
SDD4 Streaming

Tiago Mourão Lopes
tiago.mourao@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa

Abstract. With the amount of information nowadays that needs to be processed
at a certain time, we need to have resilient systems that are highly scalable and
with high throughput. To solve this, stream processing engines were developed.
They allow for high throughput in real-time data processing and allow for scaling
of operations according to the size of the inputs.
But even with these systems, there can be bottleneck issues where the system isn’t
able to automatically scale in/out in an elastic way as for example the cloud does,
where when we don’t have enough power for the amount of work and it creates new
machines to handle this requirement.
This work SSD4 Streaming tries to solve this by creating an enhanced data struc-
ture that besides holding input and intermediate result data, also holds metrics
about the current jobs and machines in the cluster. With these enhanced datasets
we can make decisions according to the situation and for example, when a bottle-
neck is detected, tasks can be instructed to split (to engage more resources for a
specific operator) or to merge (when the bottleneck situation has ended) to adapt
dynamically to workload variations.

Table of Contents

1 Introduction . 1
1.1 Challenges/Shortcomings of SPEs . 1
1.2 Roadmap . 2

2 Goals . 2
3 Related Work . 2

3.1 Stream Processing . 2
3.2 Stream Processing Technologies . 7

3.2.1 Apache Spark . 7
3.2.2 Apache Spark Streaming . 8
3.2.3 Apache Flink . 9
3.2.4 Google MillWheel . 10
3.2.5 Amazon Kinesis Streams . 10
3.2.6 Apache Storm . 11
3.2.7 Apache Heron . 12

3.3 Relevant Research Work . 12
3.3.1 Resource Management . 13
3.3.2 Input and Processing Management . 14

3.4 Analysis and Discussion . 16
4 Solution Proposition . 16

4.1 Architecture . 16
4.1.1 Model . 17
4.1.2 Resource Management . 18
4.1.3 Data Structure . 19

4.2 Integration with Apache Flink . 19
4.2.1 Metric Handler . 19
4.2.2 Programming model . 20

5 Evaluation Methodology . 21
5.1 System Metrics . 21
5.2 Workload/DataSet . 22

6 Conclusion . 22
7 Timeline . 23

SDD4 1

1 Introduction

The increasing amount of devices connected with each other, created a big demand for
systems that can cope with the high volume of that needs to be processed and analysed
according to a certain criteria. Great examples of this are Smart Cities, operational mon-
itoring of large infrastructure, and Internet of Things (IoT). Since most of this data is
most valuable closest to the time it was generated, we need a system that can, in real
time, process and analyse all of the data as quickly as possible and for this to happen the
technology Stream Processing was created.

In the Figure 1 we can see a generic representation of how stream processing works from
the beginning to the end, from receiving inputs till the generation of outputs from their
processing. So stream processing can be characterized by a continuous flow of inputs that
can come from various places (e.g. applications, sensors, etc) which will be then processed
by an application. This processing operation can involve multiple factors and operators
depending on what the user wants to do with the data being handled with. After the
data is processed and analyzed it will be outputted to some destination that the user has
specified (e.g. data base, server, API, etc).

Fig. 1. Generic representation of Stream Processing

1.1 Challenges/Shortcomings of SPEs

Even though stream processing engines come to solve a lot of problems when trying to
process large amounts of data, there are still significant challenges that need to be dealt
with and solved [1]. To show how old these issues are, we have the system Borealis [2]
which was designed in 2005 and one of its focus was scalability and flexibility which are
still important nowadays. Among the more relevant to our work, there are:

- Scalability: Ever since stream processing engines were created, we have had the
issue of scalability. During the years, the stream processing engines have been getting new
functionalities for handling scalibility. We can nowadays for example have different levels
of parallelization of an operator which can be changed dynamically during the runtime.

- Bottleneck issues: When having a big influx of inputs and not enough processing
power to handle it or the operators are not the most efficient for the workload, the system
will suffer a bottleneck which will have an increase in latency and time taken to finish the

2 Tiago Lopes

processing of the data. We can have bottlenecks in latency and/or throughput. Both are
usually due to missing or inefficient scalability and/or resource management components.

- Resource Management: Stream Processing Engines are executed in physical/vir-
tual machines and like so, its resources need to be managed. To some degree, they are
managed by a component of the engine with that specific responsibility. But this is usu-
ally static and just allocates resources enough to execute the user application. So in case,
we need more resources since there are more data to process it will do nothing, and per-
formance will decrease. In the Borealis system talked earlier, they had a mechanism that
allowed for dynamic resource management [3] where the system can scale up and deal
with increasing load or time-varying load spikes, with the addition of new computational
resources (this is also related with scalability).

- Flexibility: Most of the systems due to its possible complexity, only allow for the
static declaration of job graphs (directed graphs describing the high-level logic of a stream
processing program). In case the user wants to change some operator since it is not opti-
mized in the way it was configured, for example, it will not be possible to change which
in turn reduces performance in the system.

1.2 Roadmap

The rest of the document is organized in the following way: Section 2 describes the main
goals of our work. In Section 3, we present an analysis to the related work. Section 4
presents a solution architecture and the main protocols proposed. In Section 5, we describe
how evaluate our solution in terms of system metrics, and what workloads will be used
to exercise it. Lastly, Section 6 concludes the document and wraps up with the important
marks.

2 Goals

Our main goal is to contribute to the development of an extension for a Stream Processing
Engine that allows for more context-aware resource management and load balancing. With
this, we can process a large number of inputs efficiently and quickly. The individual work
goals are:

- Investigate the state of the art and previous researches in SPEs, scalability, elasticity
and bottleneck fixes;

- Study how Flink and Spark work, what metrics can be obtained from those systems
and how they are obtained;

- Resulting from the previous study, design and create an architecture using middleware
and an extended data structure;

- Experimental evaluation of the work to assess how it affects the scalability of the
system and how it efficiently addresses bottleneck issues.

3 Related Work

In this section, we present the fundamental and state of art, academical, and commercial,
work in the development of Stream Processing in general in Section 3.1, Stream Processing
Technologies in Section 3.2 and System Usage Fairness in Section 3.3.

3.1 Stream Processing

Stream Processing can be decomposed in various dimensions/aspects, taking into account
they are parallel and distributed data processing systems, that need to be addressed to
create a functional system with a good quality of service. These dimensions are shown

SDD4 3

Fig. 2. Stream Processing dimensions

in Figure 2. We have Distributed Architecture, Programming Model Scheduling,
Monitorability, Scalability Real-Time Processing, Fault Tolerance.

Distributed Architecture: A stream processing engine is a type of system that often
needs to be distributed among multiple machines/processes, hence, it should have an ar-
chitecture that enables this [4]. These systems usually allow for the creation of jobs specific
to a certain application that wants to use the services the system provides. To carry out
actions according to the requisites of an application, the system uses a distributed archi-
tecture to distribute work over various machines and coordinate the data (input/output)
as shown in Figure 3.

Fig. 3. Generic Distributed Architecture

Thus, such a system can be depicted as a Master node that communicates with N
Worker nodes which the amount can vary which is handled by scalability mechanisms
(explained in its respective dimension).

The Master node is the entry point of input data into the application, which from
here it will be sent into one or more worker nodes. So it will in a generic way act as a
load-balancer for the worker nodes.

The Worker node is where the application data processing is done with the input
received from the master. Usually, these nodes have a queue of data which is picked up
by the N processes it has running for this purpose. Again this amount can change due to
scalability reasons.

4 Tiago Lopes

An example of a Distributed Architecture [5] that at the application layer uses the
Spark Streaming framework is one for IoT Smart Grids Monitoring that needs to handle
a great volume of data which cannot be handled a centralized system.

In a distributed environment, coordinating and managing a service has become a diffi-
cult process. To facilitate this, numerous technologies have been using Apache ZooKeeper.

Apache ZooKeeper [6] is used for maintaining centralized configuration information,
naming, providing distributed synchronization, and providing group services in a simple
interface so that developers don’t have to write it from scratch. Apache Kafka also uses
ZooKeeper to manage configuration. ZooKeeper allows developers to focus on the core ap-
plication logic, and it implements various protocols on the cluster so that the applications
need not implement them on their own.

Programming Model: All stream processing engines need a way for the user to
create an application that uses said engine and how to interact with its components. For
this, usually, the system will have libraries available in some programming languages (e.g.
Java or Python) that a programmer can use for their intended purposes.

Such a library allows access to a multitude of functionalities that the programmer can
do as for example create a Directed Acyclic Graph (DAG) or just a simple pipeline through
the use of the operators available (e.g. map, reduce, filter, etc) which is dependent on the
system/engine. One important part of the programming model is to abstract components
[7] to hide complexity from the programmer since he should focus on the application part
only and not what supports it (that should be provided by the framework).

Besides creating pipelines, the programming model usually allows the programmer to
customize the temporal window he wants to use. Windows are at the heart of processing
infinite streams. Windows split the stream into “buckets” of finite size, over which we can
apply computations. In Figure 4 we are able to see what a sliding window is and how it
can be represented.

Fig. 4. Sliding Window Example (https://prateekvjoshi.com/2015/12/29/performing-windowed-
computations-on-streaming-data-using-spark-in-python/)

There are multiple types of windows [8], and the most employed ones are Tumbling
Window, Hopping Window, Sliding Window, and Session Window.

– Tumbling Window: A tumbling window has a fixed length. The next window is placed
right after the end of the previous one on the time axis. Tumbling windows do not
overlap and span the whole time domain, i.e. each event is assigned to exactly one
window.

SDD4 5

– Hopping Window: Like tumbling windows, hopping windows also have a fixed length.
However they introduce a second configuration parameter: The hop size h. Instead of
moving the window of length s forward in time by s we move it by h. This means that
tumbling windows are a special case of hopping windows where s = h. If s > h windows
are overlapping and if s < h some events might not be assigned to any window.

– Sliding Window: A sliding window, opposed to a tumbling window, slides over the
stream of data. Because of this, a sliding window can be overlapping and it gives a
smoother aggregation over the incoming stream of data - since you are not jumping
from one set of input to the next, rather you are sliding over the incoming stream of
data.

– Session Window: In contrast to the previous window functions session windows have
a variable length. When using a session window function you need to specify a time
threshold between consecutive events that must not be exceeded. The window will
keep expanding as long as new events are coming in that are close enough in time.

Scheduling: When dealing with a system that processes a great amount of data, we
need a way to manage and maintain that data going through in the least amount of time
and in the most efficient way possible. This is usually done through scheduling which means
controlling and making a workload the most efficient it can be. A workload, specifically for
scheduling, usually is composed of tasks that represent a unit of work and a task manager
which is responsible for all the tasks assigned to it.

For scheduling, we want to maintain a good load balance between the system resources
because we don’t want a machine overloaded, neither one with no inputs to process. To
achieve this we need to have a good scheduling strategy.

The strategy defines how the tasks/work should be divided based on information gath-
ered from previous jobs and on a set of rules pre-established. To give an example of a
strategy, we have Round-Robin, one of the most commonly used strategies, where tasks
are assigned to each process in equal portions and in circular order, handling all processes
without priority.

While Round-Robin is a simple strategy, we can use more complex ones that take into
account the network, for example, [9] which makes the scheduling more intelligent and in
turn better and less prone to cause issues in the system. Another example would be having
an adaptative control of stream processing [10] in order to not waste resources when in an
extreme-scale scenario.

Monitorability: Whenever we want a system to have a good quality of service with
a certain level of availability, we need a way to monitor said system so we can then act
upon it when an issue occurs.

There are various ways and levels of monitorability that can be applied to infrastruc-
ture. An easy division can be, for example, network and system monitoring. Each has its
functions, advantages, and disadvantages and the user needs to use them accordingly to
his needs.

A simple monitoring process that can be done through the network could be, pinging
all the machines in the system from time to time to check what the latency is in the
requests and if there is any machine that is not responding.

For more advanced monitoring, we need to start combining both types of monitoring
and system monitoring is the most important one for Stream Processing. By monitoring a
system we can know, usually in real-time, what is going on in a specific machine in terms
of software and hardware. This is useful since through the network we can only know the
latency in general but through the system itself, we can learn what is causing such latency
and so act upon it.

6 Tiago Lopes

The most common way to access logs and information about a system in execution and
the one numerous technologies use is through a REST API. For example Apache Flink
has an API to fetch metrics from the system 1.

This API has numerous categories of data from the system as for example the general
health of the system, such as if any machine went down and for how long. You can also
check the progress of current jobs and how many resources are being used by the machines
(e.g. CPU).

There are also solutions external to the stream processing engine specific to monitoring
said engine. For example Sematext 2 is a solution for Full Stack Infrastructure Monitoring
and Management. It can be integrated on Apache Spark for example and by using its
tools, we are able to monitor the system.

Scalability: For a system that is constantly dealing with data and with clients that
are expecting a certain Quality of Service (QoS) 3 from this system, we need to have a
degree of scalability to be prepared for any type of situation that might happen.

So scalability is the property that a system has, to be elastic [11] (ability to change
itself) to accommodate the requirements it has and in the ever-changing amount of work
it receives. This involves the change in the number of resources available and includes
either growing whenever there is more work than resources available or shrinking when
the amount of work decreases over time and we have more resources than the ones needed.

As an example, we can imagine an API where internally it has a load-balancer that
redirects the requests to the worker machines which will then process the said request.
This system supports 1000 req/s at a certain point in time and so with this, we have
three situations that can happen. Either we are receiving fewer requests than our limit we
can support and so wasting resources (e.g. paying unnecessary money, etc), have exactly
the amount we support and this would be the perfect world for the system but it’s not a
real scenario that we should take into account as when it happens its usually for a really
small amount of time. The third case is when the number of requests exceeds the limit of
what the system supports and so a bottleneck shall occur and the QoS will decrease while
latency increases.

To give example of systems, Aurora [12] and Medusa [13] are stream processing engines
that try to be scalable but still have some issues which the article Scalable Distributed
Stream Processing [14] explains what the issues are and how they could be solved.

Real-Time Processing: Due to the type of inputs that normally these systems receive
(e.g. sensors, IoT [15]), they need to be processed and analyzed as fast as possible to get
the most value out of them [16]. For example, sensors that check for traffic in a street, if
the data gotten from them isn’t processed as close as possible from the time they were
generated we may be acting on an invalid state that had already happened in the past.
One case of this would be checking the data from the sensors from a few seconds ago and
what is currently happening is different and so the action will no according to reality.

So we need to be always processing as soon as any type of input is received and the
systems need to be prepared for it. This not only involves the machines that will do the
processing which needs to have the needed resources for the job, but also the databases
which will need to store all the information being received and processed.

Fault-Tolerance: The most essential part of a streaming engine is processing/analysis
of data, so data loss is something we don’t want to happen depending on the type of data
we are dealing with. For financial services, for example, we do not want to lose data
since it is precious. But in most cases, it’s preferable to discard data instead of delaying

1 https://ci.apache.org/projects/flink/flink-docs-release-1.9/monitoring/rest api.html
2 https://sematext.com/spm/
3 https://www.networkcomputing.com/networking/basics-qos

SDD4 7

computation. To overcome these issues, we need to have a fault-tolerant system [17] and
mechanisms that make it possible.

Data losses can happen due to numerous reasons, as for example a machine that has
information stored and was in the middle of a workload and crashes. For this case, first
of all, we need the system being monitored and so when the machine crashes, the said
system can identify it and apply its mechanism to recover from it.

For recovery from a fault, there are numerous mechanisms to do so. Some of the most
famous ones are snapshots [18] and resilient data structures [19].

For snapshots, we can store a certain state of a part of the system’s state (e.g. a certain
machine doing a part of a processing job) at a certain point in time which can, later on,
be used to restore the system to a consistent state. This, for example, is used to quite
a degree in operating systems, where the users can save the current information in their
system as to recover sometime in the future in case something goes wrong in the system.

For the other, the resilient data structures, we can maintain at all times the current
state and record all the previous operations done in a machine that is doing processing
work. For example, we can have an immutable data structure which for every operation
made a log of it is created. Through the execution time of the system we start getting a
history of logs which in case of a failure/fault, we can use this history to recover the state.

3.2 Stream Processing Technologies

There are numerous technologies nowadays that can process a great amount of data in
real-time. They all excel in one way or another so each does something better than the
other so they are specific to each situation/business. Even though the technologies that
will be explained next, some have different nomenclatures for their components, at a high
level they all mean the same but with different names. For example, Master and Worker
nodes may be called by different names depending on the system.

3.2.1 Apache Spark

Apache Spark 4 [20] is a cluster computing solution that extends the MapReduce model
to support other types of computations such as interactive queries and stream processing.
Designed to cover a variety of work-loads, Spark introduces an abstraction called Resilient
Distributed Datasets (RDDs) that enables running computations from inputs in memory.
RDDs are immutable and partitioned collections of records, and provide a programming
interface for performing operations, such as map, filter and join, over multiple data items.

For fault-tolerance purposes, RDD tracks the graph of transformations that were used
to build it and reruns these operations on base data to reconstruct any lost partitions.

Spark Transformation is a function that produces new RDD from the existing RDDs.
It takes RDD as input and produces one or more RDD as output. Each time it creates a
new RDD when we apply any transformation. Applying transformation builds a lineage,
including the entire parent RDDs of the final RDD(s). RDD lineage, also known as RDD
operator graph or RDD dependency graph. It is a logical execution plan i.e., it is a Directed
Acyclic Graph of the entire parent RDDs of the final RDD.

The basic fault-tolerant semantics of Spark are:

– Since Apache Spark RDD is an immutable dataset, each Spark RDD remembers the
lineage of the deterministic operation that was used on fault-tolerant input datasets
to create it.

– If due to a worker node failure any partition of an RDD is lost, then that partition can
be re-computed from the original fault-tolerant dataset using the lineage of operations.

4 https://spark.apache.org/

8 Tiago Lopes

– Assuming that all of the RDD transformations are deterministic, the data in the final
transformed RDD will always be the same irrespective of failures in the Spark cluster.

But this system brings an issue which is the inability to ingest live streams of data.
For this, it has a component named Spark Streaming which will be explained in the next
subsection.

Fig. 5. Apache Spark architecture (https://www.edureka.co/blog/spark-architecture/)

3.2.2 Apache Spark Streaming

Apache Spark 5 is composed of multiple components, from which the user can use in
any type of combination he wants depending on his needs. The most important one from
the list is Spark Streaming. This component works as an extension of the Spark Core
functionalities and makes it so we can have live streaming of data across the system with
its new added functionalities.

Spark Streaming offers scalable, fault-tolerant and high-throughput processing of live
data streams from numerous types of sources. To be able to ingest live data streams, it
has a Discretized Stream abstraction named ”DStream” which represents a stream of
data divided into small batches and is built on top of Spark RDDs, which are Spark’s core
data abstraction.

Dividing the data into small micro-batches allows for the fine-grained allocation of
computations to resources, which in turn allows for a dynamic load-balancing. Let us
consider a simple workload where partitioning of the input data stream needs to be done
by a key and processed. In the traditional record-at-a-time approach, if one of the partitions
is more computationally intensive than others, the node to which that partition is assigned
will become a bottleneck and slow down the pipeline. The job’s tasks will be naturally
load-balanced across the workers where some workers will process a few longer tasks while
others will process more of the shorter tasks in Spark Streaming.

Traditional systems have to restart the failed operator on another node to recompute
the lost information in case of node failure. Only one node is handling the recomputation
due to which the pipeline cannot proceed until the new node has caught up after the

5 https://spark.apache.org/streaming/

SDD4 9

replay. In Spark, the computation discretizes into small tasks that can run anywhere
without affecting correctness. So failed tasks we can distribute evenly on all the other
nodes in the cluster to perform the recomputations and recover from the failure faster
than the traditional approach.

3.2.3 Apache Flink

Apache Flink 6 [21] offers a common runtime for data streaming and batch processing ap-
plications. Applications are structured as arbitrary DAGs, where special cycles are enabled
via iteration constructs. Flink works with the notion of streams onto which transforma-
tions are performed. A stream is an intermediate result, whereas a transformation is an
operation that takes one or more streams as input, and computes one or multiple streams.
During execution, a Flink application is mapped to a streaming workflow that starts with
one or more sources, comprises transformation operators, and ends with one or multiple
sinks. Although there is often a mapping of one transformation to one dataflow operator,
under certain cases, a transformation can result in multiple operators. Flink also provides
APIs for iterative graph processing, such as Gelly.

The parallelism of Flink applications is determined by the degree of parallelism of
streams and individual operators. Streams can be divided into stream partitions whereas
operators are split into sub-tasks. Operator sub-tasks are executed independently from
one another in different threads that may be allocated to different containers or machines.

Apache Flink offers a fault tolerance mechanism to consistently recover the state of
data streaming applications. The mechanism ensures that even in the presence of failures,
the program’s state will eventually reflect every record from the data stream exactly
once. Note that there is a switch to downgrade the guarantees to at least once (described
below). The fault tolerance mechanism continuously draws snapshots of the distributed
streaming data flow. For streaming applications with a state that has little information,
these snapshots are very light-weight and can be drawn frequently without much impact
on performance.

The state of the streaming applications is stored at a configurable place (such as the
master node, or HDFS). In case of a program failure, Flink stops the distributed streaming
dataflow. The system then restarts the operators and resets them to the latest successful
checkpoint. The input streams are reset to the point of the state snapshot. Any records
that are processed as part of the restarted parallel dataflow are guaranteed to not have
been part of the previously checkpointed state.

Fig. 6. Apache Flink architecture (https://flink.apache.org/)

6 https://flink.apache.org/

10 Tiago Lopes

3.2.4 Google MillWheel

Google MillWheel [22] is a stream processing system built at Google that models compu-
tation as a dynamic directed graph of computations. MillWheel allows user’s to write arbi-
trary code as part of an operation yet still transparently enforces idempotency and exactly-
once message delivery. MillWheel uses frequent checkpointing and upstream backup for
recovery.

Data in MillWheel is represented by (key, value, timestamp) triples. Values and times-
tamps are both arbitrary. Keys are extracted from records by user provided key extraction
functions. Computations operate on inputs and the computations for a single key are seri-
alized; that is, no two computations on the same key will every happen at the same time.
Moreover, each key is associated with some persistent state that a computation has access
to when operating on the key.

MillWheel also supports low watermarks. If a computation has a low watermark of t,
then it’s guaranteed to have processed all records no later than t. Low watermarks use the
logical timestamps in records as opposed to arrival time in systems like Spark Streaming.
Low watermark guarantees are not actually guarantees; they are approximations. Injec-
tors inject data into MillWheel and can still violate low watermarks semantics. When a
watermark violating record enters the system, computations can choose to ignore it or try
to correct it. Moreover, the MillWheel API allows users to register for code, known as
timers, to execute at a certain wall clock or low watermark time.

3.2.5 Amazon Kinesis Streams

You can use Amazon Kinesis Data Streams 7 to collect and process large streams of data
records in real time. You can create data-processing applications, known as Kinesis Data
Streams applications. A typical Kinesis Data Streams application reads data from a data
stream as data records. These applications can use the Kinesis Client Library, and they
can run on Amazon EC2 instances. You can send the processed records to dashboards, use
them to generate alerts, dynamically change pricing and advertising strategies, or send
data to a variety of other AWS services.

Fig. 7. Amazon Kinesis architecture (https://docs.aws.amazon.com/streams/latest/dev/key-
concepts.html)

7 https://aws.amazon.com/kinesis/data-streams/

SDD4 11

As shown in Figure 7, the system is based on producers that continually push data to
Kinesis Data Streams, Kinesis Data Streams which is a set of shards, and the consumers
process the data in real-time.

The important part here is the Kinesis Streams and how they work. They are composed
of a set of shards. A shard is a uniquely identified sequence of data records in a stream. A
stream is composed of one or more shards, each of which provides a fixed unit of capacity.
The data capacity of your stream is a function of the number of shards that you specify
for the stream. The total capacity of the stream is the sum of the capacities of its shards.

Each data record has a sequence number that is unique per partition-key within its
shard. Kinesis Data Streams assigns the sequence number after you write to the stream
using the client library provided. Through the Kinesis Client Library, someone can create
an application using the supported languages and easily set up a simple streaming oper-
ation. This library is compiled into the application to enable fault-tolerant consumption
of data from the stream. The Kinesis Client Library ensures that for every shard a record
processor is running and processing that shard. The library also simplifies reading data
from the stream. The Kinesis Client Library uses an Amazon DynamoDB table to store
control data. It creates one table per application that is processing data.

3.2.6 Apache Storm

Apache Storm 8 [23] is a distributed real-time computation system for processing large
volumes of high-velocity data. Storm is extremely fast, with the ability to process over a
million records per second per node on a cluster of modest size. Enterprises harness this
speed and combine it with other data access applications in Hadoop to prevent undesirable
events or to optimize positive outcomes.

Apache Storm has two types of nodes, Nimbus (master node) and Supervisor (worker
node). Nimbus is the central component of Apache Storm. The main job of Nimbus is to
run the Storm topology. Nimbus analyzes the topology and gathers the task to be executed.
Then, it will distribute the task to an available supervisor. A supervisor will have one or
more worker processes. The supervisor will delegate tasks to worker processes. The worker
process will spawn as many executors as needed which will have the job of executing
the task. Apache Storm uses an internal distributed messaging system for communication
between nimbus and supervisors.

Since Storm cannot manage its cluster state, it depends on Apache ZooKeeper for this
purpose. ZooKeeper facilitates communication between Nimbus and Supervisors with the
help of message acknowledgments, processing status, etc.

The basic primitives Storm provides for doing stream transformations are ”spouts”
and ”bolts”. Spouts and bolts have interfaces that you implement to run your application-
specific logic.

As in Figure 8, the architecture of Apache Storm can be compared to a network of roads
connecting a set of checkpoints. Traffic begins at a certain checkpoint (called a spout) and
passes through other checkpoints (called bolts). The traffic is, of course, the stream of
data that is retrieved by the spout (from a data source, e.g. a public API) and routed to
various bolts where the data is filtered, sanitized, aggregated, analyzed, and sent usually
to a dashboard where people can use.

Storm is based on the ‘fail fast, auto restart’ approach that allows it to restart the
process once a node fails without disturbing the entire operation. This feature makes
Storm a fault-tolerant engine. It guarantees that each tuple will be processed ‘at least
once or exactly once’, even if any of the nodes fail or a message is lost. Also, this is only
possible because the nodes are stateless since all state is kept in Zookeeper or on disk.

8 https://storm.apache.org/

12 Tiago Lopes

Fig. 8. Apache Storm architecture

3.2.7 Apache Heron

While maintaining API compatibility with Apache Storm, Apache Heron 9 [24] was built
with a range of architectural improvements and mechanisms to achieve better efficiency
and to address several of Storm issues highlighted in previous work. Heron topologies are
process-based with each process running in isolation, which eases debugging, profiling, and
troubleshooting. By using its built-in backpressure mechanisms, topologies can self-adjust
when certain components lag.

Similarly to Storm, Heron topologies are directed graphs whose vertices are either
Spouts or Bolts and edges represent streams of tuples. The data model consists of a logical
plan, which is the description of the topology itself and is analogous to a database query;
and the physical plan that maps the actual execution logic of topology to the physical
infrastructure, including the machines that run each spout or bolt.

Even though Heron shares so many similar things with Storm since both came from
the same company (Twitter and then passed onto Apache), Heron belongs to a newer
generation and comes to fix some issues the older one had.

Resource isolation: Heron uses process-based isolation both between topologies and
between containers within topologies, which is more reliable and easier to monitor and
debug than Storm’s model, which involves shared communication threads in the same
JVM.

Resource efficiency: Storm requires scheduler resources to be provisioned upfront,
which can lead to over-provisioning. Heron avoids this problem by using cluster resources
on demand.

Throughput: For a variety of architectural reasons, Heron has consistently been shown
to provide much higher throughput and much lower latency than Storm.

3.3 Relevant Research Work

In this subsection, two papers that come with solutions for performance and scalability
issues on top of other pre-existing base stream processing systems.

9 https://apache.github.io/incubator-heron/

SDD4 13

In a higher level they include the management of resources but in a static manner
where it won’t change the system in runtime as well as managing the inputs and outputs
in a way that they are able to know if there is a need to process something that doesn’t
differ much from the previous results.

3.3.1 Resource Management

When developing a stream processing application/job, the programmer will define a Di-
rected Acyclic Graph (DAG) with all the operations that will be done upon the inputs
received. The right choice for this topology can make a system go from very performant
with high throughput, to very slow with high latency and bottlenecks.

So the paper proposes SpinStreams [25], a static optimization tool able to leverage cost
models that programmers can use to detect and understand the inefficiencies of an initial
application design. SpinStreams suggests optimizations for restructuring applications by
generating code to be run on a stream processing system. For testing purposes, the author
used an Streaming Processing System (SPS) called Akka [26].

There are two basic types of restructuring and optimization strategies applied to
streaming topologies:

– Operator fission: Pipelining is the simplest form of parallelism. It consists of a chain
(or pipeline) of operators. In a pipeline, every distinct operator processes, in parallel,
a distinct item; when an operator completes a computation of an item, the result is
passed ahead to the following operator. By construction, the throughput of a pipeline
equals to the throughput of its slowest operator that represents the bottleneck. A
technique to eliminate bottlenecks is to apply the so-called pipelined fission, i.e. to
create as many replicas of the operator as needed to match the throughput of faster
operators (possibly adopting proper approaches for item scheduling and collection, to
preserve the sequential ordering)

– Operator fusion: A streaming application could be characterized by a topology
aimed at expressing as much parallelism as possible. In principle, this strategy max-
imizes the chances for its execution in parallel, however, sometimes it can lead to a
misuse of operators. In fact, on the one hand, the operator processing logic can be
very fine-grained, i.e. much faster than the frequency at which new items arrive for
processing. On the other hand, an operator can spend a significant portion of time
in trying to dispatch output items to downstream operators, which may be too slow
and could not temporarily accept further items (their input buffers are full). This phe-
nomenon is called backpressure and recursively propagates to upstream operators up
to the sources

The SpinStreams workflow is summarized in Figure 9. The first step is to start the GUI
by providing as input the application topology. It is expected that the user knows some
profiling measures, like the processing time spent on average by the operators to consume
input items, the probabilities associated with the edges of the topology, and the operator
selectivity parameters. This information can be obtained by executing the application as
is for a sufficient amount of time, so that metrics stabilize, and by instrumenting the code
to collect profiling measures.

14 Tiago Lopes

Fig. 9. Spin Streams Workflow (from [25])

The main inputs to SpinStreams are:

– the structure of the topology and the profiling measurements expressed in an XML
file. The syntax provides tags to specify the operators, with attributes for their name,
the service rate (specifying the time unit), the pathname of the class file, the type
(stateless, stateful, partitioned-stateful with the number of keys and the file with their
probability distributions). Other tags specify the output edges and their probability,
and the input/output selectivity;

– along with the XML file, the user provides, for each operator, a .class file obtained by
compiling a source code written using a specific API. Such API is provided to allow
the automatic code generation from the abstract representation used in SpinStreams
to the code to be run on the target SPS. For Akka this API is called SS2Akka.

SpinStreams checks if the input topology satisfies the constraints (acyclicity and rooted
graph) before creating a new imported entry that will contain all the versions prototyped
for the topology. After, the user can request SpinStreams to introduce some specific op-
timizations such as identify and remove bottlenecks and/or try a fusion optimization by
selecting sub-regions of the graph. SpinStreams proposes a set of candidates , ranked by
their utilization factor in order to ease the process of selection of the sub-graph to be
fused. Once chosen, the user starts the fusion optimization that produces a new topology.

3.3.2 Input and Processing Management

A stream processing application usually will be used for a certain type of data (e.g. data
being generated by sensors in a smart city) and not for a range of applications. So with
this, we can create an application that depends on the input it receives and based previous
training (machine learning) it decided whether or not it should process them or just simply
give the last result. For certain applications where the workflow output changes slowly and
without great significance in a short time window, we are wasting resources inefficiently
and making the whole process take a lot longer than it could take while remaining with a
moderately accurate output.

To overcome these inefficiencies, SmartFlux [27] comes with a solution that involves
looking at the input the system receives, train a model using Machine Learning with this
model check and analyze if the input being received needs to be processed all over or
not with a good confidence level. This is done through a middleware framework called
SmartFlux which affects one part of a Stream Processing Engine which is the Workflow
Management System since it wants to intercept the way the workflows are being processed.

In Figure 10 we can see the architecture that was designed for the Smart Flux solution.
The system has two different operating modes: i) training mode; and ii) execution

mode. In the training mode, a workflow is executed synchronously and its collected met-
rics about the input impact and output deviation for each processing step that tolerates

SDD4 15

Fig. 10. SmartFlux Middleware Architecture (from [27])

error. After a predetermined number of waves, a classification model is built with the
previously collected data. The training mode is represented by the white curved arrows:
the Monitoring component, that gets data from the adaptation components, feeds the
Knowledge Base with statistical information about the data updated in the data store;
then, the Predictor component builds a classification model based on the data sets with
the metrics contained in the Knowledge Base (input impact, error).

The execution mode is represented by the dark curved arrows: the Monitoring com-
ponent collects statistical information from data store R/W requests, and sends to the
Quality of Data (QoD) Engine computed input impact metrics at each wave of data; af-
ter, the QoD Engine queries the Predictor with input impact data and gets in return the
configuration of processing steps that should be executed.

Smart Flux has a learning process in order to bound the output error, arising from
the delayed execution of processing steps, and to provide guarantees about the maximum
deviation of workflow outputs. Specifically, it makes use of Machine Learning classification
techniques to predict how input data affects the output of processing steps. This based on
predictions that are naturally not perfect, and therefore called probabilistic guarantees;
i.e., the capability to ensure that error bounds are respected within a confidence interval.

The solution has three possible execution phases:

– Training Phase: Unless a training set is given beforehand, a training phase starts
taking place when the workflow is executed for the first time. During this phase,
all processing steps of the workflow are executed synchronously (without any QoD
enforcement). The duration of this phase is configured by users with a specified number
of waves.

– Test Phase: Assess the quality of the trained model measuring: (i) accuracy, the
proportion of instances correctly classified; (ii) precision, the number of classified in-
stances that are truly of a class divided by the total number of instances classified as

16 Tiago Lopes

belonging to that class; and (iii) recall, the number of instances classified as a given
class divided by the number of instances that are truly of that class.

– Application Phase: After a sufficiently accurate model is built, the application phase
takes place and the workflow starts running asynchronously in an adaptive way. At
each wave, the input impact ι is calculated for each step and fed to the classifier, which
in return indicates which steps should be executed.

3.4 Analysis and Discussion

In this section, we will address the decisions made when selecting what technology to use
for the solution.

All the technologies explained previously, have the basic functionalities typically re-
quired in a stream processing engine but our solution requires additional features. And
since we need to choose one, it needs to be one that fulfills the requisites.

First, the technology needs to be fully available to the public, and not something private
to a specific company. For example, Google Milwheel is something that was created by
Google for Google and so only they have access/use to the system.

Second, the technology must be able to execute in various types of infrastructures and
not be restricted mostly to one or two. For example, Amazon Kinesis Streams is mostly
supposed to be used in the AWS infrastructure with their technologies.

Third, we must be able to extract metrics from the system at any point in time about
the performance and the status of the resources in use by the system. For example, such
metrics may include CPU load, memory usage, resource management, etc.

And finally, we must be able to modify the system at runtime, through some mechanism
that said system provides to us. This may be, by a REST API for example or through an
interface in the programming model.

Besides these criteria, we want to extend the use of a system that is widely used
nowadays and that has a good community backing it. For these reasons, Apache Flink was
chosen. This system is also one of the best performant one in the list [28]

4 Solution Proposition

In this Section, we present the architecture of SDD4 Streaming, an extension to Flink
embodied as a library that enables dynamic improvements to an Apache Flink application.
This library is based on extracting metrics, specific information about a system and,
through that makes decisions and acts upon Flink according to a set of pre-defined rules.

4.1 Architecture

Before explaining in detail each component of our solution, we will go through a simple
data flow from the input coming from a data source to the output going into a data sink.
This flow is shown in Figure 11.

Most of the data flow will remain the same as in a normal Flink application. The
data will be received by the system, processed with the operators declared by the client
application and then collected as output and sent into a data sink where they will be
stored for later use.

Because of the nature of stream processing where the volume of input is ever-changing,
the system needs to be prepared for the situation where there is more data than the current
resources can handle. This will eventually lead to a degradation of performance.

Our solution comes to solve some of these issues by acting behind the scenes in the
system and making changes wherever needed, to make the system run the smoothest
possible at any time. Our actions are constrained by a set of rules that represent the

SDD4 17

Fig. 11. Data Flow Diagram

Service Level Agreement (SLA) which is defined by the user based on the options we
provide.

We can divide our solution into the three following components which will be explained
further ahead:

– Metric Handler: This component handles all metric related information, from fetch-
ing it from Flink to storing it in our data structure for later use;

– Resource Manager: This component is responsible for making decisions based on
the state of system through the use of the stored metrics;

– Action Component: This component is responsible for acting upon the system when
necessary.

The Metric Handler will be explained in Section 4.2 where we talk about the integration
with Flink. The Resource Manager is explained in section 4.1.2 where we talk about how
we handle resource management as well as how we make decisions based on the system
state. The Action Component is a mix between Sections 4.1.2 and 4.2 since we make
actions upon Flink based on the analysis made by us.

4.1.1 Model

Before we can explain in more detail our components, we will go through the software
interface and how the user interacts with our solution.

SDD4 is available as a JAVA library and like so, can be imported like any other library
and start using it right away. Before we can do anything, the user needs to initialize our
library with information specific to their system.

For the initialization, we require the user to give us the information on how we can
make queries to the Flink Cluster (e.g. to fetch metrics) and the SLA they have defined.

The SLA is composed of goals that the user wants to be achieved during the runtime
of a job:

– Latency: What is the maximum amount of latency allowed in the system;
– Resource Usage: What is the maximum resource usage allowed in the system;
– Input Coverage: What is the minimum amount of inputs that should be processed.

After initialization, we will start fetching metrics in the background without the need
for explicit user interaction. These metrics will be stored into our data structure so we can
later analyze it to make decisions about resource management.

Besides this, we provide various classes which will be explained later which should be
used by the user for all operators they want us to intervene in. These classes will have our
decision and action components integrated.

18 Tiago Lopes

4.1.2 Resource Management

To avoid performance issues we want the system to make the best of the resources it has
available. So whenever needed, we will be making changes to the system to accommodate
the ever-changing needs for processing the incoming data.

We can affect the system in two different ways. Either by rescaling a current job or by
suppressing inputs for the sake of latency at the cost of result accuracy.

In order to have a good Quality of Service (QoS), we will enforce the rules declared in
the SLA by the user which we got from initialization. We need to maintain a good balance
between all the rules and keep the system running.

In Algorithm 1 we have the pseudo-code responsible for the resource management.

Algorithm 1: Decision Algorithm

Input: taskInfo
Output: shouldProcessInput

1 if !isTaskDegraded(taskInfo) then
2 if shouldDownScaleJob() then
3 downscaleJob()

4 return true

5 if checkAvailableResources() > 0 then
6 upscaleJob()
7 return true

8 if shouldSuppressInput() then
9 return false

10 else
11 return true

To explain a bit how the algorithm works, we from every input we receive, we will
analyze the state of the current task. This will check if everything is in order which
include checking the latency as well as the CPU load in line 1.

With this we are able to make the decision of simply passing the control back to the
user code and processing the output or the need to make an action upon the system first. If
the system is running smoothly, before we pass control to the user code we will check if we
can downscale the job (lines 2-3). If the system is running abnormally we need to change
something but before deciding to do so, we need first check what needs to be changed
exactly.

We have three possible actions at this point depending on the decision made:

– Process Input
– Suppress Input
– Rescale Job and Process Input

If we have enough resources available in the system we are able to simply rescale the
job and then process the input (lines 5-7). This will decrease the total load on the task
and so help reduce performance degradation. But this can only be done in case the system
has the required resources to do so. If not we need to follow a different approach.

Our other approach is simply suppressing the input partially and so not processing it
(lines 8-9). This will decrease the load/latency and help reduce performance degradation.
But this comes with the cost of reducing the accuracy of the output data which is why we
have a rule for it in our SLA, where the user can declare what is the minimum accuracy
(i.e the percentage of input subject to processing/reflected in the output) required at all
times.

Lastly if all of our other approaches are not possible, we will have to pass the control
to the user code and allow him to process the input as normal (lines 8 and 10-11). Even

SDD4 19

though this will make an increase the load in the system, there is nothing more we can do
without breaking our SLA with the user.

4.1.3 Data Structure

To make this all possible we need to have a reliable data structure that can give us a fine
grained vision of the system at any point in time. In Figure 12 we are able to see the data
structures we have which represent every element from the system.

Fig. 12. Data Structure

The Data Structure is all related to each other and we can represent their relation
like this JobManager -> Job -> TaskManager -> Task. With this structure, we can, for
example, get all tasks executing in the system and check which one is having the worst
performance. Then since all data classes are related to each other, we can go to the task’s
parent to get the ID of the job to rescale.

With the data structured this way, we are able to analyze just what we need and filter
data efficiently. For example, we may want to know for a certain TaskManager if there is
any bottleneck by checking if any of its tasks is taking a while to process the inputs.

4.2 Integration with Apache Flink

In this section we explain how we fetch metrics from the Flink system, and what we will
use from their programming model.

4.2.1 Metric Handler

Apache Flink is able to give us a lot of information at multiple levels and scopes. We have
the following system scopes:

– metrics.scope.jm
• Default: < host > .jobmanager
• Applied to all metrics that were scoped to a job manager.

– metrics.scope.jm.job
• Default: < host > .jobmanager. < jobname >
• Applied to all metrics that were scoped to a job manager and job.

– metrics.scope.tm
• Default: < host > .taskmanager. < tmid >
• Applied to all metrics that were scoped to a task manager.

– metrics.scope.tm.job
• Default: < host > .taskmanager. < tmid > . < jobname >

20 Tiago Lopes

• Applied to all metrics that were scoped to a task manager and job.

– metrics.scope.task

• Default: < host > .taskmanager. < tmid > . < jobname > . < taskname > . <
subtaskindex >

• Applied to all metrics that were scoped to a task.

– metrics.scope.operator

• Default: < host > .taskmanager. < tmid > . < jobname > . < operatorname >
. < subtaskindex >

• Applied to all metrics that were scoped to an operator.

Through all these scopes we are able to easily identify to where a certain metric belongs
to and consequently where and what is going wrong in the system. These metrics that
Flink disponibilises goes from the CPU and Memory usage to the Network like the number
of inputs (buffers) waiting to be processed and the amount of output processed.

Flink provides various types of reporters that can be used to send metrics to an external
system/application. For our case, we only care about the Java Management Extensions
(JMX) reporter. This is a Java technology that supplies tools for managing and monitoring
applications, system objects, devices (such as printers) and service-oriented networks.

To use this reporter, the user needs to enable it in the configuration for the application
as shown in Listing 1.1. The metrics will be available through the port defined (if not
defined by the user, the default Flink port will be used).

metrics.reporter.jmx.factory.class:
↪→ org.apache.flink.metrics.jmx.JMXReporterFactory

metrics.reporter.jmx.port: 8789

Listing 1.1. JMX Reporter in Flink

Metrics exposed through JMX are identified by a domain and a list of key-properties,
which together form the object name.

The domain always begins with org.apache.flink followed by a generalized metric iden-
tifier. In contrast to the usual identifier it is not affected by scope-formats, does not
contain any variables and is constant across jobs. An example for such a domain would be
org.apache.flink.job.task.numBytesOut.

The key-property list contains the values for all variables, regardless of configured
scope formats, that are associated with a given metric. An example for such a list would
be host=localhost,job name=MyJob,task name=MyTask.

The domain thus identifies a metric class, while the key-property list identifies one (or
multiple) instances of that metric.

4.2.2 Programming model

Since we want to act as an intermediary between the incoming data and the operators,
we need a way to intercept the processing functions from Flink that the user is using. For
this case we will need the user to change his code a bit and instead of using directly the
types given by Flink, they will use our types.

So SDD4 provides various classes that the user can instantiate and use for processing
data. These classes implement the Flink processing functions 10, which are the ones that
process the inputs gotten from a certain operator.

As an example of an operator in Flink, we have the following listing 1.2 that represents
the use of a Map operator.

10 https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/stream/operators/

SDD4 21

DataStream<Integer> dataStream = //...
dataStream.map(new MapFunction<Integer, Integer>() {

@Override
public Integer map(Integer value) throws Exception {

return 2 * value;
}

});

Listing 1.2. Map operator in Flink without SDD4

In the example above we would have a similar type as MapFunction that would
have our implementation. Our class would receive as an argument the function that the
user would use in that operator so we can call it if accepted by our Resource Manager
component.

In the following listing 1.3 is represented how the new usage of the operator would look
like:

DataStream<Integer> dataStream = //...
dataStream.map(new SDDMapFunction<Integer, Integer>(new MapFunction<Integer,

↪→ Integer>() {
@Override
public Integer map(Integer value) throws Exception {

return 2 * value;
}

}));

Listing 1.3. Map operator in Flink using SDD4

Since we will ”override” all the processing functions, we can optimize if needed for any
type of operator we deem necessary. This is good to have because each operator has a
different impact on the performance since they all do different data operations which are
inherently heavier in performance.

Some examples of processing functions that we will override with the schema Original
− > SDD4 are:

– ReduceFunction − > SDDReduceFunction
– WindowFunction − > SDDWindowFunction
– JoinFunction − > SDDJoinFunction

5 Evaluation Methodology

In this section a proposed evaluation method for validating our solution at a practical
level is presented. In sub-section 5.1 we explain the system metrics, and the workloads, in
Section 5.2, that we intend to use during the evaluation phase of our prototype.

5.1 System Metrics

For metrics, we will have two categories. One will be to check the performance of the
system when using our solution while the other, the overhead our solution gives to the
system.

System Performance:

– Resource Utilization: This metric assesses whether or not the solution is scaling the
system accordingly. The resources used by tasks scale to keep up with the input rate;

– Latency: If the input is taking too long to be processed;

22 Tiago Lopes

– Throughput: How much data is being processed per period of time;
– Accuracy: Observe how the accuracy of the applications varies over time, to assess

fulfillment of quality of service.
– CPU Usage: Check percentage of CPU being used by tasks in the cluster as well as

CPU reserved but not used(assess resource waste and costs).

Solution Overhead:

– CPU Load: This metric assesses how much of the CPU is affected by the execution of
our solution;

– Memory Load: This metric assesses how much of the memory is affected by storing
our data structures by our solution.

5.2 Workload/DataSet

We will have two types of workloads:
Synthetic Benchmark: This will be for Flink applications that are specifically made

to test our solution. Its purpose is to test how our solution behaves in specific scenarios
made to force the system into a performance heavy state. We will be using a few examples
from an already existing project on GitHub 11 which has specific benchmarks for Flink.

Example Applications: This will be for testing our solution against example appli-
cations that more resemble a real one. Like this we are to check how SDD4 fairs with a
real application. For this we will use two different applications.

One will be from a GitHub repository from Yahoo 12 which is an application that ma-
nipulates ad event data received into usable data about ads from certain campaigns. They
had as inspiration a paper that explains in more detail how benchmarking in stream pro-
cessing should be approached, instead of using simple workloads, they base the workloads
in real-life scenarios [28].

The other application will involve a dataset for taxi trips (116GB of data) and fare
data (75GB of data) for the year 2010 to 2013 in New York 13. From analysing these data
[29], we will get the spatial, temporal and cost hotspots in New York for each available
year.

6 Conclusion

Our work presented SDD4, a proposal for a JAVA library that allows for the scaling of an
Apache Flink application to avoid bottlenecks in the system. We started by describing at
a high level how Stream Processing works and its shortcomings. Next, we have settled the
goals of our work. After our research throughout the current stream processing systems
and scientific literature, we presented a taxonomy/dimensions that a Stream Processing
Engine abides by and two other solutions that increase the scalability of a system. The
following section introduced SDD4 with the respective architecture. We conclude with the
evaluation methodology to assess the future implementation of our solution.

11 https://github.com/dataArtisans/flink-benchmarks
12 https://github.com/yahoo/streaming-benchmarks
13 https://uofi.app.box.com/v/NYCtaxidata

SDD4 23

7 Timeline

Task N
am

e
Feb

M
ar

Apr
M
ay

Jun
Jul

Aug
Sep

O
ct

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

W
1

W
2

W
3

W
4

W
1

W
2

W
3

Apache Flink
Validate Com

ponents
Evaluate system

 w
ithout solution

Solution Developm
ent

Develop library w
ith types

Develop Resource M
anager

Test and validate solution
Fine Tuning

W
riting Dissertation

Fig. 13. Gantt chart for the dissertation planing

24 Tiago Lopes

References

1. Talhaoui, M.A.: Real-time data stream processing - challenges and perspectives. vol. 14 (08
2018). https://doi.org/10.20943/01201705.612

2. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.H., Lind-
ner, W., Maskey, A., Rasin, A., Ryvkina, E., et al.: The design of the borealis stream pro-
cessing engine. In: Cidr. vol. 5, pp. 277–289 (2005)

3. Ahmad, Y., Berg, B., Cetintemel, U., Humphrey, M., Hwang, J.H., Jhingran, A., Maskey, A.,
Papaemmanouil, O., Rasin, A., Tatbul, N., et al.: Distributed operation in the borealis stream
processing engine. In: Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. pp. 882–884. ACM (2005)

4. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed stream computing platform.
In: 2010 IEEE International Conference on Data Mining Workshops. pp. 170–177. IEEE
(2010)

5. Carvalho, O., Roloff, E., Navaux, P.O.: A distributed stream processing based architecture for
iot smart grids monitoring. In: Companion Proceedings of the10th International Conference
on Utility and Cloud Computing. pp. 9–14. ACM (2017)

6. Haloi, S.: Apache zookeeper essentials. Packt Publishing Ltd (2015)

7. Carbone, P., Gévay, G.E., Hermann, G., Katsifodimos, A., Soto, J., Markl, V., Haridi, S.:
Large-scale data stream processing systems. In: Handbook of Big Data Technologies, pp.
219–260. Springer (2017)

8. Gedik, B.: Generic windowing support for extensible stream processing systems. Software:
Practice and Experience 44(9), 1105–1128 (2014)

9. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.: Network-
aware operator placement for stream-processing systems. In: 22nd International Conference
on Data Engineering (ICDE’06). pp. 49–49. IEEE (2006)

10. Amini, L., Jain, N., Sehgal, A., Silber, J., Verscheure, O.: Adaptive control of extreme-scale
stream processing systems. In: 26th IEEE International Conference on Distributed Computing
Systems (ICDCS’06). pp. 71–71. IEEE (2006)

11. Heinze, T., Jerzak, Z., Hackenbroich, G., Fetzer, C.: Latency-aware elastic scaling for dis-
tributed data stream processing systems. In: Proceedings of the 8th ACM International Con-
ference on Distributed Event-Based Systems. pp. 13–22. ACM (2014)

12. Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Erwin, C., Galvez, E.,
Hatoun, M., Maskey, A., Rasin, A., et al.: Aurora: a data stream management system. In:
SIGMOD Conference. p. 666. Citeseer (2003)

13. Balazinska, M., Balakrishnan, H., Stonebraker, M.: Load management and high availability in
the medusa distributed stream processing system. In: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data. pp. 929–930. ACM (2004)

14. Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Xing, Y.,
Zdonik, S.B.: Scalable distributed stream processing. In: CIDR. vol. 3, pp. 257–268 (2003)

15. Tönjes, R., Barnaghi, P., Ali, M., Mileo, A., Hauswirth, M., Ganz, F., Ganea, S., Kjærgaard,
B., Kuemper, D., Nechifor, S., et al.: Real time iot stream processing and large-scale data
analytics for smart city applications. In: poster session, European Conference on Networks
and Communications. sn (2014)

16. Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 requirements of real-time stream process-
ing. ACM Sigmod Record 34(4), 42–47 (2005)

17. Kwon, Y., Balazinska, M., Greenberg, A.: Fault-tolerant stream processing using a dis-
tributed, replicated file system. Proceedings of the VLDB Endowment 1(1), 574–585 (2008)

18. Carbone, P., Fóra, G., Ewen, S., Haridi, S., Tzoumas, K.: Lightweight asynchronous snapshots
for distributed dataflows. arXiv preprint arXiv:1506.08603 (2015)

19. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J.,
Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In: Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation. pp. 2–2. USENIX Association (2012)

20. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen,
J., Venkataraman, S., Franklin, M.J., et al.: Apache spark: a unified engine for big data
processing. Communications of the ACM 59(11), 56–65 (2016)

https://doi.org/10.20943/01201705.612

SDD4 25

21. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache flink:
Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering 36(4) (2015)

22. Akidau, T., Balikov, A., Bekiroglu, K., Chernyak, S., Haberman, J., Lax, R., McVeety, S.,
Mills, D., Nordstrom, P., Whittle, S.: Millwheel: Fault-tolerant stream processing at internet
scale. In: Very Large Data Bases. pp. 734–746 (2013)

23. Evans, R.: Apache storm, a hands on tutorial. In: 2015 IEEE International Conference on
Cloud Engineering. pp. 2–2. IEEE (2015)

24. Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mittal, S., Patel, J.M., Ra-
masamy, K., Taneja, S.: Twitter heron: Stream processing at scale. In: Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data. pp. 239–250. ACM
(2015)

25. Mencagli, G., Dazzi, P., Tonci, N.: Spinstreams: a static optimization tool for data stream
processing applications (2017)

26. Gupta, M.: Akka essentials. Packt Publishing Ltd (2012)
27. Esteves, S., Galhardas, H., Veiga, L.: Adaptive execution of continuous and data-intensive

workflows with machine learning (2018)
28. Chintapalli, S., Dagit, D., Evans, B., Farivar, R., Graves, T., Holderbaugh, M., Liu, Z., Nus-

baum, K., Patil, K., Peng, B.J., et al.: Benchmarking streaming computation engines: Storm,
flink and spark streaming. In: 2016 IEEE international parallel and distributed processing
symposium workshops (IPDPSW). pp. 1789–1792. IEEE (2016)

29. Patel, U., Chandan, A.: Nyc taxi trip and fare data analytics using bigdata. Retrieved June
9, 2017 (2010)

	SDD4 Streaming
	Introduction
	Challenges/Shortcomings of SPEs
	Roadmap

	Goals
	Related Work
	Stream Processing
	Stream Processing Technologies
	Apache Spark
	Apache Spark Streaming
	Apache Flink
	Google MillWheel
	Amazon Kinesis Streams
	Apache Storm
	Apache Heron

	Relevant Research Work
	Resource Management
	Input and Processing Management

	Analysis and Discussion

	Solution Proposition
	Architecture
	Model
	Resource Management
	Data Structure

	Integration with Apache Flink
	Metric Handler
	Programming model

	Evaluation Methodology
	System Metrics
	Workload/DataSet

	Conclusion
	Timeline

