!ﬁ INSTITUTO SUPERIOR TECNICO

Efficient Thread Scheduling for Distributed
Java VM

Navaneeth Rameshan

Dissertation submitted to obtain the Master Degree in
Information Systems and Computer Engineering

Jury

Chairman: Prof. Luis Eduardo Teixeira Rodrigues
Supervisor: Prof. Luis Manuel Antunes Veiga
Members: Prof. Johan Montelius

July 2012

Acknowledgements

I would like to express my sincere gratitude to Prof. Luis Antunes Veiga who
guided me through this research, for all the interesting discussions and brain
storming sessions, and for being a great source of inspiration throughout the
course of this thesis.

I would also like to thank all my EMDC friends who helped me through the
course of my thesis, both with regards to technical discussions and having fun.
Special mention to Paulo, Liana, Francesco and Vanco for making my stay in
Lisbon a pleasurable experience.

I would finally like to thank my parents for all the support, care and patience
while I was finishing my thesis without whom none of this would have been
possible.

This work was supported by national funds through FCT - Fundagdo para a
Ciéncia e a Tecnologia, under projects PEst-OE/EEI/LA0021/2011 and PTDC/EIA-
EIA /113613/2009.

European Master in Distributed Computing, EMDC

This thesis is part of the curricula of the European Master in Distributed Com-
puting (EMDC), a joint program among Royal Institute of Technology, Sweden
(KTH), Universitat Politecnica de Catalunya, Spain (UPC), and Instituto Superior
Técnico, Portugal (IST) supported by the European Community via the Erasmus
Mundus program. The track of the author in this program has been has follows:

First and second semester of studies: IST
Third semester of studies: KTH
Fourth semester of studies (thesis): IST

Abstract

In this work, we propose RATS, a middleware to enhance and extend the Terra-
cotta framework for Java with the ability to transparently execute multi-threaded
Java applications to provide a single-system image. It supports efficient schedul-
ing of threads, according to available resources, across several nodes in a Terra-
cotta cluster, taking advantage of the extra computational and memory resources
available. It also supports profiling to gather application characteristics such as
dispersion of thread workload, thread inter-arrival time and resource usage of
the application. Profiling and clustering capabilities are inserted with the help
of byte code instrumentations. We developed a range of alternative scheduling
heuristics and classify them based on the application and cluster behavior. The
middleware is tested with different applications with varying thread character-
istics to assess and classify the scheduling heuristics with respect to application
speed-ups. Results indicate that, for a CPU intensive application, it is possible
to classify the scheduling heuristic based on application and cluster properties
and also achieve linear speed ups. Furthermore, we show that a memory inten-
sive application is able to scale its memory usage considerably when compared
to running the application on a single JVM.

Resumo

Neste trabalho propomos RATS, um middleware para estender a framework Ter-
racotta Java, com a possibilidade de executar transparentemente aplica¢des Java
multi-tarefa oferecendo a semantica single-system image. Suporta escalonamento
eficiente de tarefas, de acordo com os recursos disponiveis, sobre os n6és de um
cluster Terracotta, tirando partido da capacidade extra em recursos computa-
cionais e memoria. O RATS também permite a andlise de execucdo e desempenho
(profiling) de modo a aferir caracteristicas das aplica¢ds tais como a dispersao de
carga entre tarefas, tempos entre lancamento de tarefas, e utilizacdo de recursos
pela aplicacdo. O profiling e a execuc¢do em cluster sdo tornadas possiveis pela in-
strumentacdo de bytecodes das aplica¢des Java. Desenvolvemos um conjunto de
heuristicas de escalonamento de tarefas e classificamo-las de acordo com o com-
portamento de aplicagdes em execucdo no cluster. O middleware RATS foi tes-
tado com diferentes aplicagdes com caracteristicas variadas em termos de ntimero
e carga de tarefas, de modo a analisar e classificar as heuristicas de escalonamento
consoante os aumentos de desempenho (speed-up) conseguidos. Os resultdos in-
dicam que, para aplicagdes de processamento intensivo, é possivel classificar as
heuristicas baseado nas propriedades da aplicagdo e do cluster, obtendo speed-
up linear. Para além disso, demonstramos que aplica¢des de utilizacdo intensiva
de memoria também tém melhor escalabilidade quando comparadas com a sua
execuc¢do numa tinica maquina virtual.

10

Keywords

Java

Parallel and Distributed computing
Scheduling

Byte Code Instrumentation
Terracotta

Palavras-Chave

Java

Computacdo Paralela e Distribuida
Escalonamento de Tarefas
Instrumentacgdo de Byte code
Terracotta

12

Index

1 Introduction
1.1 Contribution
1.2 Results e
1.3 ResearchContext,
14 DocumentRoadmap
2 Related Work
2.1 Distributed Virtual Machines
22 Scheduling
2.2.1 Classification of Scheduling Algorithms
2.2.2 C(lassic Scheduling Algorithms
223 Thread Scheduling
23 Caft e

3 Architecture
31 Terracotta.
3.2 RATS - Resource Aware Thread Scheduling for JVM-level Clustering

3.3 Scheduling Techniques
3.3.1 Centralized Scheduling
3.3.2 Hybrid Scheduling
34 Profiling
4 Implementation
41 RATS module decomposition and Structure
41.1 SingletonPackage
412 ClusterThreadClass
413 Profiler
414 WorkerPackage
415 StartMaster o o
42 Bytecode Instrumentations 0L L
43 Scheduling L
431 LocalScheduling
5 Evaluation
51 Correctness.
52 Overhead Incurred
53 ExecutionTime
5.3.1 Fibonacci number generation

i

532 Web Crawler s

533 MD5Hashing 56
54 Comparison of Scheduling Heuristic 57
54.1 Low dispersion of thread workload and low inter-arrival
times 57
5.4.2 Low dispersion of thread workload and high inter-arrival
times 59
5.4.3 High dispersion of thread workload and high inter-arrival
times l61]
5.4.4 High dispersion of thread workload and low inter-arrival
times 62
545 Non-uniformcluster 63
55 Memoryusage 671
5.6 Application Modeling 671
6 Conclusion (71l
6.1 FutureWork [Z1]
Bibliography 72

ii

List of Figures

3.1
3.2
3.3
34
3.5

3.6

3.7

4.1
4.2
4.3
4.4
4.5
4.6

51
52
53
54
55
5.6
5.7
5.8
59
5.10
511
5.12
5.13

5.14
5.15
5.16
5.17

5.18

Terracotta Architecture0 L. 16l
Root, Clustered Objectsand Heap 17
Architecture of RATS o L 19
Master-Worker Communication 20
Communication between different components for making a schedul-
ingdecision 21]
Communication for Worker to perform Scheduling from Global In-
formationTable L. 26]
Communication for Worker to perform Scheduling from Local In-
formationTable o oL
StatisticsClass 36)
Coordinator and Scheduler Class
ClusterThread Class 38
ProfilerClass 39
Worker Package oo oo 40
StartMaster Class i 4Tl
Execution time for Fibonacci number generation. 54
Execution time for web crawler - 10 websites. 56)
Execution time for web crawler - 20 and 30 websites. 56)
Execution time for MD5 hashing 56)
Execution time for different scheduling heuristics 58]
Execution time for different scheduling heuristics 9
Execution time for different scheduling heuristics 60]
Execution time for different scheduling heuristics 61]
Execution time for different scheduling heuristics 62]
Execution time for different scheduling heuristics 63}
CPU Load over time for scheduling based on CPU load 64
CPU Load over time for scheduling based on thread load 64
CPU Load over time for scheduling based on CPU load alongside
anI/Ointensive process 65)
CPU Load over time for same application 651
Impact of CPU-load sched on load average and CPU utilization . . [66]
Impact of load-avg sched on load average and CPU utilization . . . [67]
Impact of accelerated-load-avg sched on load average and CPU
utilization Lo L L 68]
Memory stresstest o Lo Lo 69

1ii

v

List of Tables

2.1
2.2

3.1
3.2
3.3
34
3.5

51
52
53
54
5.5
5.6
57

Classes of scheduling algorithms
Comparison of scheduling algorithms

Initial Global Table of Master
Local tablesof Workers
Local tables of Workers after thread launch
Local tables of Workers after receiving the threads
Final Global Tableof Master

Correctness verification of MD5 hashing
Correctness verification of Fibonacci number generation
Correctness verification of Web Crawler
Overhead for MD5 Hashing
Overhead for Fibonacci generation
Application Modeling on a dedicated cluster
Application Modeling on a Non-uniform cluster

vi

Listings

4.1
4.2
43
44
4.5
4.6
4.7

Identify Thread Exit.
Bytecode for launching a thread on a Runnable object
Bytecode for capturing Runnable object upon thread launch
On entering the run() method
On exiting therun() method
Scheduling heuristic based on load average
Scheduling heuristic based on accelerated load average

vii

viii

Introduction

If the workstations in a cluster can work collectively and provide the illusion of
being a single workstation with more resources, then we would have what is re-
ferred in the literature as a Single System Image [10]. Much research has been
done in the area of SSIs, such as Distributed Shared Memory (DSM) systems and
Distributed Virtual Machines that can run applications written in a high-level
language in a cluster, behaving as if it were on a single machine. With such an ab-
straction, the developer is completely oblivious to the issues related to distributed
computing and writes an application just like any other application meant for
a single system. Issues like socket connection, remote method invocations and
scheduling of threads are some of the many details that are abstracted. Unlike
JavaSpaces [28], which provides an API for distributed programming, where the
developer is expected to learn the API and use them wisely in order to scale an
application, the idea of SSI follows no use of an API or no knowledge of dis-
tributed systems.

The current most popular system that uses a shared object space to provide
a single system image is Terracotta [2]. One of the essential mechanisms neces-
sary for providing SSI systems is efficient scheduling of threads to improve the
performance and load balancing across the cluster. At present, Terracotta does
not support scheduling of threads and instead multiple manual instances need to
be launched to scale applications. In this thesis, we develop a middleware that
leverages compute intensive multi-threaded java applications (including those
that launch threads dynamically) for scalability, and supports efficient schedul-
ing of threads to improve performance of already existing applications. We pro-
pose RATS, a Resource Aware Thread Scheduling for JVM level Clustering which
is an extension of Caft [21]. Caft provides full transparency for running multi-
threaded applications. RATS bridges the gap between transparency and efficient
scheduling of threads using Terracotta to keep data consistent across the cluster
and scale existing applications with ease.

Several studies have showed that no single scheduling algorithm is efficient
for all kinds of applications. To the best of our knowledge, some work has been
done in improving the scheduling of threads for page-based DSM systems in or-
der to avoid Page-Thrashing and improve the locality of memory accesses but
none of the system considers different characteristics of application behavior for
improving performance. The requirements of a scheduling heuristic for a memory-
intensive application is different from that of a CPU-intensive application. RATS

1

supports multiple scheduling heuristics and they target different characteristics
of applications. The scheduling heuristics maintain state information of the worker
in the form of resource usage and threads launched to make optimal decisions.
RATS also provides a profiler that allows to characterize an application based on
the dispersion of thread workload, thread inter-arrival time and the resource us-
age of the application. The information obtained from the profiler allows to opt
for a scheduling heuristic that best suites the properties of the application and the
cluster.

1.1 Contribution

Instead of proposing a single scheduling heuristic that suites all kinds of appli-
cation, we develop multiple scheduling heuristics each targeted to suite a spe-
cific class of application and cluster behavior. The middleware supports a hybrid
(centralized and distributed) form of scheduling under scenarios where threads
spawn multiple threads so as to improve performance. The application behavior
can be obtained using a profiler, that gives information about the workload dis-
tribution of each thread, the inter-arrival time between threads and the resource
usage of the application. Although the profiler gives exact information of the
application characteristics, in some cases, the developer may already know the
behavior of the application with a definite certainty and may not want to profile
the application. In order to facilitate efficient scheduling even under such sce-
narios where the exact values of application characteristics are not available, the
scheduler does not rely on any values that define an application.

1.2 Results

The outcome of this thesis is a prototype middleware that bridges the gap be-
tween efficient scheduling of threads and transparency allowing for distributed
execution of a multi-threaded java application meant for a single system. Al-
though this introduces additional overheads in terms of size of bytecode and ad-
ditional communication over the network, results indicate that it is possible to
achieve significant improvement in performance. From the results, we also see
that different scheduling heuristics perform differently for different classes of ap-
plication and cluster. Thus, we are able to classify the heuristics based on these
behavior.

1.3 Research Context

The research described in this thesis was done within the Distributed Systems re-
search group at Inesc-ID Lisboa, in the context of a National FCT research project,
Synergy, on new execution environments. A paper that describes part of this work
is under review for publication in Portuguese national conference INForum 2012.

2

The paper is titled "RATS - Resource aware thread scheduling for JVM level clus-
tering”.

1.4 Document Roadmap

The remainder of this thesis is organized as follows. Chapter 2 describes the rele-
vant related work concerning this thesis. Chapter 3 provides an overview of the
architecture of the middleware along with the supported scheduling heuristics
and profiling capabilities. Chapter 4 describes relevant details of RATS’s imple-
mentation. Chapter 5 presents results obtained from evaluation of the middle-
ware and finally Chapter 6 concludes the thesis and provides pointers for future
work.

Related Work

This chapter describes the most relevant research work for the definition of our
middleware, organized according to a top-down approach. The first section ex-
amines existing systems that allow a regular application written in Java to become
cluster-aware and run seamlessly with minimal programmer intervention. Next
section describes the important scheduler aspects, such as classes of algorithms,
scheduling algorithms and existing techniques for thread scheduling on a MIMD
architecture.

2.1 Distributed Virtual Machines

In this section, we study the different existing platforms that can make an appli-
cation written in java cluster-aware without modifying the source code. There
are three major approaches that exist for distributed execution in a cluster. They
are: Compiler-based Distributed Shared Memory systems, Cluster-aware Vir-
tual Machines and systems using standard Virtual Machines. Compiler-based
Distributed Shared Memory Systems is a combination of a traditional compiler
with a Distributed Shared Memory system. The compilation process inserts in-
structions to provide support for clustering without modifying the source code.
Cluster-aware Virtual Machines are virtual machines built with clustering capa-
bilities in order to provide a Single System Image (SSI). Systems using Standard
VMs are built on top of a DSM system to provide a Single System Image for ap-
plications. Some systems that rely on standard VMs also have static compilers
similar to the Compiler- based DSM approach, with the major difference being
that they transform a Java bytecode application into a parallel Java bytecode ap-
plication instead of native code.

Compile-based DSMs were developed in order to combine cluster awareness
without compromising performance. During the compilation process, the com-
piler adds special instructions to achieve clustering capabilities without modify-
ing the source code of the application. The application can then be executed as a
native application. A fine-grained DSM provides a global address space which is
implemented using a DSM coherence protocol. They do not suffer as much from
false sharing as the memory is managed in small regions. Unlike a page-based
DSM, the access checks need to be performed in software. Jackal [34] compiler
generates an access check for every use of an object field or array element and the
source is directly compiled to Intel x86 assembly instructions, giving the maxi-

5

mum performance of execution possible without a JIT. Jackal does not support
thread migration. Hyperion [5] has a runtime which provides an illusion of sin-
gle memory and also supports remote creation of threads. The main performance
bottleneck is in maintaining a consistent view of the objects, as it maintains a
master copy which is updated after every write. Both these systems work only
on homogenous clusters as the compiled code is native thus posing a major limi-
tation.

The most popular system in the context of cluster-aware virtual machines is
cJVM [6]. cJVM is able to distribute the threads in an application along with the
objects without modifying the source or byte code of an application. It also sup-
ports thread migration. To synchronize the objects across the cluster a master
copy is maintained and updated upon every access and is a major bottleneck. In
Kaffemik [4], all objects are allocated in the same virtual memory address across
the cluster thus allowing a unique reference valid in every instance of the nodes.
However, it does not support caching or replication, and an object field access
can result in multiple memory accesses, thus reducing performance.

Some of the most popular systems for compiler-based DSM approaches are
java party [37], java Symphony[15] and JOrchestra[33]. J-Orchestra uses byte-
code transformation to replace local method calls for remote method calls and
the object references are replaced by proxy references. Java Symphony allows the
programmer to explicitly control the locality of data and load balancing. All the
objects needs to be created and freed explicitly which defeats the advantage of a
built-in garbage collection in JVM. Java party allows to distinguish invocations
as remote and local by modifying the argument passing conventions. The im-
plementation does not satisfy the ideal SSI model as classes need to be clustered
explicitly by the programmer.

2.2 Scheduling

In this section we classify the scheduling algorithms based on their nature and
criteria for scheduling and then give a brief description of the various classi-
cal scheduling algorithms for distributed systems. A good scheduling algorithm
should be able to achieve an acceptable performance in the long run while main-
taining a balanced system with a fair share of load between different computing
units. The following subsection classifies the scheduling algorithms.

2.2.1 Classification of Scheduling Algorithms

In order to compare and distinguish the different scheduling algorithms based
on their nature, a classification needs to be made. In [11], Casavant et al. propose
a hierarchical taxonomy for scheduling algorithms in general-purpose parallel

6

and distributed systems [13]]. Different types of scheduling are classified in a top
down approach and are: Local vs. Global, Static vs. Dynamic, Approximate vs.
Heuristic, Distributed vs. Centralized, batch, immediate and adaptive schedul-
ing. In the following, each of these classification is explained.

e Local vs. Global : At the highest level, scheduling can be divided into local
and global [11]]. Local scheduling deals with algorithms that are responsible
for allocating processes on single CPU [13]. Global scheduling allocate pro-
cesses to multiple processors based on the information of the system aiming
at optimizing a system-wide performance goal [13]]. Scheduling in Grid and
Cluster fall in the category of global scheduling.

e Static vs Dynamic: In the hierarchy, Global scheduling can be further di-
vided into Static vs. Dynamic. In [35] and [36], Xhafa et al. state that there
exist two main aspects to determine the dynamics of scheduling: dynam-
ics of job execution and dynamics of resources. Dynamics of job execution
refers to the situation of job failure. Dynamics of resources refer to the pos-
sibility of resources joining and leaving the system and changes in policies
for local resource usage. In static scheduling, it is assumed that all the infor-
mation about the existing resources is available before schedule time. Each
of the tasks in an application is assigned once to a resource. With static
scheduling it is possible to estimate the costs of computation even before
the tasks finish execution [13]. However, these estimations fail if any com-
puting unit fails or if there is a network failure. These situations are highly
possible and mechanisms such as rescheduling [12] were introduced to al-
leviate the problem.

In dynamic scheduling, tasks are scheduled as they arrive. It is not possible
to determine the time taken for execution in all the cases. Dynamic schedul-
ing is particularly useful in such cases. Dynamic scheduling has two com-
ponents: system state estimation and decision making. System state estima-
tion is responsible for collecting information about the computing units and
building an estimate of the global information. This estimate will provide
the base for mapping a task to a resource. Since it is not possible to estimate
computation costs before execution, load balancing will ensure maximizing
resource usage in a fair way.

e Approximate vs. Heuristic: Approximate algorithms are based on the use
of a formal computational model in order to find a good solution. It does
not search the entire solution space for an optimal or best solution, instead
uses the first solution that is sufficiently good. Thus, it is important to have
a metric that allows the model to judge the value or relative quality of a
solution. Heuristc algorithms are based on the most realistic knowledge
of the system and the process, or job, as opposed to a formal assumption.
These algorithms are most suited in scenarios where the application and/or

7

the resources are highly diverse, often dynamic. These algorithms may not
give the most optimal solution but instead take the most reasonable amount
of time taken to make a decision.

Centralized vs Decentralized vs Hierarchical: The scheduling responsibil-
ity can be delegated to a single scheduler (Centralized) or be shared by mul-
tiple distributed schedulers (Decentralized). In the centralized approach
there is only one scheduler. It is possible to monitor all the resources state
which makes easier to create efficient schedulers [35]. Centralized schedul-
ing allows for easy management [19] and implementation of the scheduler.
However, centralized scheduling poses many limitations. They are a sin-
gle point of failure [36] and do not scale [13} 19, 135, 36]. Condor [31, 36|
uses a centralized scheduler based on the ClassAd matchmaker [26]. In
the decentralized approach the responsibility of scheduling is spread over
multiple computing units. The local schedulers resident on different com-
puting units play an important role as all the scheduling requests are sent
to them. These type of schedulers take in to account important issues such
as fault-tolerance, scalability and multi-policy scheduling. In the hierarchi-
cal approach, local schedulers are organized in an hierarchical way. This
approach is more scalable and fault-tolerant than the centralized approach,
although not better than the decentralized approach, though with simpler
coordination.

Immediate vs batch: In the immediate approach, jobs are scheduled as and
when they enter the system [36] using the system’s scheduling algorithm.
They do not rely on time interval for the scheduler to get activated [36]
On the other hand, in the batch approach, jobs are grouped in batches and
scheduled as a group [36]. Batch approach is more suited for applications
with the properties of a bag of task, and can depend on the resource charac-
teristics better than immediate since the time between activation of sched-
uler can provide a better view of the system. Batch scheduling for Grids
waits for a number of jobs to arrive and then makes scheduling decisions
as a whole, opposed to online scheduling required for multithreaded pro-
grams where the number of threads are not known in advance.

Adaptive: This approach uses information regarding the current status of
the resources and predictions of their future status in order to make a de-
cision and the decision may change dynamically based on this status. The
adaptation of the algorithm can depend on changes in the resource, on per-
formance and also on the characteristics of the application. In [25], Othman
et al refer that the system must be able to recognize the state of resources and
propose an adaptable resource broker. An example of an adaptive schedul-
ing algorithm can be found on Huedo et al. work [17].

Table 2.1 tabulates the classification of the scheduling approaches.

Design Choice Approaches
) Dynamic

Dynamics Static
Centralized

Architecture Hierarchical
Decentralized
Immediate

Mode Batch
Approximate

Decision Making | Heuristic
Adaptive

Table 2.1: Classes of scheduling algorithms

2.2.2 Classic Scheduling Algorithms

In this section we present some of the classical scheduling algorithms in Grids
and distributed systems.

o First Come First Served: In First Come First Served algorithm, execution of
jobs happen in the order they arrive ie. the job that arrives first is executed
first [20]. This algorithm however has a major disadvantage. If a large job
arrives early, all the other jobs arriving later are stalled in the waiting queue
until the large job completes execution. This affects the response time and
throughput considerably. The situation is referred to as convoy effect.

e Round Robin: The disadvantage in the previous algorithm is overcome
by Round Robin. In this algorithm algorithm, every job is assigned a time
interval, called quantum, during which it is allowed to run [29]. Upon com-
pletion of the time quantum, if the job has not yet finished its execution, it
is put back in the waiting queue until its next turn for the quantum [20].
Since jobs execute only for a specified quantum, the problem of larger jobs
stalling jobs that arrive later is mitigated. The biggest challenge with this
algorithm is to find a suitable length for the quantum [29].

e Minimum Execution Time The Minimum Execution Time (MET) algorithm
assigns each task to the resource that performs it with the minimum execu-
tion time [22]. MET does not consider whether the resource is available or
not at the time (ready time) [14} 22, 27] and can cause severe imbalance in
load across resources [14} 22, 27]. The main advantage of the algorithm is
that it gives to a task the resource that performs it in the smallest amount of
time [22]. MET takes O(m) time to map a task to a resource [14].

e Minimum Completion Time The Minimum Completion Time (MCT) al-
gorithm assigns a task to the resource that obtains the earliest completion
time for that task [14} 22, 27]. Completion time is the time that a machine
will take to finalize the processing of the previous assigned tasks and the
planned tasks. This criteria requires knowing, for each machine, the ready
time and expected time to complete the assigned tasks. The following equa-
tion calculates the completion time of machine m in the ETC model [35, 36].

completion time[m] = ready_times[m| + Z ETC[j][m]
j€Tasks|schedule[j]=m

Where schedule is the schedule for machine m and ETC is the Estimated Time
to Compute. The objective function consists in minimizing the completion
time of all machines. It is possible that the resource with the minimum com-
pletion time does not have the minimum execution time [14} 22 27]. MCT
takes O(m) time to map a task to a resource [14].

e Min-min The Min-min algorithm has two phases [14]. In the first phase, the
minimum completion time of all the unassigned tasks are calculated [27].
In the second phase, the task with the minimum completion time among
the minimum completion time that was calculated in the first phase is cho-
sen. It is then removed from the task list and assigned to the corresponding
resource [14]. The process is repeated until all the tasks are mapped to a
resource.

e Min-max The Min-Max algorithms has two phases [18] 27] and uses the
minimum completion time (MCT) for the first phase and the minimum ex-
ecution time (MET) for the second phase as metrics. The first phase of Min-

Max is the same as the Min-min algorithm. In the second phase, the task

MET, ,))
{fastest machine} _
whose AT [selected machine] has the maximum value will be selected for map

ping [18]. The task is removed from the unassigned list, resource workload
is updated and the process is repeated until the list is empty [27]. The in-
tuition of this algorithm is that we select resources and tasks from the first
step, so that the resource can execute the task with a lower execution time
in comparison with other resources [18].

e Max-min The first phase is same as the Min-min algorithm [14) 18} 27]. In
the second phase, the task with the maximum completion time is chosen,
removed from the task list and assigned to the corresponding resource [27].
The process is repeated until all the tasks are mapped to a resource. Max-
min can be combined with Min-min in scenarios where the tasks are of dif-
tferent lengths [20].

10

e Suffrage In the Suffrage algorithm the criteria to assign a task to a resource
is the following: assign a resource to a task that would suffer the most if that
resource was not assigned to it [20,22]. In order to measure the suffrage, the
suffrage of a task is defined as the difference between its second minimum
completion time and its minimum completion time [18, 27]. These comple-
tion times are calculated considering all the resources [20]. Once a task is
assigned to a resource it is removed from the list of unassigned tasks and
the process is repeated until there are no tasks in the unassigned list.

e Largest Job on Fastest Resource - Shortest Job on Fastest Resource: This
algorithm aims at minimizing the makespan and the flow time of the tasks.

Makespan is defined as the finishing time of the last task. It is one of the most
popular optimization criteria. Small values of makespan indicate that the
scheduler is operating in an efficient way [16]. Considering the makespan
as the only critera does not imply the optimization of other objectives.

makespan = max{F;,i=1,...,N}

Where F; is the finish time of the i*" task and N is the total number of
tasks. The objective function consists in minimizing the maximum value of
makespan.

Flow time is the sum of the finishing times of tasks [27]. Flow time measures
the response time of the system.

flowtime:ZE,izl,...,N

Where F; is the finish time of the " task and N is the total number of
tasks.The objective function consists in minimizing the flow time.

The Largest Job on Fastest Resource - Shortest Job on Fastest Resource (LJFR-
SJFR) algorithm allocates the largest job on the fastest resource in order to
reduce makespan and the smallest job to fastest resource in order to reduce
the flow time. In the first phase, the algorithm is the same as the Max-min
algorithm with one difference, LJFR-SJFR does not consider all the jobs (N).
Let 0 < m < N be the number of considered jobs on the first phase. At
the end of the first phase, m jobs are assigned to m machines. In the second
phase, the remaining jobs are assigned using Min-min and Max-min meth-
ods alternatively i.e. SJFR followed by LJFR [18, 27].

Table[2.2] provides a comparison of these scheduling algorithms and also clas-
sifies them based on their properties.

11

Algorithms | Order-Based | Heuristic Mode Complexity
FCFS Yes No Immediate *
Round Robin Yes No Batch *
MET No Yes Immediate O(m)
MCT No Yes Immediate O(m)
Min-Min No Yes Batch O(s*m)
Min-Max No Yes Batch O(s*m)
Max-Min No Yes Batch O(s*m)
Suffrage No Yes Batch O(s*m)
LJFR-SJFR No Yes Batch O(s*m)

Table 2.2: Comparison of scheduling algorithms

2.2.3 Thread Scheduling

In order to schedule threads, existing techniques aim to achieve good locality
and low space bounds [23]. To achieve good locality it is necessary to ensure
that threads that share same data are scheduled on the same processor as long
as the processor is not overloaded, in order to avoid the overhead of fetching the
pages from memory. Low space requirements mean that the scheduling algo-
rithm should consume minimum amount of memory so as to scale with number
of processors and threads.

Work stealing scheduling techniques [8] achieve a good compromise between
both locality and space requirements. In this approach, every processor maintains
its own queue of threads and whenever the queue becomes empty, the processor
steals threads from the other processor queue. Threads relatively close to each
other in the computation graph are often scheduled to the same processor thus
providing a good locality. The space requirement is not the best and can be im-
proved.

Depth-first search scheduling [7] is another dynamic approach to scheduling.
As the computation progresses, the scheduler computes the task graph. A thread
is broken into a new task by detecting certain breakpoints that indicate a new
series of actions that can be performed in parallel by another processor (e.g. a
fork). A set of processors holds two queues, one for receiving tasks (input queue)
and the other for storing newly created tasks (output queue). The remaining pro-
cessors are responsible for taking tasks from the output queue and scheduling it
to the input queue of another processor. However, as the created tasks have a
relative high probability of being related with the previous computation, the lo-
cality is not as good but the space bound is much better than the work stealing
approach.

These algorithms have been widely studied and were used to introduce schedul-
ing in many parallel programming libraries and applications. Satin [24] is a Java-
based grid computing programming library that implements a work stealing ap-

12

proach by allowing a worker node to steal a method invocation from another
node. When considering applying this algorithm to a DSM system for general-
purpose computations there are a few extra considerations that should be taken.
We have to deal with heterogeneous nodes with different clocks and resources
that may or may not be available at a certain time. This implies that a system
should be dynamic and support some kind of migration of tasks to rebalance the
load [32]. Also, DSMs have a much higher communication requirements than
message-passing and, unlike parallel programming, we cannot predict easily the
kind of applications that will run and what could be the best parallelism possible.

2.3 Caft

In this section, we briefly describe Caft [21], a middleware that we extended to
include scheduling heuristics and profiling capabilities. Caft runs on top of the
Terracotta system and has the capacity to run simple multi-threaded Java appli-
cations in a transparent way, taking advantage of the extra computational and
memory resources available, however without any support for resource mon-
itoring or informed scheduling. It uses bytecode instrumentations to add basic
clustering capabilities to the multi-threaded Java application, as well as extra syn-
chronization if needed. It uses a master-worker paradigm where the master is
responsible for launching the application and the worker is responsible for exe-
cuting the threads. The main contribution of Caft is the three modes it supports,
in order to achieve a balance between transparency and flexibility.

The 3 modes of transparency supported by Caft are: Identity, Full SSI and
Serialization.

e Identity: In identity mode, it is assumed that proper synchronization exists
within the application, or at least, that the user has access to source code
for adding additional synchronization manually. All the thread fields of
the application are shared in the Terracotta DSO to ensure that the writes
are propagated and all methods are annotated with the AutolockWrite Ter-
racotta annotation, so as to convert all synchronized access to a Terracotta
transaction.

e Full SSI: In Full SSI mode, it is assumed that the application lacks proper
synchronization or that the source code is not available. Full SSI behaves
just like Identity mode but with extra instrumentations that add getters and
setters to each field, with proper synchronization, and it also synchronizes
array writes in order to allow for Terracotta transactions.

e Serialization: Serialization mode allows the user to decide which fields of
the Runnable class to be run in a Thread are meant to be clustered and have
identity preserved, and the rest are simply serialized and copied via RMI,
allowing for local thread variables that do not really need any kind of syn-
chronization.

13

Summary

In this chapter, we described the most relevant research work for the definition
of our middleware, organized according to a top-down approach. The first sec-
tion examined existing systems allowing a regular application written in Java to
become cluster-aware and run seamlessly with minimal programmer interven-
tion. Then, we described the important scheduler aspects, such as classes of algo-
rithms, scheduling algorithms and existing techniques for thread scheduling on
a MIMD architecture.

14

Architecture

This chapter describes the architecture of the middleware, implemented to allow
Terracotta to schedule threads for simple multi-threaded java applications on a
cluster. Thread scheduling is facilitated by either minimum or no modifications
to the source code of the application depending on the implementation of thread
usage. This chapter begins with an introduction to Terracotta and explains the
necessary internals needed to understand the development of the middleware.
Then, a high level view of the architecture is described along with an example
of how different components communicate with each other. All the supported
Scheduling heuristics are discussed in the following section. Finally, the profiling
capabilities of the middleware is described.

3.1 Terracotta

In this section, we introduce the purpose of Terracotta and provide a basic back-
ground of the main concepts needed to understand the RATS (Resource Aware
Thread Scheduling) middleware. With this introduction, we expect the readers
to be able to configure and cluster java applications using Terracotta. It is the un-
derlying motivation of our work and allows to provide a single system image for
any existing java application with minor or no modifications (transparent clus-
tering). Terracotta achieves this functionality by instrumenting the byte code of
java applications to inject clustered behaviour.

Terracotta is a Java infrastructure software that allows you to scale your appli-
cation for use on as many computers as needed, without expensive custom code
or databases [30]. Apart from scaling and a transparent clustering service, it also
provides availability without a database. If an application is suspended manually
or due to unforeseen reasons such as power failure, no information is lost when
the application restarts. The state of all the objects are restored as they existed in
memory before the application terminated. The main concepts of Terracotta are
outlined below:

o Architecture: Terracotta adapts a client/server architecture and the nodes
that run the application JVM are termed as Terracotta-clients or Terracotta
cluster nodes. All the Terracotta clients run the same application code and it
is injected with cluster behaviour according to the Terracotta configuration.
This instrumentation is performed at runtime when the classes are loaded

15

Terracotta Cluster

........... Terracotta
Server1

Terracotta Terracotta
Client Client

Application Application

Terracotta Terracotta

Figure 3.1: Terracotta Architecture

by each JVM and helps Terracotta achieve transparent clustering. Terracotta
server is the heart of a Terracotta cluster and performs clustered object data
management, storage, coordination and lock management. There can be
multiple Terracotta servers and they behave as a cohesive array, with one
server acting as the master and the others acting as a passive mirror in case
the master crashes.

All Terracotta clients initiates a connection with the Terracotta server on
start-up and communicate with the server for coordination. In case of a
failure or network interruption, the clients try to connect to the server only
for a configurable number of seconds during which time locks cannot be
acquired and it blocks. After this time, the client connects to the passive
mirror. Figure(3.1/shows the architecture of Terracotta along with their com-
munication model.

Roots and Virual Heap: In a single JVM, objects reside in the heap and are
addressed by local references. If an application needs to be clustered, some
objects need to be shared among the cluster and these objects are called
Distributed shared objects or Roots. Once an object becomes a root, all the
other objects reachable from the object reference becomes a clustered object.
Since these objects are shared, they cannot be referenced from the local heap,
instead they are placed on a virtual heap. Terracotta manages the virtual
heap in a manner similar to virtual memory in an operating system and

16

thus provides an illusion of an unlimited physical heap. To the application
these are just regular objects and are accessed just like accessing any other
local objects. Terracotta injects instrumentation to the application and takes
care of object management.

Terracotta server is responsible for keeping track of these objects and lazily
load them to the clients as and when needed. Upon changing the state of
a clustered object, the client notifies the server. The server upon receiving
this information stores them on the disk and sends them to other Terracotta
clients that need them. If any Terracotta client does not have a clustered
object in its local heap, the server is responsible for serving them when re-
quested. Figure shows roots, clustered objects and virtual heap in a
Terracotta cluster.

Virtual Heap

Terracotta Client N Terracotta Client

Local Heap N Local Heap

[Application] [Application]

Figure 3.2: Root, Clustered Objects and Heap

Not all objects in the application are clustered objects. The developer has
the freedom to choose the objects that need to be clustered. This can be con-
figured by declaring an object as root.

Locks: To achieve a single system image, multiple instances of the applica-
tion are launched with Terracotta behaviour. Unless an object is clustered
(declared as root), there is no coordination and they continue to run as inde-
pendent instances. Clustering makes sense only when at least a single object
is declared as root. However, when an object becomes a root, accesses to the
object needs to be coordinated and this can be achieved by Terracotta locks.

17

The operations performed after obtaining a lock, and before releasing the
lock, comprise a Terracotta transaction. Thus, locks serve as boundaries for
Terracotta transactions. Locks are also used to coordinate access to critical
sections of the code shared between threads.

There are two types of locks:

— Autolocks: This allows Terracotta to use already existing synchroniza-
tion present in methods to access shared objects. It can be understood
as providing a cluster wide meaning to locks for threads using syn-
chronized keyword. If there is no synchronized method, Terracotta
provides an auto-synchronized mode that behaves just like the method
had the keyword synchronized. Autolocks acquire a cluster wide lock
only if the object being synchronized on is a clustered object, otherwise
only a local lock is acquired. This allows for a fine grained locking.

— Named locks: Named locks are acquired only at method entry and re-
leased on method exit. The lock needs to be obtained from the Terra-
cotta server and allows only one JVM to access the method. As a result
they are more coarse grained and need to be used only when autolocks
are not possible since they affect the performance considerably.

e Instrumentation: Transparent clustering is achieved by byte code instru-
mentation. This instrumentation is done before the JVM loads the byte code
and handles behind the scene communications with server, locking and ac-
cess to virtual heap. Instrumentation is an over head, as it reduces the per-
formance during run-time (clustering) and class load time. As a result, it is
best to instrument only those classes that need clustering behaviour injected
in them. All the classes that access a shared object needs to be instrumented.

e Configuration: Since there is no API, control over what gets clustered is de-
fined explicitly by a configuration file. Roots, locks and instrumentation are
specified in a configuration file that is used by Terracotta for instrumenting
and injecting a clustered behaviour.

It is to be noted that not all objects can be clustered. Because a clustered
object resides on a virtual heap, it needs to be portable. Some classes are in-
herently not portable and one such class is the java.lang.thread class. Also,
any subclass of a non-portable class cannot be clustered. For a portable class
to be clustered, its super class if any, also needs to be instrumented.

Terracotta provides both scalability and availability as explained previously.
However, the current limitations of Terracotta our middleware tries to overcome
are:

1. Instances of the application need to be manually launched for each Terra-
cotta client.

18

2. Threads that are launched in the application never leave the home node.
It is possible to adapt the Master/Worker paradigm with a Terracotta add-
on but it implies that the programmer needs to use a special distributed
executor service, which has a different interface than the Thread class and
may imply a large refactor at source code level.

3. Leverage the support in the previous item with the ability to achieve per-
formance speed-ups and engage resources of the cluster efficiently.

By providing an abstraction for Terracotta, we avoid launching multiple in-
stances of the application. Instead the application is launched only on one Terra-

cotta client and the threads that are created in that client are scheduled on other
clients.

In the next section we present a high level architecture of our middleware that
leverages Terracotta functionality in order to schedule threads on remote clients.

3.2 RATS - Resource Aware Thread Scheduling for
JVM-level Clustering

Terracotta Cluster

Terracotta
Client (Master)

Terracotta
Client (Worker)

Application
(Code access)

RATS (Master) |« : (V'xlir)

Application
(Launch)

Terracotta

Terracotta

Figure 3.3: Architecture of RATS

RATS middleware consists of two components - A Master and Worker. The
master is responsible for running the application and launches threads remotely

19

on the worker nodes according to the specified scheduling heuristic. The worker
exposes an interface for launching threads and provides all the operations sup-
ported by java.lang.Thread class. The master, on the other hand is responsible for
launching the application with an executable jar and uses a custom class loader
that loads the class after performing necessary instrumentation to the application
code. Both the master and worker need access to the class files; master requires
the class files to launch the application and worker needs access to code to run
newly spawned threads. Figure 3.3|provides a high level view of the RATS archi-
tecture.

RATS was implemented by modifying an existing middleware called CAFT
(Cluster Abstraction for Terracotta) [21]. CAFT provides basic support for re-
mote thread spawning. RATS extends CAFT to enhance byte code instrumen-
tation along with support for multiple resource aware scheduling algortihms.
To understand how the master worker paradigm allows for remotely spawning
threads, we first provide a high level architecture of the communication between
master and worker and in the following section we explain the different schedul-
ing heuristics the system supports.

Terracotta Shared
Object

1
1
1
Coordinator :
1
1

3/ReturnNode

1/Register

2/GetNode 1/Register

Master Worker 1 Worker 2

4/LaunchThread

Figure 3.4: Master-Worker Communication

Figure (3.4 shows the communication between different components that are
required to remotely spawn a thread. As soon as the workers are launched, they
tirst register themselves with the coordinator (1/Register). The coordinator is a
singleton object and is also a Terracotta shared object. The coordinator acts as

20

an interface between the worker and master and is used for sharing information
between each other. By designing the coordinator as a shared Terracotta object,
it leverages the power of Terracotta in avoiding to launch it as an independent
component and also avoids the hassle of serializing and remotely sending over
information for coordination. After registering themselves with the coordina-
tor, the workers will start an RMI service using the Spring framework waiting
to receive any runnable object to execute. When the master is started, a custom
class loader loads the application and replaces the instantiation and any refer-
ence to java/Lang/Thread with a custom class ClusterThread that uses the RMI
interface exposed by the worker for launching threads. When the application
is launched, and a thread is instantiated, the master communicates with the co-
ordinator component to fetch the node for launching the thread (2/GetNode).
The coordinator communicates with other components responsible for schedul-
ing and returns the node (3/ReturnNode). Upon receiving the information of the
node for remotely spawning the thread, the master finally launches the thread
on the worker (4/LaunchThread). Here in this example, worker 2 is chosen for
running the thread.

Get System Info

< >
< >

Return System

Scheduler
(Singleton)

Statistics
(Singleton)

Store System
Info

Store System Store System
Info

Info

Figure 3.5: Communication between different components for making a schedul-
ing decision

Now, we explain the communication of the coordinator component with the
other components that are responsible for making scheduling decisions, and stor-

21

ing system information. The scheduler component is responsible for making
scheduling decisions based on the scheduling heuristic chosen by the user. The
statistics component is responsible for storing various information about the work-
ers including load of the workers and state information. Figure [3.5(shows the
communication and information shared between different components for main-
taining state information and making scheduling decisions. Coordinator acts as
an interface for communication between different components which may or may
not reside on the same node. The workers upon starting, monitor their memory
and CPU load using the SIGAR library [1]. SIGAR is an open source library for
gathering system information and is platform independent. Because SIGAR is
platform independent, it allows for the middleware to run on heterogenous clus-
ters. The gathered system information such as CPU load and Free memory is
sent to the coordinator which in turn stores this information using the statistics
component. As explained in the previous paragraph, the master communicates
with the coordinator when it needs to launch a thread. The coordinator delegates
this call to the scheduler which makes a decision based on the chosen scheduling
heuristic. If necessary, the scheduler communicates with the statistics component
for fetching system information about the workers. All the three components
(Coordinator, Scheduler and Statistics) are singleton objects and can only be in-
stantiated once.

This concludes the section which describes the RATS architecture and com-
munication between the core components of the middleware. In the next section
we present the different scheduling heuristics supported by the middleware.

3.3 Scheduling Techniques

This section presents the core features of the RATS middleware. When an applica-
tion launches a thread, the master is responsible for making scheduling decisions
based on the chosen heuristic. The worker can also make scheduling decisions
if a thread spawns multiple threads. The middleware also allows for profiling
an application in order to choose the best scheduling heuristic for efficient load
balancing and performance. The middleware supports two types of scheduling
and they are presented below:

3.3.1 Centralized Scheduling

In centralized scheduling, the decisions are taken entirely by a single node. Here,
the master is responsible for making every scheduling decision. Based on the
specified heuristic, the master selects a worker for remotely executing the thread
and also maintains state information. This includes information about the load of
each worker in terms of CPU cycles consumed, memory consumed and a map-
ping of threadIDs to the worker executing the thread. Before we describe the
different scheduling heuristics supported, we explain the motivation for keeping

22

the scheduling heuristics simple.

Most of the related work regarding thread scheduling on a single machine are
concerned about locality of data and space bound. Some DSM systems have also
considered locality based scheduling to minimize page thrashing. We however
settle for simple scheduling heuristic mainly because of two reasons. Firstly be-
cause most of the data used by the thread itself is placed in the Terracotta server
and fetched by the workers only when necessary. Terracotta virtual memory
manager sets the references to objects that have fallen out of the cache to null so
that they may become eligible for local garbage collection. Because clustered ob-
jects may be lazily loaded, purged objects will be transparently retrieved from the
server as references to them are traversed. It would require a complex approach
of tweaking Terracotta in order to minimize page thrashing at the risk of affecting
memory scalability. Second, it is necessary to achieve good space bound which is
possible by using a simple scheduling heuristic using as little memory as possi-
ble. As we will show in subsequent sections, in some cases workers themselves
make scheduling decisions (to further reduce latency, and load on the master)
and a lower space bound is only advantageous.

The centralized scheduling heuristics supported by the middleware are:

e Round-Robin : In round-robin scheduling, the threads launched by the
application are remotely spawned on the workers in a circular manner.
Threads are launched as and when they arrive and the scheduling is static
by nature. It does not take into account any information from the system
and the workers are chosen in the order they registered with the master.

e Resource-Load: Scheduling decisions are made depending on the load of
every worker. The supported scheduling heuristics based on load informa-
tion are:

— CPU-Load: The CPU load of every worker is monitored by the mas-
ter and the threads are remotely launched on the worker with the least
CPU load. The master maintains state information about the CPU load
of every worker. This scheduling heuristic is particularly helpful when
the multi-threaded application is CPU-intensive.

— Memory-Load: The master maintains state information about the mem-
ory of every worker and threads are launched on workers with the
highest available memory. This scheduling heuristic is particularly
helpful when the multi-threaded application is memory-intensive.

- Load-Average: Load-Average is a moving average of the number of
active processes. This scheduling heuristic aims to equalize the load

23

averages of all the machines. Load average values are not instanta-
neous and hence we use an estimation for equalizing the values.

— Accelerated-Load-Average: Accelerated-Load-Average is similar to Load-
Average but instead aims at equalizing the instantaneous changes in
load averages rather than the whole load-average. This makes it more
accelerated and responsive when compared to Load-Average schedul-
ing as it remains unaffected by the previous load of the system.

The load information of CPU and memory is updated by the worker
in one of the two ways:

1. On-demand: When an application is just about to launch a thread,
the master requests all the workers to provide their current CPU/mem-
ory load. Thus, state information is updated only on demand from
the master. This is a blocking update and it incurs an additional
overhead of round trip time delay to every worker for every thread
launch.

2. Periodic: The load information of CPU maintained by the master is
updated after a constant period. The period required to perform
updates is a configurable parameter which can be chosen by the
user. All updates are performed asynchronously and hence they
do not block remote launching of threads.

— Thread load: The master maintains state information about the num-
ber of threads each worker is currently running. The scheduling heuris-
tic makes decisions to launch threads on workers with the least number
of currently executing threads. If there are multiple workers with the
same number of threads, the choice is made in the natural order the
workers registered. This heuristic schedules in a circular fashion just
like round robin until at least one thread exits. Once a thread exits, it
ceases to behave like round robin. The state information is updated
only when a thread begins or finishes execution.

3.3.2 Hybrid Scheduling

The Middleware also supports for hybrid scheduling, where local copies of in-
formation that help scheduling decisions are maintained. The trade-off between
consistency and performance is handled optimally for distributed scheduling.
Once a thread is scheduled to a worker, depending on the application, the thread
itself may launch more internal threads. Under such a scenario, there are three
possible ways of handling the scheduling decision each with its own advantages
and disadvantages. We explain the three possible methods and the approach
opted by our middleware for handling the scheduling of internal threads.

24

e Master as Scheduler:

Once a thread is launched on a worker and if the thread launches multiple
internal threads, the worker communicates with the master and the mas-
ter makes the scheduling decisions and sends it to the worker which then
spawns the thread remotely on the selected worker. This approach obvi-
ously involves a round trip time delay and blocks the thread until it receives
the information from the master. The additional overhead incurred by the
round-trip delay and central scheduling can be overcome if the worker
makes the scheduling decision by itself. This leads us to the second ap-
proach as explained below.

o Worker as Scheduler from Global information:

Instead of delegating the responsibility of scheduling the internal threads to
the master, the worker can make its own scheduling decision. This would
require a local scheduler at each worker. Whenever an internal thread is
spawned, the worker communicates with the local scheduler which then
fetches the state information from the global information table, a Terracotta
shared object, by communicating with the coordinator. This is shown in
Figure After the local scheduler obtains the necessary information, it
makes the scheduling decision and updates the information on the global
table. This approach overcomes the problem of central scheduling but it
still involves a one-way network delay for fetching state information be-
fore the worker can make any scheduling decisions. Another issue with
this approach is that it could block the scheduling if many workers spawn
internal threads simultaneously. Although, the communication with the
global information table before any scheduling is read-only, when workers
interleave their communication, any update on the table could result in ob-
taining stale data unless their access is synchronized. The global table may
never have a real view of the system. The following example provides such
a scenario.

Consider a cluster with one master and two workers. The master spawns
2 threads remotely, one on each worker and both threads spawn multiple
internal threads. Say, threadID-1 is spawned on worker-1 and threadID-
2 on worker-2. If threadID-1 launches internal threads before threadID-2,
worker-1 communicates with the global table first and fetches state infor-
mation after which the local scheduler in worker-1 updates the global ta-
ble. If threadID-2 spawns any internal thread during this update, worker-2
will block on the global table if access is synchronized or it could result
in worker-2 obtaining stale data. This simple example shows the potential
problem of a dirty read. It could also result in a dirty write, in which case
the global table will never have a real view of the system. This approach
could incur an overhead if access is synchronized. When there are mul-
tiple workers with multiple internal threads, the overhead could be quite
substantial. The following approach tries to overcome this problem and is
explained below.

25

Coordinator

Worker Thread
Load

]]]

1 gT’x‘rae‘ad : 1 g'”"eﬁd : | gvaead :
l g Pl 22 | Sreas |
1 11 1! "
1 4 1! [1
| Local ! Local 11 Local |
| Scheduler 1! Scheduler 11 Scheduler I
| (I 1! I
1 1 ! 11 |

WORKER1 WORKER2 WORKER3

Figure 3.6: Communication for Worker to perform Scheduling from Global Infor-
mation Table

o Worker as Scheduler from Local Information (Chosen Approach):

In this approach, the master asynchronously sends the state information ta-
ble to every worker before any thread launch. The workers on receiving
the information table store a copy of the table locally. This is shown in Fig-
ure Workers use this local table for making scheduling decisions after
which they update the local table and then the global table. Once a worker
updates its local table, there are inconsistencies between the information ta-
ble with the workers. Although there are inconsistencies between the local
tables of every worker, they are lazily consistent and the final update on
the global table is always the most recent and updated value. We achieve
this by considering updates only to entries corresponding to that worker,
in both the global and the local table. Unlike the previous approach, this
restriction also prevents updates to global table from blocking.

In this context, performance and consistency are inversely proportional to
each other and we aim to improve performance by sacrificing a bit on con-
sistency. If a worker has to schedule based on thread load and makes a
choice by always selecting the worker with the least loaded node from its
local table, then it could result in every worker selecting the same node for
remotely spawning an internal thread eventually overloading the selected
node. This happens because the workers do not have a consistent view of

26

Coordinator

Worker

Thread
Load

Worker

Thread
Load

WORKER1

Figure 3.7: Communication for Worker to perform Scheduling from Local Infor-

mation Table

the information table. To prevent this problem, workers make their choice
based on weighted random distribution. More details about weighted ran-

Worker

WORKER2

Worker Thread

WORKER3

dom distribution is provided in the implementation section.

We now give an example with the aim to provide the reader a better under-
standing of how this approach prevents the need for any synchronization.
Let us consider a scenario with one master and three workers. Say, the ini-
tial global information table of thread load looked like the one shown in

Table B.1l and local tables looked like the table shown in Table All the
tables are initially the same because the workers have received a fresh and

most recent copy of the table from the master.

If now, worker-1 and worker-2 spawn an internal thread and decides us-
ing weighted random distribution to remotely launch the spawned thread

Master

Worker ID | ThreadLoad

Worker-1
Worker-2
Worker-3

2
3
2

Table 3.1: Initial Global Table of Master

27

Worker-1 Worker-2 Worker-3
Worker ID | ThreadLoad ||| Worker ID | ThreadLoad ||||| Worker ID | ThreadLoad
Worker-1 2 Worker-1 2 Worker-1 2
Worker-2 3 Worker-2 3 Worker-2 3
Worker-3 2 Worker-3 2 Worker-3 2

Table 3.2: Local tables of Workers

on worker-2 and worker-3 respectively, i.e. worker-1 remotely launches
on worker-2 and worker-2 remotely launches on worker-3, the new tables
would look like the one showed in Table [3.3] Since worker-1 launches its
internal thread on worker-2, it increments its local table entry for worker-2
to 4 and similarly worker-2 updates its local table entry for worker-3 to 3.
Upon receiving the internal threads, worker-2 and worker-3 update their
corresponding entries. The updated table is show in Table It can be no-
ticed that the local tables of all the workers are still inconsistent. However,
since every worker updates its corresponding entry after receiving a thread,
it ensures that they have an up to date view of themselves.

Worker-1 Worker-2 Worker-3
Worker ID | ThreadLoad ||| Worker ID | ThreadLoad ||| Worker ID | ThreadLoad
Worker-1 2 Worker-1 2 Worker-1 2
Worker-2 4 Worker-2 3 Worker-2 3
Worker-3 2 Worker-3 3 Worker-3 2

Table 3.3: Local tables of Workers after thread launch

Worker-1 Worker-2 Worker-3
Worker ID | ThreadLoad ||| Worker ID | ThreadLoad ||| Worker ID | ThreadLoad
Worker-1 2 Worker-1 2 Worker-1 2
Worker-2 4 Worker-2 4 Worker-2 3
Worker-3 2 Worker-3 3 Worker-3 3

Table 3.4: Local tables of Workers after receiving the threads

Master
Worker ID | ThreadLoad
Worker-1 2
Worker-2 4
Worker-3 3

Table 3.5: Final Global Table of Master

Now, each worker updates only its corresponding entry in the global table
i.e. worker-1 updates only the entry for worker-1 in the global table and so
on. Thus, it avoids the need for any synchronization in the global table as

28

each worker corresponds to only one entry. The final table of the master is
shown in Table Whenever the master spawns another thread remotely,
the local tables are updated asynchronously and all the workers have a con-
sistent view all over again. This is our adopted approach for scheduling
internal threads. Bottle necks in scheduling are round-trip latency, over-
head in thread spawning, and decision load. Decision load becomes signifi-
cant only with higher number of threads running and high rate of incoming
threads. Round-trip latency and the overhead incurred in thread spawning
always exists, but with hybrid scheduling we avoid them, without sacrific-
ing the efficiency of allocation decision significantly and at the end it pays
off.

This concludes the section which describes the various scheduling techniques
supported by the middleware and provides a comparison of the different ap-
proaches for decentralized scheduling with its relative advantages and disadvan-
tages. In the next section, we discuss about profiling an application along with
the different metrics that can be measured.

3.4 Profiling

The system also supports profiling of applications for measuring various metrics.
These metrics help the user choose the right scheduling heuristic to gain max-
imum performance. Profiling is done prior to executing the application on the
middleware. It is not required to execute the application completely, instead sam-
pling a part of the application is enough to obtain the necessary metrics. How-
ever, accuracy of the metrics are directly proportional to amount of data sampled.
Most accurate information about the metrics is obtained by executing the appli-
cation till they finish.

We have identified four important metrics that help to evaluate an applica-
tion. They are as follows:

e Dispersion of Thread Load : Threads in an application may not be uniform
and each thread may take an arbitrary time to finish its execution. Thread
imbalance is a measure of variation in the execution times of the threads.
If all the threads of an application have equal execution times, then the ap-
plication is said to be balanced. On the other extreme, if the threads have
extremely different execution times, they are said to be highly imbalanced.

To the identify the same, the execution times of every thread is profiled and
the obtained values are analyzed. We use standard deviation to identify the
spread in execution times. A lower standard deviation means that all the
values are clustered around the mean of observed data and a higher stan-
dard deviation indicates they are spread out. Because standard deviation
is not a normalized value, it is not possible to make out any meaningful

29

information from this value alone. So, a standard score for every thread is
computed and their distance from the mean is calculated. If more than fifty
percent of standard score falls within one level of standard deviation we
consider the application balanced, otherwise it is imbalanced. Since we do
not know the number of threads in an application in advance, we cannot
estimate the standard deviation of the population from a sample. So we
simply calculate the standard deviation of the observed values and com-
pute the standard score for the sample.

If we obtain a sample of execution times, the standard deviation of the sam-
ple is represented by 5, is:

where 24, 25, ..., z,, are the observed values of the sample items and 7 is the
mean value of these observations. Standard score, denoted by Z, is given

by:

If Z € [—1,1], it means Z falls within one level of standard deviation. If
more than fifty percent of Z values lie outside this range, the application is
considered as imbalanced.

We give an example of why measuring the spread alone could give incom-
plete information. Say, we have two independent sets of values for thread
inter-arrival times, [1,1,1,1,1] and [20, 20, 20, 20]. The standard deviation
for both these sets are zero, indicating they are clustered around their mean
values but this does not give any information about the range although
they are significantly different. A 2-tuple value with standard deviation
and mean provides information about both the spread and range.

Thread Inter-arrival time: A thread may be launched at any time during the
lifetime of the application. Thread dynamism is a measure of the variation
in inter arrival times between consecutive threads. If threads are launched
regularly, the application has low thread dynamism. Extreme variation in
inter arrival times imply high dynamism. The dispersion of inter-arrival
time is calculated the same way as dispersion of thread load.

If the period is high, the updates are less frequent and hence the load infor-
mation is often incorrect, thus minimizing the scheduling efficiency. On the

30

other hand, if the period is low, there are too many unnecessary updates
and it could overwhelm the workers. It is important to find an optimal
value for periodic updates. To quantify the optimal period, we define two
metrics: Scheduling efficiency (S.) and Usefulness factor (Uy).

— Scheduling efficiency: Scheduling efficiency is a measure of the effi-
ciency in scheduling. It is the highest if the scheduling decision taken is
always based on the most updated information from the other nodes,
i.e. it is inversely proportional to the period (p).

1
S, ox —
p

C
S, = — where cisa constantand p > c.
p
If ¢,,, represents the time taken by a node to monitor its own load infor-
mation and RT'T represents the round trip time to the master, then,

RTT
minimum time required to update the load information = ¢,, + —
2xt, +RIT
g = TR g e 0,1 3.1)
2%p

we want to maximize Equation to improve the scheduling effi-
ciency. S, is continuous in the interval [0,1]. By extreme value theo-
rem, there is an absolute maximum. Because it is a strictly decreasing
function, its absolute maximum is at the highest end point and not at
critical points. Maximum value of the function is when S, = 1. Thus,
to achieve maximum scheduling efficiency, period is defined as:

2%ty + RTT

=p 5

— Usefulness factor : Usefulness factor is a measure of the usefulness
of the periodic updates. It is highest when the number of updates are
equal to the number of threads launched (one update for every thread
launch). If N represents the total number of threads in an application
and n,, represents the number of updates required, then

N
U; = — wheren, > N
nu

If the last thread arrives at time ¢; and the period is p, then

7]
Ny = —
p

N
= Uy = % L U; € 0,1 (32)

31

To improve the usefulness factor, we need to maximize Equation
The function is continuous in the interval [0,1]. By extreme value the-
orem, there is an absolute maximum. Because the function is a strictly
increasing function, absolute maximum is at the highest end point and
not at critical points. Maximum value of the function is when U; = 1.
Thus to achieve maximum usefulness factor, period is defined as:

2

In almost all cases, we can use the value for maximum scheduling ef-
ficiency as the CPU cycle consumption for monitoring is considerably
low. The need to minimize usefulness factor would necessarily imply
that the worker has very low CPU available for any computation, thus
failing the purpose of scheduling a thread on a worker. It would only
make sense to improve the usefulness factor for a worker with very
little CPU to execute a memory intensive application.

In order to get an optimal value for period, we need to simultaneously max-
imize Equation [3.I]and 3.2} The optimal period is obtained when S, = Uy.

2%ty + RTT Nxp
2% p o

:>p—\/ 2% N (3.3)

Equation 3.3 represents the value for an optimal period. Depending up on
the needs of the user, one of Uy or S, can be sacrificed to obtain the required
period.

Memory Consumption: Total memory consumed for an application is both
the heap and non-heap memory. Every thread in an application has its own
stack space and it is not allocated from the heap. When a thread runs on a
remote node with shared heap memory, the actual memory consumed on
the local machine by the thread is only its stack memory. Thus, in this con-
text, memory consumption would be the stack space consumed by every
thread. Because it is hard to monitor the stack space consumed for every
thread, we instead monitor the total memory consumed by the application.
This affects the granularity of the metric but it however gives an idea of the
memory intensity of the application. We finally classify the application as:
high memory consumption or low memory consumption.

CPU Consumption: CPU consumption is a measure of the number of CPU
cycles consumed by an application. The profiler classifies the CPU con-
sumption of an application as: high CPU consumption or low CPU con-
sumption.

32

Summary

This chapter gave an introduction to Terracotta necessary for using the middle-
ware and then proceeds to provide a high level view of the architecture along
with the communication model between different components. first, the differ-
ent scheduling techniques supported by the middleware were listed. Finally, the
profiling capabilities along with the various metrics the system supports were
explained. In the next chapter, we explain the implementation details of the mid-
dleware.

33

34

Implementation

This chapter describes the implementation details of the RATS middleware. We
start by explaining the functionality of the most relevant and important classes
of the system along with their corresponding UML diagrams. We then proceed
to describe the bytecode instrumentations performed in the RATS middleware
followed by a description of some of the techniques used for scheduling.

4.1 RATS module decomposition and Structure

This section describes in further detail the module decomposition and structure
of some of the core components of the middleware. We are going to describe the
packages and classes that implement the several modules of the middleware, as
well as relevant data structures that compose the middleware. The most impor-
tant and relevant packages that will be discussed in the following subsections are
listed below:

Singleton Package

— Statistics
— Coordinator

— Scheduler

ClusterThread

Profiler

StartMaster

Worker

— StartWorker
— InformationServicelmplementation

— SystemlInfo

35

4.1.1 Singleton Package

This package consists of classes that have only one instance and is accessible by
both the master and worker through the interface provided by the Coordinator
class. The choice of singleton over static modifier is because the former is a hair
taster than the latter. The three classes in this package are Statistics, Coordinator
and Scheduler.

4.1.1.1 Statistics Class

The Statistics class is responsible for storing information about the workers and
maintaining state. It shares many data structures which are used by the Sched-
uler for making scheduling decisions. Figure 4.1/ shows the UML diagram of the
Statistics class. Some of the Important data structures of this class are:

<<Java Class>>
(© Statistics
org teracotta.caft.coordinator

o tidModes: ConcurrentHashMap<Long,String> = new ConcurrentHashMap<Long, String={)
o nodesLoad: ConcurrentHashMap<35tring Integer> = new ConcurrentHashMap<String, Integer=()
o loadModes: ConcurrentHashMap<integer Set<String>> = new ConcurrentHashMap<integer, Set<String=>>(}
= nodeToMem: ConcurrentHashMap<String Long= = new ConcurrentHashMap=<5tring, Long=()
o nodeToCPU: ConcurrentHashMap=<String, Double> = new ConcurrentHashMap<5tring, Double=()
= nodeToAvgLoad: ConcurrentHashMap<String Double> = new ConcurrentHashMap<String, Double>(}
o nodeToNumberProcessors: ConcurrentHashMap<5tring Integer= = new ConcurrentHashMap<String, Integer=(}
o nodes_rr: List<3tring> = new ArrayList<String=>()
o statusOD: ConcurrentHashMap<String Boolean> = new ConcurrentHashMap<String, Boolean={)

& Statistics()

OsgetSingIetonStatistics Object():Statistics

@ setMem(String,Long):void

@ getMem(String):long

@ getAllMem():void

@ setCPU(String, Double):void

@ setAvgload(String,Double)void

@ getAvgload():ConcurrentHashMap<5tring, Double=

@ setNumberProcessors(String, Integer):void

@ getMumberProcessors():ConcurrentHashMap<5tring Integer>
@ getCPU(String):Double

@ getAllCPU kvoid

@ getTidModes():.ConcurrentHashMap<Long,String=

@ getModesLoad():ConcurrentHashMap<3String, Integer=
© getLoadNodes().ConcurrentHashMap<integer Set<String>>
@ getModeToMem():.ConcurrentHashMap<String Long>

@ getModeToCPU():ConcurrentHashMap<String, Double=
@ updateModesLoad(String Integer):void

@ updateLoadModes(Integer,String):void

@ updateNodes_rr(String):void

© getNodes_rr(int):String

@ getModes_rrSize()int

@ decrementNodesLoad(String):void

© identifyNode(int).5tring

@ decrementLoadNodes(Integer,String):void

@ updateODStatus(String Boolean):void

@ initialise ODStatus(String):void

-ref
@ getODStatus():ConcurrentHashMap<String Boolean= ‘j re1

Figure 4.1: Statistics Class

e tidNodes: The tidNodes is a java ConcurrentHashmap with threadID as key
and worker address as value. This hashmap maintains information about
all the threads that have been instantiated on the worker nodes.

36

e nodesLoad: The nodesLoad is a java ConcurrentHashmap with string repre-
senting the worker address as key and the number of threads in each worker
as value. This map allows the scheduler to keep track of the number of
threads launched on each worker.

o nodeToMem: The nodeToMem is a java ConcurrentHashmap with string rep-
resenting the worker address as key and the available free memory in mega
bytes as value. This hashmap is updated when necessary and helps the
scheduler get information about free memory available on each worker.

o nodeToCPU: The nodeToCPU is a java ConcurrentHashmap with worker ad-
dress as key and a java Double value representing the total CPU load of
worker. This hashmap is also updated when necessary.

e nodes_rr: The nodes_rr is a java ArrayList that stores the address of every
running worker in the cluster. This list helps the scheduler keep track of all
the available workers and also in round robin scheduling.

4.1.1.2 Coordinator and Scheduler class

The Coordinator class contains a reference to both Statistics and Scheduler class.
It contains methods responsible for registering the workers for RMI service and to
set properties and delegate scheduling decisions to both these classes. The Sched-
uler class contains a reference to Statistics class for fetching system information
and also accessing data structures to make scheduling decisions. index_rr is a
java AtomicInteger that acts as an index to the list containing the worker address
in Statistics class and is used for round robin scheduling. The different methods
in this class are used for different scheduling techniques listed in the previous
chapter. The scheduling technique used is specified by enum SchedMode while
launching the master and worker. The UML diagram is presented in Figure

<< Java Class>> <<Java Class>>
®CoordinatorHolder ©Scheduler
arg.teracotta.caft.coordinator org temacotiia caft coordinator
o stats: Statistics
% LOG: Logger = LoggerFactory.getLogger(Scheduler.class)
-INSTAéCELU A & index_rr: Atomicinteger = new Atomicinteger(0)

o avgLoadMap: ConcurrentHashMap<3String,Integer> = new ConcurrentHashMap=String, Integer={)

o avgloadFlag: boolean = true
© Coordinator o prevAvgLoad: ConcurrentHashMap<String Double> = new ConcurrentHashMap<String, Double=()

t tta caft.coordinat
o A R o avgloadDiff: ConcurrentHashMap<String, Double> = new ConcurrentHashMap<String, Double>()
o stats: Statistics

o testValue:int

& CoordinatorHolder(}

<<Java Class>>

@°getSingletonStatisticsObject():Scheduler

o caftMode: CaftMode & Scheduler()
= - @ getl gloadedNode(long):String
OSE;?JEQ:L‘;[: Coardinator _sched | @ getlessAvgloadedNodeOD(long):String

@ getlessAvgLoadedNodeDiffOD(long):String
@ getlessLoadedNode(long):String

@ getlessMemMode(long):String

@ roundRobin(long):String

@ getlessCPUNode(long):String

@ schedule(long SchedMode):String ﬁ_T)
@ register{String, CaftMode):void
@ unregister(String):void

@ getNodeProperties(String):void

® getAliNodeFroperties():void @ getWeightedAvgNode(long).String

95etNodeMem(String.\ong}‘vol\d) o getlessCPUNodeCD{long):String el
@ setNodeCF'U(Slrmg‘li.)ouble}.vmd) & getlessMemNodeOD(long):String
@ setNodeAvgLoad(String, Double):void A

@ setNumberProcessors(String, Integer)void
@ instructWorker(SchedMode void
@ updateODStatus(String, Boolean)void

Figure 4.2: Coordinator and Scheduler Class

37

4.1.2 ClusterThread Class

The ClusterThread class is a common class and is present in both the master and
worker components. Byte code instrumentations carried out in the application
code for thread instantiations are replaced by this class. They contain methods
that allows for remote method invocations through the ThreadService interface
exposed in the worker. The runnableTargets field is a java Concurrent Hashmap
that maps the threadID to its runnable object and is a Terracotta shared object.
isMaster is a java boolean that identifies if the instance of the class is present in
the master or the worker and is particularly useful is identifying whether to use
distributed or centralized scheduling. The field InformationService is an inter-
face exposed by the worker using RMI for making local copies of information
for distributed scheduling. Figure |4.3|shows the UML diagram of the class Clus-
terThread.

<<Java Class>>
®ClusterThread

org.temacotta.caft.common

<=Java Enumeration=>
(3SchedMode

org.temacotta.caft.common

% LOG: Logger = LoggerFactory.getLogger(ClusterThread class)
o thread: ThreadService

ofisMaster: boolean

o information: InformationService

« stats: Statistics = Statistics.getSingletonStatisticsObject()
o runnableTargets: ConcurrentHashMap<Long,Runnable> = new ConcurrentHashMap<Long, Runnable={}
2 coordinator: Coordinator = (Coordinator) Coordinator.getinstance()
cSthreadinitNumber: Atomicinteger = new Atomicinteger(0)

o tid: long

nsthreadSeqNumber: AtomicLong = new AtomicLong(0)

E?nextThreadNum{}:i nt

%FROUNDROBIN: SchedMode
S%FMEMLOAD: SchedMode
%FMEMLOADOD: SchedMode
% CPULOAD: SchedMode

% CPULOADOD: SchedMade
% THREADLOAD: SchedMode
%F AVGLOADOD: SchedMode
Fschedmode %F AVGLOAD: SchedMode

e Teoan - % ACCELERATED_AVGLOADOD: SchedMode
= nextThreadID()long %F ACCELERATED_AVGLOAD: SchedMode

= init{ThreadGroup, Runnable, String long :void

& ClusterThread() &’ SchedMode()

OCCIusterThread(Runnable}
0°ClusterThread{ThreadGroup.Runnable}

&FClusterThread(String)

0°CIusterThread{ThreadGroup.String}
OCCIusterThread[Runnable.string}
0°ClusterThread{ThreadGroup.Runnable.String}
O°CIusterThread[ThreadGroup.Runnable.String.Iong}

@ start{):void

& clusterStop| :void

OFcIusterStop{Throwable}:void

@ interrupt():void

@ isinterrupted():boolean

@ destroy():void

OFcIusterIsAIive{}:booIean

OFcIusterSuspend{}:void

OFcIusterResume[}:void

OFcIusterSetF'riority{int}:void

o clusterGetPriority():int

@ countStackFrames()int

GFcIusterJoin[Iong}:\.roid

OFcIusterJoin[Iong.int}:void

@ clusterJoin{):void

@ toString():String

@ getld{)long

@ getState():State
ossetDefauItUncaughtExceptionHandler(UncaughtExceptionHandIer}:void
OsgetDefauItU ncaughtExceptionHandler(:UncaughtExceptionHandler
@ getUncaughtExceptionHandler():UncaughtExceptionHandler

@ setUncaughtExceptionHandler(UncaughtExceptionHandler):void

Figure 4.3: ClusterThread Class

38

4.1.3 Profiler

Figure shows some of the relevant classes of the profiler. Class AddPro-
fileThread is used to add necessary bytecode instrumentations. ProfileClass-
Loader is responsible for loading the classes in order to profile and ProcessInfo
is used to gather statistics about the resource usage by the application. The class
ThreadExit is used to identify when a thread exits and perform calculations so as
to identify the dispersion of thread-workload and thread inter-arrival times.

<<Java Class>>

@ ProfileThreadClass
org.temacotta.profie

<<Java Class>>

@ AddProfileThread
org.temacotia.profie

o className: String

o autolns: boolean

o isEnum: boolean = false

o isinterface: boolean = false

SnFm:nSuppunedE:\asses: Set<String> = new HashSel<String>()

% LOG: Logger= LoggerFactory.getLogger(ProfileThreadClass.class)
ODF'mﬁleTmeadC\ass{ClasEV\swmr‘bcmean)

@ visit(int int, String, String String, String[J):void

@ visitMethod(int, String, String, String, String[]):MethodVisitor

= methodExitAdapter():void

*FLOG: Logger = LoggerFactory getl oggeriAddProfileThread class)
4 name: String

o timeVarStart: Label = new Label()

o timeVarEnd: Label = new Label()

& timeLocal: int

& AddProfileThread(MethodVisitor int String, String)
< onMethadEnter(}void

@ visitFieldinsn(int, String,String String):void

@ visifTypelnsn({int String) void

@ visitMethodInsn(int,String, String, String) void

< onMethodExit(int):void

@ visitMaxs(intintkvoid

<<Java Class>>
@ ProfileClassLoader

org temacetia profile
“f CAFT_LOADER_NAME: String = "arg terracotta profile”
ustntalor\ginalﬁwemdeSize‘ int=0
nsmtaIInEtrumentedByteoodeS\ze‘ int=0
o jarFile: JarFile
o autolns: boolean

<<Java Class>>
G Profile

arg terracotia profie
5FLOG: Logger = LoggerFactory.getLoggeriProfile class)
& Prafile()
& parseOptions(String[]:Options
& main(String[]):void

3 classes: ConcurrentHashMap<String,Class<?»> = new ConcurrentHashMap<String, Class<?>>()
“F LOG: Logger = LoggerFactory.getLogger(CaftClassLoader.class)
ODF'roﬁleclassLoader{JarFi\e‘Dnnlean)

@ loadClass(String):Class<?>

<<Java Class>>
®Processinfo

<<Java Class>>

@ Ooptions

org.terracotia profile
4 jarFile: String

@ autolns: boolean
4 args: List<String>

E\cDDIIOHE[}

org terracotia.profile

cisigar: Sigar = new Sigar()
<*totalSystemMemory: long

CCF'rncesslnfn{}

osgetlnformaho nsAboutCPU()void
osgetlnformaho nsAboutMemory():void
OSQElInformaho nsAboutFileSystem():void

@ findClass(String).Class<?>

@ findResource(String):URL

@ __tc_getClassLoaderName():String

@ __tc_setClassLoaderName(String):void

<<Java Class>>

®ThreadExit

osgetTutalFreeSyslemMe mory(}long
osgetTutaISystemMemory[}:long
@°getCPULoad():Double

@ run()void

arg tenacotia profie
StimeTaken: List<Long> = new ArrayList<Long>()
SrunnableToTime: ConcurrentHashMap<Runnable Long> = new ConcurrentHashMap<Runnable, Long=>()
cfthreadCount: int = 0
timeSum: lang =0
eurrentMean: double =0
variance: double =0
standardDev: double = 0

& ThreadExit()

@ exitfRunnable)void

& exit(String):void

& methodEntered|Objectlong)void
& methodExited(Object long):void
efcompute()void

s identifyimbalance()void

Figure 4.4: Profiler Class

4.14 Worker Package

The worker package is represented in the UML diagram shown in Figure The
StartWorker class contains the main class and starts the RMI ThreadService and
InformationService and waits for requests from master. It also starts the moni-
toring process by instantiating the SystemlInfo class. SystemlInfo class uses the
SIGAR library for gathering the system information about memory and CPU.
The LocalScheduler class performs distributed scheduling using the local copy of
information the worker received through the InformationServiceImpl class from
the master. The worker takes certain command line arguments when started and

39

it is parsed using the args4j framework. The available options are:

<<Java Class>>
(© StartWorker

org.temacotta.caft.worker

<<Java Class>>
@®LocalScheduler

org.temacotta.caft.worker

o cluster: DsoCluster

5% LOG: Logger = LoggerFactory.getLogger(StartWorker.class)

o args: String[]

& coordinator: Coordinator = (Coordinator) Coordinator.getinstance()

cflocalNodesLoad: ConcurrentHashMap=String,Integer> = new ConcurrentHashMap=<5String, Integer={}
oflocalLoadModes: ConcurrentHashMap=<Integer, Set<String=> = new ConcurrentHashMap<Integer, Set<String=>(}
s°nodeToMem: ConcurrentHashMap<String,Long> = new ConcurrentHashMap<String, Long>()

s nodeToCPU: ConcurrentHashMap<String, Double> = new ConcurrentHashMap<String, Double={}

& StartWorker(String[])

@ nodeJoined(DsoClusterEvent)void

@ nodeLeft{DsoClusterEvent)void

@ operationsDisabled(DsoClusterEvent)void
@ operationsEnabled(DsoClusterEvent):void
@ run{)wvoid

E?parseOptions{String[l}:Options

@’ main(String[]):void

& LocalScheduler()

oscheduleLocally(long):String

Osupdatelnfo{Co ncurrentHashMap<String,Integer= ConcurrentHashMap<Integer, Set<String=>}:void
Osupdate NodesLoad(String Integer):void

o'getNodesLoad(String):Integer

<<Java Class>>
@ InformationServicelmpl

org.temacotta.caft.worker

;9 ~5_.r5temlnfo\?..1

<<Java Class>>
(©Options

org.teracotta.caft.worker

<<Java Class>>
(© Systeminfo

org.teracotta.caft.worker

ofeoordinator: Coordinator = Coordinator.getinstance(}
osigar: Sigar = new Sigar()

o caftMode: CaftMode
4 jarFile: String
& hostname: String

nssigar: Sigar = new Sigar()
feoordinator: Coardinator
o’nodelD: String

& port: int

o autolns: boolean gg‘—"siem:”;o”st_
steminfo(Strin

& Options() g (String)

OsgetlnformationsAbo utCPU{):void
OsgetlnformationsAbo utMemory():void
OsgetlnformationsAbo utFileSystem():void
@getTotalFreeSystemMemory()long
@'getCPULoad():Double
ogetLoadAvg():Double

@ run{}:void

oclnformationSen.ricelmpI{}

@ addNodesLoadDetails(ConcurrentHashMap<String Integer= ConcurrentHashMap<Integer Set<String=>void
@ addMemLoad(ConcurrentHashMap<String Long=>}void

@ addCPULoad(ConcurrentHashMap=<String, Double>}void

@ instruct(SchedMode):void

@ updateOD()void

o getTotalFreeSystemMemory()long

@'getCPULoad():Double

Figure 4.5: Worker Package

e —mode: Chooses the sheduler mode for distributed scheduling.

e —jar: The jar file of the application.

e —hostname: The hostname of the worker.

e —port: The port in which the worker will wait for connection from the mas-

ter.

e —autoins: Instructs the middleware to add auto instrumentation for Terra-
cotta configuration and avoids having to configure it in the .xml file.

4.1.5 StartMaster

The StartMaster class is represented by a UML diagram in Figure This class
contains the main method for starting the Master and is responsible for loading
the application using a custom class loader. It requires a few parameters and
these are specified as arguments. Like the worker, the arguments are parsed us-
ing the args4j framework. The arguments are listed below:

e —jar: The jar file of the application.

40

e —schedmode: Chooses the sheduler mode for centralised scheduling.

e —autoins: Instructs the middleware to add auto instrumentation for Terra-
cotta configuration and avoids having to configure it in the .xml file.

e —args: The arguments required for the application to launch.

<<Java Class>> << Java Class>>
(9 StartMaster (®Options
org.tamracotta.caft. master arg.temacotta. caft.master

% LOG: Logger = LoggerFactory.getLogger(StartMaster.class) 4 jarFile: String
ofschedMode: SchedMode B © autoins: boolean
& StartMaster() [} schedMode: SahedMode
gfparseOptions(String[l:Options 2 args: List<String>
c;smaintstring[l}:void BDODNOHE[}

Figure 4.6: StartMaster Class

4.2 Bytecode Instrumentations

In this section we explain the bytecode instrumentations performed in the ap-
plication code to provide transparency and achieve additional functionality for
RATS. The ASM framework [9] is used for performing byte code transformations.
Transparency is provided by byte code instrumentations already existing in the
caft middleware. Additional transformations are required in the application byte
code for both the scheduler and profiler to:

o Identify Thread Exit:

Both stop() and destroy() methods of the java thread class are deprecated
and the threads in the application code may never call these methods dur-
ing exit. Thus, it is required to add additional code to identify when a thread
completes execution. Thread exit needs to be identified when scheduling is
based on the thread load of the worker. The data structures maintaining
state information about the number of currently executing threads should
be updated upon thread exit.

To illustrate how a thread exit is identified, we present and explain the fol-
lowing bytecode:

Listing 4.1: Identify Thread Exit

1 | new org/terracotta/rats/common/ThreadExit //create a new
object instance of the ThreadExit class and push it on
the stack

41

(6Y)

dup //duplicate the top value on stack

invokespecial org/terracotta/rats/common/ThreadExit.<init
>()V //invoke the constructor of the ThreadExit class

invokevirtual org/terracotta/rats/common/ThreadExit.exit()V
// Invoke the exit () method the the ThreadExit class

We use the ASM framework to step through the byte code and identify the
run() method of the thread. At the end of every run() method, we make a
call to the method exit() of our custom class ThreadExit. This behaves like
a notification upon every thread exit. The bytecode shown in Listing
is responsible for creating an instance of the class ThreadEXxit and invoking
the exit() method of the custom class. Line 2 duplicates the top value of
the operand stack and pushes it on to the stack. The reference to the object
is duplicated as the next instruction consumes the value on the top of the
stack. In this particular case the bytecode would work even if the reference
is not duplicated as we do not need the reference for later use. Duplicating
is helpful to extend the middleware with new instrumentations that require
a reference to the ThreadEXxit class. Line 3 invokes the constructor of the
class and Line 4 finally calls the exit method of the custom class. The exit()
method then updates the state information table as required.

Remote Execution of Threads:

Scheduler needs to decide if a thread needs to be launched locally or re-
motely before scheduling. Thus, it is necessary to be able to capture the
thread and replace it with a custom class so as to enable either remote or
local execution of the threads. Listing 4.2/ shows an example bytecode for
executing a thread on a Runnable object.

Listing 4.2: Bytecode for launching a thread on a Runnable object

new java/lang/Thread //create a new object instance of the
Thread class and push it on the stack

dup //duplicate the top wvalue on stack

aload 0 //Push the object reference corresponding to the
Runnable target

invokespecial java/lang/Thread.<init >(Ljava/lang/Runnable;)V
//invoke the constructor of the Thread class that
receives a Runnable target from the top of stack

astore 1 //Store the new object on index 1 of the local

variable array

42

6

aload 1 //Push on to the stack the object reference
corresponding to the instance of Thread class
invokevirtual java/lang/Thread.start()V //Begin thread

execution

In order to capture the runnable object and make any decision before schedul-
ing, we modify this bytecode to the one shown in Listing

Listing 4.3: Bytecode for capturing Runnable object upon thread launch

new org/terracotta/rats/common/CustomThread //create a new
object instance of the CustomThread class and push it on
the stack

dup //duplicate the top wvalue on stack

aload 0 //Push the object reference corresponding to the
Runnable target

invokespecial org/terracotta/rats/common/CustomThread.<init
>(Ljava/lang/Runnable;)V //invoke the constructor of the
CustomThread class that receives a Runnable target from
the top of stack

astore 1 //Store the new object on index 1 of the local
variable array

aload 1 //Push on to the stack the object reference
corresponding to the instance of CustomThread class

invokevirtual org/terracotta/rats/common/CustomThread. start
()V //Invoke start () method of the CustomThread class

The new bytecode replaces every reference of the Thread class to a Cus-
tomThread class. The constructor of the CustomThread class stores the ref-
erence to the Runnable object for the purpose of monitoring. The start()
method of the CustomThread class takes necessary decisions if any before
launching the thread and finally spawns a new thread with the captured
Runnable object.

Compute thread execution time:

The time taken for execution of a thread is required for the profiler to mea-
sure thread imbalance. The run() method of the application code is mod-
ified to compute the execution time of a thread. This can be achieved by

43

computing the system time difference between the beginning and the end
of the run() method. It is required to create a local variable to store the sys-
tem time at the beginning so as to compute the difference at the end. But
creating a local variable within a method would require recomputing the
frames.

By default the local variable array of a frame contains a reference to the class
object at index zero, followed by the parameters of the method. The local
variables declared within the method take up the next indices. If we want
to create a local variable within the method, it is necessary to store the vari-
able in a index that will not overwrite any of the existing values in the array.
The ASM framework provides a method that allows to obtain an index in
the local variable array by recomputing the entire frame. Once a new index
is obtained for the local variable, it can be stored for future reference.

Listing 4.4: On entering the run() method

invokestatic java/lang/System.currentTimeMillis ()] //Invoke
the static method of the System class to obtain the
current time in milliseconds

Istore 2 // Store current system time in the newly obtained
index (say, 2) of the local variable array

new org/terracotta/profile/ThreadExit //create a new object
instance of the ThreadExit class and push it on the
stack

dup //duplicate the top wvalue on stack

invokespecial org/terracotta/profile/ThreadExit.<init >()V //
invoke the constructor of the ThreadExit class

lload 2 //push on to the stack the system time

invokevirtual org/terracotta/profile/ThreadExit.
methodEntered (J)V //Invoke the methodEntered () method

with system time as parameter

Listing {4.4) shows the bytecode instrumentation added at the beginning of
the run() method. This example assumes that the obtained index for the

new local variable is two. The value returned by java/lang/System.currentTimeMillis()

method is stored at the new index. Also, the bytecode invokes a method of
the custom class ThreadExit with the start time as a parameter. This start
time is used by the profiler to measure inter-arrival time between threads in
order to measure thread dynamism.

44

Listing 4.5: On exiting the run() method

1 |new org/terracotta/profile/ThreadExit //create a new object

instance of the ThreadExit class and push it on the

stack

2 |dup //duplicate the top value on stack

invokespecial org/terracotta/profile/ThreadExit.<init >()V //
invoke the constructor of the ThreadExit class

4 |invokestatic java/lang/System.currentTimeMillis ()] //Invoke

the static method of the System class to obtain the

current time in milliseconds

5 |1load 2 //Push on to the stack the starting time of the

thread

6 |lsub // subtract the current time with starting time and

push on stack

7 |invokevirtual org/terracotta/profile/ThreadExit.methodExited

(J)V // invoke the methodExited () method of the

ThreadExit class with the execution time as parameter

At the end of the run() method, the bytecode shown in Listing is in-
serted. This bytecode computes the execution time of the thread and passes
this value by invoking a method of the ThreadExit class. This value is later
used for measuring the thread imbalance in the application.

This concludes the instrumentation section. Here we provided examples of byte-
code to explain the instrumentations performed in the application code. These in-
strumentations are necessary for both the scheduler and profiler to add required
functionality to the middleware.

4.3 Scheduling

In this section we discuss the implementation details of the scheduling heuris-
tics. The load information of CPU and memory of the system is obtained using
the library called SIGAR [1]. The information about load averages in Linux are
obtained from the command line utility top. The current implementation does
not support windows for getting information about the processor queues.

SIGAR runs on all the worker machines and monitors load based on the in-
struction provided by the master. When the master begins execution, it instructs
the worker, through an interface exposed by the worker using the Spring frame-
work [3], about the type of monitoring the worker needs to perform. The in-

45

@KW N -

Q1 =

struction can either be on-demand monitoring or periodic depending upon the
scheduling heuristic used. If the scheduling heuristic is on-demand, the master
requests the worker to update its load information in the statistics object. The
master waits for a notification from the worker after it finishes the update and
uses this information to schedule the threads. In case of scheduling based on
periodic updates the worker constantly monitors and updates the load after spe-
cific periods and a thread is launched based on the most recent load of worker
the master has seen.

CPU-load and Mem-load scheduling can be done based on the values ob-
tained from SIGAR as these values are instantaneous. However, the values of
load average obtained from top are not instantaneous. They are measured in
three ranges as a moving average over one minute, five minute and fifteen min-
utes. In all Linux kernels the time taken for updating the moving average is five
seconds. If multiple threads are launched instantaneously within a five second
window, it is possible that all the threads are launched on the worker with a
lower load average. There are two approaches that can circumvent this problem:
Recompile the Linux kernel and modify the time taken for computing the mov-
ing average. In the Linux kernel file sched.h, the macro LOAD_FREQ defines the
frequency for updating the load calculation time. By default it is set at 5HZ. 5HZ
is 500 ticks and each tick corresponds to 10 milliseconds. This means that 5SHZ
corresponds to 5 seconds. By modifying the value of this macro it is possible to
change the frequency of update. The following code segment shows the macro
LOAD_FREQ and CALC_LOAD in the Linux kernel code, defined in sched.h.

#define FSHIFT 11 // nr of bits of precision
#define FIXED 1 (1<<FSHIFT) // 1.0 as fixed-point
#define LOAD_FREQ (5xHZ+1) // 5 sec intervals

#define CALC_LOAD (load,exp,n) \
load x= exp; \
load += n* (FIXED_l-exp); \
load >>= FSHIFT;

However, in our implementation we resort to estimation based on the current
values of load average.

Listing 4.6: Scheduling heuristic based on load average

if (loadAvgMonitor == true) {
for each worker:
if (avgload< NumberProcessors)
avgLoadMap . put (nodelD, NumberProcessors —
avgLoad)

46

10
11
12

o]
)

14

U W N e

10

else

avglLoadMap . put (nodelD, 1)

loadAvgMonitor=false
}
selectedNode = NodelD with maximum value in avgLoadMap
avgloadMap . put (selectedNode , value —1)
if (all values in avglLoadMap.valueSet == 0){
loadAvgMonitor = true

In the pseudocode listed in Listing [4.6] the number of threads to be scheduled
on a worker is inversely proportional to the load average. If the load average
is less than the number of processors, only so many threads are launched to fill
up the processor queue to the number of processors in the worker. Any further
load monitoring is performed only after all these threads are scheduled. This
overcomes the problem of multiple threads being scheduled on the same worker
when they arrive instantaneously.

Listing [£.7] provides the pseudo code for scheduling heuristic accelerated-
load-average. This heuristic is not very conservative and takes into account in-
stantaneous changes in load average. New load average values are monitored
immediately after scheduling the minimum number of threads possible based on
the previous load average. This is achieved by remapping the lowest value in
the avgLoadMap to 1. This will allow for scheduling the minimum number of
threads possible while keeping the estimation correct and at the same time aid-
ing in using a recent value of load average. Similarly, difference in load average
is also inversely proportional to the number of threads to be scheduled. In order
to achieve scheduling at least one thread on any worker, the highest difference is
remapped to 1 and others are remapped accordingly.

Listing 4.7: Scheduling heuristic based on accelerated load average

if (loadAvgMonitor == true) {

if (I first run){
for each worker:

avgLoadDiffMap . put(nodelD, AvgloadMap — prevAvgLoadMap)
}
if (first run Il all values in avgLoadDiffMap.valueSet == 0){

for each worker:

if (avgLoad< NumberProcessors)
avgLoadMap . put (nodelD, NumberProcessors
— avgLoad)

47

11
12

b}
o)

14
15
16
17
18

19
20
21
22
23

24
pl;
26
27
28
29

Q1

O

else
avgLoadMap . put (nodelD, 1)
loadAvgMonitor=false
}
//remapping maximum value in loadAvgDiff to 1
if (all values in avgLoadDiffMap.valueSet != 0){
for each worker:
avgLoadMap . put (nodelD, loadAvgDiff.currentvalue
/max(load AvgDiff.valueSet))
}
Copy values avgLoad to prevAvgLoadMap
// remapping minimum value in avgLoadMap to 1
for each worker:
avgLoadMap . put (nodelD, avgLoadMap.currentvalue/ min(
avglLoadMap . valueSet))
}
selectedNode = NodelD with maximum value in avgLoadMap
avgloadMap . put (selectedNode , value—1)
if (all values in avglLoadMap.valueSet == 0) {
loadAvgMonitor = true

4.3.1 Local Scheduling

In order for the workers to perform local scheduling based on the information
about number of threads in its local table, they use weighted random distribution.
If all the workers simply choose a worker with the lowest number of threads, for
scheduling, it can end up in a situation where a particular worker might get over-
loaded as the decision is local.

To perform weighted random distribution, each worker assigns a weight for
all the other workers based on the information in its local table. The number of
threads currently executing on any worker is inversely proportional to the weight
assigned. After weights are assigned, the worker that needs to schedule a thread
generates a uniform random number between zero to the total weight of all the
workers in its table. Based on the generated random number, all the workers are
looped and the total score of weights is maintained. Whenever the total score ex-
ceeds the random number that is generated, the current worker is our weighted
random choice. This method consumes less memory as the set of weights are not
expanded in memory.

A worker can also select itself for scheduling a thread. It is necessary to en-
sure that every worker has a correct view of the number of threads it is executing.

48

Since any worker up on receiving a thread, updates its local table, care is taken to
ensure that scheduling a thread on itself does not update its current load twice.
Eventually the tables need to be consistent and this can be ensured only when the
master gets an updated view from all the workers. Each worker, apart from main-
taining the weights in its local table, also maintains the difference in the number
of threads it is executing as seen in global table and the local table. Whenever
the difference exceeds a threshold (current implementation threshold of 1), the
worker updates the global table.

Summary

This chapter began by explaining the functionality of the most relevant and im-
portant classes in the system along with their corresponding UML diagrams. Fi-
nally, we provided the implementation details of some of the important modifica-
tions necessary to perform byte code instrumentation, profiling and scheduling.

49

50

Evaluation

In this chapter, we describe the methodology used for evaluating the middleware
and present the results obtained. We used up to three machines in a cluster, with
Intel(R) Core(TM)2 Quad processors (with four cores each) and 8GB of RAM, run-
ning Linux Ubuntu 9.04, with Java version 1.6, Terracotta Open Source edition,
version 3.3.0, and three multi-threaded Java applications that have the potential
to scale well with multiple processors, taking advantage of the extra resources
available in terms of computational power and memory.

This chapter is organised as follows. The first section evaluates the correct-
ness to ensure that the semantics of the application is not broken when executed
on the middleware. In the next section, we measure the overhead incurred by
the middleware in the form of time taken to launch a thread and increase in the
size of bytecode caused by instrumentation. The following section evaluates the
speed-up achieved when executing an application on top of the middleware. The
next section compares the different scheduling algorithms and classifies these al-
gorithms based on application behavior.

5.1 Correctness

It is important to ensure that executing the application on top of the middleware
does not break the semantics and functionality of the application. Correctness is
measured for three multi-threaded applications: MD5 hashing, web crawler and
Fibonacci number generation using Binet’s Fibonacci number formula. In order
to verify the correctness, each of these applications are executed on a JVM and on
the middleware.

In MD5 hashing, multiple messages are hashed using MD5. Their correspond-
ing hashes are compared for equality when executed on a JVM and when exe-
cuted on top of the middleware. Table |5.1| provides a comparison of results ob-
tained from MD5 hashing. Fibonacci number generation is verified by comparing
the equality of the fibonacci sequences generated on a single system and on top
of the middleware. Table 5.2 provides a comparison of the fibonacci sequences
generated. Both of these applications are embarrassingly parallel and share no
data among threads.

51

MD5 Hashing JVM | RATS
Number of Messages | 50 50

Number of threads 2 2
Hash match 100% match
Number of Messages | 200 | 200
Number of threads 2 2
Hash match 100% match
Number of Messages | 400 | 400
Number of threads 5 5
Hash match 100% match

Table 5.1: Correctness verification of MD5 hashing

Fibonacci generation | JVM | RATS
Number of sequences | 10 10
Number of threads 1 1

Sequence match 100% match

Number of Sequences | 300 | 300

Number of threads 2 2
Hash match 100% match
Number of Messages | 800 | 800
Number of threads 4 4
Hash match 100% match

Table 5.2: Correctness verification of Fibonacci number generation

Web crawler JVM | RATS
Number of threads 2 2
Depth 1 1

Links match 100% match
Number of threads 4 4
Depth 2 2

Links match 100% match
Number of threads 5 5
Depth 3 3

Links match 100% match

Table 5.3: Correctness verification of Web Crawler

It is necessary to evaluate correctness when threads share data and require
synchronization. A multi-threaded web crawler is used for an application requir-
ing synchronization between threads. The web crawler ensures that the same
link is never crawled twice. So, it maintains a list of visited URLs and a link is

52

crawled only if it is not present in the list. It also maintains two URL queues for
storing links obtained at different depths. Threads need to synchronize among
themselves before pushing and popping elements from the queue. The web
crawler is executed on a single system and on top of the middleware. The web-
site www.ist.utl.pt was crawled with different number of threads and multiple
depth levels. Table compares the results obtained. Also, the webcrawler uses
hybrid scheduling as threads spawn multiple threads. A thread is responsible for
populating the queues and when it finishes, it spawns multiple internal threads
to crawl the links in the queue. These results indicate that the middleware al-
lows for remote launching of threads without breaking the functionality of the
application.

5.2 Overhead Incurred

Executing java applications on the middleware incurs an additional overhead of
increase in the size of bytecode and delay in launching a thread. Depending on
the scheduling algorithm used, there may be additional overhead in updating
load information. Periodic updates of load information are asynchronous and
it is difficult to directly measure the overhead incurred. For this reason and to
maintain generality, this section measures the overhead involved in launching a
thread and the increase in the size of bytecode.

Bytecode Instrumentation Overhead

Original size After Instrumentation Percentage Increase

3367 bytes 3539 bytes 5.04 %

Thread Launch overhead

No. of threads | Avg. time to launch a thread | Total overhead | Percentage Increase
2 0.39 secs 0.78 secs -
4 0.39 secs 1.58 secs 100.5 %
8 0.39 secs 3.16 secs 100 %
16 0.39 secs 6.27 secs 98.4 %

Table 5.4: Overhead for MD5 Hashing

It can be observed from Table 5.4 that the size of bytecodes have increased be-
cause of additional instrumentations to provision transparency, remote launching
of threads, monitoring runnable objects and capturing thread execution times.
This increase in the size of bytecode does not consider the instrumentations done
by Terracotta. As the number of threads in the MD5 hashing application doubles,
the total overhead incurred for launching threads also doubles. The overhead is
considerable and indicates that the middleware is not suited for applications that
are compute non intensive.

From Table it can be seen that the percentage increase in the size of byte
code added by the middleware is only 6.8%. However, the average time taken to

53

Bytecode Instrumentation Overhead

Original size

After Instrumentation

Percentage Increase

6275 bytes 6702 bytes 6.8 %
Thread Launch overhead
No. of threads | Avg. time to launch a thread | Total overhead | Percentage Increase
2 0.52 secs 1.04 secs -
4 0.51 secs 2.04 secs 96.15 %
8 0.51 secs 4.08 secs 100 %
16 0.51 secs 8.16 secs 100 %

Table 5.5: Overhead for Fibonacci generation

launch a thread for fibonacci generation is different from the average time taken
to launch a thread for MD5 hashing. Apart from scheduling decision and RTT, it
also involves the time taken to store the runnable object in the virtual heap. As
the size of the runnable object increases, the overhead also increases. The total
time taken to launch threads doubles as the number of threads double. In order
to achieve any gain in performance, the gain obtained must be greater than the
overhead incurred. Otherwise, the middleware deteriorates the performance of
the application. The middleware is thus suited for compute intensive applica-

tions.

5.3 Execution Time

5.3.1 Fibonacci number generation

36

34+

32

Execution time in seconds

24 |

22 |

20

Execution time of Fibonacci series upto 1200

30 |

28 |

26 |-

T
Jvm
RATS [|

o < ©

Number of Threads

16

Figure 5.1: Execution time for Fibonacci number generation.

54

Fibonacci number generation is configured to compute the first 1200 numbers
of the Fibonacci sequence, with number of threads directly proportional to the
number of processors available. The time taken with two, four, eight and six-
teen threads is measured. The application is tested in a standard local JVM, for
comparison with the distributed solution. The distributed solution executes the
application with two workers. Figure 5.1|compares the execution times for differ-
ent number of threads.

It can be seen from the figure that the middleware decreases the performance
of the application. Fibonacci number generation is not compute intensive, hence
the overhead incurred in launching the threads and gathering the results, ex-
ceeds the gain obtained in execution time. As the number of threads double, the
execution time taken using the middleware increases drastically. Since the appli-
cation is evaluated for 1200 numbers, the load of the application remains a con-
stant. This means that, increasing the number of threads decreases the load per
thread. As the load per thread decreases, the gain obtained by distributed execu-
tion, decreases, but the overhead incurred in launching threads increases. Hence,
distributed execution of the application deteriorates the performance, when the
number of threads increase for a constant load. Fibonacci is highly recursive and
it ends up allocating pages for stacks, which on a fast processor leaves a lot of
available CPU for other threads. There is a lot of context switching for very small
functions.

5.3.2 Web Crawler

For measuring the performance of the web crawler, it was tested under different
scenarios. The number of websites crawled were increased for each evaluation.
Number of threads for crawling within a single website is maintained as a con-
stant at three. These three threads require synchronization among themselves.
Every website is crawled up to a depth of two. Execution time is measured for
crawling ten, twenty and thirty websites. Since the difference in execution times
vary extremely, results obtained for crawling ten websites is plotted separately
and is shown in Figure

As the number of threads increase within a single JVM, the thread idle time in-
creases, because of contention for the available processors. Any gain is achieved
by minimizing this idle time. By distributing the threads on multiple workers,
the idle time is greatly reduced as the number of threads per processor decreases.
From Figure it can be seen that the time taken to crawl ten websites until
depth two is only three seconds. The overhead incurred in launching ten threads
alone exceeds three seconds. Thus, any gain obtained in minimising the idle time
is not visible. But as the size and the number of websites increase, the time taken
to crawl them also increases. Figure[5.3]shows the improvement gained in perfor-
mance when executed using the middleware. As the number of workers increase,
the execution time also decreases. These results indicate that the distributed so-

55

Execution time of Webcrawler upto depth 2

Execution time of Webcrawler for 2 levels of Depth T T
5 T

N 1200 - M]

RATS - 2 Workers [RATS - 2 Workers [
RATS - 3 Workers [

RATS - 3 Workers [N

1000

800

600

Execution time in seconds
Execution time in seconds

=)

Number of Websites Crawled Number of Threads

Figure 52: Execution time for web Figure 5.3: Execution time for web
crawler - 10 websites. crawler - 20 and 30 websites.

lution scales linearly.

5.3.3 MD5 Hashing

For measuring the execution time of MD5 hashing, the number of messages to
be hashed by each thread is kept at a constant of five hundred messages. The
performance is compared by executing the application on a single machine and
using the middleware. Two and three workers are used for the purpose of com-
parison and time taken with five and ten threads is measured. Figure 5.4/ shows
the results obtained.

Execution time of MD5 hashing
450 T T

300
Jvm 3

RATS - 2 Workers [

250 IF RATS- 3 Workers [

200

Execution time in seconds

150 -

100

50

Number of Threads

Figure 5.4: Execution time for MD5 hashing

56

MD?5 hashing is a CPU-intensive process. As can be seen in Figure when
the number of workers increase, the time taken to execute the application de-
creases. This is because the available CPU increases and hence a speed-up is
obtained.

5.4 Comparison of Scheduling Heuristic

In this section, the different scheduling algorithms are evaluated with different
application behaviour. All the experiments are carried out with MD5 hashing
and the application behaviour is modified in order to be able to classify applica-
tions based on its thread characteristics. To understand how different scheduling
algorithms behave with different application characteristics, thread behaviour is
modified in an ordered fashion. The application is then profiled using the pro-
filer in order to test the correctness of the profiler. The characteristics varied for
the application are: work load of each thread and thread inter-arrival times. The
following subsections were evaluated on a dedicated cluster where there are no
other workloads with a period equal to provide maximum scheduling efficiency.

5.4.1 Low dispersion of thread workload and low inter-arrival
times

We begin the experiment by letting each thread compute a similar number of
messages. The dispersion of thread workload is very low, as they perform simi-
lar amount of work. The threads are launched one after another with very little
delay, i.e. they arrive almost instantaneously.

e High thread workload

The dispersion of thread workload is low and clustered around a high range
of values. In order to evaluate the performance under extreme scenarios, the
workload needs to be clustered around extreme high values. Any workload
that cannot finish its execution before all the threads are scheduled is con-
sidered an extreme high value. For this experiment the chosen workload is
between 500- 550 messages. The results obtained are shown in Figure

It can be seen from the results that round-robin takes the least time to fin-
ish execution and the scheduling heuristic thread-load has a comparable
performance. Round robin performs better because the threads have equal
workload and are equally spaced with their arrival times. The scheduling
heuristic thread-load schedules jobs exactly in the same manner as round-
robin but since it involves a slight overhead at maintaining state informa-
tion, round-robin performs better in this case. CPU load - on demand incurs
the overhead of obtaining the load information from every worker before
making a decision and does not perform as good as round-robin. On the

57

Comparison of different scheduling algorithms
340

320

300

Round Robin [

Thread Load [

CPU Load - On Demand [
CPU Load - Periodic [
Avg Load - On Demand [__]
— —— Acc avg Load - On Demand]

260 =
240 =
220

Scheduling Algorithm

280

Execution time in seconds

Figure 5.5: Execution time for different scheduling heuristics

other hand, CPU load - periodic takes a much higher time to finish exe-
cution. Although the scheduling decisions are based on the workers CPU
load, the information obtained is not the most recent. Here, in this case,
the least period to perform an update of load information is higher than the
inter-arrival time some of the threads. As a result, some workers get over-
loaded with threads. Avg-load and Accelerated-avg-load on demand has
comparable performances with CPU-load on demand. Since all the threads
perform similar workload, estimation based on the size of processor queue
will result in a scheduling more or less similar to round-robin as the ini-
tial queue size is the same. In this case, there is no difference between
accelerated-load-avg and avg-load scheduling because there is no previous
load in the system. However, it is not possible to give a definite comparison
of the performance with the other scheduling heuristic.

Low thread workload

The dispersion of thread workload is low and clustered around a low range
of values. In order to evaluate the performance under an extreme scenario,
the workload needs to be clustered around extreme low values. Any work-
load that can finish its execution before all the threads are scheduled is
considered an extreme low value. Since the threads arrive almost instan-
taneously, an extreme low value means almost no workload and it is not
practical. For this reason, the workload is set considerably low at around
10-15 messages. The results obtained are shown in Figure

58

Comparison of different scheduling algorithms
225

220

215

210
8
5 Round Robin [
8 205
] Thread Load [
'(,E) 200 CPU Load - On Demand [
-E CPU Load - Periodic [
c
-% 195 Avg Load - On Demand [
§ Acc Avg Load - On Demand]
w

190 N

185 N

180 -

175

Scheduling Algorithm

Figure 5.6: Execution time for different scheduling heuristics

The results obtained are similar to the previous results, except that the the
time taken for execution is considerably lower. This is because the work-
load is lesser. The combination of thread workload with inter-arrival times
does not affect any of the scheduling algorithms and as a result the behavior
of the scheduling algorithms remain the same.

5.4.2 Low dispersion of thread workload and high inter-arrival
times

The application is modified to make threads perform similar amount of compu-
tation with threads arriving after a large amount of time. In other words, the
dispersion of thread work load is low and the time taken for arrival of threads is
high, ranging between three seconds and twenty seconds.

e High thread workload

The dispersion of thread workload is low and clustered around a high range
of values. The workload is clustered around extreme high values. Any
workload that cannot finish its execution before all the threads are sched-
uled is considered an extreme high value. For this experiment the chosen
workload is between 500- 550 messages. The results obtained are shown in

Figure[5.7,

Since the jobs are of similar sizes, scheduling heuristic, thread-load and
round-robin take similar amount of time to finish execution. It can be no-

59

Comparison of different scheduling algorithms

256

254

252

Round Robin [

Thread Load [

CPU Load - On Demand [
CPU Load - Periodic [
Avg Load - Periodic]

Acc Load - Periodic []

248

246] g

Execution time in seconds

244 1 —

242 ! .

240 1 .

Scheduling Algorithm

Figure 5.7: Execution time for different scheduling heuristics

ticed that CPU load - periodic finishes faster than CPU load - on demand
unlike the previous scenario. This is because the inter-arrival times are
high. The lowest period is enough time to update the state information
asynchronously as opposed to synchronous update for on-demand. CPU-
load periodic takes a little longer than thread-load and round-robin. Upon
analysis, we found that the CPU load almost saturates by the time most of
the threads are scheduled. Because CPU load information is instantaneous,
minor differences in this information affect the scheduling. This effect of
minor variation in CPU load is similar to the one shown in Figure
Load-avg and accelerated-load-avg are based on estimates and do not work
as well as CPU-load sched. The values are not instantaneous and as a re-
sult, the information about the size of processor queue is not accurate. The
result shown here is not representative of its behavior in every case similar
to this application characteristic and varied each time the application was
executed with different number of threads.

Low thread workload

The dispersion of thread workload is low and clustered around a low range
of values. The workload needs to be clustered around extreme low val-
ues. Any workload that can finish its execution before all of the threads are
scheduled is considered an extreme low value. The workload is set consid-
erably low at around 10-15 messages. The results obtained are shown in

Figure[5.§

60

Comparison of different scheduling algorithms
210

205

200

Round Robin [
195 Thread Load |:|
CPU Load - On Demand [

CPU Load - Periodic [
190 | Avg Load - Periodic]
Acc avg Load - Periodic]

Execution time in seconds

185 -

180] -

175

Scheduling Algorithm

Figure 5.8: Execution time for different scheduling heuristics

From the figure it can be seen that thread load scheduling takes the least
amount of time to finish computation. Because the thread workload is dis-
persed around very low values, the scheduling heuristic gets a more up
dated view of the thread status in terms of completion. Before all the threads
are scheduled, some of the threads finishes its execution and the thread load
heuristic is able to make a better decision than round robin. The overhead
incurred by monitoring the CPU load increases the time taken to sched-
ule threads and hence CPU-load heuristic performs worse than round-robin
and thread load heuristic.

5.4.3 High dispersion of thread workload and high inter-arrival
times

The application is modified to make the threads perform different amount of
workloads. The workload in this case is the number of messages to hash, and
it is varied between one and two thousand randomly. We use an ordered seed,
in order to compare the performance with different scheduling heuristics. The
threads in the application arrive between three and twenty seconds. The results
obtained are shown in Figure 5.9

From the results, it can be seen that the scheduling heuristic CPU load -periodic
consumes the least amount of time to finish execution. The thread inter-arrival
time is highly spread out. Hence, the periodic update has enough time to pro-
vide the master with the most recent view of the state of workers. The work-
load of threads are unequal and scheduling heuristic based on CPU load, tries to

61

Comparison of different scheduling algorithms
295

290

285

280 — . Round Robin [
Thread Load [

CPU Load - On Demand [
CPU Load - Periodic [
Avg Load - Periodic]

270] Acc-avg Load - Periodic [

275 -

Execution time in seconds

Scheduling Algorithm

Figure 5.9: Execution time for different scheduling heuristics

greedily equate the CPU load consumed by each thread. Although the schedul-
ing heuristic has no information about the time taken to finish a job, some jobs
tinish much earlier than all the threads are scheduled. This information helps the
heuristic make a better decision and spreads out threads of high and low work-
loads equally among the different workers. CPU load - on demand, performs
better than the scheduling heuristic thread-load and round-robin. Thread-load
on the other hand performs better than round robin because it adapts to the state
of threads running on the workers. It no longer behaves like round-robin as it up-
dates the number of threads on workers as they finish execution and is thus able
to make better decision than round robin. Also, CPU-load heuristic is affected
by the minor variation as the values saturate. Avg-load and accelerated-average-
load are also able to notice when threads finish executing, but since the values
are a moving average, the information obtained is only a very minor difference in
the size of processor queues and as a result the scheduling continues in a fashion
more or less similar to thread load. This is because the minor differences when
rounded to an integer (implementation specific), remains the same as the previ-
ous load unless there is a huge difference.

5.4.4 High dispersion of thread workload and low inter-arrival
times

The application is modified to have a high dispersion in the thread work-load
and threads are made to arrive quickly, one after another. For the experiment, the
work load of threads are varied between one and two thousand messages and
threads arrive almost instantaneously. The results obtained are shown in Figure

62

Comparison of different scheduling algorithms
290

285]

280

(2]
©
§ 275 — Round Robin [
& Thread Load [
'GE, 270 CPU Load - On Demand [
£ CPU Load - Periodic [
c
2 Avg Load - On Demand [
=)
§ 265 1 Acc Avg Load - On Demand [
i

260 —

255 -

250 |

Scheduling Algorithm

Figure 5.10: Execution time for different scheduling heuristics

CPU load - on demand performs better than any of the other scheduling
heuristics, because the work load of threads are unknown and this heuristic aims
to greedily equalise the CPU load of different workers as and when threads ar-
rive. CPU load - periodic takes a much higher time as the lowest possible pe-
riod to update the state information is higher than the inter-arrival time between
some of the threads. Most of the threads are hence scheduled on the same worker.
Thread-load and round-robin have similar performance.

5.4.5 Non-uniform cluster

A non-uniform cluster is shared between multiple processes or users and can
have other workloads running along with our middleware, exemplifying the case
of a multi-tenant cloud-like infrastructure. This results in a varied load among the
different machines in the cluster. In the following subsection we show how cer-
tain applications can affect the behavior of our scheduling algorithms.

When the cluster is shared between multiple users or processes, there is a
variation in the existing load of different machines. We evaluate the impact of
this load on different scheduling heuristics. Since the scheduling heuristic round-
robin and thread-load does not take the load of the system into account, their
performance deteriorates as they schedule threads in a circular fashion. Machines
with very high load may end up getting the same number of threads as machines
with very low load and thus degrade the performance of the application. On the

63

other hand, scheduling heuristic based on CPU-load takes into account the CPU
load of the machines and tries to equalise the load among different machines.
Figure shows that the CPU-load scheduling heuristic tries to greedily adapt
to the current CPU load of the two workers. Although worker?2 starts at a very
high previous load of 0.6, the CPU load almost remains equal during the period of
execution. On the other hand, scheduling using thread-load shown in Figure
schedules equal number of threads on both the workers despite the variation in
workload and worker3 finishes execution relatively earlier, while worker2 takes
a considerably longer time to finish execution.

CPU Load with CPU load -on demand sched CPU Load with thread load sched

T
Worker2 —+—
09 | A soik AR x P+ * o P P Worker3 409 AL M MM
2 AL A 1 ; (MM,
AP PEAEAL Sl e T [[7
08 || X A q08F
| ‘i “
| \ \ |
0.7 L | T 407} |
] ‘ | |
||
06 1 | H06F

05 | Josk

CPU Load
CPU Load

04 | Joal |
03 | 403 W

02 | Jo2k

T T
Worker2
Worker3

\ 4
A=Ay S A M A
WA/ VI MMAL

o o =) =} Q Q
« 5 @ @ 1=}

20
40
80

100 |

120

120

140 |

Q
@

time time

160
180

Figure 5.11: CPU Load over time for Figure 5.12: CPU Load over time for

scheduling based on CPU load scheduling based on thread load

Thus, it is expected that the scheduling heuristic CPU-load always tries to
equalise the CPU load of different workers. However, Figure shows a situa-
tion where this may not always hold true. MD5 hashing application was executed
on a cluster with two workers. Worker2 was already executing an I/O intensive
application and worker3 was not loaded. Worker2 starts at a previous load of 0.3
while worker3 starts at a load of 0.

It can be seen from the figure that the CPU load of both these workers vary
considerably. To explain this variation in CPU loads despite trying to equalize,
we carried out an experiment with both the workers executing the same CPU-
intensive application without our middleware. While worker2 had an I/O inten-
sive process alongside, worker3 executed only our application. The results are
shown in Figure It should be be noticed that despite running the same CPU-
intensive application the CPU load of worker2 does not go beyond 0.6, while with
the same application the CPU load of worker2 reaches 0.9. The I/O intensive ap-
plication remains idle during most of its CPU time as it either waits or performs
an I/O operation. Because all the processes are scheduled by the processor for a
definite quanta, the overall CPU usage is influenced by the I/O intensive process.
Although our application is CPU-intensive the overall CPU usage continues to re-
mains deceptively low. In Figure a initially threads are launched on worker3
till the CPU load of worker3 rises. Once the CPU-load of worker3 increases be-

64

200

CPU Load with CPU Load sched

1 T T T T T T T T T
Worker2 —+—

09 Worker3 1

0.8 | 1

0.7 | 1

0.

o

f
Yot T]
e W g A
it

8
o [aEs
= 05 +oA h
o ‘ |
[$) |
04 [‘ |
|
0.3 - 1 e 1T # i T JE L 4
’ LAt adll N N e a4
o WA #&ﬁﬁﬁﬂﬂ“ff WA Ry
01 |
0 L L L L
o o (=] o o o o o o o o
« = © @ 2 S i e e &

time

Figure 5.13: CPU Load over time for scheduling based on CPU load alongside an
I/0 intensive process

yond that of worker2, threads are scheduled on worker?2 till the loads of both
these workers become equal but since the load of worker2 does not rise beyond
0.6, all consequent threads are launched on worker2. For applications with many
number of threads, the scheduling can prove rather detrimental than useful as it
considerably affects the response time.

CPU Load with same application

1 T T T T T T

Worker2 ——
09 Worker3 1
0.8 B
0.7 i 4

0.

o

I\ . &
‘m%h‘w N a1\ 1
¥ !

CPU Load

05 ‘
| |
0.4 (;\ B
| " T
03 AT P A
O (TR ANE Y R
02} |
01 g
0 1 1 1 1 1 1
e Q e 8 8 8 8 e

time

Figure 5.14: CPU Load over time for same application

To circumvent this problem we need a metric that provides a true view of
the system properties. One such metric is the load average. The load average
tries to measure the number of active processes at any time. As a measure of

65

CPU utilization, the load average is simplistic, but far from useless. High load
averages usually mean that the system is being used heavily and the response
time is correspondingly slow. By combining CPU load along with load average, it
is possible to get a real view of the system. The impact of the scheduling heuristic
CPU-load on the load average is shown in Figure It can be noticed that there
is a considerable variation in the load averages and the load average of worker2
rises drastically as more and more threads get scheduled on worker2.

CPU Load with Cpu-load sched

T T
Worker2-cpuload —+—
8 ¥ Worker3-cpuload

]
2, ’@*’5“*& K x ,é; Worker2-avgload ---*---
[% o Lok Worker3-avgload &

CPU Load

time

Figure 5.15: Impact of CPU-load sched on load average and CPU utilization

The results obtained by the heuristic load-average is shown in Figure
The load averages of both the workers are very similar and it thus mitigates the
problem of overloading a worker that runs an I/O intensive process. However,
load-average scheduling is very conservative as it always takes into account the
previous load of the system. From the figure it can be seen that worker2 finishes
execution at around 60 while worker3 finishes execution only at time 100. This is
because of the conservative nature of the scheduling heuristic.

Scheduling heuristic accelerated-load-average on the other hand takes into
account the instantaneous change in load averages caused by the application
and thus performs better than load-average scheduling. The results obtained
are shown in Figure This problem of conservative scheduling is mitigated
by accelerated-Load-Average. It can be seen that the execution finishes earlier
because more threads are launched on worker2 at the expense of tolerating mi-
nor differences in overall load average. This is possible because the scheduling
heuristic does not consider the previous load in the system and in effect only ac-
counts for the changes caused in load average due to the application that is being
executed.

Non-uniform cluster has the same behavior with respect to on-demand and
periodic updates of resource usage as that of uniform cluster. It is important to
note that the behavior of scheduling heuristic round-robin and thread-load are
unpredictable in a non-uniform cluster with any kind of application. Similarly

66

CPU Load with AvgLoad-OD sched

T T
Worker2-cpuload —+—
&b Worker3-cpuload
Worker2-loadavg ---*--- -

2 & o KX x X Worker3-loadavg &

CPU Load

160

Figure 5.16: Impact of load-avg sched on load average and CPU utilization

with an existing I/O or network intensive load, the scheduling heuristic CPU-
load becomes irrelevant and accelerated-load-average performs the best.

5.5 Memory usage

In order to stress test the system for scalability in terms of memory, we developed
a memory intensive application aimed to generate a synthetic memory load by
creating as many objects as possible and simply iterate through them. In order
to test the application, we allocated 7GB of memory for the JVM and ran the
application on a single JVM and on top of our middleware using 2 workers. Each
thread created an object with integer array of size 10000 and the size of integer is
assumed to be 4 bytes. The results obtained are shown in Figure

It can be seen from the results that for a single JVM, approximately 4GB of
memory was allocated and beyond that the system gave an out of memory error.
But using the middleware, the system scales with respect to memory as the cluster
now behaves like a virtual memory with the Terracotta server responsible for
handling large heaps. As a result, we were able to allocate up to 15GB of data
using the middleware. This result shows that the application scales in terms of
memory.

5.6 Application Modeling

Based on the results obtained, we model application based on the characteristics
of the cluster and the thread characteristics of the application. The cluster charac-
teristics are classified into three categories: dedicated or uniform cluster, highly
unbalanced cluster, and I/O intensive cluster. Table 5.6|classifies the application
according to the most suited scheduling algorithm on a dedicated cluster and

67

CPU Load with Accelerated Load Avg sched

e
X
il

S—Miﬁ {%%K

T
Worker2-cpuload —+—
Worker3-cpuload

Worker2-loadavg ---*---
Worker3-loadavg &

Load
w
T

250

time

Figure 5.17: Impact of accelerated-load-avg sched on load average and CPU uti-
lization

Table [5.7| classifies the application based on the previous load in a non-uniform
cluster.

Summary

In this chapter, we described the methodology used for the evaluation of the pro-
posed middleware and presented the results obtained. We tested three multi-
threaded Java applications that have the potential to scale well with multiple
processors, taking advantage of the extra resources available in terms of com-
putational power and memory. First, we assessed correctness to ensure that the
semantics of the applications is not broken when executed on the middleware.
Next, we measured the overhead incurred by the middleware in the form of time
taken to launch a thread, and the increase in the size of bytecode caused by in-
strumentation. Finally, we evaluated the speed-up achieved when executing an
application on top of the middleware, and compared the different scheduling al-
gorithms, classifying them based on application behavior.

68

Memory allocated without error

Memory stress test

Single JVM [
RATS - 2 Workers]

Number of Workers

Figure 5.18: Memory stress test

Application Thread Workload Inter Arrival | Execution time of Scheduling
Type time Heuristic

Low Dispersion, high load | low RoundRobin ~ Thread-load <

Cpuload-OD < Cpuload-Periodic

CPU Intensive Load-avg and Acc-Load-avg (uncom-

parable)

Low Dispersion, low load | low

RoundRobin =~ Thread-load <
Cpuload-OD< Cpuload-Periodic.
Load-avg and Acc-Load-avg (uncom-
parable)

Low Dispersion, high load | high

RoundRobin ~ Thread-load <
Cpuload-Periodic < Cpuload-OD.
Load-avg and Acc-Load-avg (uncom-
parable)

Low Dispersion, low load | high

Thread-load < RoundRobin <
Cpuload-Periodic < Cpuload-OD.
Load-avg and Acc-Load-avg (uncom-
parable)

High Dispersion high Cpuload-Periodic < Cpuload-OD <
Thread-load ~ Load-avg and acc-
Load-avg < RoundRobin

High Dispersion low Cpuload-OD < Thread-load ~ Load-

avg and acc-Load-avg < Cpuload-
Periodic < RoundRobin

Table 5.6: Application Modeling on a dedicated cluster

69

Previous Load

Application Type

Execution time of Scheduling
Heuristic

Non I/O or network intensive

I/0 or network intensive

CPU intensive

CPU intensive

CPU-load < Accelerated-Avg-
Load < Avg-Load. (Others are
irrelevant)
Accelerated-Avg-Load < Avg-
Load. (Others are irrelevant)

Table 5.7: Application Modeling on a Non-uniform cluster

70

Conclusion

When the workstations in a cluster work collectively to provide the illusion of
being a single workstation with more resources, we refer to this as a Single Sys-
tem Image. With such an abstraction, the developer is completely oblivious to
the issues related to distributed computing and writes an application just like
any other application meant for a single system. We extended a clustering mid-
dleware called Caft to incorporate efficient scheduling and profiling for multi-
threaded Java applications. The middleware uses Terracotta for sharing runnable
objects and shared data structures between different machines in the cluster.

The middleware supports a range of scheduling heuristics such as RoundRobin,
ThreadLoad, CpulLoad, MemoryLoad, AverageLoad and Accelerated-AveragelLoad
with periodic and on demand updates about state information from the workers.
It also supports a hybrid form of scheduling where workers themselves take local
decisions for cases where threads spawn multiple threads. This hybrid schedul-
ing is lazily consistent and aims at leveraging performance at the cost of sacri-
ficing strict consistency. The performance of the scheduling heuristics vary for
different types of application. Results indicate that it is possible to classify these
scheduling heuristics based on the application properties while achieving linear
speed-ups. A profiler allows to gather information about the application proper-
ties such as thread inter-arrival time, thread workload and resource usage of the
application. With this information, the user is able to choose to the most efficient
scheduling that suites the characteristics of the application.

6.1 Future Work

At present, the middleware does not support load-balancing. In order to facil-
itate load balancing, the middleware would need to support thread-migration.
The middleware also assumes that none of the worker nodes or the master nodes
fail during the period of execution, i.e, the current implementation is not fault
tolerant. Any multi-threaded application that spawns threads by extending the
Thread class does not schedule threads on workers using the middleware. This is
because, the Thread class is non-portable and Terracotta does not allow to cluster
any objects that extend the Thread class.

71

72

Bibliography

(1]
(2]
(3]
[4]

(5]

(6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]
(17]

http:/ /www.hyperic.com/products/sigar.
http:/ /www.terracotta.org.
Introduction to the spring framework.

J. Andersson, S. Weber, E. Cecchet, C. Jensen, V. Cahill, J. Andersson Y, S. Weber Y, E. Cecchet
b, C. Jensen Y, V. Cahill Y, and Trinity College. Kaffemik - a distributed jvm on a single
address space architecture, 2001.

Gabriel Antoniu, Luc Boug, Philip Hatcher, Mark MacBeth, Keith Mcguigan, and Raymond
Namyst. The hyperion system: Compiling multithreaded java bytecode for distributed exe-
cution, 2001.

Yariv Aridor, Michael Factor, and Avi Teperman. ¢jvm: a single system image of a jvm on a
cluster. In In Proceedings of the International Conference on Parallel Processing, pages 4-11, 1999.

Guy E. Blelloch, Phillip B. Gibbons, Girija J. Narlikar, and Yossi Matias. Space-efficient
scheduling of parallelism with synchronization variables. In SPAA "97: Proceedings of the
ninth annual ACM symposium on Parallel algorithms and architectures, pages 12-23, New York,
NY, USA, 1997. ACM.

Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by
work stealing. J. ACM, 46(5):720-748, 1999.

Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: A code manipulation tool to
implement adaptable systems. In In Adaptable and extensible component systems, 2002.

Rajkumar Buyya, Toni Cortes, and Hai Jin. Single system image. Int. |. High Perform. Comput.
Appl., 15(2):124-135, 2001.

T.L. Casavant and J.G. Kuhl. A Taxonomy of Scheduling in General-Purpose Distributed
Computing Systems. Software Engineering, IEEE Transactions on, 14(2):141 —154, feb 1988.

K Cooper, A Dasgupta, K Kennedy, C Koelbel, A Mandal, G Marin, M Mazina, F Berman,
H Casanova, A Chien, H Dail, X Liu, A Olugbile, O Sievert, H Xia, L Johnsson, B Liu, M Patel,
D Reed, W Deng, and C Mendes. New Grid Scheduling and Rescheduling Methods in the
GrADS Project. International Journal of Parallel Programming, 33:209-229, 2005.

Fangpeng Dong and Selim G Akl. Scheduling Algorithms for Grid Computing : State of the
Art and Open Problems. Components, pages 1-55, 2006.

K. Etminani and M. Naghibzadeh. A min-min max-min selective algorihtm for grid task
scheduling. In Internet, 2007. ICI 2007. 3rd IEEE/IFIP International Conference in Central Asia
on, pages 1 -7, sept. 2007.

Thomas Fahringer. Javasymphony: A system for development of locality-oriented dis-
tributed and parallel java applications. In In Proceedings of the IEEE International Conference
on Cluster Computing (CLUSTER 2000. IEEE Computer Society, 2000.

Pavel Fibich and Hana Rudov. Model of Grid Scheduling Problem. Centrum, 2001.

E. Huedo, R.S. Montero, and .M. Llorente. Experiences on adaptive grid scheduling of
parameter sweep applications. In Parallel, Distributed and Network-Based Processing, 2004.
Proceedings. 12th Euromicro Conference on, pages 28 — 33, Feb. 2004.

73

(18]

(19]

(20]

(21]
(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]
(31]

(32]

(33]

(34]

(35]

(36]

(37]

H. Izakian, A. Abraham, and V. Snasel. Comparison of heuristics for scheduling independent
tasks on heterogeneous distributed environments. In Computational Sciences and Optimization,
2009. CSO 2009. International Joint Conference on, volume 1, pages 8 —12, april 2009.

Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A taxonomy and sur-
vey of grid resource management systems for distributed computing. Software: Practice and
Experience, 32(2):135-164, February 2002.

Yun-Han Lee, Seiven Leu, and Ruay-Shiung Chang. Improving job scheduling algorithms
in a grid environment. Future Generation Computer Systems, 27(8):991-998, October 2011.

Joao Lemos. Distributed clustering and scheduling of vis, master thesis.

M. Maheswaran, S. Ali, H.J. Siegal, D. Hensgen, and R.F. Freund. Dynamic matching and
scheduling of a class of independent tasks onto heterogeneous computing systems. In Het-
erogeneous Computing Workshop, 1999. (HCW "99) Proceedings. Eighth, pages 30 —44, 1999.

Girija J. Narlikar. Scheduling threads for low space requirement and good locality. In SPAA
'99: Proceedings of the eleventh annual ACM symposium on Parallel algorithms and architectures,
pages 83-95, New York, NY, USA, 1999. ACM.

Rob Van Nieuwpoort, Jason Maassen, Thilo Kielmann, and Henri E. Bal. Satin: Simple
and efficient java-based grid programming. In In AGridM 2003 Workshop on Adaptive Grid
Middleware, 2005.

A. Othman, P. Dew, K. Djemame, and 1. Gourlay. Adaptive grid resource brokering. In
Cluster Computing, 2002. Proceedings. 2002 IEEE International Conference on, pages 172 —179,
sept. 2003.

R. Raman, M. Livny, and M. Solomon. Resource management through multilateral match-
making. Proceedings the Ninth International Symposium on High-Performance Distributed Com-
puting, pages 290-291.

Rajendra Sahu. Many-Objective Comparison of Twelve Grid Scheduling Heuristics. Interna-
tional Journal, 13(6):9-17, 2011.

Christian Setzkorn and Ray C. Paton. Javaspaces - an affordable technology for the simple
implementation of reusable parallel evolutionary algorithms. In Jesus A. Lépez, Emilio Ben-
fenati, and Werner Dubitzky, editors, Proceedings of the International Symposium on Knowledge
Exploration in Life Science Informatics, KELSI 2004, volume 3303 of Lecture Notes in Artificial
Inteligence, pages 151-160, Milan, Italy, 25-26 November 2004. Springer.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper Saddle River,
NJ, USA, 3rd edition, 2007.

Terracotta. A technical introduction to terracotta. 2008.

Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the Grid, pages 299-335.
John Wiley and Sons, Ltd, 2003.

Kritchalach Thitikamol and Peter Keleher. Thread migration and load balancing in non-
dedicated environments. Parallel and Distributed Processing Symposium, International, 0:583,
2000.

Eli Tilevich and Yannis Smaragdakis. J-orchestra: Automatic java application partitioning.
pages 178-204. Springer-Verlag, 2002.

R. Veldema, R.A.F. Bhoedjang, and H.E. Bal. Distributed shared memory management for
java. In In Proc. sixth annual conference of the Advanced School for Computing and Imaging (ASCI
2000, pages 256-264, 1999.

Fatos Xhafa and Ajith Abraham. Meta-heuristics for Grid Scheduling Problems. pages 1-37,
2008.

Fatos Xhafa and Ajith Abraham. Computational models and heuristic methods for Grid
scheduling problems. Future Generation Computer Systems, 26(4):608-621, April 2010.

Matthias Zenger. Javaparty - transparent remote objects in java, 1997.

74

	Introduction
	Contribution
	Results
	Research Context
	Document Roadmap

	Related Work
	Distributed Virtual Machines
	Scheduling
	Classification of Scheduling Algorithms
	Classic Scheduling Algorithms
	Thread Scheduling

	Caft

	Architecture
	Terracotta
	RATS - Resource Aware Thread Scheduling for JVM-level Clustering
	Scheduling Techniques
	Centralized Scheduling
	Hybrid Scheduling

	Profiling

	Implementation
	RATS module decomposition and Structure
	Singleton Package
	ClusterThread Class
	Profiler
	Worker Package
	StartMaster

	Bytecode Instrumentations
	Scheduling
	Local Scheduling

	Evaluation
	Correctness
	Overhead Incurred
	Execution Time
	Fibonacci number generation
	Web Crawler
	MD5 Hashing

	Comparison of Scheduling Heuristic
	Low dispersion of thread workload and low inter-arrival times
	Low dispersion of thread workload and high inter-arrival times
	High dispersion of thread workload and high inter-arrival times
	High dispersion of thread workload and low inter-arrival times
	Non-uniform cluster

	Memory usage
	Application Modeling

	Conclusion
	Future Work

	Bibliography

