Idroid - interest aware augmented reality

Ricardo Brilhante
INESC-ID / Technical University of Lisbon
ricardo.brilhante@ist.utl.pt

ABSTRACT

Mobile augmented reality applications are increasingly more
popular. The ability to merge a virtual world with the real
one is a fascinating idea, and the possibility of having such
a system available in a mobile device makes it even more
interesting given its inherent ubiquity.

Ensuring the freshness of (augmented reality) information
provided to the user on the mobile device is of utmost impor-
tance. At the same time, the user must not be overwhelmed
by useless information, and the network usage should be
kept to a minimum, so that scalability of the overall system
can be ensured.

We present Idroid, a Location Based Augmented Reality
system that is scalable and provides the information the user
needs, according to his freshness and interest requirements
(regarding the points of interest in his surroundings). It uses
an interest-aware consistency model to limit the amount of
information sent to clients, while taking into consideration
the real world constraints (e.g. streets, buildings, obstacles,
etc.).

1. INTRODUCTION

In the past years, the growth of mobile computing has been
huge. One of the main reasons for this increasing interest
is the evolution in the software and hardware of mobile de-
vices. With time, computers are becoming smaller and more
powerful, which makes them more wearable and more per-
vasive. This allows developers to create mobile applications
that provide all kinds of services anytime and anywhere[1].

Location Based Services (LBS)[2] are one of the most in-
teresting. A LBS can be defined as a service that provides
the user with information regarding his surroundings. The
evolution in location technology, the increasing development
of LBS middleware and the appearance of 3G mobile net-
works, made the use of LBS in mobile computing to become
more popular[3]. Nowadays, a user who wants to obtain in-
formation about a certain place, only needs to reach for his

pocket, pick his mobile device and ask for the service.

Another type of technology that, in the past years, emerged
in mobile computing is Augmented Reality (AR)[4]. This
technology is starting to become a reality and mobile devices
are one of the reasons for its growth. Mobile AR systems
can be described as systems that combine real and virtual
objects in a real environment, running in real-time and mo-
bile mode[5]. AR systems, normally have a very simple, user
friendly interface, only using the camera of the mobile de-
vice. This simplicity allows any inexperienced user to work
with any AR application.

With all this development, combining Location Based Ser-
vices with Augmented Reality has become possible. Nowa-
days, a user can grab his mobile device, point it to a street
or a building and get the information regarding the sur-
roundings through virtual objects. However, these appli-
cations have to overcome some challenges. One of them is
the amount of data sent to the user. If too much informa-
tion is sent, the mobile application will display too many
objects, cluttering the screen with irrelevant information.
Another challenge is the high number of users which makes
the number of requests to increase. This means that the use
of network bandwidth will be high, possibly leading to high
latency.

The goal of this work is to create an AR system, called
Idroid, which provides the user with information regarding
his surroundings. The system must be efficient, provide high
scalability, display only the relevant information to the user,
and guarantee the freshness of the information provided.

In this context, freshness means that Idroid guarantees that
the information presented in the mobile device is up to
date regarding the information available (stored within a
database). In other words, data displayed in the mobile
device is consistent with the most recent in a database. An-
other type of freshness relates the real world and the corre-
sponding database information; this issue is out of the scope
of this work.

There are already some solutions that provide Location Based
Augmented Reality. Two of the most popular are Layar?

and Wikitude®. These provide the user with knowledge of
the surrounding area. However, they do not provide mech-

anisms that guarantee the freshness of the information sent

to the mobile devices according to the user interests.

"http:/ /www.layar.com
2http://www.wikitude.com/en

Other solutions, like GeoPointer[6], make an effort to re-
duce the amount of data sent to clients through the network
(limited to the information that the user is able to see in
his mobile device). The disadvantage in this solution is that
a slight turn of the camera implies a new request to the
database server. The increase of requests may lead to high
latency, and therefore the freshness of the information can-
not be guaranteed.

Idroid combines augmented reality with an interest aware
location based service, providing only the information rele-
vant to user. To achieve high efficiency and still guarantee
freshness, Idroid uses an interest aware consistency model
[7]. Thus, Idroid allows the freshness of the information to
decay gradually as the distance of the user to a point of in-
terest increases. Therefore, data sent to clients is minimized,
increasing the scalability of the system.

This document is organized as follows. Section 2 describes
the related work and briefly presents some relevant systems.
Section 3 describes the Idroid architecture. Section 4 shows
the evaluation results and Section 5 summarizes this work.

2. RELATED WORK

Embedding LBS in AR systems is a growing research issue.
These systems not only have to address to challenges behind
any LBSI8], but also the issues regarding the AR environ-
ments[4]. Throughout the years the attempts of merging the
real world with a virtual one have become more successful
and more efficient. What began by using heavy hardware,
such as head mounted displays, has been replaced by small
devices that can be carried in a pocket. It is important to
understand this evolution and evaluate the previous systems
in order to achieve the next step towards a more efficient and
scalable solution.

2.1 Head Mounted Display systems

In the early years of mobile AR, the use of head mounted
display (HMD) to generate virtual objects was very com-
mon. Feiner et al.[9] were the first developers to produce a
touring machine that assists the user who is interested in a
university campus.

As a user looks around a campus, his see-through HMD over-
lays textual labels on the campus. The system can display
information about the campus, the user’s current location,
a list of departments and a list of buildings. After selecting
a building within the list, the application provides a small
compass pointer that guides the user to the building loca-
tion. Another feature presented by this system is the ability
to display more specific information about the buildings. To
do that, the user has to select the building and then an in-
formative page will be displayed.

This was the first system that combined LBS with AR. It
uses a small, static database and the issue of the freshness of
the information is not addressed. With a large, modifiable
database, this system does not guarantee the consistency of
the results. Another disadvantage of this application is the
fact that it uses a HMD. Users normally do no walk around
carrying such devices.

2.2 Mobile Phone applications

The implementation of LBSs using AR in mobile phones en-
ables the user to walk with such applications in their pock-
ets. Takacs et al.[10] proposed such a system: it captures
the image retrieved by the mobile phone camera and then
matches it to a set of images stored in a database. Then,
the information related to the image is sent to the client and
a virtual tag is displayed on the corresponding object (e.g.
a building). The images are searched using an algorithm
that only queries nearby images. Along with this, the image
recognition algorithm only uses a small part of the image to
make the match. These two feature guarantee the efficiency
of the system.

By using image recognition, this solution guarantees that
the information display is accurate. However, a system like
this, only gets information of one building at a time. If the
user wants to know his surrounding he has to query for all
the objects (e.g. buildings). Also, the information passed
to the client is rather limited; only passing a text tag is not
really giving the user much information.

MARA[11] is a system that provides points of interest in the
range of the user’s view without the use of any kind of exter-
nal feature. It was developed by the Nokia Research Center
and it uses the mobile phone sensors to get the current po-
sition and heading of the user. The user points the device’s
camera and then, if there are any available annotations, the
information about the surrounding objects is displayed. It is
also possible to ”click” on a selected object and be redirected
to the associated hyperlink.

One drawback of this system is that it does not filter any in-
formation passed through the network. All the annotations
that are available for the image in the device’s screen will be
presented, possibly cluttering the display with non-relevant
information for the user. In addition, the amount of data
passed through the network can be very high, depending on
the number of annotations available on the database.

2.3 Augmented Reality Browsers

The appearance of operating systems such as Android and
Windows Mobile made the implementation of mobile appli-
cations more portable. Since then, a new set of LBS appli-
cations that use AR were created.

Layar® is one example of such systems. It is a mobile aug-
mented reality application that allows the user to discover
new information by looking around the world. With the
aid of cameras, GPS, compasses and accelerometers, Layar
provides digital information superimposed onto reality.

The concept behind Layar is the use of layers that anyone
can access or create. All the information about the world is
stored as a layer. Such layers can provide information of the
whereabouts of restaurants, coffees, subway stations, etc.
For a user to gain access to these layers, he has to subscribe
to the one that has the information he desires. The user
can also define the radius of his search and therefore limit
or wide the search results.

The biggest drawback of Layar is the fact that it is impossi-
ble to overlap layers. A user is restricted to the subscribed
layer and if he wants to subscribe to another, he has to un-

Shttp://www.layar.com

subscribe the previous one. Other disadvantage is the dif-
ficulty of creating layers. They are basically a PHP server
that supports JSON with a MySQL database[12]. For the
average user this is not trivial and restricts the creation of
layers to experienced developers. Finally, Layar does not
guarantee the freshness of the displayed results. Nothing
assures that, if the layer is altered, the information will be
passed to the user, guaranteeing the freshness of the results.

Wikitude? is an application, similar to Layar. It was devel-
oped by Wikitude GmbH (formerly Mobilizy GmbH) and is
a mobile AR system that scans the user’s surrounding for
geo-references using the camera and the device’s sensors. In
Wikitude each point of interest belongs to a provider, a so
called "world”. The functionality of this "world” is similar to
the layers in Layar, but it has a difference: they can aggre-
gate different types of places and not just only one. Another
difference is the possibility to access different "worlds” at the
same time and get information about all of them.

One disadvantage of Wikitude is the number of points of
interest displayed when there is no customization of the
preferences. Wikitude gathers all the nearby information of
all the "worlds” and presents the results to the user, which
can make the display cluttered by non-relevant information.
This means a large amount of network data and, with high
latency, it can make the performance of the application de-
crease.

GeoPointer[6] is a solution that tries to minimize the infor-
mation passed to the user. It was developed by Wolfgang
Beer as a client-server application with a lightweight client
and server component. The client device is only responsible
for getting the coordinates of the user (latitude and longi-
tude), as well as the orientation of the device. In the end, the
client device is also responsible for representing the informa-
tion on the mobile device screen. After receiving the direc-
tion and position of the user, the server defines his area of
interest. First, it calculates a point, called waypoint, which
represents the maximum coordinate to present results. This
waypoint is calculated by using basic trigonometry relating
the current user’s position, his direction and a maximum
distance. Then, a rectangular area is calculated by using
the current position, the waypoint, the direction of the user
and a threshold that represents the size of the rectangle. In
the end, the user will have results from this rectangle with
the waypoint in its center.

GeoPointer seems to be a really good way to present only
the information that the user is interested in, but it has a
disadvantage. By changing the direction of the mobile de-
vice a new request is made and therefore the server has to
perform new calculations. A user who wants to know infor-
mation about a city will turn his device to every direction;
this results in many requests that are made very often and, if
there is high latency, the results can be inconsistent with the
image displayed in the screen, decreasing the performance
of the application.

3. ARCHITECTURE

Idroid provides to users the search for points of interest in
their surrounding area. To do this, a user only needs to pick
up his mobile device, define the search criteria and point the

“http://www.wikitude.com/en

Client Side Server Side
41 = | Avplication
Activity Manager
Object Pool Datasase
: &

1

7 s
L

Gient | > [o " Network Layer

Network Layer

Figure 1: Idroid global architecture.

camera to any target. Then, the points of interest will be
drawn on screen. Regarding data freshness, Idroid concis-
tency model is based on Vector-Field Consistency (VFC),
providing fresh results using the least resources possible.
Idroid also takes into account the interests of the user, up-
dating more rapidly the information closer to him and dis-
carding non-relevant information. We named the Idroid con-
sistency model as VFCdroid.

Idroid is based on a client-server architecture, see Figure 1.
Clients submit their locations and interests to the server and
wait for the response.

The points of interest presented by Idroid are stored within
a database and the information associated to them can be
altered by anyone who has access to it (and is authorized).
For example, the rating of a restaurant can be modified by
anyone who decides to rate it, or, the office hours of the
restaurant can be changed by its owners, etc. When a change
in the database occurs a Database Update is sent from the
server to the concerned clients.

Users profiles are also stored within a database. Idroid stores
only critical information about the user, such as his interests
and his location. A user can change the information on
this database by altering his search parameters or by simply
moving around, updating only his location. When any of
this changes occurs a Client Update is sent to the server.

The Client node is composed by several modules, as follows.
The Activity Manager is responsible for the inputs and
outputs of the application. It reads the GPS and Sensors of
the mobile device, in order to understand the user’s location
and heading. It is also responsible to draw the results on the
screen.

The Session Manager manages the results to be drawn,
adding and removing objects. It is responsible for the pro-
cessing of the messages sent between client and server. The
client sends Client Updates that can be of two types: i) if
the user changes his interests, then an Interests Update
is sent; ii) if the user changes his location, a GPS Update
is sent, with the new location of the user.

The Object Pool Replica stores all the objects that are
in the user surroundings. The Client module is responsible
to send and receive information from and to the server.

The Server node is mainly composed by several modules, as
follows. The Session Manager manages the information
at the server side; it processes the messages from the client
and the messages to be sent to the user according to his
location and interests.

The Consistency Manager is responsible to guarantee

Figure 2: Idroid zones

that the users have consistent objects. It ensures critical
updates to be immediately propagated to clients and less
critical to be postponed.

The Database Monitor periodically monitors the changes
made in the Location Service database. If any occurs, it
stores the new data in the Object Pool Primary and informs
the Consistency Manager about the alterations.

The User Interests Filter is responsible to store the in-
formation about the users that are requesting services from
Idroid. It reads the information from the Users Database in
order to understand their interests.

The Object Pool Primary stores all the objects that all
the users are accessing. The Server module is responsible
to send and receive information from and to the clients.

3.1 Idroid Consistency Model

Idroid consistency model, VFCdroid, is based on three main
concepts: pivots, consistency zones and consistency degrees.
A pivot represents a user location. A pivot is used to to
calculate the distance between the location of the user and
the points of interest.

Consistency zones are formed around pivots. In Idroid, we
define three zones. The zones have variable size, that can be
modified by the user. A point of interest is in a particular
zone if the distance between the user and the point of interest
is within the zone size.

Each consistency zone has a consistency degree associated.
Consistency degrees vary with distance: zones closer to a
pivot have higher consistency degrees. The degree of each
zone is defined by a 3-dimensional vector that specify the
consistency deviation limits for objects within a zone. The
vector parameters are: time(f), sequence(o) and value(v).
Time specifies the maximum time an object can be with-
out being refreshed with the most recent value. Sequence
specifies the maximum updates an object can receive with-
out being refreshed. Value specifies the maximum difference
an object can be from the last refresh. The value of these
parameters can also be customized by the user.

3.2 Idroid consistency zones

Regarding the points of interest in a user’s reach, Idroid
takes in consideration the obstacles of the real world. There-
fore, the consistency zones of Idroid are shaped as tubes that
cover the streets surrounding the user. This way, Idroid con-
siders the existence of inaccessible buildings even if they are
over within radius of the user. The size of each zone is
defined by the distance a user can travel through a street.
For example, if one zone is limited to 100 meters, then it

Figure 3: Client update process. The figure shows
how the client update is propagated to the server.

is limited, to every possible route, by the same distance, ir-
regardless of the amount of curves the street has. This is
illustrated in Figure 2: the building shown is close to the
user (birds eay view) but, in fact, it is far away from him
because the streets available do not allow him to go directly.
Idroid takes into account such scenarios, thus providing only
usefull information to the user.

To provide a user friendly interaction, there are default val-
ues for the consistency zones limits. The first zone is the
smaller one, the second zone is the second smaller and the
third zone is the bigger one. To calculate the values we
proceed like this: the user defines a maximum distance of
search. For the first zone, the limit is calculated by mul-
tiplying this value for 1/6. The second zone is calculated
by multiplying the distance for 1/2. And the third zone is
limited by the maximum distance (more details in the next
section).

3.3 Idroid consistency degrees

The values of the consistency degrees vectors can be cus-
tomized by the user; however, to keep a user friendly inter-
face, there are default values.

In order to understand the user’s consistency needs it is
relevant to consider if he is walking or driving. This defines
the speed the user is moving, thus changing the parameters
of the consistency vector. For example, the distance between
the user and a point of interest can be traveled more rapidly
if a user is driving his car, than if he is walking. This means
that such point of interest has to be refreshed more often
when the user is driving than when he is walking.

For commodity, the distance between the user and a point
of interest can be given in minutes or meters, as shown in
Table 1: consistency degrees of a both walking and driving
users. In each case, any object in zone 1 will be refreshed
every time it gets updated. The values calculated for the
time limit correspond to the minutes a user takes to reach
the current zone. We estimate that the average speed for a
person walking and for a person driving is 4 km/h and 50
km/h, respectively.

As already mentioned, there are two ways a user can receive
new information from the server: using Client Updates or
Database Updates. We described both now.

3.4 Client Updates

Zone Minutes Meters
Walking or Driving Walking / Driving
Zone 1 [0, 1, oo] [0, 1, o]
Zone 2 | [zone 1 limit, 5, 25%] [zone 1 limit * 36/40, 5, 25%] / [zone 1 limit * 36/500, 5, 25%)]
Zone 3 | [zone 2 limit, 10, 50%] | [zone 2 limit * 36/40, 10, 50%] / [zone 2 limit * 36/500, 10, 50%)

Table 1: Consistency values for both walking and driving users.

User Interests
Filter

Client

Figure 4: Database update process. The figure
shows how the changes in the objects are propagated
to the client.

The propagation of the Client Updates has six steps as
shown in Figure 3: 1) Listening inputs: the Activity Man-
ager listens to the changes in the the mobile device’s ap-
plication; 2) Informing the Session Manager: if a change
occurs, the Activity Manager informs the Session Manager
that a new request has to be sent to the server; 3) Creat-
ing a new request: the Session Manager constructs the new
request with the necessary information. If only the location
of the user changed, than the new coordinates will be sent.
If the interests changed, the Session Manager constructs a
message with new specifications; 4) Sending requests: the
Session Manager gives the Client the new request, which is
sent to the Server; 5) Processing new request: the Server
receives the new request and sends it to the Session Man-
ager to be processed; 6) Storing the new information: the
Session Manager processes the request. It informs the User
Interests Filter of the changes made on the user and requests
the Consistency Manager to check if any object is outdated.
The User Interests filter stores the changes of the user in the
Users Database.

3.5 Database Updates

The propagation of the Database Updates has nine steps
as shown in Figure 4: 1) Checking updates: Periodically,
the Database Monitor checks the Location Service Database
for new updates; 2) Informing the Consistency Manager: If
there is a new update, the Database Monitor informs the
Consistency Manager; 3) Verifying consistency: the Consis-
tency Manager, will then check, for every user, if there is any
object that needs to be refreshed. If there is, the Consistency
Manager informs the Session Manager, in order to respond
to the specified users; 4) Creating responses: For every user
that needs to be updated, the Session Manager constructs
a message with the objects that are outdated; 5) Sending
updates: The updates are sent by the Server, through the
network, to the Client. 6) Processing updates: The Client
receives the updates and sends them to the Session Manager
to be processed; 7) Updating information: The Session Man-
ager stores the new updates in the Object Replica Pool; 8)

Informing Activity Manager: The Session Manager informs
the Activity Manager that the current display needs to be
refreshed; 9) Drawing objects: The Activity Manager checks
what are the objects on the Object Pool Replica and draws
them on the mobile device’s screen.

4. EVALUATION

In this section we present the evaluation results. These tests
focus on the network savings of Idroid due to the fact that
only the really needed information is sent to clients (accord-
ing to their interests and freshness requirements).

4.1 Workload Description

To exercise the system, and to make the tests as real as
possible, we decided to create a group of tourists that are
visiting the city of Lisbon. This group start their tour in an
hotel, near Avenida da Liberdade.

As tourists, the group has a set of interests in the main
attractions of the city. We categorized them in: restaurant,
art gallery, museum, zoo, shopping mall and embassy.

For the tests made we simulated a total of 4000 tourists.
This group is separated in two: 2000 are walking and the
other 2000 are driving.

4.2 Information Download Test

We start by discussing the results obtained for the basic test
of downloading all the points of interest. In this situation,
the users start the application for the first time and then,
Idroid downloads all the information to the user, regarding
his interests. The results of the number of points of interest
sent in each system are illustrated in Figure 5.

The presented graphs show that the the number of points
of interest passed to the user is slightly different. Idroid
sends less points of interest than a system without a con-
sistency model (Figure 5). This fact can be explained by
the VFCdroid consistency tubes. They take into account
the obstacles of the real world, removing the unaccessible
places. Without using this consistency model the system
will get all the points of interest that are in the users radius.
Therefore, the excess sent by the system without VFCdroid
is considered non-relevant information for the user.

Sending less points of interest means that less data will be
passed to the user. Therefore, the bandwidth usage will also
be lower in Idroid, saving network resources.

4.3 GPS Updates Test

In this test we intended to get the results for users that are
on the move. We created a short route composed by five
different places. In each place, the user will send a new
request to the server, only giving his new coordinates. After
completing the course, we measured the total bandwidth

1200000
1000000 ﬁ

800000 ’

600000 //

1 —4—Idroid

400000 —#—without VFCdroid
200000 f
0

4 20 40 200 400 800 20004000

Points of interest

Clients
Figure 5: Total number of points of interest sent to
every user of the tourists group.

800000

700000 [
600000
// —#—without VFCdroid -

500000 // tourists driving

B 400000 —without VFCdroid -
300000 / tourists walking
200000 ,7 == |droid - tourists driving
100000 7 Idroid - tourists walking

0+l
v

ROIRSIRS NQQQ ’900

Clients

Figure 6: Bandwidth usage (KB) for sending the
points of interest to the tourists group after travel-
ing a small route.

140000

120000

100000

== without VFCdroid -
tourists driving

80000
@ ==without VFCdroid -

tourists walking

x

60000
=—4=—Idroid - tourists driving
40000 -

20000 - Idroid - tourists

walking

0 -

_aul T T T
1 10 50 100 150 200 250 330
Updates

Figure 7: Bandwidth usage (KB) for updating the
points of interest of the tourists group.

usage. Figure 6 shows the results of bandwidth usage by
the test group.

The results show that, Idroid performance is always better
than the system without VFCdroid. There are two reasons
for this fact. Firstly, as seen on the previous test (Section
4.2), the amount of points of interest is different in both
systems. Idroid has less points of interest than the system
without VFCdroid. Therefore, if the user moves, the number
of new points of interest to be sent is lower in Idroid. The
second reason is due to the presence of a consistency model.
Every time a GPS Update occurs, the distance between the
user and his points of interest changes. Idroid only updates
this information if it is critical, regarding the values of the
consistency model. In a system where there is no consistency
model, the new distances will always be propagated to the
users.

4.4 Database Updates Test

The objective of this test is to understand the behavior of
the system when several updates are made to the database.

In the end of each test we measured the total bandwidth
used when updating the points of interest.

To accomplish this, we made modifications to the informa-
tion that was in the interest of the users. This means that we
updated the points of interest categorized as being restau-
rant, art gallery, museum, zoo, shopping mall and embassy.
The number of points of interest available were 330. It is im-
portant to clarify that not all the points of interest are part
of the results of the users, however we did not exclude them.
The only restriction made to the updates, was that the first
one had to be done in a point of interest that was part of
the results of every user. The results of the bandwidth usage
are presented on Figure 7.

In comparison with the system without the consistency model,
we can see that Idroid uses less bandwidth and, therefore,
updating less points of interest. Analyzing the bandwidth
usage (Figure 7), we can see that, with the growing num-
ber of updates, the lines of Idroid grow much slower than the
system without Idroid. This means that, with the increasing
number of updates, the difference of bandwidth between the
two systems will grow. This differences can be explained by
the presence of the Idroid consistency model. This model
postpones non critical updates and, therefore, not all the
points of interest will be immediately updated. Without
Idroid, each update to the database will be propagated to
the respective users.

We can also see that the gains of bandwidth are not lin-
ear. Sometimes, the distance between the lines of the two
systems is bigger, and sometimes it gets smaller. This can
be explained by the location of the points of interest in the
different zones. When the consistency limits of each zone
is exceeded the updates must be propagated, increasing the
bandwidth usage and the number of points of interest up-
dated. We can also see that, despite this variance, the gains
throughout the updates, are still very high.

S. CONCLUSION

In this paper we presented Idroid, an interest aware Loca-
tion Based Service combined with Augmented Reality. This
system uses the mobile device’s screen to present only the
relevant points of interest in the surroundings of the user.

Idroid achieves high efficiency and guarantees the freshness
of the information by using a consistency model, where dis-
tant objects request less freshness than closer ones. This
consistency model, VFCdroid, selectively schedules the up-
dates based on their importance. Therefore, multiple con-
sistency degrees are applied to different points of interest,
which gives the system the possibility to only send critical
updates. By doing this, Idroid aims to reduce the network
bandwidth on the server, increasing the scalability of the
solution. In the end, Idroid consistency model provides an
efficient support for any Augmented Reality application.

6. REFERENCES
[1] Hollerer, T.H., Feine, S.K.: Mobile augmented reality.
In: Telegeoinformatics: Location-Based Computing
and Services. (2004)
[2] Junglas, I.A., Watson, R.T.: Location-based services.
Commun. ACM 51 (March 2008) 65-69
[3] Bellavista, P., Kupper, A., Helal, S.: Location-based

[10]

[11]

[12]

services: Back to the future. IEEE_M_ PVC 7 (2008)
85-89

Azuma, R.T.: The challenge of making augmented
reality work outdoors. In: In Mixed Reality: Merging
Real and Virtual, Springer-Verlag (1999) 379-390
Papagiannakis, G., Singh, G., Magnenat-Thalmann,
N.: A survey of mobile and wireless technologies for
augmented reality systems. Comput. Animat. Virtual
Worlds 19 (February 2008) 3-22

Beer, W.: Geopointer: approaching tangible
augmentation of the real world. In: Proceedings of the
8th International Conference on Advances in Mobile
Computing and Multimedia. MoMM ’10, New York,
NY, USA, ACM (2010) 221-225

Santos, N., Veiga, L., Ferreira, P.: Vector-field
consistency for ad-hoc gaming. In: Proceedings of the
ACM/IFIP/USENIX 2007 International Conference
on Middleware. Middleware '07, New York, NY, USA,
Springer-Verlag New York, Inc. (2007) 80-100
Adusei, 1., Kyamakya, K., Erbas, F.: Location-based
services: advances and challenges. In: Electrical and
Computer Engineering, 2004. Canadian Conference
on. Volume 1. (may 2004) 1 — 7 Vol.1

Feiner, S., MaclIntyre, B., Héllerer, T., Webster, A.: A
touring machine: Prototyping 3d mobile augmented
reality systems for exploring the urban environment.
Personal Technologies 1 (1997) 208-217
10.1007/BF01682023.

Takacs, G., Chandrasekhar, V., Gelfand, N., Xiong,
Y., Chen, W.C., Bismpigiannis, T., Grzeszczuk, R.,
Pulli, K., Girod, B.: Outdoors augmented reality on
mobile phone using loxel-based visual feature
organization. In: Proceedings of the 1st ACM
international conference on Multimedia information
retrieval. MIR 08, New York, NY, USA, ACM (2008)
427-434

Kahéri, M., Murphy, D.: Mara - sensor based
augmented reality system for mobile imaging. In:
Proceedings of the Fifth IEEE and ACM International
Symposium on Mixed and Augmented Reality
(ISMARO06). (October 2006)

Arusoaie, A., Cristei, A., Chircu, C., Livadariu, M.,
Manea, V., Iftene, A.: Augmented reality. In:
Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2010 12th International
Symposium on. (sept. 2010) 502 —509

