to discover the value of a previous token. In the example we

use it to find out the size of the ‘value’ token.

The grammars described in this format are of the LL(n) class. In most instances only one token is

required to figure out which pattern should be chosen but as it is evident on out previous example the

block pattern requires 3 successful tokens matched for it to be accepted. If it fails the token(s) need to

be retracted and file pointer reset so a new path can be chosen. Regarding the grammar determinism,

by default the parser allows for non-deterministic grammars choosing first the left-most pattern before

trying others. It can be configured to look at all the possible paths, stopping when an iteration matches

more than one token which is useful for debugging purposes.

3.2. Tree Manipulation

In figure 1, there are two blocks that are used for transforming document trees. In the case of the

Partitioner the tree being manipulated is generated from the input file, while at the Aggregator it’s a

tree generated from one of the, possibly many, output files. The transformation operations can be

found along with the format descriptor and consist in sequences of CRUD operations.

Figure 4. File splitting process

Before executing the splitting operations, the Transformer asks the Gridlet Manager (GM) for a list of

empty gridlets that will contain the smaller tasks (computational wise) referring in this request, if

required, the maximum jobs that can be created from this particular task. The GM first consults with the

application descriptor in order to rate the total cost of the task. The cost is a vector:

<CPU, I/O, UpBW, DownBW>, CPU + I/O = 1; UpBW, DownBW in KB

Knowing this cost, the GM makes a best case scenario choosing the peers which minimize the processing

time according to this task cost vector and tries to allocate a time slot for this task on each of them.

Whether the peer allows or denies the allocation it returns the maximum time that it is willing to

concede to this client. This way if any peer denies the allocation the GM can either partition the whole

task again or partition only the job which failed the allocation.

Figure 5. Task allocation/execution protocol

After having the allocation done, the GM creates N empty gridlets where N is the number of jobs

created to handle this task, specifying in each one its offset and size relative to the overall task. Then for

each gridlet the input tree is copied and transformed according to splitting operations taken from the

format descriptor and which are based on the gridlet offset and size. In binary formats there are usually

variable-sized blocks, with previous blocks holding the actual size of the next block. To avoid having to

write updates every time an add/remove is done on the variable block we allow for a data node to listen

for changes on other data nodes or elements in the tree. Whenever there’s an update on a listened

node the value of the listening node is updated according with an XPath expression.

After being transformed, the tree is serialized to a file and encapsulated inside the respective gridlet,

along with its id the application descriptor and other required files and finally sent to the peer that has

been allocated to handle this job. After receiving all the replies the process is reverted. The output files

are each one converted to a tree representation and sent for the transformer this time to be merged in

the final output file. Again the merging operations are taken from the format descriptor which also tells

the transformer how the final document should look like before the merging starts. The current options

are to start from an empty document, start with the document created from the response to the first

request, or from the response that arrived first. For example in the case of AVI since the important

headers should be the same on every response, we choose to start the final document tree from the

first response that arrives.

Figure 6. File merging process

With the final document tree completely built it is now simply a matter of serializing/reassembling the

tree back into a file form and the process is complete.

4. Results

Two media tasks were chosen to test this work. The first is video compression which is not only a CPU-

bound process but also very I/O intensive, accepting and producing usually large inputs/outputs. We will

use the AVI format to contain our video and the partitioning is done on keyframes which are

independent frames, so we can safely assume that they are good splitting points.

The other is a ray-tracing rendering application (PovRay) which has the characteristic of being mainly a

CPU-bound application, taking small scene files as input and producing moderately sized picture files. On

PovRay the scene initialization file can define “Subset_Start_Frame” and “Subset_End_Frame”

properties to define which frames the ray tracer should render, and the partitioner explores these

properties to create the jobs. Next, we show 3 tests that are being done over these applications:

• Compression of a 44.4MB xvid video to the h263+ codec

• Compression of a 7MB h264 video to the h263+ codec

• Ray tracing animation (250 frames, 640x480) following compression in MPEG4 video at 25fps,

producing a 10 second movie.

The computers that are being used to execute these applications have the following characteristics:

• Laptop: Intel Core 2 Duo 2.0GHz, 2GB RAM, 7200RPM disk (main machine)

• Desktop: AMD 2.2 GHz single-processor, 1GB RAM, Raid-0 configuration (local network)

• Sigma server: Dual Opteron 2.4GHz, shared AFS (internet)

To get more representative results these teste were done over 5 different configurations with the load

distribution varying in each of them, according to the following table:

Configurations Sigma Desktop Laptop

I 1/3 1/3 1/3

II 2/3 1/3 0

III 1/2 1/2 0

IV 1/3 2/3 0

V 1 0 0

Local 0 0 1

Table 1. Load Distribution

Note that in the results for configurations I-IV the request, processing and response times are taken

from the gridlet that takes the longest time to produce its result (many of the results would be already

available before that moment). Also note that in the configuration V the time for Splitting and

Aggregation is 0, since one node takes the whole processing.

Figure 7. Execution time of video compression (44.4MB file on the left, 7MB file on the right)

The first observation that we can take from this test is that the local execution is always fastest then

executing the application remotely. Firstly our transformer is not yet optimized and the every time we

wish to make a new partition the source tree needs to be copied so we can apply the transformations

over a clean version of this tree. Since the 44.4MB video produces a tree of around 20000 nodes it is a

slow process to make a copy, apply the transformations and produce the job file. We can say with some

confidence that this is the main problem and not the splitting transformations, since the aggregation

step is a lot less noticeable.

The next problem is unavoidable and is related to the low bandwidth upload link from the local machine

to the remote peer (Sigma). Topping at around 50KB/s sending the gridlet to this peer is very slow and

takes more time than the local execution in every instance. An interesting observation is that Sigma

being the most powerful machine shows the slowest times in compressing this video. The reason is

probably related with this server having a networked and shared file server (AFS) which introduces some

I/O latency in comparison with a local disk and this reflects especially in I/O intensive applications just

like this one. With the 7MB file we can alleviate the strain in the request time and in fact the difference

between the best distributed time (configuration 1) and the local execution time narrows by a factor of

2. It’s also noticeable the splitting time has a lot less impact since the file has a lot less nodes than in the

previous example.

Executing the application in the desktop computer only, appears as a good alternative since both

machines are in the same LAN and as such the request/response delays virtually disappear, although

this solution being somewhat slower. In fact the fastest machine in the video compressions tests is

actually the local machine (laptop).

Figure 8. Execution time of ray-tracing rendering

With the raytracing application the results are a lot more satisfying. Since we don’t partition the scene

but instead only act upon the rendering start/end frames the analysis/splitting takes only some

milliseconds. The input (pov, ini) and resulting output files (avi) are very small which reflects in almost

negligible request, response and aggregation times. In practice +99% of the execution time is spent

rendering the scene frames. Being a CPU-bound application the constraints observed on the Sigma

server for the last test disappear, which results in the configuration V being the fastest. The results

showed that the local machine is the slowest for this test which means that in the configuration 1, the

RTT for the gridlet sent to the remote server and for the remote desktop is lower than the one sent to

the local machine. With these results, it’s highly suggestible to leverage the power of remote machines

to execute ray tracing animations.

5. Conclusions

Open grids are not a new concept, but adapting existing applications without making modifications on

them and instead explore the inputs and outputs is indeed a novel approach.

Throughout this paper we described in some detail the several steps through which the application must

go through in order to be adapted to the Ginger infrastructure. We also introduced the Gridlet concept

as a unit of work and an indicator for selecting the best peers.

The results have shown that distributed video compression is still confined to local area networks due to

the I/O cost when transferring work to peers over links with low bandwidth. On the other end of the

spectrum ray-tracing rendering has small I/O requirements and so it is highly advantageous to explore

distributed computation for this application both in local and remote nodes on the grid.

Future work could include more advanced techniques to integrate applications (APIs, DDE, etc.) on this

architecture and integration with existing middleware (like Ourgrid).

6. References

[1] L. Veiga, “GiGi: An Ocean of Gridlets on a "Grid-for-the-Masses",” May. 2007;

[2] D.P. Anderson, BOINC: a system for public-resource computing and storage. In Proceedings. Fifth

IEEE/ACM International Workshop on Grind Computing, 2004.

[3] N. Andrade et al., “OurGrid: An Approach to Easily Assemble Grids with Equitable Resource

Sharing,” 9th Workshop on Job Scheduling Strategies for Parallel Processing, 2003;

[4] A. Goldchleger et al., “InteGrade: object-oriented Grid middleware leveraging the idle computing

power of desktop machines,” Concurrency and Computation: Practice and Experience, vol. 16,

2004, pp. 449-459.

[5] A.R. Butt et al., “Java, peer-to-peer, and accountability: building blocks for distributed cycle

sharing,” Proceedings of the 3rd conference on Virtual Machine Research And Technology

Symposium - Volume 3, San Jose, California: USENIX Association, 2004, pp. 13-13.

[6] Ralph Ewerth, “Grid Services for Distributed Video Cut Detection,” Dec. 2004;

[7] E. de Lara et al., “Iterative adaptation for mobile clients using existing APIs,” Parallel and

Distributed Systems, IEEE Transactions on, vol. 16, 2005, pp. 966-981.

[8] K. van der Raadt, “APST-DV: A Practical Framework for Scheduling and Deploying Divisible Loads

on Grid Platforms.”

[9] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location and routing for

large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed Systems

Platforms (Middleware), pages 329–350, November 2001.

[10] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. In Proc. of the

Workshop on Environments and Tools for Parallel Scientific Computing, SIAM, August 1996.

[11] V. Lo et al., Cluster Computing on the ℉ly: P2P Scheduling of Idle Cycles in the Internet, 2004;

[12] Plura Project [http://www.pluraprocessing.com]

