
Redes Sociais para Cycle-Sharing
Social Networks for Cycle-Sharing

Nuno Miguel Silvestre Apolónia

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática e de Computadores

Júri
Presidente: Prof. Alberto Manuel Rodrigues da Silva
Orientador: Prof. Luı́s Manuel Antunes Veiga
Co-orientador: Prof. Paulo Jorge Pires Ferreira
Vogal: Prof. Bruno Emanuel da Graça Martins

Lisboa, Outubro 2010

Acknowledgments

First and foremost I would like to thank my supervisor Prof. Luı́s Veiga, whose encouragement, guid-

ance and support enabled me to develop an understanding of the subject and the help to make this disserta-

tion possible. Also, I would like to thank my co-supervisor Prof. Paulo Ferreira.

I would like to show my appreciation to my colleagues Pedro Oliveira, for his support throughout this

work, and Raul Silva, with his expertise in Latex and his inspirational words.

And also, I would like to thank my colleagues at INESC-ID and IST, for additional motivation and

incentives.

Last but not least, my deepest gratitude goes to my family and friends, especially to my mother, Maria

Albertina Silvestre, and to my brother, Luı́s Apolónia, without doubt, have always supported me in my

decisions and to pursue my dreams.

Abstract

The growth of the Internet, and consequently the number of interconnected computers is the basis

for global distributed computing and public-resource sharing. Meaning that, these resources have been

used for computation intensive projects that could not be completed in a short time frame or that the use

of supercomputers would not be significant to complete them in time. These kind of projects use idle

cycles from willing user’s computers to complete their research on specific topics, such as SETI@Home

[ACK+02].

Furthermore, the Internet has been overwhelmed by social connectivity. Internet users have been using

Social networks to interact and share information, knowledge and services with each other.

This work presents an overview of Peer-to-Peer networks and Grids, to understand their advantages and

problems. So that, we can grasp the fundamental ideas that sprout the global distributed computing and the

problem of locating resources and services efficiently.

We also analyze Social networks and social interactions to understand how they can be explored for

other uses rather than what they were initially created for.

In the last chapters we explain the development and resulting evaluation of a Web-enabled platform,

called Social Networks for Cycle-Sharing (SNCS), that uses Social networks as a starting point for resource

and service discovery and integrating it with Ginger Middleware for distributed computing of Jobs.

Also, to conclude that using a Social network for public-resource sharing can give common users the

possibility of releasing resources for other applications usage.

Keywords

Social networks, resource discovery, distributed systems, Peer-to-Peer, Grids, public-resource sharing,

global distributed computing.

iii

Resumo

O crescimento da Internet e consequentemente do número de computadores interligados é a base para a

computação global distribuı́da e da partilha de recursos públicos. Neste sentido, estes recursos são utilizados

para projectos computacionalmente intensivos que poderiam não ser concluı́dos num curto espaço de tempo

ou que o uso de super computadores não seria significativo para os completar a tempo. Estes tipos de

projectos utilizam ciclos inactivos de computadores de utilizadores dispostos a completar a investigação

sobre temas especı́ficos, tais como o SETI@Home[ACK+02].

Além disso, a Internet tem sido inundada por conectividade social. Ou seja, utilizadores da Internet têm

vindo a usar as Redes Sociais para interagir e partilhar informação, conhecimento e serviços entre pessoas.

Este trabalho apresenta uma visão geral das redes Peer-to-Peer e Grids, para compreender as vanta-

gens e problemas destas. O que nos poderá levar a compreender as ideias fundamentais que originaram a

computação global distribuı́da e os problemas de localização de recursos e serviços de forma eficiente.

Iremos também analisar as Redes Sociais e as interacções sociais para apreender a forma de como se

podem explorar para outros fins, sem serem aqueles para que estas foram inicialmente criadas.

Nos últimos capı́tulos explicamos o desenvolvimento e os resultados da avaliação de uma plataforma

Web-enabled, denominada de Redes Sociais para Cycle-Sharing (SNCS), que utiliza as Redes Sociais como

ponto de partida para a descoberta de recursos e serviços, como também a integração com o Ginger Mid-

dleware para a computação distribuı́da de Trabalhos.

Concluı́mos também que utilizando uma Rede Social para a partilha de recursos públicos pode trazer

aos utilizadores comuns a possibilidade de libertar recursos para a utilização em outras aplicações.

Palavras Chave

Redes Sociais, descoberta de recursos, sistemas distribuidos, Peer-to-Peer, Grids, partilha de recursos-

publicos, computao global distribuida.

v

Contents

1 Introduction 1

1.1 Current Shortcomings . 5

1.2 Objectives and Contributions . 5

1.3 Document Roadmap . 7

2 Related Work 9

2.1 Peer-to-Peer networks and Grids . 10

2.1.1 P2P systems . 11

Unstructured systems: . 11

Structured systems: . 11

Hybrid approach: . 12

2.1.2 SETI@Home System . 12

2.1.3 Berkeley Open Infrastructure for Network Computing (BOINC) 12

2.1.4 Distributed Computing Projects . 13

2.1.5 XtremWeb . 13

2.1.6 BOINC Extensions for Community Cycle Sharing (nuBOINC) 14

2.1.7 Grid Infrastructure for Non-Grid Environments (Ginger) middleware 15

2.2 Resource discovery in P2P networks . 15

2.2.1 Cluster Computing on the Fly (CCOF) . 16

Centralized search: . 16

Expanding ring search: . 16

Random walk search: . 16

Advertisement based search: 17

Rendezvous point search: 17

2.2.2 Mobile Agents in Resource Discovery . 17

2.2.3 Juxtapose Project (JXTA) . 17

2.2.4 Social-P2P . 17

2.2.5 Web Ontology Language (OWL) . 18

2.3 Social networks . 19

vii

Contents

2.3.1 Analysis on Social networks . 19

2.3.2 Facebook and OpenSocial . 20

2.3.3 PeerSpective: Social network-based Web Search 21

2.3.4 Social VPN . 21

2.3.5 Social Cloud . 22

2.4 Deployment Mechanisms and Code Execution via the Web 22

2.5 Summary . 24

3 Architecture 29

3.1 Design Requirements . 31

3.2 SNCS Architecture . 32

SNCS (GUI): . 33

Facebook Connect (Embedded browser): 33

Messaging: . 33

Jobs Manager: . 34

Discovery: . 34

User/HW States: . 34

Scheduler: . 35

3.3 SNCS Communications . 35

3.3.1 SNCS Protocol . 37

3.4 Discovery Mechanism . 39

3.5 Gridlet Execution . 39

3.6 Prototypical example . 40

4 Implementation 43

4.1 Used Technology . 44

4.2 Class Diagram . 46

4.3 User Interface . 48

4.4 Data structures and Message Schemas . 50

4.5 SNCS Configuration . 54

4.6 SNCS Constraints . 55

5 Evaluation 57

5.1 Scenarios 1 and 2 . 59

5.1.1 Results . 60

5.2 Scenarios 3 and 4 . 61

5.2.1 Results . 62

5.3 Scenario 5 . 62

viii

Contents

5.3.1 Results . 63

5.4 Scenario 6 . 63

5.4.1 Results . 64

5.5 Scenario 7 . 65

5.5.1 Results . 67

5.6 Scenario 8 . 68

5.6.1 Results . 69

5.7 Discussion . 70

6 Conclusions 71

6.1 Future work . 75

ix

Contents

x

List of Figures

2.1 Power-law Graph (typical for a Social network) . 20

2.2 Facebook and MySpace (OpenSocial-based Web site) logos 20

3.1 Social network interactions . 30

3.2 SNCS overview . 31

3.3 SNCS module view . 32

3.4 Communication Protocol in SNCS . 36

3.5 Computer Informations on Facebook . 37

3.6 SNCS message flow . 38

3.7 SNCS Prototypical example . 41

4.1 SNCS Main Interface . 45

4.2 SNCS Class Diagram . 46

4.3 SNCS Log In Interface . 48

4.4 SNCS Choose Interface . 49

4.5 SNCS Configuration Interface . 49

4.6 SNCS Menus Interface . 50

4.7 SNCS New Job Interface . 50

4.8 Schemas for messages in Facebook . 52

4.9 Completion message example in Applications’ Wall (completed with error) 53

4.10 Job Search message on Users’ Wall . 53

4.11 Job Search and Acceptance messages in Applications’ Wall 54

4.12 Gridlet Message . 54

4.13 Message for the user to redirect to friends . 54

5.1 Scenario 1 View . 59

5.2 Scenario 2 View . 59

5.3 Total times for Scenario 1 and 2 . 59

5.4 Scenario 3 View . 60

5.5 Scenario 4 View . 60

xi

List of Figures

5.6 View of the Registration Post . 61

5.7 Total times for Scenario 3 and 4 . 61

5.8 Communication Times for Scenario 3 . 62

5.9 Scenario 5 . 63

5.10 Total times for Scenario 5 . 63

5.11 Scenario 6 . 64

5.12 Total times for Scenario 6 . 64

5.13 Communication Times for Scenario 6 . 65

5.14 Scenario 7 . 66

5.15 Total times for Scenario 7 . 66

5.16 Communication Times for Scenario 7 Test 3 . 67

5.17 Communication Times for Scenario 7 Test 4 . 67

5.18 Communication Times for Scenario 7 Test 6 . 68

5.19 Scenario 8 View . 68

5.20 Rendering Test Times for Scenario 8 . 69

5.21 Communication Times for Scenario 8 . 69

xii

List of Tables

2.1 Examples of P2P Systems and Infrastructures . 11

xiii

List of Tables

xiv

List of Acronyms

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

BOINC Berkeley Open Infrastructure for Network Computing

CCOF Cluster Computing on the Fly

CPU Central Processing Unit

DHT Distributed Hash Table

FoFs Friends of Friends

GIMPS Great Internet Mersenne Prime Search

Ginger Grid Infrastructure for Non-Grid Environments

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JXTA Juxtapose

OWL Web Ontology Language

P2P Peer-to-Peer

PHP Hypertext Preprocessor

REST Representational State Transfer

SNCS Social Networks for Cycle-Sharing

URI Uniform Resource Identifier

URL Uniform Resource Locator

VPN Virtual Private Network

W3C World Wide Web Consortium

XML Extensible Markup Language

xv

List of Tables

xvi

1
Introduction

Contents
1.1 Current Shortcomings . 5
1.2 Objectives and Contributions . 5
1.3 Document Roadmap . 7

1

1. Introduction

The computing power has been significantly increased in the past few years (more or less like Moore’s

Law [Sch97]), but there are still many computation problems that need an enormous amount of computing

resources, e.g. applications for scientific research, financial risk analysis or multimedia video or image

rendering and encoding. These resources are composed by computing elements like CPU, memory or data

storage, and all of them can be found in the millions of desktop computers all around the World. Meaning

that they can be found on every house hold or in offices and even in our daily devices, such as notebooks or

mobile phones.

The idea to use idle cycles for distributed computing was proposed in 1978 by WORM computation

project at Xerox PARC [Sho98]. It was only after, that the scientific community started to see the benefits

that such systems can give. Furthermore, the possibility of having supercomputers for their disposal was

very tempting and made the scientific community realize that they could harvest the idle processing time

to suite their own needs. These networks are called Grids [FKNT02], a combination of computational

resources from multiple administration domains, and also defined as a coordinated resource-sharing and

problem solving environments, that made possible to make distributed processing of large computation

(and scientific) problems.

With the computer global network (Internet), the available resources for those kinds of projects were

extended. Such projects like SETI@Home [ACK+02], Folding@Home1, Distributed.net2 gathered the gi-

gantic potential of using desktop computers from any house hold (also known as global distributed comput-

ing), allowing them to process their data much quicker than in traditional supercomputers. This is usually

done by, Internet users willing to participate in such projects, that install an application, which runs in the

background when the computer has idle cycles to spare.

A lesson to be taken from such projects is that to attract and keep users, such projects should explain

and justify their goals, research subject and impacts. Users may not be interested in systems that would

steal their idle cycles without their consent.3

The Internet has also enabled information and content sharing by using Peer-to-Peer networks. These

networks are usually formed by interconnected home desktop computers. Also, they can be categorized

in terms of their formation as being structured or unstructured. Unstructured systems are characterized

by having a underlying topology unrelated with the placement of the contents, as opposed to Structured

systems where it is attempted to place the contents in specific locations. Furthermore, there have been done

optimizations to leverage the performance for locating contents and their scalability (in terms of traffic

load). They are generally called Hybrid systems that highlight two types of users. The users that have

more bandwidth are called super-peers and those with low bandwidths are called peers and the last ones are

connected to the super-peers [TTP+07].

These networks have some challenges, such as efficient resource discovery. That is, when a peer needs

a resource it asks other peers for it. Some approaches try to minimize the message traffic that can be
1Folding@Home Web site: http://folding.stanford.edu accessed on 05/01/2010
2Distributed.net Web site: http://www.distributed.net accessed on 05/01/2010
3Plura Processing response to the Digsby Controversy: http://pluraprocessing.wordpress.com/2009/08/24/

our-response-to-the-digsby-controversy-new-terms-of-use-affiliate-auditing accessed on 15/10/2010

2

http://folding.stanford.edu
http://www.distributed.net
http://pluraprocessing.wordpress.com/2009/08/24/our-response-to-the-digsby-controversy-new-terms-of-use-affiliate-auditing
http://pluraprocessing.wordpress.com/2009/08/24/our-response-to-the-digsby-controversy-new-terms-of-use-affiliate-auditing

generated, either by contacting fewer peers (when information is spread to others), or by creating central

nodes that have all or partial information for locating the exact content.

Moreover, the Internet has made it possible to exchange information more rapidly in a global scale.

One of the natural steps was the creation of Social networks, where any one in the world can share their

experiences and information using only their Internet enabled personal computer or mobile device.4 Under

this scope there are many Social networks such as Facebook5, Orkut6 or Youtube7 each one exporting their

own APIs to interact with their users and groups data bases, e.g. Facebook API8 and OpenSocial9. These

networks have great potential for financial benefits, such as Advertising.

Furthermore, studies done on them show some properties like the Small-World property, meaning that

there is a small group of users with high connectivity to others and a much larger group with low connectiv-

ity. Besides that, even the highly connected users only interact (on a daily basis) with a restrict group of users

[WBS+09]. Considering that these networks could be regarded as enabling Peer-to-Peer information shar-

ing (albeit mediated by a centrally controlled infrastructure), employing them for cycle-sharing should be

a great improvement for global distributed computing, by allowing public-resource sharing among trusted

users and within communities.

There are already projects that use Social network concepts to improve performance on other topics,

such as PeerSpective [MGD06] which enhances search results with social information from friends and

Social VPN [FBJW08] that allows the creation of virtual private networks on top of the Social networks, to

be used much like a local network.

The Ginger project [VRF07] serves as a middleware for creating distributed processing using a Peer-

to-Peer network (P2P) for work dissemination (Gridlets) within its peers. Also, to do task distribution

it is necessary to find available resources on the network and who can spare their idle cycles, much like

other global distributed computing projects. The main idea behind this project is that any user may need

processing time for common applications to be executed. Therefore, a P2P network is formed between the

users, to locate idle cycles and resources to be used for those tasks.

Our project developed and evaluated a Web-enabled platform, called Social Networks for Cycle-Sharing

(SNCS), that interacts with a Social network (Facebook) to be able to locate and search for idle resources

among its users. Also, it makes use of the Ginger Middleware for Gridlet creation and aggregation.

SNCS uses a Social network already established in order to give beneficial results to communities

willing to adopt the paradigm of cycle-sharing. Moreover, the users in such networks are mostly linked

with each other by friendship and common interests, meaning that users may be more opened to share their

resources with their own friends.

The client application developed interacts with Facebook mostly by means of the Graph interface they

4Facebook Mobile: http://www.facebook.com/mobile accessed on 19/08/2010
5Facebook Website: http://www.facebook.com accessed on 05/01/2010
6Orkut Web site: http://www.orkut.com accessed on 05/01/2010
7Youtube Web site: http://www.youtube.com accessed on 05/01/2010
8Facebook Developers: http://developers.facebook.com accessed on 05/01/2010
9OpenSocial Web site: http://code.google.com/apis/opensocial accessed on 05/01/2010

3

http://www.facebook.com/mobile
http://www.facebook.com
http://www.orkut.com
http://www.youtube.com
http://developers.facebook.com
http://code.google.com/apis/opensocial

1. Introduction

provide. Which gives us access to users’ information, such as their friends, groups and Wall. These Walls

are the main interactions between the people that uses Facebook, meaning that they record messages onto

the Wall to be read by the users linked to them.

SNCS is then able to discover resources for the execution of Jobs (which are composed by Gridlets)

submitted by the users. The Jobs are intensive computing tasks that can be partitioned in several smaller

tasks which are called Gridlets, these contain the data files and arguments to be executed on the processing

SNCS client.

The client application is composed of modules that interact with the Social network, with the users’

computers and the Ginger Middleware. Furthermore, the interactions between SNCS and Facebook are

helped by the use of the RestFB library, which gives us a simple way of using Graph and REST functionali-

ties. And also, the use of SIGAR library to gather computers’ information in order for SNCS to donate idle

cycles and know which resources are provided by the Social networks’ users. Moreover, the resource and

application discovery enables us to distribute Gridlets among users and to aggregate them using the Ginger

Middleware.

Furthermore, a communication protocol has to be established in order to interact between the SNCS

clients and complete Jobs successfully. This means that we use Facebook Walls (users/groups/Application

Walls) to send and retrieve messages sent by other SNCS clients. SNCS starts this process by sending a Job

search message to the users’ Wall in order for the users’ friends to read and accept (or deny) the request to

use their idle resources.

As we also want to gather users’ computers as much as possible, we send messages to groups that have

users that may be willing to help (or have the Jobs’ requirements).

Furthermore, we extend the reach of gathering resources to contain friends of friends (FoFs), meaning

that SNCS contacts FoFs SNCS clients for resource sharing.

However, this interaction uses the users’ friends as the carriers of the messages to the FoFs, meaning that

the friends redirect messages to their friends in order for them to forward the response on the Applications’

Wall. This happens because Facebook does not allow users to interact with each other without being linked

as friends. The use of the Applications’ Wall subverts this inability.

In the development of SNCS, our concerns were with the resource discovery and also the manner which

a user could submit his own Jobs to be processed on others. Moreover, to reach as many users and commu-

nities as possible we used Java for portability purposes.

A fact is that SNCS suffers from constraints due to the use of Facebook as the means of interactions

between users. Meaning that the Social Network restricts outside applications with rules (Use Terms)10 and

restraints.

Also, Facebook is still developing some Graph functionalities and thus they may not work as expected,

therefore we use the discontinued REST interface to access them, such as reading and writing of Comments

in groups’ Walls.

10Facebook Use Terms: http://www.facebook.com/terms.php access on 26/08/2010

4

http://www.facebook.com/terms.php

1.1 Current Shortcomings

The evaluation of SNCS is comprised of several scenarios, where each of them evaluates a portion of

our works’ goals, in order to know the effects each carries.

We describe 8 scenarios, starting with one that has two friends communicating with each other in order

for us to know if SNCS can achieve resource and application discovery.

In the last scenarios we augment the network size used, to become more realistic in terms of users’ roles

(friends, FoFs, group members). And also we change the Gridlets to become more realistic, by using a

known program (Pov-Ray)11 to render an image.

These scenarios were made, in order for us to conclude that SNCS can gain speedups against local

execution, however it was demonstrated that SNCS can be hindered by variables such as Facebook latency,

and searching for resources may not return positive results, or the number of Gridlets surpasses the number

of donating users.

We finally state that we achieved our works’ goals, meaning that it is viable the use of a Social network

to gather idle resources scattered among Social network users, to be used by common users applications’

execution that would take more time in their computers, releasing resources for other tasks.

1.1 Current Shortcomings

The public-resource sharing and cycle-sharing systems that are widely used today, do not concern with

the common users’ needs. They are mostly used for intensive computation projects (and proprietary) such

as Folding@Home, PluraProcessing.

Other systems allow common applications to be executed, however they do not support users’ networks

already established, meaning that they cannot use Social networks to be able to gather resources to be used

by other interested users (such as friends or communities), while often do not provide a total sharing system

between users.

Some systems however are beginning to use technologies previously unavailable to other projects, in

order to cover more Internet users. Such systems can use the users’ Browsers to do cycle-stealing instead

of addressing the needs of the common users. Moreover, they use remote code embedded on Web sites and

games (i.e. Adobe Flash12 based games) to gain access to potential idle resources.

Furthermore, their resource discovery and scheduling are rudimentary, meaning that they do not rely

on established networks of users to do public-resource sharing, instead users may have to create their own

networks. Also, their scheduling process is ascertained by determined users or by occasional users (which

may not be aware of the system).

1.2 Objectives and Contributions

This work follows the Ginger project and is aimed at resource and application discovery through users

from Social networks, such as Facebook, to execute Jobs (which are comprised of Gridlets) remotely.

11Pov-Ray: http://www.povray.org accessed on 13/10/2010
12Adobe Flash: http://www.adobe.com/products/flashplayer accessed on 13/10/2010

5

http://www.povray.org
http://www.adobe.com/products/flashplayer

1. Introduction

The fundamental idea of Social Networks for Cycle-Sharing (SNCS) is to interact with a Social network,

and make it easier to find resources and other applications to be used for completion of Jobs (that include

execution of users’ programs) that each user can submit to be processed remotely. While also, scheduling

the Jobs on friends or communities that are willing to share their resources.

The objectives of this dissertation can be summarized as:

1. Analyze current P2P and Grid systems, to know how resources are found in such networks for the

distributed tasks;

2. Analyze Social networks and social interactions to know how this work can leverage them to suit the

need of finding resources;

3. Study how global distributed computing and public-resource sharing (such as that using BOINC) are

performed, in order to have a proven starting point approach as the basis for our work;

4. Understand how to integrate distributed computing with Social networks, to improve the performance

of resource discovery;

5. Develop a Web-enabled platform that can interact with the Social network and the overlay network

for the distributed tasks;

6. Evaluate the work in a simulated environment, to prove that we can use a Social network for resource

and application discovery among its users and use it for distributed computing;

The objectives 1, 2, 3 and 4 are addressed in the Related Work. This gives us a background on how

distributed computing and resource discovery have been done and how this work can be accomplished

using that knowledge. Also, it is necessary to analyze Social networks to know if it is feasible to use them

for another goal, other than communication within friends.

Objective 5 gives a proof of concept application, to make it possible to take advantage of Social networks

to be used as a way for resource discovery. In addition, SNCS has the following requirements:

• Finding friends and their profiles (from user’s computers and components);

• Finding groups and communities that the user has joined;

• Gather information about users’ state (e.g. Online, Away);

• Locate resources among the users, that are willing to participate in the Jobs;

• Schedule Jobs, when users are connected to the network, but not available to execute them;

• Integrate seamlessly into the everyday life of the Social network usage, without compromising user

ability to communicate with his/her friends.

6

1.3 Document Roadmap

These final objectives are intended to focus this project on a path for improving the resource and service

discovery on top of a Social network already established.

Furthermore, SNCS needs to be able to gather idle cycles from users’ computers and communities that

would be willing, and capable of doing a Job, in order to achieve cycle-sharing on a Social network.

Also, it could give the chance for common users to use the cycle-sharing paradigm to speedup their own

(or common) applications’ execution without needing to create a new network. Meaning that, SNCS could

use an already established network as in case of Social networks (Facebook, MySpace, among others) to

interact between users to share their idle cycles.

1.3 Document Roadmap

The rest of this dissertation is organized as follows.

The next Chapter, the Related Work, begins by presenting a analysis on Peer-to-Peer networks and Grids

(Sections 2.1 and 2.2) and Social interactions (in Section 2.3), ending with mechanisms and code execution

via Web (in Section 2.4) and a summary to conclude the related work (in Section 2.5).

Then on Chapter 3, we describe Social Networks for Cycle-Sharing (SNCS), that follows our works’

goals, by presenting the aspects that compose the SNCS architecture (in Section 3.2), its communication

flow (in Section 3.3) and ending with a prototypical example of SNCS use (in Section 3.6).

On Chapter 4, we give the details of the implementation of SNCS, also the technologies involved (in

Section 4.1) and some of the constraints SNCS suffers by using Facebook as its Social network (in Section

4.6).

Chapter 5 describes the scenarios used to evaluate SNCS and its results, giving an overview of how

it behaves on such networks, either with a more realist environment (in Section 5.5) or using a actual

application to process Gridlets (in Section 5.6). And on Section 5.7 we discuss the obtained results to

understand SNCS properties.

On the last Chapter we present the conclusions and future work of this dissertation.

7

1. Introduction

8

2
Related Work

Contents
2.1 Peer-to-Peer networks and Grids . 10
2.2 Resource discovery in P2P networks . 15
2.3 Social networks . 19
2.4 Deployment Mechanisms and Code Execution via the Web 22
2.5 Summary . 24

9

2. Related Work

This chapter gives a review on network topologies such as P2P and Grid systems, to understand the

related problems like efficient resource discovery. Also, it addresses some projects that have been done in

the area of distributed computing, to give relevant aspects regarding our works’ goals.

Moreover, it gives a review about Social networks and user interactions, addressing some of the studies

done in these networks. To understand how we can achieve resource (and service) discovery using Social

networks and why it will be important for global distributed computing or public-resource sharing. We

finish the Related Work with some practical applications that utilizes Social networks for other purposes

rather than the intended idea of social interactions.

2.1 Peer-to-Peer networks and Grids

The Peer-to-Peer (P2P) networks and Grids are the most common types of sharing systems, they evolved

from different communities to serve different purposes as [TTP+07] assumes.

The Grid systems interconnect clusters of supercomputers and storage systems. Normally they are

centralized and hierarquically administrated, each with its own set of rules for the resources availability in

order to participate in distributed computing. They can be dynamic and may vary in time but with smaller

magnitude and have to be known among the network.

The Grids were created by the scientific community to run computation intensive applications that would

take too much time in normal desktops (without being distributed) or on a single cluster, e.g. large scale

simulations or data analysis.

The P2P networks are typically made from house hold desktop computers or common mobile devices,

being extremely dynamic in terms of resource types and whose membership can also vary in time with more

intensity than with Grids. These networks are normally used for sharing files, although there are a number

of projects using those kinds of networks for other purposes, such as sharing information and streaming

(e.g. Massive Multiplayer Online games using P2P [KLXH04] to alleviate server load, distributing tasks

as SETI@Home [ACK+02], data streaming for watching TV1). The nodes (or peers) are composed by

anonymous or unknown users unlike in Grids, which may have its own problems with security or even with

forged results [TTP+07].

Both these systems have been converging by relaxing rules from Grid systems and opening P2P appli-

cations for more computational methods.

These two distributing systems have different resources, which may indicate a different level of com-

puting power of the nodes comprising each one. However, it is easier to leverage more desktop computers

than to have large supercomputers at our disposal. This can make P2P systems aggregate more computing

power than the Grid systems.

1PPStream: http://www.ppstream.com accessed on 05/01/2010

10

http://www.ppstream.com

2.1 Peer-to-Peer networks and Grids

2.1.1 P2P systems

The P2P systems can be categorized in terms of their structure in three ways (also in Table 2.1.1), as

follows.

Examples of Peer-to-Peer File Exchanging Systems

Unstructured Systems

Napster
Gnutella
Freenet
Kazaa

Structured Infrastructures

CHORD
CAN
PASTRY
Tapestry

Hybrid Systems

Kademlia
Kazaa
Gnutella2
eDonkey

Table 2.1: Examples of P2P Systems and Infrastructures

Unstructured systems: where the placement of contents (Files) is completely unrelated to the overlay

topology and they must be located (or searched). These systems, such as Gnutella2 and (FastTrack) KaZaA

[LKR04], are generally more appropriate for accommodating highly-transient node populations. To search

for resources it is common to use methods such as Flooding [PFA+05], Dynamic Querying3, Random walks

[TR03], direct searches [LCC+02] (if statistical information is available) or forwarding indices [CGM02].

Moreover, they have obvious implications regarding availability, scalability and persistence [ATS04].

A optimization (also considered as an hybrid approach) to these systems follows the line of having two

types of peers (or nodes) the super-peers (peers with higher bandwidth) which would form a unstructured

overlay network and the leaves (peers with low bandwidth) connected to the super-peers. So that flooding of

messages are only passed through the super-peers and not cause problems with peers which cannot handle

to many search requests [TTP+07].

Structured systems: these systems are an attempt to improve the scalability issues regarding locating

content, that the unstructured systems suffered from, by controlling where contents should be placed at

all times. For supporting searches these systems use namely a distributed routing table (also presented as

DHT - Distributed Hash Table) [Man03], in order for queries to be efficiently routed to the peer that has the

content or the information where the content is located.

Every peer that joins the network has partial information where to find the contents (CHORD [SMK+01],

CAN [RFH+01], Pastry [RD01]) meaning that peers need more information to join the network. These sys-

tems are more scalable in terms of traffic load, but still need more auto-organizational capabilities.
2Gnutella Protocol: http://rfc-gnutella.sourceforge.net/src/rfc-0 6-draft.html accessed on 07/01/2010
3Dynamic Querying Protocol: http://www.ic.unicamp.br/ ∼celio/peer2peer/gnutella-related/

gnutella-dynamic-protocol.htm accessed on 05/01/2010

11

http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
http://www.ic.unicamp.br/~celio/peer2peer/gnutella-related/gnutella-dynamic-protocol.htm
http://www.ic.unicamp.br/~celio/peer2peer/gnutella-related/gnutella-dynamic-protocol.htm

2. Related Work

Hybrid approach: was created to make up for the lacks that each approach have and still retain their

benefits. Like Kademlia [MM02] uses a group of peers (that are near each other) known as buckets to locate

files, resolving some flooding problems. Also peers may have the ability to change themselves, enabling

them to become part of the overlay network used to coordinate the P2P structure. Furthermore, some hybrid

systems use a central server to bootstrap the peers (i.e. eDonkey network [OBBO04]).

2.1.2 SETI@Home System

There has already been work around in the area of global distributed computing (the use of home and

office computers for distributed computing), as we can see in projects like SETI@Home [ACK+02]. Where

they use these kind of resources to analyze radio wave signals that come from outer space, hoping to find

radio signals originated from other planets on our galaxy. Thus, proving that there are extraterrestrial life

advanced enough to send such kind of waves.

The data is processed in three phases: “computing its time-varying power spectra;” “Calculating “can-

didate” signals through pattern recognition on the power spectra;” “Eliminating candidate signals that are

probably natural or man-made;”, meaning that each individual computer does these phases in an attempt

to find relevant signals and as their only processing job.

For this project, having more computing power means they could cover a greater range of frequencies,

instead of using supercomputers which they did not have in abundance [ACK+02], they found a way that

lets them use computers around the world to calculate those wave signals.

The wave signals were divided in small units of fixed size to be able to distribute among the BOINC

clients (that would be located in any user computer), then the client would compute the results in their spare

time and send it to the central server asking for more work to do. In this process the clients would only need

to be able to communicate with the server when they finished the computations (or for asking more data).

The users do not need to be aware of such complexity, they would only install a screensaver in their

computers and this application would activate itself only when the computer had idle cycles to spare (and

not being used).

The client (application) was designed to have a platform independent framework for distributed com-

puting, in order for them to reach as many Internet users as possible. Moreover, users had a ranking system

to compete against other users, to motivate them to use this system. Thus, adding that the most important

lesson of SETI@Home project was that to attract and keep users, such projects should explain and justify

their goals, research subject and its impact.

2.1.3 Berkeley Open Infrastructure for Network Computing (BOINC)

BOINC [And04] is a platform for distributed computing through volunteer computers, it emerged from

the SETI@Home project and became useful to other projects.4

Folding@Home [LSS+09] is an example of a BOINC system that studies protein folding, meaning

4BOINC projects: http://boinc.berkeley.edu/projects.php accessed on 13/10/2010

12

http://boinc.berkeley.edu/projects.php

2.1 Peer-to-Peer networks and Grids

when proteins assemble (or fold) themselves for a certain task or function; misfolding, which occurs when

proteins do not fold correctly; and related diseases such as Alzheimer’s, ALS, Huntington’s, Parkinson’s

disease, and many types of Cancers.5 The system uses distributed computing to simulate time scales,

thousands to millions of times longer than previously achieved, which allows them to simulate actual protein

folding and direct their approach to examine folding related diseases.

Another example of a BOINC system would be the climateprediction.net [SKM+02], that employs

climate models to predict the Earth’s climate up to 2100 and to test the accuracy of such models. This

allows them to improve their understanding of how sensitive their models are to small changes and also

changes like in carbon dioxide and sulphur cycles. The project has many similarities with other BOINC

systems, but the computational tasks are different.

Although each project has its’ own topic and therefore their own computational differences, the BOINC

system used for each project (client application) has to be unique.

2.1.4 Distributed Computing Projects

The subject of distributed computing has been previously addressed by several projects. And the first

relevant projects to distributed computing were distributed.net6 and GIMPS.7

Distributed.net uses computers from all around the world to do brute-force decryption of RSA keys, and

attempt to solve other large scale problems. Their initial project was to break the RC5-56bits algorithm,

which took 250 days to locate the key (0x532B744CC20999). Other consequential projects like RC5-

64bits, Optimal Golomb Rulers (OGR-24, OGR-25, OGR-26), which is a mathematical term given to a set

of whole numbers where no two pairs of numbers have the same difference, have also been concluded with

varying times of 100 to 3000 days, and currently they are trying to break the RC5-72bits algorithm and find

the OGR-27.

The GIMPS project uses the same concept of distributed computing to search for Mersenne prime

numbers, these numbers are of the form 2P −1 where P is a prime. The last known Mersenne prime (47th)

that was found was 242643801 −1 , which has about 12.8 million digits.

Both projects use its own Client and Server applications, following the same idea as the BOINC projects.

Also, there are many other projects for distributed computing.8 However, all of them have only one topic

of research (for each project), meaning that each system does not have the flexibility of changing its own

method of research.

2.1.5 XtremWeb

The fundamental idea of global distributed computing is to harvest the idle cycles of computers from

all around the world that use the Internet. The XtremWeb [FGNC01] project aims at the development of

5Folding@Home Web site: http://folding.stanford.edu accessed on 05/01/2010
6Distributed.Net: http://www.distributed.net accessed on 05/01/2010
7GIMPS: The Great Internet Mersenne Prime Search http://www.mersenne.org accessed on 05/01/2010
8List of Distributed Computing Projects: http://en.wikipedia.org/wiki/List of distributed computing projects ac-

cessed on 05/01/2010

13

http://folding.stanford.edu
http://www.distributed.net
http://www.mersenne.org
http://en.wikipedia.org/wiki/List_of_distributed_computing_projects

2. Related Work

a platform to experiment the capabilities of this concept. By gathering the unused resources of Desktop

computers (such as CPU, storage, network) to build a lightweight Desktop Grid where their primary goal

is to turn a set of volatile resources spread over a network into a runtime environment to execute highly

parallel applications.

Some of the issues that they had in consideration were: “sizing the environment components (servers,

network, workers) according to the applications’ features; high performance and secure execution (relies

on sandboxing); modeling resource and workload management as inputs for scheduling algorithms; and

the impact of the application characteristics, either compute- or data-intensive.”

Also, some of the related issues with global distributed computing were addressed, such as:

• Scalability of the network;

• Heterogeneity across hardware and software;

• Availability of the users’ resources;

• Fault tolerance within its nodes;

• Security maintaining participating users protected against malicious or erroneous manipulations;

• Dynamicity in terms of configuration as well as communication latency and throughput;

• Usability, easy deployment and usage.

These issues may impact the reliability of the project to be able to compute the problems. Their approach

was similar of the BOINC systems, by aggregating the nodes from the network (Internet/LAN) and share

their resources within this network. And also, they add the possibility for users to register their own global

distributing application, which is a step forward of only allowing one research topic to be executed to having

any application that can be ran (a resource-sharing environment).

2.1.6 BOINC Extensions for Community Cycle Sharing (nuBOINC)

Users without expertise may encounter difficulties in setting up the required infrastructures for BOINC

systems and subsequently gather enough computer cycles for its’ own project. The nuBOINC extension

[SVF08] is a customization of the BOINC system, that allows users to create and submit tasks for distributed

computing using available commodity applications. In sense, they try to bring global distributed computing

to home users, using a public-resource sharing approach.

In their architecture, the client was modified in order for the user to submit jobs to the server, registering

the application (e.g. POV-Ray) that should be invoked to run the job. Also, defining what arguments the

application should use when it is executed. These applications are integrated with the help of the Registrar

application on the server side. Which contains the applications that are available for the jobs that are

submitted.

14

2.2 Resource discovery in P2P networks

On the client side a component (comBOINC) is responsible for invoking the commodity applications

which are needed to process the input files.

Furthermore, by allowing users to create their own projects, on top of commodity applications, they do

not have to develop a full fledged BOINC application from scratch to be executed on remote computers.

2.1.7 Grid Infrastructure for Non-Grid Environments (Ginger) middleware

The main concept of the Ginger project [SFV10, VRF07, RRV10] is that any home user may take

advantage of idle cycles from other computers, much like SETI@Home. Donating idle cycles to other users

to speedup other users’ applications and by doing so, they would also take advantage of idle cycles from

other computers, to speedup the execution for their own applications. To leverage the process of sharing,

Ginger introduces a novel application and programming model that is based on the Gridlet concept.

Gridlets are work units containing chunks of data and the operations to be performed on that data.

Moreover, every Gridlet has an estimated cost (CPU and bandwidth) so that they can try to be fair for every

user that executes these Gridlets. They also say that these Gridlets are submitted by nodes and serviced

by other nodes, and then returned as results to the submitting nodes. By these means the global resources

would always be occupied taking advantage of all idle resources, and giving home users the opportunity of

executing their own tasks in a distributed way, with acceptable performance.

This project also tries to span the boundaries of the typical grid usage, enabling the Internet users to

take advantage of the Grid features, previously unavailable to the common user. The project also employs

a P2P model to provide a large-scale deployment in a self-organized way.

2.2 Resource discovery in P2P networks

The term resource is used to include hardware, software, licenses, Grid services, and others alike

[HHK04]. And with, distributed computing, in an underlying network topology, comes a problem of finding

resources for given problems.

P2P file sharing systems have always been dealing with such problems [MRPM08], i.e., to search for

files within its peers without having to contact a single node to find them.

Since there is a lack of a central administration in P2P networks, the search for files has to include all its

peers and has to be redone every time any node requests a resource. This happens because those resources

might be different among peers and may not be available for infinite time or always in the same position.

Some approaches regarding resource discovery in P2P networks have already been done. As such,

Flooding [PFA+05] is the earliest technique used, where a message is sent to the network until some peer

answers (or the message times out or the number of hops-to-live reaches zero).

To overcome problems of excessive traffic, alternatives include other blind methods such as Random

walks and multiple random walks [TR03], that crawl the network randomly through its peers to find the

answer.

15

2. Related Work

Hybrid methods that combine flooding with Random walks were also considered. Such as, direct

searches [LCC+02] and forwarding indices [CGM02] that can only be implemented when there is some

information about the resources and its peers, meaning that it follows a not-so-random walk through its

peers to locate the resources with the exact (or close) match.

With Structured P2P systems, the attempt to always control where the contents should be, lead to explore

the alternative of using distributed routing tables (Distributed Hash Table - DHT) [Man03]. Meaning that,

peers and contents are mapped, using a hash function, to a key space. Moreover, the users and resources,

that are part of the system, are organized in a rigid structure that facilitates their location on the network.

However, this approach can only function when the resources are well known.

Some approaches to resource discovery have contemplated the solutions of integrating the idea of Social

network within a Grid [GDY06]. Meaning that, to better guide the queries to the right resources that infor-

mation has to be known among some of the peers. Furthermore, by simply sharing resource information

with who they know, it increases the chance for other peers to reach it. Therefore, with this approach nodes

do not need to know who exactly has the resources or to crawl the entire network to locate them.

2.2.1 Cluster Computing on the Fly (CCOF)

The Cluster Computing on the Fly [LZZ+04] is an open P2P system that harvests idle cycles from users.

It supports the scheduling of applications in a distributed model, where any peer can share or consume idle

cycles.

Peers first join a specified community that is associated with how the peers are donating their idle cycles.

Afterwards, they form a cluster for resource discovery and scheduling of workloads.

Regarding the resource discovery in CCOF [ZL04], peers use a local scheduler that communicates with

other peers (schedulers) for sharing their resources. Each scheduler coordinates with other peers that it

knows.

For comparison reasons, they used five algorithms for resource discovery, to know how the performance

would be influenced by the dynamic nature of the system.

Centralized search: when the client enters the network and is willing to donate its idle cycles, it reposts

its profile information to the central server. The clients then can ask the server for idle cycles, which it tries

to match with other peers (clients) that are sharing.

Expanding ring search: when the client needs cycles it asks its direct neighbors. If there are no

sufficient cycles it then requests to peers one hop further, repeating the procedure until it has enough cycles.

Random walk search: the client requests cycles from randomly selected neighbors, and they request

from their neighbors until it reaches a certain limit.

16

2.2 Resource discovery in P2P networks

Advertisement based search: when the peers join the network, they propagate their information to the

neighbors. In order for the information to be disseminated through the peers.

Rendezvous point search: this method uses dynamically selected points in the network for the hosts

to advertise their information profile and to gather idle cycles.

The comparison between these methods suggests that having selected points (Rendezvous points) for

communication would be best for performance issues. This method also showed high job completion rate

and low message overhead, although it favors large jobs under heavy workloads. Meaning that resource

discovery would converge to a client-server based method, instead of a P2P method.

2.2.2 Mobile Agents in Resource Discovery

A software agent is defined as a computing entity that performs some task or tasks on behalf of someone

or something [CH97]. A mobile agent has an additional property of not being bound to the system of which

it started. Aglets9 is a Java based implementation of such agents.

Using mobile agents for resource discovery [Dun01] in P2P systems, can lead to improve performance

in bandwidth. Since agents can roam freely from the starting node, they can visit other peers updating them

with the latest information and be updated with the current users’ information. Furthermore, these agents

would only carry with them the necessary information to update or be updated for a custom usage.

2.2.3 Juxtapose Project (JXTA)

The JXTA project [TAA+03] was started by Sun Microsystems10 intended to be a open source P2P

protocol. Its protocols are completely hardware and software independent. While a complete description of

JXTA is beyond the scope of this work, there are some aspects worth mentioning.

For sending and receiving messages their system uses a lightweight parser that supports XML objects

[BPSM+00], considering this it parses documents without the peers awareness of how it is done.

Moreover, JXTA consists of six protocols, but the most relevant for this work are the Peer Discovery

Protocol and Peer Information Protocol.

The Peer Discovery Protocol allows peers to locate other peers, groups of peers and advertisements in

the networks, using XML based messages to communicate with rendezvous peers. This type of nodes are

considered as super-peers or coordinators of the network, that store advertisements of the dependent peers.

The Peer Information Protocol enables peers to determine the status and capabilities of other nodes. It

provides read-only access to properties, described as using strings to name them.

2.2.4 Social-P2P

Social-P2P [LAM07] is a social-like P2P algorithm for resource discovery. They describe it as being

analogous to the way humans interact in Social networks.

9IBM Japan Aglet: http://www.trl.ibm.com/aglets/index.html accessed on 05/01/2010
10Sun Microsystems, Inc.: http://www.sun.com accessed on 05/01/2010

17

http://www.trl.ibm.com/aglets/index.html
http://www.sun.com

2. Related Work

They also note that knowledge is passed on by people to others in these networks as a means of sharing

information, and also it is discussed that people recall information in memory to find the right persons to

interact with, when searching for a given resource. These persons, which are recalled from memory, may

directly relate to their requests.

However, in most circumstances, these people are recalled because they had knowledge similar, or in

the same context of the requesting resource, instead of actually knowing about it. Meaning that, a person

may be recalled because of the information topics of the requested resource.

Social-P2P makes use of this information in order to direct searches appropriately, by having community-

based networks, and mimicking human interactions in Social networks.

Their routing algorithm involves three phases. A node receiving a query which needs to be forwarded,

firstly searches the local knowledge index for the peer nodes directly associated with the requested topic.

In a second phase it searches for peer nodes that are sharing content associated with the interest area of the

requested topic. The peer nodes are ranked according to the interest they showed on the related topic, and

thus the search selects the peers with higher degree of correlation between the requested topic. The third

phase randomly picks cached peers if there are not enough peers from the previous phases.

An added observation is that they noticed the Small-World phenomenon on their networks with a high

clustering coefficient and a short average path length. Meaning that, the networks were simulating a Social

network instead of random created networks.

This algorithm serves as a demonstration that human interaction strategies are successful for resource

discovery in P2P networks. Although it was only considered, in their simulations, a dynamic environment

with probabilistic request structure and file sharing.

2.2.5 Web Ontology Language (OWL)

Resource matching in large environments can become increasingly difficult. Thus, the specific attributes

needed to describe resources are getting more complex, in the same manner the requests are getting more

differentiated. Therefore, OWL [HHK04] addresses this issue and is recommended by W3C.11

This language serves to describe ontologies (classes and relations between them) to be used on the

Internet, which are inherent in Web documents and applications. Also, describing the hierarchy of resources

that different computers can have.

Every peer keeps a record of resources, where every individual resource is a member of one or more

concepts, which are stored in peer catalogs. Furthermore, each peer may have its own, possibly incomplete,

ontology. Meaning that, it can be completed with the knowledge distributed over the network. The idea is

to have a assertional box (A-Box) and a taxonomical box (T-Box).

The T-Box stores concepts and relationships, as for the A-Box it stores concepts and role assertions,

meaning the concrete knowledge about individual domains.

By classifying every resource they can assume to have a search with the right conditions to arrive on a

11OWL Guide: http://www.w3c.org/TR/OWL-Guide accessed on 05/01/2010

18

http://www.w3c.org/TR/OWL-Guide

2.3 Social networks

knowledgeable result. They also assume that peers do not need to know all the terms used. To achieve this,

they combine the knowledge from all peers within a distributed classification DAG (directed acyclic graph),

and queries are resolved against it.

2.3 Social networks

Social networks are popular infrastructures for communication, interaction and information sharing on

the Internet. Anyone with a desktop computer and a Browser can access such Web sites, like Facebook,

MySpace, Orkut, Hi5, YouTube, Linkedin and many more.12 They are used to interact with other people

for personal or business purposes, sending messages, posting them on the Web site, receiving links to other

Web sites or even sharing files between people.

Like in real life social interactions [Sco88] people tend to interact with many others along their lives,

some of those are called friends which the interaction may be daily. In the Social networks the basic (real

life) behaviors or interaction patterns still applies.

By grouping people in the same areas or topics, it should be easier to exploit those interactions, because

people might understand better what the distributed tasks will accomplish and may be willing to participate

in those kinds of works.

Social networks have already began to sprout new ideas to exploit them for uses other than human inter-

actions, such as using it for enhancing Internet search [MGD06] and leveraging infrastructures to enabling

ad-hoc VPNs [FBJW08], which will be addressed in the next Subsections.

2.3.1 Analysis on Social networks

To begin to understand why Social networks may be important for public-resource computing we have

to study and analyze how users interact with each other in such networks, or how communities are formed.

Some studies of Social networks such as [WBS+09, MMG+07, AHK+07] focus their attention into

how users and groups interact with each other in the course of time and to quantify it so we can learn the

evolution in time of these networks.

These studies have reinforced the idea that those networks follow a power-law graph (Fig. 2.1) (also

called the 80-20 rule, or may follow a logarithmic graph) and have properties of Small-World networks.

Meaning that there are more users with fewer links than users with many. A user that has many links (to

other users), which can be in the thousands, does not mean that he/she will interact with everyone most of

the time, these interactions are confined to a small group of users of all of those that the user is linked to. It

is also assumed that the interaction degree is lower than the social degree, meaning that users tend to have

more links to other users, rather than the ones they frequently interact with.

Small-World networks can be categorized by the following properties: the local neighborhood is pre-

served; and the diameter of the network, quantified by average shortest distance between two vertices,

increases logarithmically with the number of vertices n. It is then possible to connect any two vertices in

12List of Social Networks: http://en.wikipedia.org/wiki/List of social networking websites accessed on 05/01/2010

19

http://en.wikipedia.org/wiki/List_of_social_networking_websites

2. Related Work

Figure 2.1: Power-law Graph (typical for a Social network)11

the network through just a few links [ASBS00]. Furthermore, growing networks can be hindered by two

factors: Aging of the vertices, where vertices no longer connect to newer vertices; Cost of adding links to

the vertices or the limited capacity of a vertex, adding links to the networks may not be possible if there are

constraints of space/time.

We can also see Social networks’ users in a P2P perspective, where users with many links are super-

peers, connected by peers with fewer links and probably not always from the same groups.

Many Social networks also have ways of connecting users without being linked as friends, these connec-

tions are called groups or communities, where knowledge is exchanged within a specific topic of interest.

The creation for such groups and consequently taking shape and evolve over time is inherent in the struc-

ture of society, meaning that each people have the tendency of coming together to share knowledge of a

particular theme [Bac06].

2.3.2 Facebook and OpenSocial

Figure 2.2: Facebook and MySpace (OpenSocial-based Web site) logos12

There are many Social networks in the Internet13. The focus on Facebook and OpenSocial (Fig. 2.2

depicts the logos well known to the users) is explained by having access to the databases, by means of

the APIs they export. Moreover, Facebook claims to have 500.000.000 (as of July 21 of 2010) users and

MySpace (one Web site that uses the OpenSocial API) claiming to have more than 130.000.000 registered

users. The potential of these networks for global distributed computing is best compared to other networks.

11Taken from: http://pgp.cs.uu.nl/plot
12Taken from their respectively Web sites.
13List of Social Networks: http://en.wikipedia.org/wiki/List of social networking websites accessed on 05/01/2010

20

http://pgp.cs.uu.nl/plot
http://en.wikipedia.org/wiki/List_of_social_networking_websites

2.3 Social networks

Furthermore, the Facebook API14 and the OpenSocial API15 enables Web applications to interact with

the server using a REST-like interface16 or in case of Facebook also a Graph interface.17 This means that

the calls from outside applications are made over the Internet by sending HTTP GET and POST requests.

An example of a Facebook application is Progress Thru Processors,18 it executes a BOINC system to do

distributed computing, when the computer has idle cycles to spare. Through the applications’ interface on

Facebook it is able to track contributions from users and share updates with friends to intentionally promote

distributed projects to other users.

2.3.3 PeerSpective: Social network-based Web Search

The World Wide Web and Web search engines have transformed the way people find and share infor-

mation [MGD06]. Explicit links between contents, called Hyperlinks, are used to navigate through Web

sites, and are used by search engines to crawl the Web, indexing content, ranking information or estimating

the relevance of the content for a search query.

PeerSpective19 tries to merge the Social networking with search engines, to improve their ranking sys-

tem, by understanding how people do searches. They employ the search results, made by friends, into the

ranking system. In overall, they claim that the system can be leveraged to improve the quality of search

results for a given group of people.

The system works by indexing search content and querying friends for their searches including the extra

results, which may be relevant to the question, on the search Web page.

A lesson to be taken is that “Social networks can organize the world of information according to the

tastes and preferences of smaller groups of individuals” [MGD06].

2.3.4 Social VPN

The main objective of Social VPN [FBJW08] is to securely interconnect Internet users, where P2P net-

work tunnel links are created, as a result of connections established through Social network infrastructures.

Friendship is determined by the Social network one is connected to (i.e. Facebook). It then provides a

virtual private network, by contacting directly with other friends. Social VPN also uses a virtual IP network

over the P2P system called IPOP (IP over P2P) [GABF06] for the communications between peers.

For peer discovery, they use the Social network APIs to query relationships. As Facebook provides a

set of Web services that can be accessed through a REST-based interface. This means that all these queries

are done through HTTP GET and POST requests.

14Facebook developer Wiki: http://wiki.developers.facebook.com/index.php/Main Page accessed on 05/01/2010
15OpenSocial Specifications: http://www.opensocial.org/specs accessed on 05/01/2010
16Representational State Transfer: http://www.ics.uci.edu/ ∼fielding/pubs/dissertation/rest arch style.htm ac-

cessed on 05/01/2010
17OpenGraph Protocol: http://opengraphprotocol.org accessed on 23/08/2010
18Progress Thru Processors: http://www.facebook.com/progressthruprocessors accessed on 05/01/2010
19PeerSpective: http://peerspective.mpi-sws.org accessed on 05/01/2010

21

http://wiki.developers.facebook.com/index.php/Main_Page
http://www.opensocial.org/specs
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://opengraphprotocol.org
http://www.facebook.com/progressthruprocessors
http://peerspective.mpi-sws.org

2. Related Work

2.3.5 Social Cloud

Cloud computing [AFG+09] derives from resource-sharing environments, and work with the intent

of bringing those environments to Internet users. Also, it was created a relation between the resources

given and received, meaning that in order to acquire resources a user can buy, sell or exchange them in

“marketplaces”, which provide lists of resources to be used (according to a virtual transaction) by any user.

Social Cloud [CCRB10] is introduced as being a model that integrates social networking, cloud com-

puting and “volunteer computing”. In this model, users can acquire the resources by exchanging virtual

credits, making a virtual economy over the social cloud computing.

They also refer that it is a scalable computing model, where users’ resources are dynamically pro-

visioned amongst a group of friends. Also, adding that the model is similar to a Volunteer computing

approach, where friends share resources amongst each other for little to no gain.

Their idea is that users can gather resources from their friends (either by virtual compensation, payment,

or with a reciprocal credit model [MBAS06]), which makes this model approaching the public-resource

sharing objectives.

Furthermore, they state that there are a number of advantages gained by leveraging Social networking

platforms, such as gaining access to a huge user community, exploiting existent user management function-

ality, and rely on pre-established trust formed through user relationships. However, the trusting relationship

of friends, may not be always the case20 in Social networks such as Facebook.

2.4 Deployment Mechanisms and Code Execution via the Web

To navigate through Web sites, for common users, the most common way is to use a Web Browser (i.e.

Internet Explorer21, Chrome22 among others). Browsers are user applications (named clients) that follow

generally a client-server architecture and they play an important role to access Internet content and achieve

communication between people [BTM07].

Furthermore, they contact servers by using a standard protocol named HTTP (Hypertext Transfer Pro-

tocol).23 This protocol is used for retrieving interlinked resources, called hypertext documents. Also, this

protocol follows a request-response sequence of messages, where the basic request methods (or verbs) are:

• GET: requests a representation of the specified resource.

• POST: submits data to be processed to the identified resource (this may result in the creation of a new

resource or its update).

• PUT: submits a document to be stored in the server.

• DELETE: deletes a document stored within the server.
20How Facebook could make cloud computing better: http://spectrum.ieee.org/computing/networks/

how-facebook-could-make-cloud-computing-better accessed on 15/10/2010
21Internet Explorer Browser: http://www.microsoft.com/windows/Internet-explorer accessed on 05/01/2010
22Chrome Browser: http://www.google.com/chrome accessed on 05/01/2010
23HTTP 1.0 specification: http://www.ietf.org/rfc/rfc1945.txt accessed on 05/01/2010

22

http://spectrum.ieee.org/computing/networks/how-facebook-could-make-cloud-computing-better
http://spectrum.ieee.org/computing/networks/how-facebook-could-make-cloud-computing-better
http://www.microsoft.com/windows/Internet-explorer
http://www.google.com/chrome
http://www.ietf.org/rfc/rfc1945.txt

2.4 Deployment Mechanisms and Code Execution via the Web

Other languages can also be used either on the client or server, to generate HTML dynamic content

[Goo98], e.g. Asynchronous JavaScript and XML (AJAX)24 being client side, Hypertext Preprocessor

(PHP)25 being server side.

AJAX [CPJ05] is a integration of consolidated technologies, such as JavaScript and XML, used to

obtain new functionality and more control over the Browsers’ contents. It is generally used to develop Web

applications, that serves to interact with Web servers without the users’ knowledge or perception.

Also, it is used to provide the user with a continuous method of interaction (within the browser environ-

ment), meaning that the Javascript module fetches Web contents and displays it to the user without having

to switch to another Web page (also called non flickering effect).

Representational State Transfer (REST) [FST02] is a style of software architecture for distributed Hy-

permedia (including graphics, audio, video, plain text and hyper links) systems. The main concept is that

resources existing can be referenced with a global identifier (e.g. URI in HTTP), and also the exchange of

a representation of a resource can be applied without any constraint of state.

However, the client may need to understand the format which the information (representation) is re-

turned. Typically the format used can be one of the following.

• HTML (HyperText Markup Language) consists of a document format with structural markers.

• XML (Extensible Markup Language) has the same concept of HTML documents, although it is gen-

erally used to represent arbitrary data structures, for example in Web services.

• JSON (JavaScript Object Notation) is described as being a lightweight data-interchange format, made

in order to ease the computational parsing of data. It is generally used on the Web, because it is

simpler for Browsers to parse and generate it, consuming less CPU time than other formats.

The Open Graph protocol26 was originally created at Facebook, and it is an extension to the HTTP

protocol in order to enable Web pages to become rich objects in a social environment. Meaning that, any

Web site could use this technology to organize their information in a structured way, similar to Facebook

pages. Also, they tried to build it on standards (RDFa)27 to create a more semantically aware Web.

The idea of integrating distributed computing with Web browsers has already surfaced on the Internet.

An example to this, is the Collaborative Map-Reduce,28 this application code uses Javascript to interact

with the Web server, requesting jobs to be fulfilled by the users’ Browser and posting the results back on

the server.

This method does not account for the lack of resources that the users’ computers might have, or even a

cycle-sharing environment.

24AJAX article: http://www.adaptivepath.com/ideas/essays/archives/000385.php accessed on 05/01/2010
25PHP Web site: http://php.net accessed on 05/01/2010
26Open Graph Protocol: http://opengraphprotocol.org accessed on 23/08/2010
27RDFa standard: http://www.w3.org/TR/rdfa-in-html access on 23/08/2010
28Collaborative Map-Reduce in the browser: http://www.igvita.com/2009/03/03/collaborative-map-reduce-in-the-browser

accessed on 05/01/2010

23

http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://php.net
http://opengraphprotocol.org
http://www.w3.org/TR/rdfa-in-html
http://www.igvita.com/2009/03/03/collaborative-map-reduce-in-the-browser

2. Related Work

Furthermore, their concern was to apply the Map-Reduce algorithm [DG04] on the data collected from

the server which it was retrieved. This algorithm is composed by two steps:

• Map step: where the master node takes the input, partitions it into smaller sub-problems, and dis-

tributes those to worker nodes.

• Reduce step: where the master node takes the answers to all the sub-problems and combines them in

a way to get the output (the answer to the problem it was originally trying to solve).

This algorithm ensures parallelism in the steps that are performed, meaning that the maps (or reduces)

created can be processed in parallel with each map (or reduce).

The Collaborative Map-Reduce, would then use this algorithm combined with the processing power

from users’ computers from all over the World, to perform the algorithm steps while the user is browsing a

Web site.

Another example of distributed computing using Web browsers is Plura Processing29, which is a pro-

prietary executable code made to enable idle cycle-stealing.

Their idea is that everyone that browse the Internet, has idle cycles that could be used for other purposes,

and thus they “steal” idle cycles from users’ computers to perform determined tasks.

Their reason is that any user can sacrifice their CPU time, even without their knowledge, to benefit

computation intensive projects (much like SETI@Home). However, this programming style may not be

best to suite the users, because they need to understand the tasks’ relevance.30

Moreover, they use simple Web pages and games31 (Adobe Flash32 based) to embed their processing

code to execute the needed tasks.

2.5 Summary

The P2P networks and Grids are the most common types of sharing networks [TTP+07], where Grids

were created by the scientific community in order to process computation intensive applications, which

would take more time in normal desktop computers without parallelization, or by using supercomputers

(which may not be available to everyone), i.e. large scale simulations or data analysis.

P2P networks, on the other hand, are mostly used for file sharing between users (either with desktop

computers, or mobile devices). However, these networks can also be used in other situations.

As we previously discussed, in Section 2.1, P2P networks can be categorized in terms of their structures

as being unstructured systems, where the placement of contents is unrelated to the overlay network. Struc-

tured systems, where it is attempted to control the placement of contents and its peers. And also, hybrid

systems, which were created to merge both systems and retain their benefits.

29Plura Processing: http://www.pluraprocessing.com accessed on 05/01/2010
30Plura Processing response to the Digsby Controversy: http://pluraprocessing.wordpress.com/2009/08/24/

our-response-to-the-digsby-controversy-new-terms-of-use-affiliate-auditing accessed on 15/10/2010
31Examples of games that use Plura Processing: http://www.pluraprocessing.com/games/seeexamples.html accessed on

12/10/2010
32Adobe Flash: http://www.adobe.com/products/flashplayer accessed on 13/10/2010

24

http://www.pluraprocessing.com
http://pluraprocessing.wordpress.com/2009/08/24/our-response-to-the-digsby-controversy-new-terms-of-use-affiliate-auditing
http://pluraprocessing.wordpress.com/2009/08/24/our-response-to-the-digsby-controversy-new-terms-of-use-affiliate-auditing
http://www.pluraprocessing.com/games/seeexamples.html
http://www.adobe.com/products/flashplayer

2.5 Summary

We also described, in Subsection 2.1.4, some global distributed computing projects that make use of

these technologies, to solve their computer resource shortage (CPU time), by using the millions of Internet

enabled users’ computers all over the world.

Such projects like SETI@Home [ACK+02], Folding@Home [LSS+09], among many others,33 use the

BOINC platform to do distributed computing for their own projects. This platform, which emerged from

the SETI@Home project, sends data to be processed on volunteer computers, and retrieve their results by

only using their Internet connection and the idle cycles that they can spare, in order to further advance the

studies comprising their projects.

Other earlier projects such as Distributed.net34 and GIMPS35 also use this concept, although they use

their own systems to do distributed computing.

On all these projects we can say that they do not have the flexibility to change their own topic of

research, and also only used to further advance their own research.

Furthermore, we described in this section, other platforms that intended to give the ability of cycle-

sharing to common users, such as XtremWeb [FGNC01], nuBOINC [SVF08], or Ginger [SFV10, VRF07,

RRV10]. Each of them employ their own platforms to enable common applications to be executed on peers,

to process data from users’ tasks. Although, their interaction is only done on P2P networks, meaning that

their networks have to be created by the users.

Also, to leverage the process of sharing resources, Ginger introduces a novel application and program-

ming model that is based on the Gridlet concept. These Gridlets are work units containing chunks of data

and the operations to be performed on them.

On Resource discovery, Section 2.2, we discussed that P2P networks have already dealt with such

problems. One of the earliest techniques used was Flooding [PFA+05], which would send a message to

anyone in the network until the resource was found (or a limit was reached).

Other blind methods were also considered, such as Random walks or multiple random walks [TR03],

that crawl the networks randomly to find the location of a specific resource.

Also, other methods that combine the previous were considered, such as direct searches [LCC+02], or

forwarding indices [CGM02], which follow a not-so-random walks through the peers to locate the resource,

they use information about the requested resource to match them exactly (or close).

Moreover, we described that structured P2P systems use distributed routing tables (DHTs) [Man03], to

map resources to their locations, making a more rigid structure than the other systems.

We also reviewed other cycle-sharing projects that use some resource discovery mechanisms to effi-

ciently search for them. CCOF [ZL04], in Subsection 2.2.1, compared some algorithms to know which

would perform best in their platform. And the most promising method was Rendezvous Point Search,

which uses dynamically selected points in a network for the hosts to advertise their information profiles and

to gather idle cycles. Meaning that, the resource discovery would benefit with more centralized solutions.

33BOINC projects: http://boinc.berkeley.edu/projects.php accessed on 15/10/2010
34Distributed.Net: http://www.distributed.net accessed on 05/01/2010
35GIMPS: The Great Internet Mersenne Prime Search http://www.mersenne.org accessed on 05/01/2010

25

http://boinc.berkeley.edu/projects.php
http://www.distributed.net
http://www.mersenne.org

2. Related Work

Also, we discussed the usage of a mobile agent for resource discovery [CH97], which would lead to an

automated system where a peer would only need to release its agent onto the network, and it would roam

freely gathering (and updating) information on computers. Although, this may be inefficient or impractical

in case of low resource networks (or devices).

In the JXTA project [TAA+03], the resource discovery uses XML based messages to coordinate re-

sources scattered on the network, and advertise them as well. Giving structure to resource request informa-

tion, in order to locate them within certain parameters.

We also described, Social-P2P [LAM07] which is a algorithm that mimics human interactions in Social

networks in order to locate contents and files in a more appropriate way. Meaning that, the resource topic is

used to search for it, within groups of users. Also, they demonstrated that human interaction strategies are

successful to locate resources within P2P networks.

We finished this section with OWL [HHK04], which serves to describe ontologies to be used in Internet

contents, making resources well known within peers, and facilitate their search.

Social networks, in Section 2.3, are popular infrastructures for communication, interaction and infor-

mation sharing on the Internet. A user only needs his/her Internet enabled device (including desktop com-

puters, notebooks, mobile phones, among others) to access Web sites, such as Facebook, MySpace, Orkut,

LinkedIn, and many others,36 to be able to send or receive personal or business information.

We analyzed some of the aspects of Social networks, in studies like [WBS+09, MMG+07, AHK+07]

which reinforce the idea that these networks share similarities with Small-World networks, in fact they

follow a few properties, such as being able to connect any given user with another, with only a few links,

and also a small group of people are highly connected to others, while a larger population is less linked, on

these networks.

Although, a person can have as many as thousands of connections, they do not interact with all, most of

the time. The interactions are only confined to a small subset of their group of friends. Also meaning that,

the interaction degree is lower than the social degree.

Moreover, these networks have other ways of connecting users, normally called groups or communities,

where knowledge is exchanged from a particular topic of interest.

Also, we can see these networks in a P2P perspective, having users with high connectivity (as super-

peers) connected to users with fewer links (peers), meaning that we could extend Social networking to P2P

models.

Social networks, such as Facebook and OpenSocial-based, caught our attention, because they are well

known within the common users (i.e. Facebook claims to have 500.000.000 accounts), and also because they

export their own APIs,37 making it possible for outside applications to interact with those users, while also

obtaining their information. Meaning that, the resource potential of these networks for global distributed

computing is greater than to create a new network.

Furthermore, some projects have surfaced which utilize these concepts to their own needs, such as

36List of Social Networks: http://en.wikipedia.org/wiki/List of social networking websites accessed on 05/01/2010
37Facebook developer Wiki: http://wiki.developers.facebook.com/index.php/Main Page accessed on 05/01/2010

26

http://en.wikipedia.org/wiki/List_of_social_networking_websites
http://wiki.developers.facebook.com/index.php/Main_Page

2.5 Summary

PeerSpective [MGD06], which tries to merge Social networking with search engines, to improve their

ranking systems.

Recent projects such as Social Cloud [AFG+09] introduce a model to integrate social networking, cloud

computing and “volunteer computing” in order to take advantage of their properties. Their idea is that

users can share resource with their friends, using a payment method, or with a reciprocal sharing method

[MBAS06]. Also, they sought out these networks, because they could gain advantages by leveraging Social

networking, such as gaining access to a huge community, and rely on established trust through users’

relationships.

The most common way, as reviewed in Section 2.4, for users to view Web sites such as Facebook are the

Browsers, which are client applications that display the contents of Web pages to the users, in a organized

and graphical way. Also, the generally used protocol to retrieve and send this information from these Web

servers is the HTTP protocol.38

Although the main language used to create Web pages is HTML, other languages can be considered

either on the Browser side or on the server side [Goo98], such as PHP, Javascript, AJAX, Adobe Flash

among others.

Each of these technologies were created to provide developers a more reliable or controlled functionality

over the Browsers, and also to provide users with a continuous method of interaction.

We also reviewed the REST [FST02] and Graph39 protocols that are used by Web sites, such as Social

networks, in order to provide outside applications with an easy way to interact (and also retrieve informa-

tion) with them.

In the Section 2.4, we also described two executable codes that use the users’ Browsers to do cycle-

stealing, instead of having a desktop application for it. They embedded their code in Web applications

(such as Web sites or games) in order to gain idle cycles from users’ computers to be used by their projects,

as was done by distributed computing projects such as SETI@Home.

38HTTP 1.0 specification: http://www.ietf.org/rfc/rfc1945.txt accessed on 05/01/2010
39Open Graph Protocol: http://opengraphprotocol.org accessed on 23/08/2010

27

http://www.ietf.org/rfc/rfc1945.txt
http://opengraphprotocol.org

2. Related Work

28

3
Architecture

Contents
3.1 Design Requirements . 31
3.2 SNCS Architecture . 32
3.3 SNCS Communications . 35
3.4 Discovery Mechanism . 39
3.5 Gridlet Execution . 39
3.6 Prototypical example . 40

29

3. Architecture

This work uses a Social network (Fig. 3.1), such as Facebook, to be able to discover resources for

the execution of Jobs (which are composed of Gridlets)[VRF07] submitted by the users. Also, to discover

computer capabilities and users’ profiles, such as the groups which they belong to and their friends.

Users should be able to install SNCS, which is a Web-enabled platform, (Fig. 3.2) into their computers,

giving afterwards the ability to log in into their Facebook account, by means of the Facebook Connect,1

which is a Web page given by Facebook to enable the log in process for outside applications (known as

Facebook applications).

Afterwards, the client application is able to interact with the Social network server, meaning that it

intercepts/sends messages from/to other users or groups, while also discovering users’ computer profiles by

contacting the Graph server.2 The client application also gives the user the ability to initiate a Job, by using

SNCS’ user interface.

Figure 3.1: Social network interactions3

To actually locate resources through the Social network, SNCS has the ability of searching the local

resources, by means of the SIGAR library, that gives information, such as processors status, memory avail-

able, number of processors, processors frequency. Such information is sent to other users upon request, or

it can also be sent to the users’ Wall, in order for everyone (people that has the ability to see the Wall) to get

it without the users’ permission. Also, this information may contain the programs that can be executed by

the computer to process Gridlets, it is a configuration parameter that the user can deal with.

Social Networks for Cycle-Sharing should also have access to friends and groups through the Social

1Facebook Connect: http://developers.facebook.com/docs/guides/web accessed at 04/10/2010
2Facebook API: http://developers.facebook.com/docs/api accessed on 25/08/2010
3Taken from: http://www.defenseindustrydaily.com/images/MISC Social Network Circle lg.jpg

30

http://developers.facebook.com/docs/guides/web
http://developers.facebook.com/docs/api
http://www.defenseindustrydaily.com/images/MISC_Social_Network_Circle_lg.jpg

3.1 Design Requirements

network API. It advertises users’ availability to others, sending messages and scheduling tasks (i.e. search

for informations, Gridlet acceptance) on them (Friends, Friends of Friend, Groups) in order to execute the

tasks when users can spare their idle cycles (usually when they are in a idle or away state).

Eventually, SNCS starts listening and looking for requests that can appear on the users’ Wall, friends’

Wall or Registration post on the Applications’ Wall. As Facebook does not allow people to interact with

each other without being friends, the latter option was added to circumvent this inability, making it possible

to gather resources from people outside the friends’ domain.

The main approach for SNCS is to have a client application split into two parts: one that interacts with

the Social network; and the other to interact with the users and the Ginger Middleware. The latter, should

be the one responsible to create and regroup Gridlets, which is out of the scope of this work [VRF07].

Figure 3.2: Social Network for Cycle-Sharing overview.

3.1 Design Requirements

This work aims to improve the Ginger Middleware3 for resource and service discovery, by leveraging

the possibility of having a network of users (Social network) already established. Therefore, the client

application interacts with the Social network (Facebook) through Web Protocols named Graph and REST

(which are an added layer to the HTTP protocol). As Facebook is still developing the Graph protocol and

discontinuing the usage of REST, current operations within the client application makes use of the first

protocol, although some operations can only be executed by REST. This requires that the client application

has to understand both protocols and interact at the same level (Graph or REST), which is dealt with the

RestFB library.4

3Nonetheless, the work described in this document could be applied in the context of other cycle-sharing systems.
4RestFb Web site: http://restfb.com accessed on 24/08/2010

31

http://restfb.com

3. Architecture

Another requirement for SNCS is to know the computer’s information that it should have at its disposal,

such as number of processors, available memory, or the programs that can be executed to process Gridlets.

Moreover, SNCS should not interfere with the users normal usage of its computer or Facebook page. For

that purpose, it schedules Gridlets according to user preferences, meaning that friends can have priorities

for executing their Gridlets. To prevent overuse of the computer, while it is in a Online state, SNCS must

be able to stop its activities, meaning that the processing of requests and Gridlets only happens when there

are idle cycles to spare. And also, it should remove any unnecessary posts that could prevent the normal

usage of the Facebook page.

3.2 SNCS Architecture

Figure 3.3: Social Network for Cycle-Sharing module view.

The SNCS architecture, depicted in Fig. 3.2, relies on a interaction with the Social network through the

Social networks’ API (Graph or REST protocols) for the purpose of searching and successfully executing

Jobs; with the Ginger Middleware for Gridlet creation; and also the user’s operating system to acquire the

informations and hardware states that are needed.

Jobs are then consider to be tasks initiated by the users, and containing at least one Gridlet to be pro-

32

3.2 SNCS Architecture

cessed in someone else’s computer, all Jobs should state what they need to execute those Gridlets, in order

for the client application to search for specific users or groups.

A Gridlet, should contain the information necessary to process it, meaning that it has a data file to be

transfered to another user and the arguments to be given to the executable program. The process of creating

and aggregating the Gridlets should be managed by the Ginger Middleware and is outside the scope of this

work [VRF07].

The architecture for SNCS is comprised of a set of components and their functions, depicted in Fig. 3.3.

Each of them are described as follows.

SNCS (GUI): this module performs the main interaction with the user, meaning that it contains a

graphic interface, described more throughly in the next chapter. It is responsible to establish the connection

to Facebook, by starting the Facebook Connect module. It also loads all the necessary information onto the

client application, such as the configuration of priorities, the Jobs that have been submitted, accepted and

Gridlets in progress.

The user can submit a new Job using the appropriate user interface (Fig. 4.7), and this module is

responsible to start the chain of events for processing that Job (search for users, acceptance and execution

of Gridlets).

Facebook Connect (Embedded browser): this component serves to authenticate the user to Facebook,

it displays the Web page given by Facebook for that purpose. Afterwards, it extracts the necessary access

token for consequent access to the Facebook server. This token is given by Facebook to everyone that

accepts this Facebook application, and has to be renewed within a determined time frame (the time frame

is given by Facebook and not specific for every token).

Furthermore, it makes use of the JDIC library5 to display the Web site for the user’s authentication.

Messaging: is the main module for interacting with the Social network. It makes use of the RestFb

library, that creates the JSON or XML objects, which are required to access Facebook Graph/REST func-

tions. For any actions on Facebook the access token is required to be present, meaning that if Facebook

Connect does not retrieve it then the messaging module fails to connect to Facebook. This module also

contains the options necessary to read and write to the users/groups/Application Wall (or feeds) Posts or

Comments and removing them as well; to gather information such as users’ Facebook ID, friend lists and

groups lists; and also to search for public Objects (Groups, Users).

Furthermore, some Facebook restrictions may apply to the interactions between the module and the

Social Network, such as limiting the size of the messages, inability to erase Posts or Comments (made by

other users).

The module also contains the schemas (Fig. 4.8) applied to the messages sent and retrieved, to specify

what actions should be taken, whose details are described more throughly in the next chapter.

5JDIC: https://jdic.dev.java.net accessed on 15/10/2010

33

https://jdic.dev.java.net

3. Architecture

Jobs Manager: is the module that runs a cycle of the following tasks, named “checking” cycle.

• Verify submitted Jobs that the user has in progress, meaning that it tries to acquire the required

information to send Gridlets to other users.

• Check for new Jobs from the users’ Wall, groups’ Wall or Registration Post that can be processed by

the users’ machine, making sure that the required properties of the Gridlets are compatible, and thus

accepting a Job.

• Verify accepted Jobs, meaning that after accepting a Job a Gridlet message should have been sent to

the user, although it is not guaranteed that the requesting user still has Gridlets to be processed.

• Check for Job completion, when the client application has submitted a Job or a Gridlet it should be

able to detect if it has been completed. When a Gridlet is not completed successfully, the module can

retry to send it to someone that has accepted the Job.

• Check for messages that the client application needs to redirect to its friends, this method is necessary

because Facebook restricts conversations to only the users that are considered friends.

• Check for messages that have been redirected to the user, in order for SNCS to answer on the Regis-

tration Post (in the Applications’ Wall), that was made prior by the requesting user, and thus adding

the functionality of reaching other people rather than only the users’ friends, also the content of these

messages should be requests to fulfill a Job or to send their computer information to the requesting

user.

Also, after SNCS has acquired a Gridlet message, it hands it to the scheduler module for later execution.

Moreover, this module has the task to remove all the Posts that are no longer necessary. And as the main

module for checking messages on Facebook which uses the Internet, it can be stopped if the computer is in

a Online state, in order to not interfere with the normal computer’ usage.

Discovery: this module serves as an addition to the latter module. Meaning that, it searches for friends

and groups, in order to reach as many people as possible, to complete a Job. It sends messages to friends so

that they can redirect those to their own friends (Friends of Friends method), while also sending messages to

groups of interest for that specific Job. Making this module attached to the concepts of friends and groups.

It also is responsible to register the user in the Applications’ Wall, meaning that every user has a Post

on this Wall, in order for other users, that are unable to directly contact them, to interact as if they were

friends.

User/HW States: this module determines the state of the local resources, and takes in consideration the

processors’ idle times, the Internet connectivity (that is essential to all processes) and the users Facebook

state, in order to yield all the modules until a later time, when the processor has idle cycles to spare. Also,

it sends the state of the SNCS client (Online, Offline, Idle) to the Social network.

34

3.3 SNCS Communications

The state Online should be performed when the user has decided that the client application should run.

The Idle state happens when the computer has idle cycles to spare, but it does not take into account the

fact that the computer is being used and also if the user does wish that the client application needs to be

Offline, the latter state prevails.

The Offline state means that the client application does not process any messages or Gridlets, stopping

all processes related to this fact, because either there is no Internet connection (which is needed on the

overall process) or that the user explicitly does not want SNCS to be running.

This module uses a submodule, named Hardware Monitor depicted in Fig. 3.3, that is comprised of the

SIGAR library, which reports the system information needed to determine the availability of the resources.

Scheduler: this module is an addition to the Gridlet processing, making use of the priority lists (in the

configuration), while also stopping that process when the computer does not have idle cycles.

The priority lists consists of friends and other people added by the user, in order for the client application

to use the idle cycles on Gridlets belonging to the people with the highest priorities. Meaning that some

Gridlets waits for a conclusion of others even if they arrived first.

The module starts a submodule that is responsible for processing the Gridlet, meaning that it transfers

the data files to either sides, it executes the program that processes the data and upon completion it informs

the originator of the Gridlet state, by sending a message to Facebook telling where it should retrieve the

completed Gridlet or if the Gridlet was not completed successfully (may occur when there is an error on

the executing program or client application).

3.3 SNCS Communications

SNCS, as it was described before, interacts with the user and the Social network, and therefore a protocol

or flow of communication has to be established. The following demonstrates how the creation and execution

of the Gridlets is being carried out.

The task for creating a Job, depicted in Fig. 3.4, which can be comprised of several Gridlets, is initiated

by the user, by submitting the Job on the SNCS GUI. The information for a Job consists of the following

items.

• The program that executes the Gridlets;

• The commands or arguments that are given to that program;

• The data file(s) that the client application needs to transfer;

• The number of Gridlets that comprises the Job (although this should be determined by the Ginger

Middleware);

• And what are the requirements to execute the Gridlets.

35

3. Architecture

Meaning that, the search is specified by the Gridlets requirements, i.e. a Job that consists of generating a

image on POV-Ray, needs 4 processors and 2048Mb of memory, is specified on the client application by

this information in order to search for users that could have these resources available.

Afterwards, it starts to perform the actions to complete the Job, such as sending a message onto the

users’ Facebook Wall and waiting for other users to respond to it; starting the discovery process that is able

to find friends and groups that would be interested and or have the capability of executing the specified Job.

Figure 3.4: Communication Protocol in SNCS

The impossibility of directly contacting people and groups that are not in the friends’ domain, such as

Friends of Friends (FoFs), makes SNCS client route messages to the users’ friends, in order for them to

forward those messages to their own friends, making then viable to contact FoFs. The scale for this type

of messaging could be larger, as in, the message could reach people that are our Nth degree friend, but it

may end up Spamming users, and such actions are considered as a violation of the Facebook Use terms,6

and as such SNCS only goes as further as FoFs (2nd degree). Also, the client application only contacts the

users’ groups that should be able to help for the specific Job. Meaning that, it searches for their computer

information in order to know if they would be capable of processing the Job.

The discovery mechanism of SNCS tries to gather as much computer information as possible, and sends

messages to the corresponding users and groups. While the Job part stays alert for incoming messages on

the users’ Wall.

6Facebook Use Terms: http://www.facebook.com/terms.php accessed on 26/08/2010

36

http://www.facebook.com/terms.php

3.3 SNCS Communications

The people that receive messages (FoFs) and are not capable of directly contacting the originator, use

the Registration Post on the Applications’ Wall to respond to the redirected messages. This serves as a

means of interaction with everyone that has the Facebook desktop application (client application), which

enables the process of searching for people outside the scope of friendship.

Their client applications then try to match their own information to the expected Jobs and accept them

accordingly, by sending an Accept or Deny message back to the originator. If the Job has been accepted the

client application tries to fetch a Gridlet in order to execute it locally.

The transfer of Gridlets occurs after a client application has retrieved the Gridlet message, and deter-

mined that it has idle cycles to execute it. The transfer method can use a direct connection between the

SNCS clients (acting as peers), however this method can be replaced by having a repository server or by

sending the data file along with the message (if permitted by the Social networks’ Use terms).

If the processing SNCS client determines that the execution of a Gridlet was in error, meaning that the

processing program may return an error code, it sends a message to the originator informing that the Gridlet

could not be completed. In case the error was within the client application, such as a client application crash,

SNCS can still reacquire the Gridlet from the users’ Wall, if the message was not deleted.

Afterwards, the originator of the Job receives all the Gridlets that have been processed, using the same

means of transfer, and pass them to the Ginger Middleware for aggregation. Finally, the originators’ client

application leaves a Post message on the users’ Walls, thanking them (or if the work was not properly done,

another type of message is used).

Figure 3.5: Example of the Computer Informations on Facebook

3.3.1 SNCS Protocol

SNCS has an explicit communication protocol that it follows in order to discover resources and eventu-

ally use idle cycles from donor’s computers.

37

3. Architecture

As depicted in Fig. 3.6, when a user has submitted a Job for SNCS to execute, it sends a JobSearch

message to the users’ Wall as a Post, waits for replies which can be accept or deny messages and are

comments from that Post. Moreover, each client application that respond to the search determine at that

time if it is capable of performing the request, meaning that it determines whether it fulfills the necessary

requirements and if it has idle cycles that can be spared.

SNCS also determines which of the users’ groups are to be considered to have users that may be able

to help with the processing. Moreover, the client application tries to read the Posts from the user’s Walls to

search for their computer information (CIs read). It then determines if there are users’ computers that can

carry out the Job, and starts the JobSearch message on those groups.

As FoFs cannot be directly contacted, we introduced a redirection protocol in order to reach them.

Meaning that, the client application sends a redirection message (Redir message), as a Post to the user’s

friends’ Walls containing a specific type of message, and also the location to where the FoFs’ client appli-

cations should send their response.

After the FoFs’ client application receives that message, it sends the response (determined by the mes-

sage type) to the location specified in the message, which is normally sent as a comment to a Post in the

Applications’ Wall (note that the location written on the message is a Post created specifically for this type

of communication, meaning that this Post was created by the requesting user, as the registration Post, on

the Applications’ Wall).

Afterwards, the requesting client application can start the JobSearch message on the Applications’ Wall

using the potential processing users’ Post as the interaction point.

Figure 3.6: SNCS message flow

SNCS then sends Gridlet messages to those users that have accepted the Job, by sending a Post or

Comment depending on which the user role is (Friend, FoFs, Group person). In case of friends, the Gridlet

message is sent to the processing users’ Wall, because the user can always read his own Wall. In case of

FoFs the message is sent as Comment on the registration Post of the processing user, because as Facebook

38

3.4 Discovery Mechanism

does not allow one person to directly contact another without being friends, and because the user can always

read his own Posts. In case of people from Groups the message is sent to the JobSearch Post as a Comment,

because there is no other way of contacting those persons (except for friends that are from the same groups)

and for them to read the messages.

The client application then waits for responses to the Gridlet messages as Comments (on all the Walls

that the messages were sent). When it receives a response, it determines where the resulting data is to be

retrieved, or in case of an error (from the processing side) it retries to send the Gridlet to someone else that

accepts the Job.

To end the communication and for future processing works (to determine the viability of sending a

Gridlet to someone), it records a message on the processing users’ Wall, as a “thank you” note (or it can

be another type of message). However, FoFs and people from the groups cannot be contacted by the same

way, thus that message is sent to the originator users’ Wall.

3.4 Discovery Mechanism

The discovery mechanism consists in a “pull” and “push” methods. It tries to search for people that

have the capability to do the work, by either retrieving their computers’ information from the users’ Walls

(Fig. 3.5) or by requesting it. Furthermore, it verifies if there are any users capable of accepting a Job on

the users’ Group list in the same manner. To cover as much work as possible, the client application also

searches between its friends’ Walls if they have any Jobs that can be fulfilled.

The information gathered should contain a list of resources and properties of the users’ computers, such

as the number of processors, processor type, processor clock speed or frequency, processor model, total

memory, free memory, list of user defined programs, although it should not be constrained only to these

types of information.

SNCS attempts to match the needs of a Job to the information gathered, although it is out of the scope

of this work, the matching of the informations should not fully constrain the execution or acceptance of a

Job (as this system is comprised of volunteers), meaning that a semantics should be taken into account in

order to approximately match these properties to what is needed [SFV10].

3.5 Gridlet Execution

A relevant entity in SNCS is the concept of Job, and it is important to understand how to perceive them.

On that note, a Job that is submitted by a user should have associated with it what the Gridlets require in

order to process them successfully.

As we said before, a Job is comprised of Gridlets, each of them has a piece of data that needs to be

transfered and processed on another user’s computer.

In order to process a Gridlet, SNCS has to send a Gridlet message to the users that accepted the specific

Job. This message generally contains a JobID (which is the ID of the Job Search Post) identifying that it

39

3. Architecture

is the Job which the user has accepted; a Gridlet number for that Job, in order for SNCS to know which

Gridlet the user is processing; the program and arguments that are given to it in order to process the data;

and a location of a file(s) that should be downloaded by the processing client application.

The method of transfer is indicated on the file variable of the Gridlet message, meaning that the variable

should be like Protocol://IP:Port/File, indicating which protocol should be used, the address that has be

contacted, and the data file. The protocol that is mainly used on SNCS is a direct transfer method (from

application to application), e.g. the file variable becomes 127.0.0.1:52392/data.file (without protocol tag

meaning the application to application method), but other methods can be used such as a repository server,

e.g. http://web.site/data.file. Another approach that can be pursued is to include the data file with the

Facebook message, in this case the files have to be uploaded and downloaded using the REST or Graph

protocols.

After SNCS makes sure that it is able to process the data file(s), it launches (or executes) the processing

program with its arguments, waiting for a result, which can be success or error. In both cases, a message

is sent back to the originator, informing that it completed the Gridlet. This message can either contain an

error code, in order for the originator to be able to retry the Gridlet on someone that accepts the Job; or it

can have the location of the resulting data, using the same transfer methods as explained above.

3.6 Prototypical example

Following we give a more detailed example of a Job submission and the steps SNCS takes to process it,

as depicted in Fig. 3.7.

A user submits a Job, using the SNCS GUI (explained in a Section 3.2), with the following properties.

The processing client application needs to execute the program named pvengine64.exe, with the ar-

guments “-A0.3 -W1280 -H720 -D -O”$dir.output$balcony rend.bmp” -P +Q9 +R5 /EXIT /RENDER

”$dir.exec$balcony.pov””, meaning that the Pov-Ray program will render an image with 1280x720 dimen-

sions, using Anti-aliasing, with high quality and it requires the file balcony.pov to start the process, which

should be downloaded from 127.0.0.1:52392/balcony.pov. The user also specifies what the program should

need in order to be executed, such as “TotalCores=2”, “MemorySize=1024”, “Program=pvengine64.exe”

and the number of Gridlets that comprises this Job.

SNCS would then start the search for resources using the specified requirements as a point of reference,

on this note the requirements should be as accurate as possible to search for specific groups and users. The

actions to locate the resources starts by sending a Job search message to the users’ Wall. Meanwhile, it

also requests the computers informations (CI discovery) from the people that are in the user’s groups, in

order to know which of the groups would be more willing to accept the Job. Also, it tries to send a message

to its friends in order for them to redirect to their own friends (FoFs method), waiting for a reply on the

Applications’ Wall. The last message contains the information necessary to redirect it, meaning the Post

ID for which it should be sent, and the type of message that the user should send (in this case computer

information).

40

3.6 Prototypical example

Figure 3.7: SNCS Prototypical example

Afterwards, SNCS reads the responses to the Job search, which can be accept or deny messages, mean-

ing that even if someone would have the requirements to process the Gridlets, a user may not have idle

cycles to spare, and thus denying the request. For the users that accepts the Job, SNCS sends a Gridlet mes-

sage, until all the Gridlets have been sent, this message is then received by the processing client application.

SNCS does not have a specific way to choose between users that have accepted the Job request, except

accounting with the “thanks” messages (which may not be guaranteed), thus it sends the Gridlet messages

according to the order that the messages were received.

The client application does not verify the correct completion of the Gridlets, although this process

should be included in order to give greater reliability assurance. However, the reassignment of a Gridlet

occurs in case the processing client application encounters an error while executing it, sending an error

message back to the originator.

In this example, the client application would use a Application to Application transfer method to send

the “balcony.pov” file, although other methods can be used such as sending the file to a Web server and

retrieving the results with the same method. Moreover, the Gridlet message should contain the necessary

information in order for this client application to locate and retrieve the necessary data to be processed.

Meaning that the protocol used for the transfer method should be read from the file variable on the message

41

3. Architecture

received, in order for SNCS to be able to retrieve it.

The receiving SNCS client, before it receives the data file, needs to consider the execution of the Gridlet,

according to the computers’ state and from whom it has originated, creating a queue of Gridlets when

necessary.

From this example, the recipient client application would then call the program pvengine64.exe, that

the user specified its location on the “Programs List”, i.e. D:\Pov-ray\bin\pvengine64.exe, with the right

arguments, waiting until the process finishes. After that, it sends a message to the originators’ client appli-

cation informing that it has completed and where it should retrieve the resulting file, this process also uses

the same method as for the transfer of “balcony.pov” file, although it is also considered that other methods

can be used.

To finish the interactions between the two users, the originators’ client application sends a message to

the users’ Wall that has completed the Gridlet, thanking them for the time they have spent on it, when this

is not possible (FoFs case) the message is sent to the originator users’ Wall, in order to have a record of

people that helped in a Job.

The originator of the Job requires that every Gridlet finishes, before it can pass them to the Ginger

Middleware. Thus, it waits for all completion messages before it can erase the resulting messages from

Facebook. Moreover, while the originator client application is performing this overall process, it also

listens for Job search messages that can appear on friends and groups, in order to give its own idle cycles to

other users.

42

4
Implementation

Contents
4.1 Used Technology . 44
4.2 Class Diagram . 46
4.3 User Interface . 48
4.4 Data structures and Message Schemas . 50
4.5 SNCS Configuration . 54
4.6 SNCS Constraints . 55

43

4. Implementation

The implementation of SNCS aims for a simple use by the end-users. Also, the different types of oper-

ating systems used by people lead us to favor portability and therefore we used Java as the main language.

The choosing of the Social network was a natural process, the use of a very active network was con-

sidered as most important. Thus, the choice between using Facebook and other alternatives, such as

OpenSocial-based networks, were almost irrelevant considering the fact that Facebook has much more

registered users than any other Social network. Another consideration was the fact that Facebook exports

its own API for outside applications (Facebook applications), and therefore many libraries (such as RestFB)

have been created to facilitate the usage of the API. However, OpenSocial based networks also export their

own APIs for outside use, which caused some dilemma on how much they could be compatible, but has

mention before Facebook was the primary choice.

This chapter gives an insight on how the technologies were used, such as Graph and REST protocols.

It also explains the internal representation of the data structures used on SNCS, and the Schemas used for

the messages sent/received to/from the Social network chosen. The end section gives a view on how SNCS

should be executed and some of the constraints that suffered from using Facebook as the Social network for

users’ interactions.

4.1 Used Technology

Social Networks for Cycle-Sharing was developed using Java for its portability purposes, it uses Face-

book as its Social network for interactions between users’ client applications. This Social network was

chosen because it provides access to many features, and it is well known within the common users. For

the purpose of interacting with the Graph and REST servers, the client application makes use of the RestFb

library, that gives a simple and flexible way of connecting to them and conceal the use of XML or JSON

objects.1 However, the functions2 or connections3 (in Graph) have to be known, in order to use this library,

e.g. to read the Posts on a users’ Wall using the Graph protocol, we need a users’ ID or Name in order for

the library to access Facebook and retrieve that users’ Wall, also we would need to know that the connection

from the user object is “feed”.

The Facebook Graph protocol gives the possibility to access any public object, such as users, Walls (or

feeds), Posts, Comments, among others. Either using their unique identifiers (UIDs) or by their names,

in order to get the object desired more easily. However, Facebook is still developing this technology and

as such the functionalities may change the way of interaction or even may not work as supposed, for that

purpose the use of the REST server is still an option.

We can also state that the IDs generated for each object are dependent on the previous objects, meaning

that the UID for a Comment on a Post on a Users’ Wall would become “UserID PostID CommentID”

which uniquely identifies the Comment belonging to the Post of that particular users’ Wall.

Moreover, Facebook gives the possibility for outside applications to authenticate a user by means of

1JSON: http://www.json.org accessed on 15/10/2010
2Facebook REST methods: http://developers.facebook.com/docs/reference/rest accessed on 15/10/2010
3Facebook Graph connections: http://developers.facebook.com/docs/reference/api accessed on 15/10/2010

44

http://www.json.org
http://developers.facebook.com/docs/reference/rest
http://developers.facebook.com/docs/reference/api

4.1 Used Technology

their own Facebook Connect system, which is a Web page dedicated for the Log in process. Also, for

the client application to gain access to Facebook pages, it has to be authorized by the users and given an

access token, generated by the use of the OAuth 2.0 protocol.4 The authentication protocol is used only for

Facebook applications that needs users’ information to interact with Facebook, meaning the users’ friends

and groups. The users are also able to allow the Facebook applications to access their connections and

objects (in Graph), by specifying which permissions5 they can have, i.e. the offline access permission

enables a Facebook application to perform authorized requests on behalf of the user at any time, while also

extending the tokens’ expiration time.

For the purpose of displaying the Facebook Connect Web page, we make use of the JDIC6 library. This

enables us to display a Web site to the users in order for them to trust the Facebook application (in this case

Tese SNCS)7 for the authentication process. The library gives us the ability to contact the Web site without

any knowledge of how it is created (or in what language it was created), meaning that even if Facebook

changes this Web site the client application can still acquire the necessary access token.

After a successful Log in process, Facebook returns a Web site (with the word “success” in its body)

which SNCS can then parse its URL, that contains a set of parameters, including the access token and

depending on its type, the tokens’ expiration time.

Figure 4.1: SNCS Main Interface

As SNCS also needs to gather the information about the local resources of the users’ computer, we make

use of the SIGAR library.8 This allows us to easily access a list of local resources each time it is called, such

as CPUs, cores, memory. Also, it gives us the ability to know the current states of those resources, i.e. it can

give us the available memory at the requesting time, or even the current idle time for each of the available

cores or CPUs. This library is also useful for the fact that it can work in multiple environments, such as

4Facebook Authentication methods: http://developers.facebook.com/docs/authentication accessed on 27/08/2010
5Facebook Permissions: http://developers.facebook.com/docs/authentication/permissions accessed on 15/10/2010
6JDIC: https://jdic.dev.java.net accessed on 15/10/2010
7Tese SNCS Application Facebook Page: http://www.facebook.com/apps/application.php?id=123798840981469 ac-

cessed on 15/10/2010
8SIGAR library: http://www.hyperic.com/products/sigar accessed on 15/10/2010

45

http://developers.facebook.com/docs/authentication
http://developers.facebook.com/docs/authentication/permissions
https://jdic.dev.java.net
http://www.facebook.com/apps/application.php?id=123798840981469
http://www.hyperic.com/products/sigar

4. Implementation

Windows, Linux, among others, making possible the portability of SNCS to other systems. Meaning that

it gives an Java object to operate on (gather the system information), while its components which are made

for specific systems, are called from within the Java object.

4.2 Class Diagram

Figure 4.2: SNCS Class Diagram

The client application, as depicted in Fig. 4.2, has its main class named MainWindow, which uses the

AWT library (the standard API for providing a graphical user interface in Java) to present the user with the

GUI. Also, it is responsible to save information when the client application needs to exit. Furthermore, it

contains the starting method for the Job submission, which begins the search for resources in Facebook and

the completion of the Job.

This class needs the JobWindow and ConfigWindow classes, which display to the user windows in order

for them to easily create a new Job or to configure some SNCS configurations. Also, it makes use of the

FBConnect class, which displays the Facebook Connect Web site and retrieves the access token needed for

future interactions.

46

4.2 Class Diagram

Furthermore, it starts a thread that runs the “checking” cycle, that is located in the Job class, and the

threads that are needed to execute the Gridlets.

The Job class contains the methods used to invoke the actions needed to complete a Job and to receive

Gridlets. This class is singleton in order to have a one entry point to all the tasks that SNCS does. It makes

use of the JobGridlet class which is the “Job” object created for a Job submission, meaning that it contains

all the information for a Job (program, arguments, requirements among others).

The Discovery class has the responsibility to search for friends and groups, and when needed their

computer information. It takes from the SearchWorker class the computers’ information that it gathers

from the Applications’ Wall (FoFs method). Therefore, it is imperative that it remains the only instance

available, meaning it is a singleton class.

The Messaging class contains the methods used to call Facebook functions (methods or objects), mean-

ing that it makes use of the RestFB library to read and write from and to Facebook. This class is connected to

the Java objects such as FBJSONObject, FBGroupComment, FBMember in order for the RestFB methods

to map the incoming JSON objects to the corresponding Java objects.

The Resources class uses the SIGAR library to discover (and get) the information of the local resources,

i.e. it has the methods used for getting the CPU idle times (in percentage) needed for other purposes (i.e. to

determine when to stop the client application). Also, it is capable of gathering the computer information to

send to Facebook. Meaning that, it creates a map of the resources and uses the CI class to map it into the

Schemas used for Facebook, and vice versa.

The UserStates class gathers information from the resources and use it to assess if the client application

should continue to run or stop its activities. Also, it reports its state to Facebook and it is a singleton class.

The Scheduler class is called to determine the Gridlets priorities, meaning that it contains the priority

lists that the user configures in the ConfigWindow class, and also the list of the Gridlets that it has gathered

to be processed. Also, this class is singleton in order to retain the lists for all the components that needs

them. Moreover, the Job class, each time it gathers a Gridlet calls the Scheduler to queue them.

The ExecThread class is another thread that starts the processing of Gridlets, it calls the Scheduler class

to obtain the next that should be processed.

The GridletProcess class contains a client and server methods for transferring the data files necessary

for each Gridlet that uses the Application to Application transfer method. The class also has the methods

to transfer the data files from a Web site. This class also interprets the arguments that are to be given to the

processing program in order to know the files to be used, and to modify the paths to match the local ones.

Moreover, it has the method to call other programs and wait for their results.

Furthermore, this class is responsible to finish the Gridlet process, meaning that it sends the completion

message (calls the appropriate methods on the Job class) back to the originator of the Gridlet. Also, it

determines if the completion message should contain the place where the originator can retrieve the resulting

data, or if it should be an error message in order for the originator to be able to retry sending to someone

else.

47

4. Implementation

The Schemas for the messages are shared between the Job class and Messaging class, meaning that each

one creates its own part of the message, i.e. sending a Gridlet message starts in a Job method (SendJob-

Gridlet) that constructs a message with “JobID;GridletNumber;UserID;UserID;Program;File;Arguments;”

and calls a method on messaging class which sends it to Facebook (which can be FBsendComment, FB-

sendGroupComment or FBsendFeed). This method then inserts into the message the head tag (SNCS) and

the type tag (in this case JobGridlet), in order for the message, once read, be detected as from SNCS and

what type of message it is.

4.3 User Interface

Figure 4.3: SNCS Log In Interface

Social Networks for Cycle-Sharing has been designed to provide a simple Graphical User Interface

(GUI) (Fig. 4.1) in order for any user to utilize it without much burden. For SNCS to function correctly

a user needs to have an account on Facebook, and Log in into it via the client application, as depicted in

Fig. 4.3, a user only needs to write his/her own account name and password on the screen presented and

Facebook confirms or denies access, while on the background the client application gets the access token

needed for future communications. As an add-on to SNCS after a user successfully Logs in, it has the

opportunity to save his/hers access token for future interactions with the client application and skipping the

Log in Web site (Fig. 4.4), although the user may have to generate a new access token after the last one

expires.

The client application is also able to configure some of the aspects needed to better suit the users. As

depicted in configuration images (Fig. 4.5), the user may be able to save the access token as explained

above in the Folders tab (Fig. 4.5(a)), to prioritize the incoming Gridlets by specifying which friends have

higher or low preferences, as depicted in the Priorities Tab (Fig. 4.5(b)), also the user may add other users

that it wishes to give priorities. As a concern to the Gridlets priorities and for experimental results, no user

can be blocked from executing his/her Gridlets, although this feature should be included as a precaution

48

4.3 User Interface

Figure 4.4: SNCS Choose Interface

(a) SNCS Folder Tab Interface (b) SNCS Priorities Tab Interface

(c) SNCS Programs Tab Interface

Figure 4.5: SNCS Configuration Interface

for the user’s abuse of the network. In the Programs tab (Fig. 4.5(c)) the user has the ability to manage its

own programs that can be executed on the user’s side, this feature allows SNCS to reject Jobs that cannot

be executed on the users’ computer.

After the Log in process, users have access to the main interface (Fig. 4.1), where they can choose from

the menus interface (Fig. 4.6) some options, such as creating a new Job, registering on the Applications’

Wall, sending their computers’ informations to the users’ Wall, or even to stop the client application from

processing messages and Gridlets by pressing the Offline menu option.

The new Job interface, depicted in Fig. 4.7, allows a user to easily start a new Job, by inserting all the

necessary information in the fields presented. Afterwards, SNCS does the necessary steps to ensure the

49

4. Implementation

(a) File Menu (b) View Menu

Figure 4.6: SNCS Menus Interface

completion of the Job.

Figure 4.7: SNCS New Job Interface

4.4 Data structures and Message Schemas

The client application makes use of some internal data structures, that have the responsibility to hold the

information required to interact with other client applications, and the Schemas that allow simple reading

and understanding of the messages that can appear on the users’ Wall. Thus, we have constructed the

following data structures.

• JobGridlet: A data structure that contains the information submitted by the user, to start a Job. For

50

4.4 Data structures and Message Schemas

this particular data structure, we do not generate any identification, it uses the unique identifier for

the Post made in the users’ Wall (which is preserved until the Job has been completed). And thus,

if the client application is not successful in sending this message, the Job is aborted. Moreover, this

structure contains the number of total Gridlets that have to be processed, and those that have already

been completed so far.

• User: The user data structure is used to identify any type of user, meaning that it can be the user itself

or a friend. It has the necessary information such as UID of the user or name.

• Group: This data structure is similar to the users, because the Graph API sends the users and groups

data as being objects of the “same” type, and thus having the same (or almost) connections (or func-

tions). For the client application, this structure contains the users for the particular group and its

UID.

• Computer Information: The data structure comprising computer information, contains a subset of

the systems’ information, meaning that only the relevant data is saved. Such data can contain the

number of processors, memory size and programs that can be used on the computer side to process

Gridlets.

• Priority Lists: A data structure that is used to prioritize the Gridlets, such lists are only necessary

when the users configure them. Although, these lists should be always generated in order to block

unwelcome Gridlets, that could appear (making a Security risk).

• Programs List: A data structure that is used to contain all the programs that the user grants permis-

sion to be used on the computer. This list contains the name of the program and the location where the

executable resides, in order for SNCS to run it when a Gridlet needs to be processed by the specified

program.

• Internal Jobs Containers: These data structures serves the purpose of saving the tasks that are

currently being executed, such as Jobs submitted, Gridlets in progress (on the requesting side), Jobs

accepted (Jobs that have been accepted and are waiting for Gridlets) and Gridlets accepted (on the

processing side). These data structures are internal to the client application and are used to monitor

the tasks sent/received to/from other users using the Social network.

In SNCS we make use of the RestFB library, which gives us the flexibility of contacting Facebook

without knowing JSON objects are being sent. Also, the library gives us a generic Java object that it uses

to map the JSON objects to it. However, some Facebook objects cannot be mapped to a generic Java

object, which requires us to create Java objects compatible with the JSON objects, in order to acquire the

information. These Java objects are described as follows.

• FBGroupComment: is used to be mapped by the Comments on Posts that belongs to Groups. It is an

extension from the generic Comment object (from RestFB), that contains the correct syntax used on

the messages, such as “text” instead of “message”, and “fromid” instead of “from”.

51

4. Implementation

//Search for someone to do a job..
SNCS;Job;MyId;<hardware/software required>;<Comments>

//Answer to a job / JobGridlet
SNCS;<Job/JobGridlet>;MyId;<Accepted/Denied/Completed>;<JobId>
//Special versions only on comments (App Wall Post) adds a JobId

//Give a GridletJob to someone
SNCS;JobGridlet;JobId;GridletNumberX;MyId;YourId;<Program>;<File>;<Commands
needed to execute>;<Other comments needed>;
//The file should be the place where the client application can download it,
//MyId and YourId should be here so that if someone else reads this
//they should skip it if its not for them, and security reasons

//GridletJob Status Update (completed)
SNCS;JobGridlet;MyId;Completed;<JobId>;<GridletNumber>;<where to download>;

//Redirect Messages (For the user to redirect to its friends)
SNCS;Redir;<PersonId to redirect to>;<PostId>;<Type>;<rest of the message>;

//Redirect Request (to be made in RedirToID)
SNCS;Redir;Request;<RedirToID>;<Type>;<UserId that started the redirection>;
//the last is optional

//Message Parts
SNCS;PartX-Y;<UserID>;<Type>;<Rest of the message>;
//X is the number of the part, Y is the total number of parts, UserID must be
placed because Facebook sometimes //forgets from whom the message belongs

Figure 4.8: Schemas for messages in Facebook

• FBisFriend: is used to be mapped when invoking a FQL9 method, which is a way to directly ask for

data to the databases. Note that these methods (from FQL) are predefined and not always reliable.

• FBJsonObject: is used to be mapped by a list of other objects, such as the friends’ list or groups’ list.

• FBMember: is used to be mapped by users belonging to a group, which have their own information.

This happens because people in a group may not be friends of the user, meaning that some information

about those users may not be available to the requesting user.

For the communication between the client applications using Facebook, we use our own Schemas.

Much because Facebook does not allow some types of message schemas, such as XML based.

These Schemas make use of an ordinary separator of Strings, portrayed in Fig. 4.8. Regarding messages

that can be longer than the limit imposed by Facebook, such as the Computer information messages (Fig.

3.5), they are split into various messages and an indicator of more messages alike is inserted in the schema

(“PartX-Y”), which is read by the client application, informing it is not the only part that has to be fetched,

and it needs to fetch Y messages. Also, in the new updates to Facebook API, the comments appear to have

no originating user (thus having the name of the Facebook Application as depicted in Fig. 4.9), and as such

we introduced a UserID in the schema.

These Schemas are very simple and human readable, in order for Facebook to allow them on their Web

site, and not consider them as “Spam” or other type of blocked messages. Although, it is possible that in

9FQL: http://developers.facebook.com/docs/reference/fql accessed on 15/10/2010

52

http://developers.facebook.com/docs/reference/fql

4.4 Data structures and Message Schemas

Figure 4.9: Completion message example in Applications’ Wall (completed with error)

the future such messages might not be supported. Also, they are human readable to assure the users what

information is being sent to other users.

Fig. 4.9 depicts the moment when a user sent a Gridlet message to the user that was going to process

it, and an error occurred. This means that the originator can delete the Gridlet message from Facebook and

retry to send the same Gridlet to another user (or possibly the same user).

Figure 4.10: Job Search message on Users’ Wall

The Schemas represented in Fig. 4.10 and Fig. 4.11 gives us the idea of how it appears to the users

in their Walls and in the registration Post in the Applications’ Wall (FoFs method) respectively. Moreover,

these messages are comprised of the Jobs’ requirements and the JobID in case of the Applications’ Wall

(which contains the UserID). Also, in Fig. 4.11 we can see that the user has responded to the Job Search

with an accept message.

Fig. 4.12 represents a Gridlet message sent to a user containing the location of the file “balcony.pov”

that the processing client application needs to download. Also, we can see that the Gridlet number is 3

(depicted in a red circle), meaning that it is the third Gridlet of the Job in question. Moreover, it displays

the program and the arguments given to it to process the data file.

Fig. 4.13 depicts the message sent to a users’ friend, in order for him to redirect to its own friends. This

message contains the ID for which the FoFs has to send the message, and the type of message that it sends

is also described (in this case “cpuInfos”, meaning the FoFs computers’ information).

SNCS uses Facebook to send and retrieve messages via the Facebook API. Meaning that, it reads Posts

(messages that are contained in the users’ Wall, groups’ Wall) and Comments (messages contained within

the Posts), and writes other messages on users’ Wall (which is a space that contains messages) either as

Posts or Comments.

53

4. Implementation

Figure 4.11: Job Search and Acceptance messages in Applications’ Wall

Figure 4.12: Gridlet Message

Posts can only be used between users that are considered friends or in known groups, and therefore the

people and groups that the user cannot directly contact, do so via the Applications’ Wall by commenting on

users’ Posts (Registration Post). This Post is either created by the users or it can be created automatically

by the client application when it needs to reach FoFs. This method is used to bypass the inability of

contacting other people rather than just direct friends. This does not mean that other Social networks have

the same restrictions and therefore the operations of registering and redirecting messages should be optional

on SNCS.

Figure 4.13: Message for the user to redirect to friends

4.5 SNCS Configuration

Prior to the execution of the client application there are some configurations that the user needs to make,

and some of them cannot be optional. The main condition to use SNCS is that the user has to be registered

in Facebook, or the Social network that is being used, meaning that the user needs to create a Facebook

54

4.6 SNCS Constraints

account10.

As Facebook does not allow users to write Posts or Comments on the Applications’ Wall as is, the user

must “Like” the Facebook application, meaning that the user has to go to the Application Facebook page

(in this case Tese SNCS)11 and click on the “Like” button that appears for them, in order to enable sending

messages to the Applications’ Wall. Afterwards, the user can “register” on the Applications’ Wall, meaning

that the client application sends a message to that Wall in order for the redirected messages (that were sent

by others) to reach the user (in case of interactions with FoFs).

The use of “sending your computer informations” is optional, although it should be used as a part of

the configuration. This happens because the client application tries to search for computer’s information on

the users’ Walls instead of asking for them at first, meaning that it is a added overhead and latency if the

client application needs to request it explicitly from all users. Thus, if the user has already sent its computer

information to Facebook, the client application can quickly gather them.

The priority lists and programs lists can be specified in the Configuration Menu and are also optional to

the users, however these options should not be ignored in order for a smoother usage of SNCS and a more

efficient resource and application discovery.

Furthermore, the use of these lists are recommended in order for SNCS to gain perspective on what

type of Jobs (depending on the programs the users allow) it can donate the computers’ idle cycles and also

the way Gridlets are executed, because the user may want to help processing them for the people that most

helps the user.

4.6 SNCS Constraints

The decision of using Facebook as the Social network for interactions between people, has brought

some constraints due to the limitations that Facebook enforces, either with the Use Terms12 or their API.13

In order to interact between users, the client application normally uses the Posts method, which can not

be guaranteed between users that are not friends. As such, we use the method of redirecting messages, by

sending it to a friends’ Wall, so that the users’ client application can direct it to the proper Wall, meaning

its friends (the FoFs method). In order to generate fewer “spam” the last client application does not redirect

messages to users that are already friends of the first. Furthermore, as the route of messaging can be

expanded “indefinitely” we only consider sending messages until FoFs.

In the case of sending messages, Facebook has limited the size of the messages that can be sent by

outside applications (in the order of 420 characters), and the method used to circumvent it was to split

messages in smaller ones, making the client application verify from all the Posts their message type and

from whom they belong to.

As it as been said before, the Graph protocol is still in development, and as such some functionalities

10Facebook: http://facebook.com accessed on 15/10/2010
11Tese SNCS page: http://www.facebook.com/apps/application.php?id=123798840981469 accessed on 15/10/2010
12Facebook Use Terms: http://www.facebook.com/terms.php access on 26/08/2010
13Facebook Graph API: http://developers.facebook.com/docs/api accessed on 15/10/2010

55

http://facebook.com
http://www.facebook.com/apps/application.php?id=123798840981469
http://www.facebook.com/terms.php
http://developers.facebook.com/docs/api

4. Implementation

do not work as expected, therefore the reading and writing of Comments on groups’ Walls is dealt with the

REST protocol, which should be changed when Facebook decides to implement a better way.

The most important constraint is that Facebook also limits the number of requests that can be sent by

the client application each day per user.

This limit can be changed by Facebook, and is based on the affinity users show for the Facebook applica-

tion’s use of Facebook Platform through their interactions,14 also “values will change over time depending

on how users interact with your application”. Therefore Facebook created a system of Buckets, that have

a limit number of requests, i.e. Tese SNCS (name of the client application on Facebook) is on 9 of 14

Buckets which has 26 requests per user per day. As the current method to overcome this limitation, SNCS

should encourage users to only have 1 Job per day. However, we cannot consider that every Social network

has the same limits, and therefore a specialized limitation would have to be reviewed for each case.

14Facebook Allocations: http://www.facebook.com/business/insights/app.php?id=123798840981469&tab=
allocations accessed on 27/08/2010 (can only be accessed by Facebook applications’ Administrators)

56

http://www.facebook.com/business/insights/app.php?id=123798840981469&tab=allocations
http://www.facebook.com/business/insights/app.php?id=123798840981469&tab=allocations

5
Evaluation

Contents
5.1 Scenarios 1 and 2 . 59
5.2 Scenarios 3 and 4 . 61
5.3 Scenario 5 . 62
5.4 Scenario 6 . 63
5.5 Scenario 7 . 65
5.6 Scenario 8 . 68
5.7 Discussion . 70

57

5. Evaluation

In this chapter we present the evaluation of SNCS regarding its performance, stability and viability for

using a Social network to achieve public-resource sharing. Our focus is to know the achievement of resource

and service discovery, by recruiting as many users as possible to execute Gridlets. While also, integrating

with the normal usage of the Social network, which in the user’s point of view would be the amount of

information perceived in the Social network, which should be kept minimal. Finally, SNCS should provide

idle cycles to be used to process the upcoming Gridlets, as such the client application was tested in a “more

realistic” environment as described in this chapter.

In order to perform all the tests we constructed several scenarios, where the environment for each would

change as follows.

In the first scenario, to make sure that two friends can achieve public-resource sharing with each other

and as the main task for the client application, we have 1 Gridlet to be completed with 1 or 5 minutes of

processing time. As this is the starting point of our tests, it was imperative that the client application, which

would execute the Gridlet, had available resources.

In the following scenarios we changed the number of users involved and also their roles. Beginning

by adding a new friend and increasing the number of Gridlets. Afterwards we changed the role of the

friend to be a Friend of Friend (FoF), so we can expand the number of users that the Job can reach. As

these scenarios are not sufficient for a large scale test, we replaced the FoF with a user in a group. And

consequently introduced a FoF in the scenario, while also adding a friend to the group, in order to increase

the number of Gridlets.

In scenario six, as depicted in Fig. 5.11, we considered 2 friends, 2 FoF and a group with 3 users, where

one of them was a FoF, also we increased the number of Gridlets to 7 and the processing time to 5 minutes

only. In scenario 7, as depicted in Fig. 5.14, is considered as a “more realistic” scenario, were there are

Friends, FoF and other people connected by a Group, while also increasing the number of Jobs to two, and

the total number of Gridlets to 15, with the same processing time as before.

For all the scenarios above, we assumed that the number of Gridlets were suitable to complete the Job

in question and that they would take exactly the time spent (1 or 5 minutes), however realistic processing

times for Gridlets can take much more (in hours) as it happens with other cycle-sharing systems, such

as SETI@Home; that all users would have their client applications running prior to the start of any Job,

meaning that they would be in any part of the “checking” cycle (as referred in the Jobs Manager module

description); that every user could only execute 1 Gridlet at a time; and also that all computers would have

the capabilities for processing the Gridlets, meaning that the search would match their resources exactly

and therefore the resources would be considered as the ones needed. Also, for the purpose of simulating the

processing time of each Gridlet, we made use of a timed count down program for each one and that each

client application would have to download it from a Web site.

For the last scenario, we considered to execute Gridlets in a real program (Pov-Ray) to render a image,

to understand exactly the consequences of the added overheads of SNCS to the overall process.

58

5.1 Scenarios 1 and 2

5.1 Scenarios 1 and 2

Figure 5.1: Scenario 1 View

Figure 5.2: Scenario 2 View

Scenarios one and two were simple tests to make sure that we could achieve our works’ goals and are

described as follows.

In Scenario 1, as depicted in Fig. 5.1, we have two users connected as Friends and one of them has to

process 1 Gridlet that has 1 or 5 minutes of processing time in each test. Moreover, the Friend that processes

the Gridlet has the necessary resources available that it requires to be executed.

(a) Total times for Scenario 4

(b) Total times for Scenario 5

Figure 5.3: Total times for Scenario 1 and 2

In scenario 2, as depicted in Fig. 5.2, we augment the tests with a new Friend connection and with two

59

5. Evaluation

Gridlets to be completed by the Friends.

In both scenarios we assume that each client application has to download a timed count down program

to be executed in the processing client application and that the client application would be running prior to

the start of the tests, meaning that it could be in any given point of the “checking” cycle.

The messages (as seen in Fig. 4.8) that are sent and retrieved by the client applications are made using

only the starter’s Wall and therefore the use of other Walls is not necessary for these tests.

The Gridlet message contains the place where the client application should download the data files and

also the arguments that are used to execute the processing program on the user’s computer. In these cases

the arguments given are “minutes=1” or “minutes=5”. Also, as it was expected, the requirements of the

Gridlets would match the computers’ information, in this case the requirements are “TotalCores=8; Mem-

orySize=4072; Program=Gridlet.exe”, meaning that it needs 8 CPUs, 4 GB of memory and the program

Gridlet.exe.

5.1.1 Results

The results for scenarios 1 and 2, as depicted in Fig. 5.3, can lead us to believe that using a Social

network to discover resources and services can be achieved.

When considering the tests where the Gridlet takes 1 minute, we can see that the overhead of the client

application (only considering friends), is around 50 seconds, these times includes sending and retrieving

messages from the Social network, meaning that the Social network usage is accounted for. Note that

Facebook introduces variable latency in Wall update that SNCS cannot circumvent.

Moreover, when we increased the processing times to 5 minutes the overheads remained around the

same, which can lead us to a speedup in larger scale environments.

Figure 5.4: Scenario 3 View

Figure 5.5: Scenario 4 View

60

5.2 Scenarios 3 and 4

5.2 Scenarios 3 and 4

In the following scenarios we expand the range of communication by adding a Friend of Friend (FoF)

in scenario 3 (Fig. 5.4) and by adding a person in a group (without counting the starter) in scenario 4 (Fig.

5.5).

In order to reach as many users as possible to evaluate larger networks we need to guarantee that we can

include these types of users and that the SNCS overheads introduced do not affect the overall performance.

Figure 5.6: View of the Registration Post

In case of scenario 3, the Applications’ Wall is needed for the communication between FoF and the

starter user, meaning that both users have “registered” their client applications and a Post was created in the

Applications’ Wall containing their UserIDs, as depicted in Fig. 5.6

(a) Total times for Scenario 3

(b) Total times for Scenario 4

Figure 5.7: Total times for Scenario 3 and 4

61

5. Evaluation

For both scenarios we can assume that each user has the resources to process the Gridlets, that each has

their client application running prior to the start of the Job and that they would download the timed count

down program from a Web site. Moreover, the two Gridlets and their consuming times are the same for

these tests.

The messages for these tests are also sent and retrieved through the starter’ Wall, however a Job request

is also sent to the starter’ group Wall in order for the group users to be able to retrieve it. And also as

discussed in previous chapters, the communication between the starter and FoF uses the Applications’

Wall, and thus the messages sent there additionally contains the UserID and the JobID, also described in

the Schemas (Fig. 4.8). Moreover, the Gridlet messages are of the same type as before.

Figure 5.8: Communication Times for Scenario 3

5.2.1 Results

The results for scenarios 3 and 4, as depicted in Fig. 5.7, changes the overheads of SNCS. Because we

introduced either a FoF (in scenario 3) or a group (in scenario 4) and it is explained by the fact that the

messages are sent to other Walls instead of just only the starter’s Wall.

In the case of FoF, we must consider the fact that the redirected message takes a longer time than sending

a message directly. Although, in our tests the added time is still less than the processing time for a Gridlet

and in case of test 4 in scenario 3 (first with 5 minutes), the time to discover the Gridlet message suggests

that the Social network had an increased traffic load, making the FoF wait a longer time to retrieve it, as

depicted in Fig. 5.8. This figure represents the time between events and its difference to the start of the

process, meaning that each event marked, such as Accept 1 (accepting a Job), Completed (FoF) (Gridlet

completed by FoF) happened some minutes after the Job Search started for each test represented.

5.3 Scenario 5

In scenario 5, as depicted in Fig. 5.9, we merge the previous scenarios and begin to construct a larger

network. By having a Friend, a FoF and two persons in a group (without counting the starter), where one of

62

5.4 Scenario 6

Figure 5.9: Scenario 5 View

them is the Friend. While also increasing the number of Gridlets to four and still maintaining the processing

times of 1 and 5 minutes.

For these tests we assume that each of the participants of the group have already been accepted to the

group, making it possible for the client applications to send and retrieve Posts and Comments from it. We

also assume that SNCS has “registered” the users in the Applications’ Wall and is already executing in each

user’s computer.

The messages for the Job request are sent to the starter’s Wall, to the group Wall and upon receiving the

FoFs’ computer information it begins the Job request using the Applications’ Wall. Moreover, the Gridlets

do not change in these tests, and therefore the previous description of them still applies.

5.3.1 Results

Figure 5.10: Total times for Scenario 5

The results for scenario 5, as depicted in Fig. 5.10, are encouraging us to pursue the idea of each user

to process a Gridlet at a time. Although in Test 7 and 8 (the last two tests in Fig. 5.10), we see an increase

in the Social network traffic load, which increases our total times and hinders the speedup that we could

achieve. Moreover, we can say that using both methods (FoFs and Group messaging) becomes acceptable

with longer running Gridlet executions.

5.4 Scenario 6

Scenario 6 bring us a larger view of a Social network, where the starter user is connected to two Friends,

which are connected to one FoF each and a group with three people, where one of them is a FoF (without

63

5. Evaluation

Figure 5.11: Scenario 6 View

counting the starter). Also the number of Gridlets is increased to seven and their processing times are of 5

minutes only.

For this scenario we assume that the client applications has “registered” in the Applications’ Wall, that

each of the group members have already accepted their membership and that the client application is already

running in the users’ computers. Moreover, we assume that the time to process a realistic Gridlet can be

more then 5 minutes and therefore the time spent is sufficient to determine the viability of using the Social

network to achieve our works’ goals and also the processing time of a Gridlet data does not change the

inherited overheads of SNCS.

The messages for this scenario continues to be of the same type as before, although the requirements

of the Gridlet are changed to accommodate the computers that were used. In this case the requirements

are changed to “TotalCores=2;MemorySize=4078;Program=Gridlet.exe” and each SNCS that processes the

Gridlet is able to accept its conditions (however they still need to assess if they have idle cycles to spare).

5.4.1 Results

Figure 5.12: Total times for Scenario 6

The resulting times from this scenario, as depicted in Fig. 5.12, are consistent with the previous ones.

Meaning that in each test, the times to complete a Job were in the order of 11 minutes. Although, in Test 1

the FoF2 did not receive the last Gridlet as it was supposed to, and in Test 4 the FoF2 crashed and recovered

the last Gridlet in time to complete it. These situations proved that the total times, will be hindered by the

64

5.5 Scenario 7

fact that people are not always in a Online state and also by giving more than one Gridlet to the same user

the Job will have longer total times. However, we cannot always expect to find as many users as the number

of Gridlets needed to complete a Job.

We can also see that the overhead of SNCS is minimal considering the processing time of the Gridlets,

which makes it possible to have speedups on data processing. However, we cannot estimate the exact added

time of the Social network usage, meaning that these times can vary with the Social networks’ traffic load

at the time of use.

Figure 5.13: Communication Times for Scenario 6

Fig. 5.13 explains in detail how much time each task takes in relation with the starting point, i.e. it can

take less than 1 minute for users’ client applications to find and accept new Jobs, and that the higher spikes

are caused by the fact that the client application only found the Gridlet some minutes later due to its Offline

state and between the found tasks and completed tasks (for each user) we can see the processing time of the

Gridlet (5 minutes).

5.5 Scenario 7

Scenario 7 is an attempt to test SNCS in a more realistic environment, having a more complex network

of users. As depicted in Fig. 5.14, we have two users who start a Job (User 1 and 6), where User 1 has three

Friends (User 2, 7 and 15), User 6 has two Friends (User 8 and 15). User 2 and 15 have each a FoF not

connected to anyone else. Also, we created a group with six people (User 1, 2, 4, 5, 6 and 7). The layout of

this network is made in a attempt to maximize the diversity of the users’ roles, making it possible for a Job

request to reach any of the users.

In this scenario, User 1 and 6 start a Job each, that contain 8 and 7 Gridlets respectively, making a total

of 15 Gridlets to be processed by any of the users in this network. Furthermore, the client application does

not restrain itself to gather only one Gridlet for each Job, however it only accepts a Job request per user for

65

5. Evaluation

Figure 5.14: Scenario 7 View

each “channel” (Group, Wall, Applications’ Wall) that the Job request appears in, i.e. User 7 can accept

Jobs from the Group it is connected to, from its friend (User 1), and its friend (User 8), where the latter

connection is of FoF to User 6, meaning that (in this network) it could acquire four Gridlets.

For this scenario we assume that each Job has less Gridlets than users that can be connected to the starter

user, in order to simulate a larger network where the user could have potentially hundreds of connections,

that could either accept or deny the request. Also, each client application would already be “registered” in

the Applications’ Wall, the group members already established and the client application would be running

prior to the Jobs submissions. Furthermore, the two Jobs are started roughly around the same time in order

for the client applications to retrieve the Gridlets in any given order.

Figure 5.15: Total times for Scenario 7

The messages are, as before, sent and retrieved either by the starters’ Walls, group Wall or Applications’

Wall.

In order to facilitate the reading of each Job request, the comments field contains the User number,

how many Gridlets the Job has and the test number, i.e. “Comments=job6.7.1” is introduced in the Job

description, where 6 is the User number, 7 is the Gridlet number and 1 is the test number. Also, the Gridlets

requirements and processing times are unchanged from the previous scenario.

66

5.5 Scenario 7

5.5.1 Results

The results for scenario 7, as depicted in Fig. 5.15, brings us closer to understand how SNCS performs

in a realistic environment. In this scenario we can see that the total times can vary depending on factors

such as number of Gridlets, users states (Offline versus Online), number of users/groups involved, Social

network latency and use of concurrent Gridlets (or Gridlet queue).

Figure 5.16: Communication Times for Scenario 7 Test 3

The times on this scenario are around 16 minutes to complete both Jobs, however we can see that in

Test 1 and 5 the Job initiated by User 6 was completed 5 minutes earlier than in the other tests, this is due

to the fact that the Gridlets were evenly distributed through the available users.

Figure 5.17: Communication Times for Scenario 7 Test 4

In Test 3, as depicted in Fig. 5.16 we can see what happens in the situation where a user goes Offline

and all the remaining users are already occupied, making the total time much higher.

In Test 4, as depicted in Fig. 5.17 we can see the added time of the Social network latency, where two of

the Gridlets were retrieved only after all other Gridlets were already processed, and thus hindering SNCS

performance.

We can also see in Test 6, depicted in Fig. 5.18, that the total time is hindered by the uneven amount of

67

5. Evaluation

Gridlets that a user can take, in this case User 7 gathered 4 Gridlets to be processed when the computer had

idle cycles to spare. However, we can say that the total time still remains with a speedup compared to how

much it would take in the users’ computer. This would be more so with longer running Gridlets.

Figure 5.18: Communication Times for Scenario 7 Test 6

5.6 Scenario 8

Scenario 8 was made in order to evaluate the performance with a real program that renders images. In

this scenario, as depicted in Fig. 5.19 we have one friend, one FoF and two users in a group (not counting

with the starter) where one of them is the friend. The goal of this scenario is to know if SNCS can function

with a real processing program, such as Pov-Ray,1 which is used in the tests.

Figure 5.19: Scenario 8 View

For each test the number of Gridlets to be completed is four and their consuming times in the process-

ing computers are undefined, meaning that it depends on the computers’ hardware states and capabilities.

However, the first data file (for Test 1) is smaller than the second one (used in Test 2) and Test 3 uses the

same file as the second test, but with different rendering options. Furthermore, we use an Application to

Application transfer method to retrieve the data files in both ways (starter - user and vice versa) for each

test. Also, we assume that the client applications are running prior to the start of the Job.

Test 1 is initiated with the property arguments as being:

“-A0.3 -W1280 -H720 -D -O“$dir.output$abyss rend.bmp” -P +Q9 /EXIT /RENDER “$dir.exec$abyss.pov””

1Pov-Ray: http://www.povray.org accessed on 15/10/2010

68

http://www.povray.org

5.6 Scenario 8

and the program property as “pvengine64.exe”, which in every SNCS is defined (by the user) in the “Pro-

grams list”.

For Test 2, the arguments property is altered to become:

“-A0.3 -W1280 -H720 -D -O”$dir.output$balcony rend.bmp” -P +Q9 +R5 /EXIT /RENDER ”$dir.exec$balcony.pov””

and with the same program parameter as the latter test.

Figure 5.20: Rendering Test Times for Scenario 8

In Test 3 we modify the arguments property to be:

“-A0.0 -W3921 -H2767 -R200 -D -O”$dir.output$balcony render.bmp” -P +Q9 /EXIT /RENDER

”$dir.exec$balcony.pov””, which modifies the images properties, such as anti-aliases, resolution and how

many rays POV-Ray will supersample with when it is anti-aliasing, in order to have a longer running Gridlet,

and also the program property still remains the same.

Figure 5.21: Communication Times for Scenario 8

5.6.1 Results

The results for scenario 8 confirmed that SNCS can gain speedups against local execution, as depicted

in Fig. 5.20. Where we have the total times in Test 1 around 6 minutes, Test 2 around 14 minutes and Test

3 with 81 minutes.

69

5. Evaluation

Furthermore, in all the tests the friend user processes 2 Gridlets, meaning that it queues one to be

processed when it has idle cycles to spare. We can also see in Fig. 5.21 that although each task can take

some time to execute, the average performance can be acceptable for Gridlets that have higher processing

times.

Also, we see that in Test 2 the Gridlets take around 5 minutes more to be processed than in Test 1,

meaning that we can define that the processing time for the second data file is greater. Moreover, the first

test suffers from communication latency, i.e. the task FoF Accept (accepting the Job from the Applications’

Wall) takes more time to happen than in the second test.

Test 3 demonstrates that with longer running Gridlets the variables that hinder the overall performance,

can be amortized by the difference that it would take to process all the data in the user’s computer.

5.7 Discussion

When comparing with traditional processing, SNCS decreased the total processing time of what it would

have consumed in the users’ computers, meaning that SNCS achieves overall speedups on Jobs.

We can also state that the overhead that SNCS imposes on the overall process can be minimal compared

to the time it takes to process a Gridlet, which in realistic terms it can be more than 1 hour. However, times

can be hindered from the fact that searching for resources may not return positive results, or that the total

resources available are less than the number of Gridlets to be processed, or even that latency of Facebook

servers may vary with their global traffic load.

We can also conclude that the number of messages varies with the number of users (friends, FoFs and

groups) that comes in contact with the Job, while varying with the number of Gridlets comprising the Job,

i.e. in scenario 6 the number of messages in total were 41, considering that between friends and groups

there are 5 messages for each user that accepts a Job, and that for FoFs there are 8 messages for each.

We can state that the number of messages sent to Facebook are proportionally increased by the number

of users in the network, meaning that a Job may receive as many accepts and denies messages as users in

the network. Although, the user may not be aware of this in the long run, because those messages are erased

when they are not needed, making a clean environment in Facebook, meaning that we can accomplish our

goal of making SNCS viable to use Facebook without hindering the usage of the Social network.

We can also conclude that the method used to contact FoFs hinders the total times, although in our tests

the delays were not significant as compared to the overall process.

Moreover, we can confirm that the users can donate their resources (CPU time) for other users’ con-

sumption and for users’ groups that would have interest in acquiring more processing power. Also, takes

advantage of other users’ resources with the same interests (or in the same groups) to further speedup their

own programs.

In conclusion, even with the latency variables and excess messages introduced by the interaction be-

tween users, using a Social network, SNCS can definitely use the dispersed and idle resources available on

these networks to speedup application execution, that would take more time in the users’ computer.

70

6
Conclusions

Contents
6.1 Future work . 75

71

6. Conclusions

In this dissertation we presented a new method of resource and service discovery through the use of

a Social network. It is also considered that by making use of a Social network already established, we

can involve more people to donate their computers’ idle cycles. Also, we analyzed Peer-to-Peer networks

and Grids to understand the related problems like efficient resource discovery, while also analyzing Social

networks and user interactions to understand how we can achieve our works’ goals.

The first projects in distributed computing, such as Distributed.net1 and SETI@home [ACK+02] opened

the possibility of using millions of house hold computers for computer intensive problems that could take

much more time than in supercomputers. These projects use a client-server base platform to enable home

computers to gather information to be processed on their side and ultimately send the results back.

The idea of distributed computing has enabled other projects (such as XtremWeb [FGNC01]) to create

environments to execute common applications used by desktop computer users. Meaning that anyone can

join or create its own network to share and receive idle cycles for its own usage. Although, this may not be

practical for common users, because they might not have the resources or capabilities to gather enough users

(or computers) for their problems. Their idea creates small networks within communities, or enterprises in

order to gather idle cycles for common applications’ execution.

The Ginger Middleware [SFV10, VRF07, RRV10] aims to solve this problem, in order for any user to

be able to consume idle resources (however it lacks the supporting infrastructure for users to connect with

each other). Moreover, to leverage the process of sharing, they introduced an application and programming

model based on the Gridlet concept, which is described as containing chunks of data and the operations to

be performed on it, and also other information, such as the estimated cost to process the data.

Regarding resource discovery, some approaches emerged from P2P networks, in order to locate files and

contents within peers more efficiently. An early method for such was Flooding [PFA+05], which sends a

message to anyone in the network until it reaches the required resource (or a limit is reached), which proves

to be inefficient with the fact that not every peer may have the capabilities to reply to all the requests.

Other blind methods were considered, such as Random walks and multiple random walks [TR03],

which randomly crawl the network to find the specific location of the resource, however they still lack the

capabilities to direct their searches to the right peers.

Also, other methods combining the previous were considered, such as direct searches [LCC+02], or for-

warding indices [CGM02], which follows a not-so-random walks through the peers to locate the resources.

However, for these methods to function correctly it is necessary that the resource information is available

on the network.

Social networks were a step forward for user interactions in the Internet, meaning that Web sites, such

as Facebook and MySpace are used for personal or business interactions at any given time, i.e. friends

interactions or advertising.

Studies done to these networks demonstrate that they follow some properties of Small-World networks.

Meaning that on these networks a user can reach another with just a few links, and also there is a small

1Distributed.net Web site: http://www.distributed.net accessed on 05/01/2010

72

http://www.distributed.net

group of users with many links (to others) and a larger group with fewer links. We can also see this

in a P2P perspective, where users with many links are super-peers connected by users with fewer links

(peers). Which made us believe that we could utilize these networks for other purposes, much like using

P2P networks for global distributed computing.

Social networks have attracted the attention of other projects to utilize those networks for other pur-

poses rather than the ones they were initially intended for, because of the potential of reaching millions of

users without having to create their own networks. Also, because these networks export their own APIs

to interact with their databases, allowing outside applications to gain faster population (or to be known by

more people).

These Social networks use a REST-like interface or also a Graph interface (in case of Facebook), which

is an added layer to the HTTP protocol, that communicates with HTML, XML or JSON objects to retrieve

and send information, such as Users’ name, friends, groups, among others.

Other projects have surfaced on the Internet that share the same properties as the previous distributed

projects, meaning that their goal is to utilize the idle resources scattered on the Internet (users’ computers)

to do cycle-stealing. However, these new projects use the users’ Browsers to achieve their goals, such as

Collaborative Map-Reduce2 and Plura Processing.3

Our work describes Social Networks for Cycle-Sharing (SNCS), a Web-enabled platform, which is

designed to use Facebook, to search for potential idle resources available on this type of network, also

enabling public-resource sharing within a Social network.

The main approach for SNCS was to have a client application split into two parts. One that interacts

with the Social network using REST or Graph protocols. And another to interact with the users’ computers

for local resource discovery and the Ginger Middleware for creation and aggregation of Gridlets.

SNCS main concern was to actually achieve resource and application discovery while being able to

do resource sharing, meaning that our works’ concerns were to utilize users’ computers in a way that

would help common users to share their resources (when not needed) and to use others’ resources to gain

computational cycles for their own applications.

Also, we described, in Section 3.2, the SNCS architecture which is comprised of a set of components

with determined functions. Moreover, some of the SNCS components depend on libraries such as RestFB4

(which eases the interactions with Facebook, concealing the use of other objects in other languages), or

SIGAR5 (which gives a faster way to access computers’ information).

Moreover, the users would only need to submit a Job, which is comprised of Gridlets, to SNCS in order

for the SNCS client to interact with other client applications to distribute these Gridlets. Also, we defined

Gridlets as containing data (partial data from the Job), the specified program and its arguments to process

that data, while also having the requirements for which SNCS would be searching for, within the Social

2Collaborative Map-Reduce in the browser: http://www.igvita.com/2009/03/03/collaborative-map-reduce-in-the-browser
accessed on 05/01/2010

3Plura Processing: http://www.pluraprocessing.com accessed on 05/01/2010
4RestFb Web site: http://restfb.com accessed on 24/08/2010
5SIGAR library: http://www.hyperic.com/products/sigar accessed on 15/10/2010

73

http://www.igvita.com/2009/03/03/collaborative-map-reduce-in-the-browser
http://www.pluraprocessing.com
http://restfb.com
http://www.hyperic.com/products/sigar

6. Conclusions

networks’ available resources.

Furthermore, we established that interactions between SNCS clients and Facebook would be needed. As

such, we demonstrated, in Section 3.3, that a flow of communication is created when a user submits a Job

onto SNCS. Meaning that, after a successful submission of a Job, SNCS requesting client starts a search for

resources that would meet the requirements of that particular Job. Moreover, it sends a Job Search message

to the users’ friends and to groups which would have the capabilities to process the Job, and also the users’

friends of friends (FoFs).

In the prototypical example, in Section 3.6, we explained in more detail how the interactions are per-

formed, starting with the users’ Job submission to its conclusion. And also, how the search for resources

would be accomplished, meaning that, by using Facebook API to send and retrieve messages we needed to

deal with some facts, such as sending messages to FoFs through the user’s friends’ Walls.

On Chapter 4, we explained the SNCS implementation, detailing some of the more complex expects of

SNCS, meaning the technologies used to ease the interactions between the client applications, the users’

computers, and also the Social network used. Furthermore, we give an overview of how the client applica-

tion was developed and some of the Java classes created for that purpose, in Section 4.2.

We also described, in Section 4.4, the internal representation of the data structures and message schemas

used on the client application, that have the responsibility of holding information needed to complete a Job,

and also help SNCS organize incoming Gridlets.

Furthermore, we created message schemas to send (and retrieve) them to (from) Facebook, because the

Social Network does not allow some types of messages, such as XML based. As such, we used a separator

of Strings, in order for a simple usage and human readable way to be allowed on the users’ Walls, while

also comforting the user as what SNCS would send to others.

However, the choice of using Facebook as the Social network for resource discovery and cycle-sharing,

brought some constraints to SNCS. As described in Section 4.6, Facebook enforces some limitations either

with their Use Terms or their API. For example, Facebook limits the size of the messages that can be sent

by outside applications (Facebook applications), which was dealt with a simple splitting method to enable

large messages to be passed to other users. And also, as Facebook is still developing the Graph protocol,

some functionalities do not work as expected, therefore we used the discontinued REST protocol for those

methods.

In the end, Chapter 5, we evaluated SNCS with scenarios that would give us the idea of how it would

manage in such environments. Meaning that, several scenarios were created in order to test SNCS regarding

its performance, stability and viability for using a Social network to achieve cycle-sharing, and resource and

application discovery.

The first scenarios were created in order to evaluate SNCS viability, either by connecting the starter user

with a friend, or also linking with people in a group. The results, for these scenarios, gave us insight on

some variables that hindered the performance of SNCS, such as Facebook latency. But also, it gives us the

idea that it is viable to use a Social network to do resource discovery and cycle-sharing.

74

6.1 Future work

The last scenarios, such as scenario 7 in Section 5.5, describes a more realistic environment with a more

complex network of users. Meaning that, we created its layout in an attempt to maximize the diversity of

users’ roles and for the two Jobs to reach more users. Moreover, in scenario 8, in Section 5.6, we tested

SNCS with a processing program that renders images (Pov-Ray)6 in order to evaluate SNCS with realistic

applications.

With the obtained results we can conclude that while the total times for processing a Job gained speedups

against what it would have consumed in the users’ computers, it can be hindered by some variables such as

latency of Facebook servers, and the fact that searching for resources among Social networks users may not

return positive results, or that the total number of available resources are less than the number of Gridlets

that comprises a Job.

However, with functionality and quantitative evaluation, we can conclude that the results are encour-

aging despite the overheads introduced by the variable Facebook latency, and the intermediate messaging

among FoFs. In fact, with SNCS, Jobs are completed faster than in the user’s computer releasing it for other

tasks. Also, the performance gains would increase with longer running Gridlets (more realistically about 1

hour) by amortizing overheads attributable to Facebook and communication.

Moreover, we can conclude that our works’ goals have been successfully met. Meaning that, it is possi-

ble to utilize a Social network to do resource and service discovery, and also global distributed computing.

Furthermore, by introducing the concept of global resource sharing to Social network users, we believe

that any common user can utilize SNCS to make use of idle resources scattered across the World to further

advance process parallelization and continue decrease in processing waiting times. We also hope that this

dissertation may contribute to the study and advancements made to novel cycle-sharing models.

6.1 Future work

In the future, we plan to augment the results to address the issues of having a realistic environment,

completing it with results of real peoples’ usage and longer running Gridlets. Also, to extend the use of

processing programs that could include more common applications, such as video enconding, among others.

Moreover, we believe that Jobs completion and the search for resources would benefit with require-

ments’ semantics, increasing the chance to direct Gridlets to peoples’ computers that would satisfy the

requirements, instead of having to be exact.

Also, the use of topic ontologies would greatly alter the number of users that may be able to help in

a Job while also focusing on users that have more interest in such topics. Meaning that, we could search

for specific groups using the Jobs’ topics as a point of reference to obtain the groups that would be more

favorable to that particular Job.

Furthermore, we could extend the parameters of cycle-sharing to make an advance scheduling, meaning

that SNCS would request resources before starting a Job in order to avoid the lack of resources, and decrease

the overheads attributable to resource discovery in the Job search requests.

6Pov-Ray: http://www.povray.org accessed on 13-10-2010

75

http://www.povray.org

6. Conclusions

Moreover, to continue further development of SNCS and study on our works’ goals, we plan to support

other Social networks, to do cycle-sharing between the users.

Also, we plan to substitute the need of having a stand-alone application, by embedding the SNCS client

with the Browser, in order to gather resources and process Gridlets while the users are navigating through

the Social network or the Internet.

76

Bibliography

[ACK+02] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@ home: an

experiment in public-resource computing. Communications of the ACM, 45(11):61, 2002.

[AFG+09] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A. Pat-

terson, A. Rabkin, I. Stoica, et al. Above the clouds: A berkeley view of cloud computing.

2009.

[AHK+07] Y.Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. Analysis of topological characteristics of

huge online social networking services. In Proceedings of the 16th international conference

on World Wide Web, page 844. ACM, 2007.

[And04] D.P. Anderson. BOINC: A system for public-resource computing and storage. In proceedings

of the 5th IEEE/ACM International Workshop on Grid Computing, page 10. IEEE Computer

Society, 2004.

[ASBS00] LAN Amaral, A. Scala, M. Barthelemy, and HE Stanley. Classes of small-world net-

works. Proceedings of the National Academy of Sciences of the United States of America,

97(21):11149, 2000.

[ATS04] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content distribution

technologies. ACM Computing Surveys (CSUR), 36(4):371, 2004.

[Bac06] Lars Backstrom. Group formation in large social networks: membership, growth, and evo-

lution. In In KDD 06: Proceedings of the 12th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 44–54. ACM Press, 2006.

[BPSM+00] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible markup

language (XML) 1.0. W3C recommendation, 6, 2000.

[BTM07] F. Boldrin, C. Taddia, and G. Mazzini. Distributed Computing Through Web Browser. In

2007 IEEE 66th Vehicular Technology Conference, 2007. VTC-2007 Fall, pages 2020–2024,

2007.

[CCRB10] K. Chard, S. Caton, O. Rana, and K. Bubendorfer. Social Cloud: Cloud Computing in Social

77

Bibliography

Networks. In 2010 IEEE 3rd International Conference on Cloud Computing, pages 99–106.

IEEE, 2010.

[CGM02] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In International

Conference on Distributed Computing Systems, volume 22, pages 23–34. IEEE Computer

Society; 1999, 2002.

[CH97] A. Caglayan and C. Harrison. Agent sourcebook. John Wiley & Sons, Inc. New York, NY,

USA, 1997.

[CPJ05] D. Crane, E. Pascarello, and D. James. Ajax in action. Manning Publications Co. Greenwich,

CT, USA, 2005.

[DG04] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. To

appear in OSDI, page 1, 2004.

[Dun01] C.R. Dunne. Using mobile agents for network resource discovery in peer-to-peer networks.

ACM SIGecom Exchanges, 2(3):1–9, 2001.

[FBJW08] R. Figueiredo, O. Boykin, P.S. Juste, and D. Wolinsky. Social VPNs: Integrating overlay and

social networks for seamless P2P networking. In Workshop on Collaborative Peer-to-Peer

Systems (COPS), Rome, Italy, 2008.

[FGNC01] G. Fedak, C. Germain, V. Neri, and F. Cappello. Xtremweb: A generic global computing

system. In Proceedings of the IEEE International Symposium on Cluster Computing and the

Grid (CCGRID 01), 2001.

[FKNT02] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. Grid services for distributed system inte-

gration. Computer, pages 37–46, 2002.

[FST02] Roy T. Fielding, Day Software, and Richard N. Taylor. Principled design of the modern web

architecture. ACM Transactions on Internet Technology, 2:115–150, 2002.

[GABF06] A. Ganguly, A. Agrawal, P.O. Boykin, and R. Figueiredo. IP over P2P: Enabling Self-

configuring Virtual IP Networks for Grid Computing. Arxiv preprint cs0603087, 2006.

[GDY06] L. Gao, Y. Ding, and H. Ying. An adaptive social network-inspired approach to resource

discovery for the complex grid systems. International Journal of General Systems, 35(3):347–

360, 2006.

[Goo98] D. Goodman. Dynamic HTML: the definitive reference. O’Reilly & Associates, Inc. Se-

bastopol, CA, USA, 1998.

[HHK04] F. Heine, M. Hovestadt, and O. Kao. Towards ontology-driven P2P grid resource discovery. In

Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, pages 76–83.

IEEE Computer Society Washington, DC, USA, 2004.

78

Bibliography

[KLXH04] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer support for massively multiplayer

games. In IEEE INFOCOM, volume 1, pages 96–107. Citeseer, 2004.

[LAM07] L. Liu, N. Antonopoulos, and S. Mackin. Social peer-to-peer for resource discovery. In

Parallel, Distributed and Network-Based Processing, 2007. PDP’07. 15th EUROMICRO

International Conference on, pages 459–466. IEEE, 2007.

[LCC+02] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured peer-

to-peer networks. In Proceedings of the 16th international conference on Supercomputing,

pages 84–95. ACM New York, NY, USA, 2002.

[LKR04] J. Liang, R. Kumar, and K.W. Ross. Understanding kazaa. Manuscript, Polytechnic Univ,

2004.

[LSS+09] Stefan M. Larson, Christopher D. Snow, Michael Shirts, Vijay S. P, and Vijay S. Pande. Fold-

ing@home and genome@home: Using distributed computing to tackle previously intractable

problems in computational biology, 2009.

[LZZ+04] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao. Cluster computing on the fly: P2P scheduling

of idle cycles in the internet. In The 3rd International Workshop on Peer-to-Peer Systems.

Springer, 2004.

[Man03] G.S. Manku. Routing networks for distributed hash tables. In Proceedings of the 22nd annual

symposium on Principles of distributed computing, pages 133–142. ACM New York, NY,

USA, 2003.

[MBAS06] M. Mowbray, F. Brasileiro, N. Andrade, and J. Santana. A reciprocation-based economy for

multiple services in peer-to-peer grids. In Peer-to-Peer Computing, 2006. P2P 2006. 6th IEEE

International Conference on, pages 193–202. IEEE, 2006.

[MGD06] A. Mislove, K.P. Gummadi, and P. Druschel. Exploiting social networks for internet search.

BURNING, page 79, 2006.

[MM02] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based on the

xor metric. Proceedings of IPTPS02, Cambridge, USA, 1:2–2, 2002.

[MMG+07] A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement and

analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM conference

on Internet measurement, page 42. ACM, 2007.

[MRPM08] E. Meshkova, J. Riihijrvi, M. Petrova, and P. Mhnen. A survey on resource discovery mech-

anisms, peer-to-peer and service discovery frameworks. Computer Networks, 52(11):2097–

2128, 2008.

79

Bibliography

[OBBO04] A. O’Connor, C. Brady, P. Byrne, and A. Olivr. Characterising the eDonkey Peer-to-Peer File

Sharing Network. Computer Science Department, Trinity College Dublin, Ireland, Tech. Rep,

2004.

[PFA+05] C. Papadakis, P. Fragopoulou, E. Athanasopoulos, M. Dikaiakos, A. Labrinidis, and

E. Markatos. A feedback-based approach to reduce duplicate messages in unstructured Peer-

to-Peer networks. In Integrated Workshop on Grid Research. Springer, 2005.

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing for

large-scale peer-to-peer systems. In Middleware 2001, pages 329–350. Springer, 2001.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable content-

addressable network. In Proceedings of the 2001 conference on Applications, technologies,

architectures, and protocols for computer communications, page 172. ACM, 2001.

[RRV10] P.D. Rodrigues, C. Ribeiro, and L. Veiga. Incentive mechanisms in peer-to-peer networks.

In Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE

International Symposium on, pages 1–8. IEEE, 2010.

[Sch97] RR Schaller. Moore’s law: past, present and future. IEEE spectrum, 34(6):52–59, 1997.

[Sco88] J. Scott. Social network analysis. Sociology, 22(1):109, 1988.

[SFV10] JN Silva, P. Ferreira, and L. Veiga. Service and resource discovery in cycle-sharing envi-

ronments with a utility algebra. In Parallel & Distributed Processing (IPDPS), 2010 IEEE

International Symposium on, pages 1–11. IEEE, 2010.

[Sho98] S. Shostak. Sharing the universe- Perspectives on extraterrestrial life. Berkeley, CA: Berkeley

Hills Books, 1998., 1998.

[SKM+02] D. Stainforth, J. Kettleborough, A. Martin, A. Simpson, R. Gillis, A. Akkas, R. Gault,

M. Collins, D. Gavaghan, and M. Allen. Climateprediction. net: Design principles for public-

resource modeling research. In Proceedings of the 14th IASTED International Conference on

Parallel and Distributed Computing Systems, 2002.

[SMK+01] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-

to-peer lookup service for internet applications. In Proceedings of the 2001 conference on

Applications, technologies, architectures, and protocols for computer communications, page

160. ACM, 2001.

[SVF08] João Nuno Silva, Luı́s Veiga, and Paulo Ferreira. nuboinc: Boinc extensions for community

cycle sharing. In SASO Workshops, pages 248–253. IEEE Computer Society, 2008.

80

Bibliography

[TAA+03] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Haywood, J.C. Hugly, E. Pouyoul, and

B. Yeager. Project JXTA 2.0 super-peer virtual network. Sun Microsystem White Paper.

Available at www. jxta. org/project/www/docs, 2003.

[TR03] D. Tsoumakos and N. Roussopoulos. A comparison of peer-to-peer search methods. In

Proceedings of the 6th International Workshop on the Web and Databases. Citeseer, 2003.

[TTP+07] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini, M. Pennanen, K. Popov,

V. Vlassov, and S. Haridi. Peer-to-Peer resource discovery in Grids: Models and systems.

Future Generation Computer Systems, 23(7):864–878, 2007.

[VRF07] L. Veiga, R. Rodrigues, and P. Ferreira. GiGi: An Ocean of Gridlets on a ”Grid-for-the-

Masses”. In Proceedings of the 7th IEEE International Symposium on Cluster Computing

and the Grid, pages 783–788. IEEE Computer Society, 2007.

[WBS+09] C. Wilson, B. Boe, A. Sala, K.P.N. Puttaswamy, and B.Y. Zhao. User interactions in social

networks and their implications. In Proceedings of the 4th ACM European conference on

Computer systems, pages 205–218. ACM, 2009.

[ZL04] D. Zhou and V. Lo. Cluster Computing on the Fly: resource discovery in a cycle sharing

peer-to-peer system. In Proceedings of the 2004 IEEE International Symposium on Cluster

Computing and the Grid, pages 66–73. IEEE Computer Society, 2004.

81

	Titlepage
	Acknowledgments
	Abstract
	Keywords

	Resumo
	Palavras chave

	Index
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	1 Introduction
	1.1 Current Shortcomings
	1.2 Objectives and Contributions
	1.3 Document Roadmap

	2 Related Work
	2.1 Peer-to-Peer networks and Grids
	2.1.1 P2P systems
	 Unstructured systems:
	 Structured systems:
	 Hybrid approach:

	2.1.2 SETI@Home System
	2.1.3 Berkeley Open Infrastructure for Network Computing (BOINC)
	2.1.4 Distributed Computing Projects
	2.1.5 XtremWeb
	2.1.6 BOINC Extensions for Community Cycle Sharing (nuBOINC)
	2.1.7 Grid Infrastructure for Non-Grid Environments (Ginger) middleware

	2.2 Resource discovery in P2P networks
	2.2.1 Cluster Computing on the Fly (CCOF)
	 Centralized search:
	 Expanding ring search:
	 Random walk search:
	 Advertisement based search:
	 Rendezvous point search:

	2.2.2 Mobile Agents in Resource Discovery
	2.2.3 Juxtapose Project (JXTA)
	2.2.4 Social-P2P
	2.2.5 Web Ontology Language (OWL)

	2.3 Social networks
	2.3.1 Analysis on Social networks
	2.3.2 Facebook and OpenSocial
	2.3.3 PeerSpective: Social network-based Web Search
	2.3.4 Social VPN
	2.3.5 Social Cloud

	2.4 Deployment Mechanisms and Code Execution via the Web
	2.5 Summary

	3 Architecture
	3.1 Design Requirements
	3.2 SNCS Architecture
	 SNCS (GUI):
	 Facebook Connect (Embedded browser):
	 Messaging:
	 Jobs Manager:
	 Discovery:
	 User/HW States:
	 Scheduler:

	3.3 SNCS Communications
	3.3.1 SNCS Protocol

	3.4 Discovery Mechanism
	3.5 Gridlet Execution
	3.6 Prototypical example

	4 Implementation
	4.1 Used Technology
	4.2 Class Diagram
	4.3 User Interface
	4.4 Data structures and Message Schemas
	4.5 SNCS Configuration
	4.6 SNCS Constraints

	5 Evaluation
	5.1 Scenarios 1 and 2
	5.1.1 Results

	5.2 Scenarios 3 and 4
	5.2.1 Results

	5.3 Scenario 5
	5.3.1 Results

	5.4 Scenario 6
	5.4.1 Results

	5.5 Scenario 7
	5.5.1 Results

	5.6 Scenario 8
	5.6.1 Results

	5.7 Discussion

	6 Conclusions
	6.1 Future work

	Bibliography

