RATS: Resource Aware Thread Scheduling for JVM level
Clustering

Navaneeth Rameshan
navaneeth.rameshan@gmail.com

ABSTRACT

In this work, we propose RATS, a middleware to enhance and ex-
tend the Terracotta framework for Java with the ability to transpar-
ently execute multi-threaded Java applications to provide a single-
system image. It supports efficient scheduling of threads, according
to available resources, across several nodes in a Terracotta clus-
ter, taking advantage of the extra computational and memory re-
sources available. It also supports profiling to gather application
characteristics such as dispersion of thread workload, thread inter-
arrival time and resource usage of the application. It uses byte-
code instrumentations to profile and add clustering capabilities to
multi-threaded Java applications, as well as extra synchronization
if needed. We developed a range of alternative scheduling heuris-
tics and classify them based on the application and cluster behav-
ior. The middleware is tested with a cpu-intensive application with
varying thread characteristics to assess and classify the scheduling
heuristics with respect to application speed-ups and load balancing.

1. INTRODUCTION

If the workstations in a cluster can work collectively and provide
the illusion of being a single workstation with more resources, then
we would have what is referred in the literature as a Single System
Image [3]. Much research has been done in the area of SSIs, such
as Distributed Shared Memory (DSM) systems and Distributed Vir-
tual Machines that can run applications written in a high-level lan-
guage in a cluster, behaving as if it were on a single machine. One
of the essential mechanisms necessary for providing SSI systems
is the scheduling of threads for load balancing across the cluster.
The current most popular system that uses a shared object space is
Terracotta. At present it does not support scheduling of threads and
instead multiple manual instances needs to be launched to scale ap-
plications. We propose RATS, a Resource Aware Thread Schedul-
ing for JVM level Clustering which is an extension of Caft [8]. Caft
provides full transparency for running multi-threaded applications.
RATS bridges the gap between transparency and efficient schedul-
ing of threads using Terracotta to keep data consistent across the
cluster and scale existing applications with ease.

Several studies have showed that no single scheduling algorithm
is efficient for all kinds of applications. RATS supports multiple
scheduling heuristics and they behave differently for different char-
acteristics of applications. These scheduling heuristics are classi-
fied based on the properties of the application and can be used ef-
ficiently to suite any class of application. RATS provides a profiler
that allows to characterize an application based on the dispersion
of thread workload, thread inter-arrival time and the resource usage
of the application. The information obtained from the profiler al-
lows to opt for the most efficient thread scheduling heuristic. The
scheduling heuristics maintain state information of the worker in

the form of resource usage and threads launched to make optimal
decisions. RATS allows to run an already existing application in a
distributed manner using a scheduling heuristic that best suites the
characteristics of the application and the cluster.

The rest of the document is organized as follows. We provide a
brief background of the most relevant related work followed by a
description of the architecture and the supported scheduling heuris-
tics along with the profiling abilities. Finally we evaluate the schedul-
ing heuristics for different class of applications and cluster proper-
ties.

2. RELATED WORK

There are three major approaches that exist for distributed exe-
cution in a cluster. They are: Compiler-based Distributed Shared
Memory systems, Cluster-aware Virtual Machines and systems us-
ing standard Virtual Machines. Compiler-based Distributed Shared
Memory Systems (DSM) is a combination of a traditional compiler
with a Distributed Shared Memory system. The compilation pro-
cess inserts instructions to provide support for clustering without
modifying the source code. Jackal [13] compiler generates an ac-
cess check for every use of an object field or array element and the
source is directly compiled to Intel x86 assembly instructions, giv-
ing the maximum performance of execution possible without a JIT.
Jackal does not support thread migration.

Cluster-aware Virtual Machines are virtual machines built with
clustering capabilities in order to provide a Single System Image
(SSI). cJVM]2] is able to distribute the threads in an application
along with the objects without modifying the source or byte code
of an application. It also supports thread migration. To synchronize
the objects across the cluster a master copy is maintained and up-
dated upon every access and is a major bottleneck. In Kaffemik [1],
all objects are allocated in the same virtual memory address across
the cluster thus allowing a unique reference valid in every instance
of the nodes. However, it does not support caching or replication
and can result in multiple memory accesses, thus reducing perfor-
mance.

Systems using Standard VMs are built on top of a DSM sys-
tem to provide a Single System Image for applications. Some of
the most popular systems are java party [14], java Symphony[5]
and JOrchestra[12]. J-Orchestra uses bytecode transformation to
replace local method calls for remote method calls and the object
references are replaced by proxy references. Java Symphony al-
lows the programmer to explicitly control the locality of data and
load balancing. All the objects needs to be created and freed ex-
plicitly which defeats the advantage of a built-in garbage collection
in JVM. Java party allows to distinguish invocations as remote and
local by modifying the argument passing conventions. The imple-
mentation does not satisfy the ideal SSI model as classes need to

be clustered explicitly by the programmer.

Some of the classic scheduling algorithms that are most relevant
to thread scheduling is explained in the following. In First Come
First Served algorithm, execution of jobs happen in the order they
arrive ie. the job that arrives first is executed first [7]. If a large
job arrives early, all the other jobs arriving later are stalled in the
waiting queue until the large job completes execution. This affects
the response time and throughput considerably. This disadvantage
is overcome by Round Robin. In this algorithm algorithm every job
is assigned a time interval, called quantum, during which it is al-
lowed to run [11]. Since jobs execute only for a specified quantum,
the problem of larger jobs stalling jobs that arrive later is mitigated.
The Minimum Execution Time (MET) algorithm assigns each task
to the resource that performs it with the minimum execution time
[9]. MET does not consider whether the resource is available or not
at the time (ready time) [4, 9, 10] and can cause severe imbalance
in load across resources [4, 9, 10]. The Min-min algorithm has two
phases [4]. In the first phase, the minimum completion time of all
the unassigned tasks are calculated [10]. In the second phase, the
task with the minimum completion time among the minimum com-
pletion time that was calculated in the first phase is chosen. It is
then removed from the task list and assigned to the corresponding
resource [4]. The process is repeated until all the tasks are mapped
to a resource. In the Suffrage algorithm the criteria to assign a
task to a resource is the following: assign a resource to a task that
would suffer the most if that resource was not assigned to it [7, 9].
In order to measure the suffrage, the suffrage of a task is defined as
the difference between its second minimum completion time and
its minimum completion time [6, 10]. These completion times are
calculated considering all the resources [7]. Once a task is assigned
to a resource it is removed from the list of unassigned tasks and the
process is repeated until there are no tasks in the unassigned list.

3. ARCHITECTURE

This section describes the architecture of the middleware, imple-
mented to allow Terracotta to schedule threads for simple multi-
threaded java applications on a cluster. RATS middleware con-
sists of two components - A Master and Worker. The master is
responsible for running the application and launches threads re-
motely on the worker nodes. The worker exposes an interface
for launching threads and provides all the operations supported by
java.Lang.Thread class. The master, on the other hand is responsi-
ble for launching the application with an executable jar and uses a
custom class loader that loads the class after performing necessary
instrumentation to the application code. Figure 1 provides a high
level view of the RATS architecture.

= Terracofta
(oa] Senverz
—

Terracotta

Terracotta Cluster

Terracotta Terracotta

Client (Master) Client (Worker)

i
i
s
Application i Application
(Launch) i (Code access)
i
i
i
i

(RaTS

RATS 1Masler)] L Worker)

(J
{ : I

=== =
(J

| I
VM] [JVM

Figure 1: Architecture of RATS

RATS was implemented by modifying an existing middleware

Terracotta Shared

Coordinator

1Register

3/ReturnNode

2/GetNode 1/Register

Worker 2

Master Worker 1

4/LaunchThread

Figure 2: Master-Worker Communication

called CAFT (Cluster Abstraction for Terracotta) [8]. CAFT pro-
vides basic support for remote thread spawning along with trans-
parency. RATS extends CAFT to enhance byte code instrumen-
tation along with support for multiple resource aware scheduling
algortihms. To understand how the master worker paradigm allows
for remotely spawning threads, we first provide a high level archi-
tecture of the communication between master and worker and in the
following subsection we explain the different scheduling heuristics
the system supports.

Figure 2 shows the communication between different compo-
nents that are required to remotely spawn a thread. As soon as the
workers are launched, they first register themselves with the coor-
dinator (1/Register). The coordinator acts as an interface between
the worker and master and is used for sharing information between
each other. When the application is launched, and a thread is in-
stantiated, the master communicates with the coordinator compo-
nent to fetch the node for launching the thread (2/GetNode). The
coordinator communicates with other components responsible for
scheduling and returns the node (3/ReturnNode). Upon receiving
the information of the node for remotely spawning the thread, the
master finally launches the thread on the worker (4/LaunchThread).
Here in this example, worker 2 is chosen for running the thread.

Scheduling Heuristics. When an application launches a thread,
the master is responsible for making scheduling decisions based on
the chosen heuristic. The worker can also make scheduling deci-
sions if a thread spawns multiple threads. The middleware supports
two types of scheduling and they are presented below:

Centralized Scheduling. In centralized scheduling, the deci-
sions are taken entirely by a single node. Here, the master is re-
sponsible for making every scheduling decision. Based on the spec-
ified heuristic, the master selects a worker for remotely executing
the thread and also maintains state information. The centralized
scheduling heuristics supported by the middleware are:

Round-Robin : In round-robin scheduling, the threads launched
by the application are remotely spawned on the workers in a circu-
lar manner. Threads are launched as and when they arrive and the
scheduling is static by nature. It does not take into account any in-
formation from the system and the workers are chosen in the order
they registered with the master.

Resource-Load: Scheduling decisions are made depending on
the load of every worker. The supported scheduling algorithms
based on load information are:

e CPU-Load: The CPU load of every worker is monitored
by the master and the threads are remotely launched on the
worker with the least CPU load. The master maintains state

information about the CPU load of every worker. The load
information of CPU and memory of the system is obtained
using the library SIGAR.

Load-Average: Threads are scheduled on nodes with the
least cpu utilization until the cpu load gets saturated. The
scheduling heuristics then aims at equalizing the load av-
erage across the cluster. The information about load aver-
ages in linux are obtained from the command line utility top.
However, the values of load average obtained from top are
not instantaneous. They are measured in three ranges as
a moving average over one minute, five minute and fifteen
minutes. In all Linux kernels the time taken for updating
the moving average is five seconds. If multiple threads are
launched instantaneously within a five second window, it is
possible that all the threads are launched on the worker with
the lowest load average. This problem is circumvented by
an estimation of number of threads to launch based on the
current values of load average.

Listing 1: Scheduling heuristic based on load average

if (loadAvgMonitor == true){
for each worker:
if (avgLoad< NumberProcessors)
avgLoadMap . put (nodeID , NumberProcessors —
avgLoad)
else
avgLoadMap . put (nodeID ,1)
loadAvgMonitor=false
}

selectedNode = NodelD with maximum value in avgLoadMap

avgLoadMap. put(selectedNode , value —1)
if (all values in avgLoadMap.valueSet == 0){
loadAvgMonitor = true

}

In the pseudocode listed in listing 1, the number of threads
to be scheduled on a worker is inversely proportional to the
load average. If the load average is less than the number of
processors, only so many threads are launched to fill up the
processor queue to the number of processors in the worker.
Any further load monitoring is performed only after all these
threads are scheduled.

Accelerated-Load-Average: This heuristic is similar to the
scheduling heuristic Load-Average but is not as conservative
and takes into account instantaneous changes in load aver-
age. It allows for scheduling the minimum number of threads
possible while keeping the estimation correct and at the same
time aiding in using a recent value of load average. Similarly,
difference in load average is also inversely proportional to
the number of threads to be scheduled. In order to achieve
scheduling of at least one thread on any worker, the high-
est difference in load average is remapped to one and other
differences are shifted accordingly.

Listing 2: Scheduling heuristic based on accelerated load
average

if (loadAvgMonitor == true)({
if (U first run){
for each worker:
avgLoadDiffMap. put(nodeID, AvgLoadMap — prevAvgLoadMap)
}
if (first run Il all values in avgLoadDiffMap.valueSet == 0){
for each worker:
if (avgLoad< NumberProcessors)
avgLoadMap . put (nodelD ,
— avgLoad)

NumberProcessors

else
avgLoadMap . put (nodelD , 1)
loadAvgMonitor=false
}
//remapping maximum value in loadAvgDiff to 1
if (all values in avgLoadDiffMap.valueSet != 0){

for each worker:
avgLoadMap . put (nodelD, loadAvgDiff.currentvalue/
max (loadAvgDiff. valueSet))
}
Copy values avgLoad to prevAvgLoadMap
// remapping minimum value in avgLoadMap to 1
for each worker:
avgLoadMap . put (nodeID , avgLoadMap. currentvalue/ min(
avgLoadMap. valueSet))
}
selectedNode = NodeID with maximum value in avgLoadMap
avgLoadMap . put (selectedNode , value —1)
if (all values in avgLoadMap.valueSet == 0){
loadAvgMonitor = true

}

The load information of CPU and load average is updated by
the worker in one of the two ways:

1. On-demand: When an application is just about to launch
a thread, the master requests all the workers to provide
their current CPU load. State information is updated
only on demand from the master. This is a blocking
update and it incurs an additional overhead of round
trip time delay to every worker for every thread launch.

2. Periodic: The load information of CPU maintained by
the master is updated after a constant period. The pe-
riod required to perform updates is a configurable pa-
rameter which can be chosen by the user. All updates
are performed asynchronously and hence they do not
block remote launching of threads.

Thread load: The master maintains state information about
the number of threads each worker is currently running. The
scheduling heuristic makes decisions to launch threads on
workers with the least number of currently executing threads.
This heuristic schedules in a circular fashion just like round
robin until at least one thread exits. Once a thread exits, it
ceases to behave like round robin. The state information is
updated only when a thread begins or finishes execution.

Hybrid Scheduling. Once a thread is scheduled to a worker,
depending on the application, the thread itself may launch more
internal threads. To handle such scenarios, the Middleware also
supports hybrid scheduling, where local copies of information that
help scheduling decisions are maintained. The trade-off between
consistency and performance is handled optimally for distributed

Main
Thresa

scheduling.
Coordinator
.
1
1
1
Thread 1
Load 1
1
1
1
1
|
i 1 i]
1 1 ' h
1 1 1
| Worker | Thread " Worker | Thread h Worer | Trread !
1 Load | 1 Load II oa H
! ! 1! 1
! ! 1! 1
! ! 1! 1
! ! 1! 1
! ! 1! 1
: 1 : 1 : 1

WORKER3

WORKER1

WORKER2

Figure 3: Communication for Worker performing Scheduling
from Local Information

In this approach, the master asynchronously sends the state in-
formation table to every worker before any thread launch. The

workers on receiving the information table store a copy of the ta-
ble locally. This is shown in figure 3. Workers use this local table
for making scheduling decisions after which they update the local
table and then the global table. Once a worker updates its local
table, there are inconsistencies between the information table be-
tween the workers. Although there are inconsistencies, they are
lazily consistent and the final update on the global table is always
the most recent and updated value. We achieve this by consider-
ing updates only to entries corresponding to that worker, in both
the global and the local table. This restriction prevents updates to
global table from blocking.

In this context, performance and consistency are inversely pro-
portional to each other and we aim to improve performance by sac-
rificing a bit on consistency. If a worker has to schedule based on
thread load and makes a choice by always selecting the worker with
the least loaded node from its local table, then it could result in ev-
ery worker selecting the same node for remotely spawning an inter-
nal thread, eventually overloading the selected node. This happens
because the workers do not have a consistent view of the informa-
tion table for a certain period. To prevent this problem, workers
make their choice based on weighted random distribution.

Profiling. The middleware allows for profiling an application in
order to choose the best scheduling heuristic for efficient load bal-
ancing and performance. In this section we discuss the metrics
measured by the profiler and present an optimal period for updat-
ing the state information at the master. The metrics measured by
the profiler are dispersion of thread work load, thread inter arrival
times and resource usage of the application. These metrics help the
user choose the right scheduling heuristic to gain maximum per-
formance. By measuring these metrics it is possible to choose an
optimal period for periodic updates of worker load information to
the master. Due to space constraint the derivation of the optimal
period is omitted. Optimal period for a worker is given by:

7\/tl*(2*tm+RTT)
p= 2% N

where t; is the arrival time of the last thread, t,,, is the time to
monitor load by the worker, RTT is the round trip time to the Ter-
racotta server and N is the total number of threads.

4. EVALUATION

We used up to three machines in a cluster, with Intel(R) Core(TM)2

Quad processors (with four cores each) and 8GB of RAM, running
Linux Ubuntu 9.04, with Java version 1.6, Terracotta Open Source
edition, version 3.3.0, and a cpu-intensive multi-threaded Java ap-
plications that has the potential to scale well with multiple proces-
sors, taking advantage of the extra resources available in terms of
computational power.

Overhead Incurred. Executing java applications on the mid-

dleware incurs an additional overhead of increase in the size of

bytecode and delay in launching a thread. Depending on the schedul-
ing algorithm used, there may be additional overhead in updating

load information. Periodic updates of load information are asyn-

chronous and it is difficult to directly measure the overhead in-

curred. For this reason and to maintain generality, this section mea-

sures the overhead involved in launching a thread and the increase

in the size of bytecode.

It can be observed from Table 1 that the size of bytecodes have
increased because of additional instrumentations to provision trans-
parency, remote launching of threads, monitoring runnable objects

and capturing thread execution times. This increase in the size
of bytecode does not consider the instrumentations done by Ter-
racotta. As the number of threads in the MDS5 hashing application
doubles, the total overhead incurred for launching threads also dou-
bles. The overhead is considerable and indicates that the middle-
ware is not suited for applications that are compute non intensive.

From Table 2, it can be seen that the percentage increase in the
size of byte code added by the middleware is only 6.8%. How-
ever, the average time taken to launch a thread for fibonacci gen-
eration is different from the average time taken to launch a thread
for MD5 hashing. Apart from scheduling decision and RTT, it also
involves the time taken to store the runnable object in the virtual
heap. As the size of the runnable object increases, the overhead
also increases. The total time taken to launch threads doubles as
the number of threads double. In order to achieve any gain in per-
formance, the gain obtained must be greater than the overhead in-
curred. Otherwise, the middleware deteriorates the performance of
the application. The middleware is thus suited for compute inten-
sive applications.

Execution time of Fibonacci series upto 1200

RAL
- RATS] |

Execution time in seconds
8
8
T
L

o o <« @ ©

Number of Threads

Figure 4: Execution time for Fibonacci number generation.

Execution Time. Fibonacci number generation is configured to
compute the first 1200 numbers of the Fibonacci sequence, with
number of threads directly proportional to the number of proces-
sors available. The time taken with two, four, eight and sixteen
threads is measured. The application is tested in a standard local
JVM, for comparison with the distributed solution. The distributed
solution executes the application with two workers. Figure 4 com-
pares the execution times for different number of threads.

It can be seen from the figure that the middleware decreases the
performance of the application. Fibonacci number generation is
not compute intensive, hence the overhead incurred in launching
the threads and gathering the results, exceeds the gain obtained in
execution time. As the number of threads double, the execution
time taken using the middleware increases drastically. Since the
application is evaluated for 1200 numbers, the load of the applica-
tion remains a constant. This means that, increasing the number of
threads decreases the load per thread. As the load per thread de-
creases, the gain obtained by distributed execution, decreases, but
the overhead incurred in launching threads increases. Hence, dis-
tributed execution of the application deteriorates the performance,
when the number of threads increase for a constant load. Fibonacci
is highly recursive and it ends up allocating pages for stacks, which
on a fast processor leaves a lot of available CPU for other threads.
There is a lot of context switching for very small functions.

Bytecode Instrumentation Overhead

Original size

After Instrumentation

Percentage Increase

3367 bytes

3539 bytes

5.04 %

Thread Launch overhead

No. of threads

2
4
8
16

Avg. time to launch a thread | Total overhead | Percentage Increase
0.39 secs 0.78 secs -
0.39 secs 1.58 secs 100.5 %
0.39 secs 3.16 secs 100 %
0.39 secs 6.27 secs 98.4 %

Table 1: Overhead for MD5 Hashing

Bytecode Instrumentation Overhead

Original size

After Instrumentation

Percentage Increase

6275 bytes

6702 bytes

6.8 %

Thread Launch overhead

No. of threads | Avg. time to launch a thread | Total overhead | Percentage Increase

2 0.52 secs 1.04 secs -

4 0.51 secs 2.04 secs 96.15 %

8 0.51 secs 4.08 secs 100 %

16 0.51 secs 8.16 secs 100 %

Table 2: Overhead for Fibonacci generation
For measuring the performance of the web crawler, it was tested Evocution tme of Webcrauter pto depth 2
under different scenarios. The number of websites crawled were in- 1200 | o

creased for each evaluation. Number of threads for crawling within
a single website is maintained as a constant at three. These three
threads require synchronization among themselves. Every website
is crawled up to a depth of two. Execution time is measured for
crawling ten, twenty and thirty websites. Since the difference in
execution times vary extremely, results obtained for crawling ten
websites is plotted separately and is shown in Figure 5.

Execution time of Webcrawler for 2 levels of Depth

JVM
RATS - 2 Workers]
RATS - 3 Workers [N

Execution time in seconds

o

Number of Websites Crawled

Figure 5: Execution time for web crawler - 10 websites.

As the number of threads increase within a single JVM, the thread
idle time increases, because of contention for the available proces-
sors. Any gain is achieved by minimizing this idle time. By dis-
tributing the threads on multiple workers, the idle time is greatly
reduced as the number of threads per processor decreases. From
Figure 5, it can be seen that the time taken to crawl ten websites
until depth two is only three seconds. The overhead incurred in
launching ten threads alone exceeds three seconds. Thus, any gain
obtained in minimising the idle time is not visible. But as the size

RATS - 2 Workers]
RATS - 3 Workers [

Execution time in seconds

Number of Threads

Figure 6: Execution time for web crawler - 20 and 30 websites.

and the number of websites increase, the time taken to crawl them
also increases. Figure 6 shows the improvement gained in perfor-
mance when executed using the middleware. As the number of
workers increase, the execution time also decreases. These results
indicate that the distributed solution scales linearly.

For measuring the execution time of MD5 hashing, the number
of messages to be hashed by each thread is kept at a constant of
five hundred messages. The performance is compared by execut-
ing the application on a single machine and using the middleware.
Two and three workers are used for the purpose of comparison and
time taken with five and ten threads is measured. Figure 7 shows
the results obtained.

MD5 hashing is a CPU-intensive process. As can be seen in
Figure 7, when the number of workers increase, the time taken to
execute the application decreases. This is because the available
CPU increases and hence a speed-up is obtained.

Comparison of Scheduling Heuristic for CPU-Intensive
Application. In this section, the different scheduling algorithms

Execution time of MD5 hashing
450 T T

400

JvM
RATS - 2 Workers]
RATS - 3 Workers [N

250 -

Execution time in seconds

Number of Threads

Figure 7: Execution time for MD5 hashing

Comparison of different scheduling algorithms
340

300

Round Robin [

Thread Load

CPU Load - On Demand [
CPU Load - Periodic [

Avg Load - On Demand [
Acc avg Load - On Demand [

Execution time in seconds
N
3
&

260 |- 7

240 1 4

220
Scheduling Algorithm

Figure 8: Execution time for high thread workload-Low dis-
persion of thread workload and low inter-arrival times

are evaluated with different application behavior. All the experi-
ments are carried out with MDS5 hashing of multiple messages and
the application behavior is modified in order to classify based on
its thread characteristics. To understand how different scheduling
algorithms behave with different application characteristics, thread
behavior is modified in an ordered fashion. The characteristics var-
ied for the application are: load of each thread and thread inter-
arrival times and is evaluated on a dedicated or uniform cluster
where there are no other workloads.

The results obtained for high thread workload-Low dispersion
of thread workload and low inter-arrival times are shown in figure
8 and low thread workload-Low dispersion of thread workload and

Comparison of different scheduling algorithms

Round Robin [

Thread Load]

CPU Load - On Demand [
CPU Load - Periodic [T

Avg Load - On Demand [
Acc Avg Load - On Demand]

200

195

Execution time in seconds

190 - 7

185 - +

180 - +

175

Scheduling Algorithm

Figure 9: Execution time for low thread workload-Low disper-
sion of thread workload and low inter-arrival times

low inter-arrival times are shown in figure 9. Round robin performs
better because the threads have equal workload and are equally
spaced with their arrival times. Cpu load-on demand incurs the
overhead of obtaining the load information from every worker be-
fore making a decision. The results obtained for low thread work-
load are similar, except that the the time taken for execution is con-
siderably lower. This is because the workload is lesser. The com-
bination of thread workload with inter-arrival times does not affect
any of the scheduling algorithms and as a result the behavior of the
scheduling algorithms remain the same.

Comparison of different scheduling algorithms

258

256
254
252
Round Robin [N
20 Thread Load £
248 CPU Load - On Demand [N
CPU Load - Periodic
a6 | Avg Load - Periodic [
Acc Load - Periodic
244 | 4
242 4
240 ’_‘ 4
238

Scheduling Algorithm

Execution time in seconds

Figure 10: Execution time for high thread workload-Low dis-
persion of thread workload and high inter-arrival times

Comparison of different scheduling algorithms
210

Round Robin [

Thread Load]

CPU Load - On Demand [
CPU Load - Periodic [T
Avg Load - Periodic 1

Acc avg Load - Periodic]

Execution time in seconds

Scheduling Algorithm

Figure 11: Execution time for low thread workload-Low dis-
persion of thread workload and high inter-arrival times

The application is then modified to make threads perform similar
amount of computation with threads arriving after a large amount of
time. In other words, the dispersion of thread work load is low and
the time taken for arrival of threads is high. The results obtained
for high and low thread workloads are shown in figure 10 and 11
. For high thread workload cpu load-periodic finishes faster than
cpu load-on demand unlike the previous scenario. The lowest pe-
riod is enough time to update the state information asynchronously
as opposed to synchronous update for on-demand. For low thread
workload, some of the threads finish its execution before all threads
are scheduled and the thread load heuristic is thus able to make a
better decision than round robin. The overhead incurred by mon-
itoring the cpu load increases the time taken to schedule threads
and hence cpu-load heuristic performs worse than round-robin and
thread load heuristic.

Finally the application is modified to make the threads perform
different amount of workloads. The workload is thus highly dis-
persed. The threads are made to arrive almost instantaneously ac-
counting for low inter-arrival time and highly spread out accounting

for high inter-arrival time.The results obtained are shown in figure
12 and 13.

Comparison of different scheduling algorithms

290

285

Round Robin [
Thread Load]

CPU Load - On Demand [
CPU Load - Periodic [
Avg Load - Periodic 1
Acc-avg Load - Periodic]

275 4

Execution time in seconds

265 4

255

Scheduling Algorithm

Figure 12: High dispersion of thread workload and high inter-
arrival times

Comparison of different scheduling algorithms

280

275 — Round Robin [
Thread Load]

CPU Load - On Demand [
CPU Load - Periodic]

Avg Load - On Demand]
Acc Avg Load - On Demand [

270

Execution time in seconds

250

]
Scheduling Algorithm

Figure 13: High dispersion of thread workload and low inter-
arrival times

For high inter-arrival times, the scheduling heuristic cpu load-
periodic consumes the least amount of time to finish execution. Al-
though the scheduling heuristic has no information about the time
taken to finish a job, some jobs finish much earlier than all the
threads are scheduled. This information helps the heuristic make a
better decision and spreads out threads of high and low workloads
equally among the different workers. For low inter-arrival times,
Cpu load -on demand performs better than any of the other schedul-
ing heuristics, because the work load of threads are unknown and
this heuristic aims to greedily equalize the cpu load of different
workers as and when threads arrive. Cpu load-periodic takes a
much higher time as the lowest possible period to update the state
information is higher than the inter-arrival time between most of
the threads. Most of the threads are hence scheduled on the same
worker.

Non-uniform cluster. A non-uniform cluster is shared between
multiple processes or users and can have other workloads running
along with our middleware. This results in a varied load among
different machines in the cluster. Figure 14 show a situation where
Cpu-load metric may not always provide a correct view of the sys-
tem. MDS5 hashing application was executed on a cluster with two
workers. Worker2 was already executing an I/O intensive applica-
tion and worker3 was not loaded. Worker?2 starts at a previous load
of 0.3 while worker3 starts at a load of 0. The I/O intensive ap-
plication remains idle during most of its cpu time as it either waits

CPU Load with Cpu-load sched

Worker2-cpuload ——
Workerd-cpuload 4
Worker2-avgload -
Workerd-avgload & |

£
£
k3
k
*
%

CPU Load

&&

Figure 14: Impact of cpu-load sched on load average and cpu
utilization

or performs an I/O operation. Because all the processes are sched-
uled by the processor for a definite quanta, the overall cpu usage
is influenced by the I/O intensive process. Once the cpu-load of
worker3 increases beyond that of worker2, threads are scheduled
on worker?2 till the loads of both these workers become equal but
since the load of worker2 does not rise beyond 0.6, all consequent
threads are launched on worker2. For applications with many num-
ber of threads, the scheduling can prove rather detrimental than
useful as it considerably affects the response time. Load-Average
and accelerated-Load-Average scheduling heuristic overcomes this
problem and this is shown in figure 15 and 16.

CPU Load with AvgLoad-OD sched
6 T T T T T

T T
Worker2-cpuload —+—
& Worker3-cpuload

Fl Worker2-loadavg - -|

Workera-loadavg 5

CPU Load

160

Figure 15: Impact of load-avg sched on load average and cpu
utilization

CPU Load with Accelerated Load Avg sched
6 T T T T

ﬁi&f Worker2-cpuload —+—
FRH g
Ax Worker3-cpuload
Worker2-oadavg -

Workerd-loadavg 5

-
T

o
B
f

Load

il
«j
¥

= St

100
150
200
250

time.

Figure 16: Impact of accelerated load-avg sched on load aver-
age and cpu utilization

Scheduling heuristic accelerated-load-average takes into account
the instantaneous change in load averages caused by the applica-
tion and thus performs better than load-average scheduling. Load-

average scheduling is very conservative as it always takes into ac-
count the previous load of the system. From the figure 15 it can be
seen that worker2 finishes execution at around 60 while worker3
finishes execution only at time 100. This is because of the conser-
vative nature of the scheduling heuristic and once the cpu load sat-
urates, threads are launched conservatively on worker?2 as it already
has a high load average. This problem is mitigated by accelerated-
Load-Average. From figure 16, it can be seen that the execution
finishes earlier because more threads are launched on worker2 at
the expense of tolerating minor differences in overall load aver-
age. Due to space constraints, tabulated classification of scheduling
heuristics for different application characteristics is not shown.

Memory usage. In order to stress test the system for scalability
in terms of memory, we developed a memory intensive application
aimed to generate a synthetic memory load by creating as many
objects as possible and simply iterate through them. In order to
test the application, we allocated 7GB of memory for the JVM and
ran the application on a single JVM and on top of our middleware
using 2 workers. Each thread created an object with integer array
of size 10000 and the size of integer is assumed to be 4 bytes. The
results obtained are shown in Figure 17.

Memory stress test

Single JVM
RATS - 2 Workers [

Memory allocated without error
3

Number of Workers

Figure 17: Memory stress test

It can be seen from the results that for a single JVM, approxi-
mately 4GB of memory was allocated and beyond that the system
gave an out of memory error. But using the middleware, the system
scales with respect to memory as the cluster now behaves like a
virtual memory with the Terracotta server responsible for handling
large heaps. As a result, we were able to allocate up to 15GB of
data using the middleware. This result shows that the application
scales in terms of memory.

Application Modeling. Based on the results obtained, we model
application based on the characteristics of the cluster and the thread
characteristics of the application. The cluster characteristics are
classified into three categories: dedicated or uniform cluster, highly
unbalanced cluster, and I/0 intensive cluster. Table 3 classifies the
application according to the most suited scheduling algorithm on a
dedicated cluster and Table 4 classifies the application based on the
previous load in a non-uniform cluster.

5. CONCLUSION

RATS middleware bridges the gap between transparency and ef-
ficient scheduling of threads using Terracotta to keep data consis-

tent across the cluster and scale existing applications with ease. It
supports multiple scheduling heuristics, each best suited for a spe-
cific thread behavior in an application. The thread behavior can
be obtained by the profiling feature supported by the middleware.
Based on the results obtained, a cpu-intensive application can be
modeled based on the characteristics of the cluster and thread char-
acteristics. The cluster characteristics is classified into two cate-
gories dedicated or uniform cluster and unbalanced or non-uniform
cluster. An application with varying thread characteristics can be
modeled for a dedicated cluster as per the results obtained through
figure 8 to 13. Non-uniform cluster has the same behavior for
on-demand and periodic updates of resource usage as that of uni-
form cluster. It is important to note that the behavior of scheduling
heuristic round-robin and thread-load are unpredictable in a non-
uniform cluster with any kind of application. Similarly with an ex-
isting I/O or network intensive load, the scheduling heuristic cpu-
load becomes irrelevant and accelerated-load-average performs the
best.

6['1]]R Elgelgzsgrll? §%§L E. Cecchet, C. Jensen, V. Cahill,

J. Andersson Y, S. Weber Y, E. Cecchet P, C. Jensen Y,

V. Cahill Y, and Trinity College. Kaffemik - a distributed jvm

on a single address space architecture, 2001.

Yariv Aridor, Michael Factor, and Avi Teperman. cjvm: a

single system image of a jvm on a cluster. In In Proceedings

of the International Conference on Parallel Processing,

pages 4-11, 1999.

Rajkumar Buyya, Toni Cortes, and Hai Jin. Single system

image. Int. J. High Perform. Comput. Appl., 15(2):124-135,

2001.

K. Etminani and M. Naghibzadeh. A min-min max-min

selective algorihtm for grid task scheduling. In Internet,

2007. ICI 2007. 3rd IEEE/IFIP International Conference in

Central Asia on, pages 1 -7, sept. 2007.

Thomas Fahringer. Javasymphony: A system for

development of locality-oriented distributed and parallel java

applications. In In Proceedings of the IEEE International

Conference on Cluster Computing (CLUSTER 2000. IEEE

Computer Society, 2000.

H. Izakian, A. Abraham, and V. Snasel. Comparison of

heuristics for scheduling independent tasks on heterogeneous

distributed environments. In Computational Sciences and

Optimization, 2009. CSO 2009. International Joint

Conference on, volume 1, pages 8 —12, april 2009.

[7]1 Yun-Han Lee, Seiven Leu, and Ruay-Shiung Chang.

Improving job scheduling algorithms in a grid environment.

Future Generation Computer Systems, 27(8):991-998,

October 2011.

Joao Lemos. Distributed clustering and scheduling of vms,

master thesis.

[9] M. Maheswaran, S. Ali, H.J. Siegal, D. Hensgen, and R.F.
Freund. Dynamic matching and scheduling of a class of
independent tasks onto heterogeneous computing systems. In
Heterogeneous Computing Workshop, 1999. (HCW ’99)
Proceedings. Eighth, pages 30 —44, 1999.

[10] Rajendra Sahu. Many-Objective Comparison of Twelve Grid
Scheduling Heuristics. International Journal, 13(6):9-17,
2011.

[11] Andrew S. Tanenbaum. Modern Operating Systems. Prentice
Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2007.

[12] Eli Tilevich and Yannis Smaragdakis. J-orchestra: Automatic
java application partitioning. pages 178-204.
Springer-Verlag, 2002.

[13] R. Veldema, R.A.F. Bhoedjang, and H.E. Bal. Distributed
shared memory management for java. In In Proc. sixth
annual conference of the Advanced School for Computing
and Imaging (ASCI 2000, pages 256-264, 1999.

[2

—

[3

—

[4

—

[5

—

[6

—_

[8

—

[14] Matthias Zenger. Javaparty - transparent remote objects in
java, 1997.

Application
Type

Thread Workload

Inter Arrival | Execution time of
time Scheduling Heuristic

CPU Intensive

Low Dispersion, high load

low RoundRobin == Thread-
load < Cpuload-OD
< Cpuload-Periodic
Load-avg and Acc-
Load-avg (uncompara-
ble)

Low Dispersion, low load

low RoundRobin ~ Thread-
load < Cpuload-OD<
Cpuload-Periodic.
Load-avg and Acc-
Load-avg (uncompara-
ble)

Low Dispersion, high load

RoundRobin ~ Thread-
load < Cpuload-
Periodic < Cpuload-
OD. Load-avg and
Acc-Load-avg (uncom-
parable)

high

Low Dispersion, low load

Thread-load <
RoundRobin <
Cpuload-Periodic <
Cpuload-OD. Load-avg
and Acc-Load-avg
(uncomparable)

high

High Dispersion

high Cpuload-Periodic <
Cpuload-OD < Thread-
load =~ Load-avg
and acc-Load-avg <

RoundRobin

High Dispersion

low Cpuload-OD < Thread-
load =~ Load-avg
and acc-Load-avg <
Cpuload-Periodic <
RoundRobin

Table 3: Application Modeling on a dedicated cluster

Previous Load

Application Type

Execution time of Scheduling Heuristic

Non I/O or network intensive

I/O or network intensive

CPU intensive

CPU intensive

CPU-load < Accelerated-Avg-Load < Avg-
Load. (Others are irrelevant)
Accelerated-Avg-Load < Avg-Load.
are irrelevant)

(Others

Table 4: Application Modeling on a Non-uniform cluster

