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Abstract
The InterPlanetary File System (IPFS) is a new hypermedia
distribution protocol, addressed by content and identities.
It aims to make the web faster, safer, and more open. The
JavaScript implementation of IPFS runs on the browser, thus
benefiting from the mass adoption potential that the Web
Browser yields. Startrail takes advantage of the ecosystem
built by IPFS and strives to further evolve it, making it more
scalable and performant through the implementation of an
adaptive network caching mechanism. Our solution aims to
add resilience to IPFS and improve its overall scalability. It
does so by avoiding overloading the nodes providing highly
popular content, particularly during flash-crowd-like con-
ditions where such popularity and demand grow suddenly.
With this extension, we add a novel crucial key component to
enable an IPFS-based decentralized Content Distribution Net-
work (CDN) following a peer-to-peer architecture, running
on a scalable, highly available network of untrusted nodes
that distribute immutable and authenticated objects which
are cached progressively towards the source of requests.
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1 Introduction
In the early days, the Internet was basically a mesh of ma-
chines whose main purpose was to share academic and re-
search documents. It was predominantly a peer-to-peer sys-
tem, computers connected to the network played an equal
role, each capable of contributing with as much as they
utilised. It was only due to network topology constraints,
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mainly NATs, that users on World Wide Web lost the ability
to directly dial other peers. Struggling to overcome obstacles
in interoperability of protocols, the gap between client and
server nodes widen and the pattern remained. In this pattern,
computers play either the role of a consumer - “client”- or
producer - “server” - serving content to the network. Serving
a big client base requires enormous amounts of server re-
sources. As demand grows, performance deteriorates and the
system becomes fragile. Moreover, such architecture is in-
herently fragile. Every single source of content at the servers
is a single point of failure that can result in complete failure
and lengthy downtime of the system.

To tackle such flaws, technologies like CDNs emerged to
aggregate and multiplex server resources for many sources
of content. This way, a sudden burst of traffic could be more
easily handled by sharing the load. Such innovations made
the early client-server architecture a little more robust, but
at considerable cost. Still, despite its inefficiency, the client-
server model remaines dominant today and runs most of the
web.

IPFS [5] seeks to revert the historic trend of a client-
server only Web. It is a decentralized peer-to-peer content-
addressed distributed file system that aims to connect all
computers offering the same file system. Due to its decen-
tralized nature, IPFS is intrinsically scalable. As more nodes
join the network and content demand increases, so does the
resource supply. Such a system is incredibly fault tolerant
and, leveraging economies-of-scale, actually performs better
as its size increases. It uses Merkle DAGs[18][1], data struc-
tures to provide immutable, tamper-proof objects that are
content addressed.

However, there are some crucial Content Distribution Net-
work (CDN) enabling features are lacking in the InterPlane-
tary File System. In particular, the system lacks the capability
of swiftly and organically approximate content from the re-
quest path, reducing the latency felt by future requests. It
also does not prepare for the provider of an object to serve a
sudden flood of requests, thus rendering content inaccessible
to some.

The goal of this work is to, taking advantage of the ecosys-
tem build by IPFS, developing an extension to IPFS that
implements an adaptive distributed cache that will improve
the system’s performance, further evolving it. We aim to:

• Reduce the overall latency felt by each peer;
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• Increase the peer’ throughput retrieving content;
• Reduce the system’s overall bandwidth usage;
• Improve the overall balance in serving popular content
by peers;

• Finally, improve nodes’ resilience to flash crowds.
Startrail serves as a key enabling component for a future

IPFS-based CDN.
Furthermore, the objective of this document is also to

survey the major areas of research that are relevant for the
design of the proposed solution, as well as document the
current state of the art regarding these areas of study.
The rest of the document is as follows. In Section 2 we

review the state of the art algorithms and architectures used
by the relevant systems. Section 3 describes the proposed
solution: we start by addressing the architecture of IPFS as a
starting point to better understand the integration points of
the proposed solution. Next, we further analyze Startrail’s
architecture, its algorithms and data structures. Section 4 de-
scribes the testbed platform used, all the relevant metrics and
obtained results. Some concluding remarks and extension
proposals are presented in Section 5.

2 Related Work
2.1 Distributed File System
Is a file system that supports the sharing of files over a set of
network connected nodes. The challenge is keeping the sys-
tem performant, secure and robust. In addition, file location
and availability assume significance. One way of increasing
the availability is by using data replication and in order to
increase performance caching can also be used.

Distributed follow different types of architectures [19]:
• Client-Server Architecture - the simplest; a direc-
tory tree to multiple clients (e.g. NFSv3 [8]). The ca-
pacity of the system is limited by the capacity of the
server. The server is a single point of failure.

• Object-based File Systems - Metadata and data man-
agement are kept separated. Amaster server maintains
a directory tree and keeps track of replica servers. It
handles data placements and load balancing. This ar-
chitecture allows for incremental scaling. E.g. GFS [7],
MDFS [13].

• Peer-to-Peer File Systems - distributed systems con-
sisting of interconnected nodes (peers). These can be:
– Unstructured: the network imposes no constraints
on the links between different nodes. The placement
of content is completely unrelated to the overlay
topology. Require little maintenance while peers en-
ter and leave the system. These systems suffer from
the lack a way to index data. Thus, resource lookup
mechanisms consist of ineficient brute-force meth-
ods. Limited scalability.

– Structured: fix the scalability issues of unstructured.
The overlay topology is tightly controlled and data is

placed at specific locations in the overlay [6]. These
systems provide a mapping between the data identi-
fier and location, so that queries can be efficiently
routed to the node with the desired data. Chord [17],
Pastry [16] and Tapestry [20]

2.2 Content Distribution
Content Delivery Networks (CDNs) are networks of geo-
distributed machines that deliver web content to users based
on their geographic location.[14] CDNs can improve the
speed of the content delivery while also increasing the ser-
vice availability at the cost of replicating it over several ma-
chines. When a user requests for content hosted on a CDN,
a server inside the network will redirect the request to the
replica that is closer to the user and deliver the cached con-
tent.

2.3 Web Distributed Technologies
A few technologies are kew for the success of design of
decentralized systems in the Web. There are:

• The Browser: a very powerful tool to fuel adoption.
Building a solution that runs on the browser means
one is are able to reach a broad audience;

• Node.js: allows running JavaScript in the server. Bun-
dles with the Node Package Manager (NPM) a very
power library of reusable JavaScript modules;

• WebRTC: provides browsers and mobile applications
with peer-to-peer Real-Time Communications capabil-
ities accessible through a Javascript API. Using a suite
of protocols, solves the problem of NAT traversal.

3 Architecture
We envisioned Startrail to be an adaptive network cache.
One that continually moves content ever closer to a growing
source of request. Hence, reducing, on average, the time it
takes to access content on the network. It does so without
requiring intermediate nodes to previously request such con-
tent. Thus, enabling smaller providers to serve bigger crowds.
It should do so, in an interoperable manner. This means that
nodes running Startrail should not depend on other nodes
to be effective. Thus, it enables nodes to contribute to the
network even when adoption is not absolute.

We shall now explore, in more detail, the intended behav-
ior of the network. Figure 1 exposes the simplest scenario
possible - a small portion of a network where all the nodes
are running Startrail.
Here the content, in this case block QmBlock1, is stored

on Node A. Nodes C and D request QmBlock1 to the network.
While doing so, Node B that is requested by both, detects that
the Content Identifier (CID) is popular and flags it, fetching
and caching the content itself. Later, whenNode E request the
for content, the response won’t have to traverse the whole
network, it may be fulfilled by Node B.
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Figure 1. Illustration of the proposed Startrail flow

IPFS Architecture Because Startrail is built on top of IPFS
and integrates with some of its deep internals and mechanics
it is then imperative that we thoroughly examine these. Ob-
jects on IPFS consist of Merkle DAGs of content-addressed
immutable objects with links. With a construction similar
but more general than aMerkle tree [12]. Deduplicated, these
do not need to be balanced, and non-leaf nodes may con-
tain data. Since they are addressed by content, Merkle DAGs
grant tamper proof. A high level overview of the architecture
of the IPFS core is depicted in Figure 2. We shall delve into
each of the illustrated components.

• Core API - The Application Programing Interface
(API) exposed by the core, imported by both the Com-
mand Line Interface (CLI) and the HTTP API;

• Repo - The API responsible for abstracting the datas-
tore or database technology (e.g. Memory, Disk, S31).
It aims to enable datastore-agnostic development, al-
lowing datastores to be swapped seamlessly;

• Block - The API used to manipulate raw IPFS blocks;
• Files - The API used for interacting with the File Sys-
tem;
– UnixFS - The Unix Engine, implemented by the Im-
porter and Exporter are responsible for the file layout
and chunking mechanisms to import or export files
from the network.

• Bitswap - Bitswap is the data trading module for IPFS.
It manages requesting and sending blocks to and from
other peers in the network. Bitswap has two main jobs:
– to acquire blocks requested by the client from the
network;

– to judiciously send blocks in its possession to other
peers who want them;

• BlockService - This is a content-addressable store
for blocks, providing an API for adding, deleting, and
retrieving blocks. This service is supported by the Repo
and Bitswap APIs.

1Simple Storage Service - On demand persistent storage service hosted
Amazon Web Services

• Libp2p - This is a networking stack and modularized
library that grew out of IPFS. It bundles a suite of tools
that aim to support the development of large scale
peer-to-peer systems. It addresses complicated p2p
challenges like Discovery, Routing, Transport through
many specifications, protocols and libraries. One of
such libraries is the kad-dht module:
– Kad-DHT - This is the module responsible for im-
plementing the Kademlia DHT with the modifica-
tions proposed by S/Kademlia [4]. It has tools for
peer discovery and content or peer routing.

Figure 2. IPFS Core’s Architecture

Data exchanges on IPFS are handled by Bitswap, a Bit-
Torrent inspired protocol. Bitswap peers operate two data-
structures:

• want_list - the set of blocks the node is looking to
acquire;

• have_list - the set of blocks the node has to offer in
exchange.

When searching for a block, Bitswap will first search the
local BlockService for it. If not found, it will resort to the con-
tent routing module, in our case, the kad-dht module. The
latter will query the local providers database for the know
providers of a certain cid and if not enough are gathered,
query the rest from the DHT Following the acquisition of the
group of potential providers, the node will connect and pass
them its want_list containing the target cid. The process
can be further inspected on Figure 3.

Startrail’s Architecture Having a better grasp of the un-
derlying system, we can proceed to understand how and
where to integrate the Startrail cache. The first step is to
identify where to tap into so that we are notified of new con-
tent requests. On IPFS we can do that through two different
ways:

• On Kad-DHT, checking for the CID associated to GET_PROVIDER
messages;
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Figure 3. Bitswap and kad-dht interaction when fetching a
block from the network

• On Bitswap, listening for new want_list messages
and tracking each of the included CIDs;

Our solution implements the former.
Startrail’s main purpose is to recognize patterns in object

accesses. To do so, it uses two separate components:
• The Startrail Core, that exposes the Startrail API. This is
the interface other components will consume to work
with themodule; Is responsible for integratingwith the
data trading module, Bitswap; With the BlockService
to access data storage and libp2p for varios network
utilities.

• The Popularity Manager. The component responsible
for tracking objects’ popularity. It is totally config-
urable and it can operate with any specified caching
strategy.

The class diagram of these components is defined on Fig-
ure 4

Figure 4. Class diagram of Startrail’s Core and Popularity
Manager

Further analysis of the Core’s diagram reveals the aford-
mention integrations, including with the internal Popularity
Manager. It also reveal two main exposed functions: pro-
cess(cid), responsible for triggering the orquestration and
popularity calculation. Returns a Boolean for ease of inte-
gration with kad-dht module; updateConfigs() - used for
configuration renovation. Once executed, it will fetch new

configurations from the IPFS Repo and if changes are de-
tected, will refresh the live ones. It is useful for hotrealoading
the configuration when testing.
Additionally, for the Popularity Manager class we find:

isPopular(cid), for updating and calculating the popularity
for any CID passed as argument. updateConfigs(), serves
the same purpose as the above mentioned one; nextTime-
out(), manages the sampling timer. Responsible for sched-
uling timeouts; update(), runs every time the timeout pops.
It pushes the current sample to the sampling history and a
new one is created.

Message processing algorithm To recognize patterns in
object accesses, Startrail examines the CIDs sent on discovery
messages. Hence, the process() function is triggered every
time the GET_PROVIDER message handler is called. Figure 5
unveils the execution flow starting when a peer requests a
block from the network triggering the search for providers
on the network. Upon receiving a GET_PROVIDER message,
the kad-dht handler will execute Startrail’s process hook.
Following the popularity update, either no further action
is required, or the block is flagged popular and the peer
will attempt to fetch it or retrieve it from the BlockStorage.
The block could potentially be found in the storage because,
since we are using the IPFS BlockStorage, the block could
have been previously fetched by either Startrail or the peer
itself. Either way, subsequently to acquiring the block, the
peer announces to the network that it is now providing it.
The JavaScript pseudo-code can be further analyzed on Code
Listing 1.

Figure 5. Execution flow inside the Startrail module

Listing 1. Startrail processing engine
async f u n c t i o n p r o c e s s ( c i d ) {

i f ( ! i s P o p u l a r ( c i d ) ) {
r e t u r n ; / / DO NOTHING

}
i f ( awa i t b l o c k s t o r a g e . has ( c i d ) ) {

/ / B lock found in b l o c k s t o r a g e , s e r v e i t
b i t swap . s e r v eB l o ck ( c i d )

}
/ / B lock not found in b l o c k s t o r a g e , g e t i t o u r s e l v e s
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i f ( b i t swap . w a n t l i s t . c o n t a i n s ( c i d ) ) {
/ / Do not ge t a b l o ck a l r e a d y on the w a n t l i s t
r e t u r n ;

}
awa i t b i t swap . g e t ( c i d )
/ / Announce to the network we a re s e r v i n g the b l o ck
awa i t l i b p 2 p . p rov i d e ( c i d ) ;
i f ( repo . s i z e ( ) < 9Gb ) / / 90 \% o f IPFS max d e f a u l t s t o r a g e
awa i t p in ( c i d ) ;

}

Popularity Calculation Algorithm By studying the cur-
rent and past popularity of a certain CID, we are able to
likely forecast content that is going to, at least likely, remain
popular in the future. Caching this locally and serving it to
other peers has the benefit of making other nodes’ accesses
faster. For simplicity our forecast takes into consideration
only a small subset of the node’s past. This subset, or window,
can be obtained through various techniques. The one imple-
mented in our solution is a hopping window. Here, sampling
windows may overlap. This is desirable in our solution as we
want to maintain some notion of continuity between sam-
ples. Meaning that an object that was popular in the window
before, still has high probability to remain popular in the
current one, since a portion of the data remains the same.
Although the parameters are totally configurable the ones
set by default are 30 seconds for window duration, with
hops of 10 seconds.

The Popularity Manager implements the hopping window
by dividing it into hop-sized samples. In our case we divide
the total 30 second sampling window into three 10 second
samples. Every time a new message is processed, the Star-
trail Core checks the popularity of the referenced object by
running the isPopular() function. The function will keep
track of objects it has seen in the current 10 second window;
incrementing a counter every time the CID processed. Ev-
ery 10 seconds the current window, or sample expires and
is pushed onto a list that holds the previous ones. It is on
this latter list of samples (samples in the class diagram from
??) that the popularity calculations are made. An illustra-
tion of the interaction between samples and block arrivals is
represented on Figure 6.

To calculate a block’s popularity the Popularity Manager
will first select the three most recent samples after concate-
nating the current one to this list. Next, will reduce the array
outputting the total amount of times the object was observed.
If bigger than a certain configurable threshold the object is
considered popular. This heuristic has the benefits of (i) be-
ing fairly simple to implement and compute; it also (ii) reacts
quickly to changes in content access trends. It can be consid-
ered rather optimistic, since spotting the same object twice
will consider it popular.

Our heuristic does not take into account the size of the
content being cached. This was a conscious decision, the
reasoning for it is that on IPFS most blocks have the maxi-
mum default size of 256Kb. Usually only the last one of the

Figure 6. Interaction between new block arrivals and sam-
pling windows

sequence that makes up a file is less than that. Hence, we
despised the block size as parameter for caching heuristic.

Cache Maintenance
Contrary to most caching systems [3], where content is

cached by default leaving the cache replacement algorithm
responsible for releasing less relevant documents to create
space for new ones. Startrail employs an heuristic to judge
which objects should be cached in first place.

Startrail, for the most part, works by leveraging the in-
ternal IPFS mechanics. This ensures the component is light-
weight and uses the same procedures as the rest of the system.
On Startrail, we allow the node to utilise the full amount of
allocated storage by IPFS which defaults to 10Gb. Once the
node fills up this space it’s up to the IPFS garbage collector
(GC) to discard unnecessary objects. The IPFS’s GC removes
the non-pinned objects. Hence, to prevent popular blocks
from being collected when the it executes, we pin the popu-
lar objects. When a block stops being popular it is unpinned,
leaving it at the mercy of the garbage collector. When the
threshold of 90% of IPFS’ storage is reached blocks are no
longer pinned in order to leave room for new blocks.

4 Evaluation
4.1 The Testbed
Although not planned from the beginning, there was a con-
siderable amount of effortput into developing a testbed capa-
ble of simulating a realistic network. For our specific testbed
we were looking for a solution that could fulfill the following
requirements:

1. Enable us to seamlessly adjust and change network
conditions, e.g. latency, jitter;

2. Provide a platform for gathering and monitoring a
diverse array of metrics and logs;

3. Scale well as more computing power is added to the
testbed;
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4. Effortlessly enable us to orchestrate and coordinate
peers in the networks, i.e execute commands;

5. Allow for effortless integration with the codebase. Ex-
cluding possible alternatives like PeerSim [10], as this
would require porting the whole protocol to the Java
API.

Testbed Architecture
To allow for easy integration of new computing power

into the testbed and management of deployments, we re-
sorted to Kubernetes[9]. Kubernetes is a tool for deploying
and managing containerized applications. It handles the dis-
coverability and liveness of the deployed workloads.
The smallest computing unit on Kubernetes is the Pod.

The Pod is a formation ofcontainers, in our case Docker [11]
containers. Since Kubernetes Pods allows us to create any
arbitrary composition of containers, we took advantage of
this and made sure to inject, alongside every IPFS node, a
Toxiproxy 2sidecar - a small proxy - from which we channel
all IPFS traffic through, coming in and out from the node.
This allows us to inject network variability into IPFS con-
nections and simulate diverse network conditions. Such Pod
architecture is illustrated in Figure 7.

Figure 7. Composition of the Startrail Testbed Kubernetes
Pod

We wanted to make the simulations easily reproducible,
so we leveraged Helm 3, a tool that helps us release and
manage Kubernetes applications. This enabled us to create
different node configurations, Charts, and change them for
every deployment.
To be able to gather data from different layers of the sys-

tem during simulations implemented the ELK Stack 4suite of
tools. That provides tools for log indexing, searching, trans-
formation, storage and visualisation.

The above described architecture is depicted on Figure 8.

Deploying a network We resorted to Unix’s Makefiles to
automate the network setup much as possible since we were
aware that the network would have to be deployed many
2https://github.com/Shopify/toxiproxy
3https://helm.sh
4https://www.elastic.co/what-is/elk-stack

Figure 8. Architecture overview of the testbed network

times. The deployment process, illustrated in Figure 9, is as
follows:

1. Setup Bootstrap nodes. On IPFS to setup a network
we first need to setup the bootstrap peers. These are
used by other nodes as Rendezvous Point to join the
network.

2. Create rest of nodes. Additionally, using Helm’s ability
to dynamically configure releases, we need to point
these new nodes to the already setup Bootstrap ones.

3. Deploy Provider nodes. These are nodes preloaded
with data. For these, as datasets were sometimes of
considerate dimensions, datasets were downloaded
onto the Pod from an S3 Bucket before the starting the
container.

Figure 9. Deployment process on a new network on the
Startrail testbed

Interacting with the network To execute our tests, we de-
veloped our own solution that utilizes the IPFS and Toxiproxy
APIs to orchestrate the peers and change the conditions of
the network.
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With the network in place and a tool withwhich to execute
tests from, it was possible to execute the multiple Startrail
tests. We would execute the tests from our local machine that
would orchestrate commands to each individual peer accord-
ing to the scripted test file. Using the monitoring platform
we would then gather live data from the nodes.

An illustration of the interaction can be examined in Fig-
ure 10

Figure 10. Testbed-cli orchestrating and monitoring Statrail
testing cluster

4.2 Relevant Metrics
The metrics considered relevant for evaluating Startrail’s
network performance are:

• Request Duration - The duration of network request
is inherently the most important metric to analyze
Startrail’s impact on the system. It will assess if caching
mechanism is working and how effective it is. Hence,
to measure this we should analyze the 95th Percentile
request duration.

• Memory usage - Considering that Startrail Nodes
are caching content we want to analyze how much
additional data each node has to store.

• Network usage - We want to assess how much each
node has to resort to the network in order to fetch
content. Hence, we measure the volume of traffic each
peer sends to the network.

For these metrics we will calculate the 95th Percentile
(95P) that have the particularity of excluding the extreme
values from the average calculation, the possible outliers.

4.3 Testing Setup
The implementation network used to execute the simulations
was deployed in the aforementioned Kubernetes cluster run-
ning on three n1-standard-4 Virtual Machines on Google
Cloud. These are a general-purpose type of machine with
4 vCPUs, 15 GB of memory and 128 GB of storage. With
this setup we were able tosimulate a network of 100 peers, 5
bootstrap and 2 providers preloaded with data.
The amount of nodes simulated were limited by the re-

sources available in the cluster as we were running on a
limited budget.

To simulate different content access patterns we ran the
following request functions which pick a block from a dataset
of thousands and order the peer to fetch it:

• RandomAccess - The random access picks each block
with equal probability. This pattern would serves as
control;

• Pareto Random - The Pareto Distribution [15] serves
as an adequate approximation for Internet objects
popularity[2]. To achieve close to the desired distri-
bution we used an alpha equal to 0.3, meaning that
20% of the blocks generate 80% of the overall network
traffic;

• File Random - Here we divided the total list of blocks
into smaller lists, each amounting to 3Mb in block data.
Selecting on of these lists means that the peer would
fetch all the nodes in the list, thus simulating file access.
We will also use a Pareto distribution to pick here.

Table 1 encompasses all the test scenarios simulated. Each
of these had an induced latency of 100ms, ran for 10 minutes
and each node requested a new block every 30seconds.

Test Name Startrail Access Type Window Size Threshold
Random no Startrail False Random N.A. N.A.
Random w/ Startrail True Random 3*10sec 2
Pareto no Startrail False Pareto Random N.A. N.A.
Pareto w/ Startrail True Pareto Random 3*10sec 2
File Random no Startrail False File Random N.A. N.A.
File Random w/ Startrail True File Random 3*10sec 2

Table 1. Different testing condition for running network
tests

The parameter columns are:

• Startrail - defines if Startrail was running on all the
nodes in the network;

• Access Type - indicates which of the previously men-
tioned access patterns we are simulating;

• Latency - expresses the amount of latency introduced
by Toxiproxy;

• Req. Freq. - specifies the frequency at which each
requests for blocks - or array of blocks, in the case of
File Random - are made by the individual nodes;

• Duration - indicates for how long we ran the simula-
tion;

• Window and Threshold - specify the used Startrail
configuration, if applicable.Window being the amount
of samples and the duration of each, in seconds; and
Threshold the cache threshold at which Startrail will
cache content.



Conference’17, July 2017, Washington, DC, USA João Tiago

4.4 Tests Results
Latency Analysis The graph on Figure 11 exposes the cal-
culated 95P Request duration for each simulation. The simu-
lation of the random access running on a regular IPFS nodes’
network, on the far left, yielded a P95 latency of 60 seconds.
The same simulation running on the Startrail network only
did 40 seconds. This is a considerable reduction of one third.
Similar gains in speed can be observed for the tests with
Pareto distribution access pattern. While at first one would
think that this would be the test where the impact of Star-
trail would be the most evident, because the blocks would
reach the cache threshold easier, in this case, however, since
the same blocks are being requested more often, different
peers on the network also serve the content because they
previously downloaded it. Hence, the difference remains the
same. For the file access type the proportion of gains remains
similar, with the overall latency going up since now we are
requesting a lot more of different blocks.

Figure 11. 95th percentile of request duration for the differ-
ent testing scenarios

Memory Consumption Analysis The Graph on Figure 12
compares the memory cost of running the simulations on a
network with and without Startrail. Analysis of the graph
reveals that running the simulations without Startrail costs
generally the same, with only slight variations proportional
to the amount of different blocks requested. For the simula-
tions ran on the Startrail network we observe a growth in
memory utilization. This is expected since nodes are now
storing more content, the cached blocks. For the Pareto ac-
cess pattern we notice an increase in memory consumption
relative to the all random one. This was not expected as
the smaller diversity of blocks requested would mean less
content being cached. One possible explanation we find that
supports such results is that in this simulation a smaller sub-
set of the dataset is now being constantly requested, meaning

that, although smaller, we are guaranteeing that this sub-
set will reach the cache threshold and be stored. Because it
doesn’t grow significantly and past the IPFS default storage
of 10Gb, the garbage collector never triggers and thus the
cached blocks are kept for the whole duration of the test.
This does not happen with the random access pattern be-
cause, since it follows a uniform distribution, requests for
the same block may be scattered in time and consequently
some never reach the threshold.

Figure 12. 95th Percentile of memory usage on the different
testing scenarios

Network Consumption Analysis The Graph on Figure
13 illustrates the network impact of running network simu-
lations with and without Startrail. Further comparison of the
obtained results reveals that the savings in network traffic
(Mbs) are proportional to the speed ups in request latency.
This happens because requests are being served closer to
their source by caching nodes and thus fewer messages have
to transit the network.

4.5 Variable Startrail percentages
Additionally, we also assessed the impact of the percentage
of Startrail nodes in the network, to confirm that the benefits
of Startrail are relevant even if a smaller percentage of nodes
are contributing to caching or if, on the other hand, there was
an percentage of Startrail participation in IPFS that would
yield the optimal performance.

In order to evaluate which of the abovementioned proposi-
tions were true we ran aditional simulations. The conditions
of these were similar to the ones presented earlier, in each of
the tests was induced 100ms of latency, the tests ran for 10
minutes and each node requested a new block every 30sec-
onds. The distinction between the ones described before and
these is that in the latter we alternated the percentage of
nodes running Startrail that were deployed on the network.
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Figure 13. 95th Percentile of network usage on the different
testing scenarios

The percentages were: 0%, 30%, 50%, 80% and finally 100%
Startrail nodes.
The results obtained from running the simulations were

compiled into the graph in Figure 14. The graph’s samples
start on the far left with higher values of request latency
for no Startrail participation on the network, and decreases
nearly linearly as the percentage of Startrail nodes increases.

The impact of Startrail nodes’ percentage on the network
can be approximated through the linear regression drawn
on the dotted line in the graph. This supports our initial
proposition that the performance improves as the percentage
of Startrail nodes increases. Nevertheless there is a slightly
higher slope in the 30% to 50% straight, that however does
not allow any conclusions of an optimal point to be taken
due to experimental noise. This finding would have to be
further assessed with more testing.

5 Conclusions
In this thesis we proposed a solution that extends the existing
IPFS and improves it as a content sharing system and its
ability to distribute it using a novel technique in the peer-to-
peer file sharing systems’ realm.

5.1 Concluding remarks
We started this dissertation by analyzing the relevant Con-
tent Sharing systems and by describing their compositions.
We followed that by classifying the significant Content Dis-
tribution Systems’ features. Next we then explored the tech-
nologies that enable peer-to-peer systems to exist inside a
web browser and how to leverage them.

Having inspected the relevant components towards a de-
sign design enabling a distributed, peer-to-peer CDN, we
described architecture of the InterPlanetary File System and
its key mechanics. After identifying the key architectural
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Figure 14. Avg request duration vs. Startrail nodes percent-
age

elements and functionality of IPFS and its shortcomings,
we proposed Startrail, an extension caching component and
describing it thoroughly. We defined the solution’s require-
ments and documented its implementation, data structures
used and processes, as well as integration points with IPFS.
We then analyzed the implementation of the system for con-
tainerized network deployments along with its architecture.
The platform used for simulating the network, including

the setup conditions were then described, along with the test
executed. The obtained results show that a network running
Startrail nodes is able to perform better than one running
only IPFS nodes. Startrail reduces the request latency by 30%,
at the cost of small increase in total memory consumption
of 20% while also reducing bandwidth utilization by around
25%.
Additionally, we assessed the impact that different per-

centages of Startrail nodes have in the overall network per-
formance. The results, confirm the expectation that there is
an inverse relation between Startrail nodes percentage and
network latency. When one increases, then other is reduced.

5.2 Future work
Although the results are positive and bring improvements to
IPFS’s operation, there are potential further advances to be
implemented. Startrail enables the development of additional
enhancement features. Bellow we enumerate and describe
some of the aspects that could be further explored:

1. Broader probing potential - Startrail takes advan-
tage of a single request popularity probe, the discovery
messages. In order to achieve a broader probing po-
tential an improvement could be made allowing the
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system to further analyze requests on the received
want_lists;

2. Design a dynamic cachingheuristic - Caching thresh-
olds on Startrail are static which can lead to caching
imbalances when under high stress. One very inter-
esting research topic would develop an heuristic that
would dynamically adapt to the amount of requests
the node processes;

3. Prefetching is the process of requesting content be-
fore it is actually necessary with hopes that it will
be eventually necessary. Prefetching on IPFS can be
implemented at system level or at application level.
Startrail is a key crucial enabler for its operation. Star-
trail makes it possible for the prefetching mechanism
to have a reduced impact on the network by leveraging
the caching, which, instead of stressing the network,
has the effect of setting up the network caches for
traffic to come.
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