
 Page 1 of 10  

Vector-Field Consistency for .NET Multiplayer Games 
Extended Abstract 

 
Dinis Lage 

dinis.lage@ist.utl.pt 
 

Instituto Superior Técnico de Lisboa/INESC-ID 
Av. Rovisco Pais, 1049-001 Lisboa 

 
Abstract: Multiplayer games are currently one of the major sources of entertainment 

worldwide. With the widespread use of the Internet it becomes essential to use the available 
communication resources effectively allowing the best interaction possible for the players. 
There already are many techniques and models dedicated to improve the gameplay 
experience and increase the maximum number of participants supported in each session. 

The problems of consistency and scalability in terms of computational and communication 
cost are addressed in this work. There are several solutions that essentially try to balance 
between flexibility, consistency and performance of distributed systems and simulations. 

The vector-field consistency model and its applicability to multiplayer games are 
thoroughly examined in this work. 

 
Keywords: multiplayer games, locality-awareness, scalability, playability, consistency 

management 
 

1 Introduction 
Multiplayer games currently represent one 

of the most popular uses of group interaction 
on the Internet. The real-time pace of many of 
these games has special interest because 
these require short response and 
communication periods. By controlling the 
quantity of information transmitted and 
adapting the consistency, depending on the 
interest level of each player, it is possible to 
increase the number of supported participants 
and improve the way in which they interact in 
the virtual world. 

Multiplayer games require some 
consistency to be enforced in order to allow a 
smooth interaction of the players. The 
requirements vary on each type of game and 
the game in itself. 

Another important aspect of multiplayer 
gaming that motivates this work is the urge for 
efficient methods of consistency enforcement 
due to its usual real-time pace. 

Understandably, to accommodate 
multiplayer games consistency and 
performance requirements, an effective 
optimistic approach to the consistency 
enforcement should be used. 

1.1 Objectives and contributions 
The work presented in this thesis has the 

following objectives: 

1. Make an assessment of the work related 
to networking in multiplayer games, 
consistency enforcement mechanisms and 
the use of locality-awareness in those 
mechanisms; 

2. Adapt and apply the VFC (Vector-Field 
Consistency [1]) model to a multiplayer 
shooter game and analyse its impact on 
the gameplay and performance in a 
distributed environment of personal 
computers; 

3. Implement a prototype XNA game that 
uses VFC and evaluate its performance; 

4. Evaluate the complexity required in order 
to use the VFC in the game 
communication. 

1.2 Document Roadmap 
In section 2 we discuss some work related 

to consistency enforcement and 
communication mechanisms used in 
multiplayer online games. Section 3 describes 
the architecture for consistency enforcement in 
multiplayer games, used on the adaptation of 
Vector-Field Consistency to a multiplayer 
action game. In section 4 we describe the 
implementation details of the prototype game. 
Section 5 exposes the evaluation methodology 
and the results that were obtained while 
evaluating the prototype. Finally, in section 6 
we summarize the achievements and make 
some observations for the forthcoming work. 



 Page 2 of 10  

2 Related Work 
In this section, some relevant consistency 

mechanisms, with possible application in 
multiplayer games, are discussed. This section 
begins with an introduction to some general 
concepts that can be applied to these games 
and then expose some models that use 
locality-awareness in multiplayer games. 
Section 2.3 presents some general 
requirements depending on the game genre. 
In 2.4 an analysis is made of multiplayer 
games’ architecture and some examples are 
given of actual implementations in prototype 
and commercial games. In section 2.5 an 
assessment of the work related with 
networking in multiplayer games is made. 

2.1 Consistency Mechanisms 
In any distributed system there is a need 

for mechanism to enforce some type of 
consistency of the shared data. These 
mechanisms are typically separated in two 
groups: pessimistic and optimistic. Following 
we present an analysis of mechanisms used to 
enforce consistency among replicas. 

2.1.1 Pessimistic Replication 
Traditional replication techniques try to 

maintain an approximation to a single-copy of 
data, giving users the illusion that there is only 
one highly available copy. There are many 
ways of accomplishing this objective but, in 
general, the mechanism blocks access to data 
when it is not possible to prove it is up to date. 
This is the reason why these are so-called 
pessimistic techniques. 

2.1.2 Optimistic Replication 
The algorithms of optimistic replication 

offer many advantages over the pessimistic 
ones: improved availability of data; flexibility 
with respect to networking, even with variable 
and/or unknown communication channels; 
should be able to scale to a large number of 
replicas because they require little 
synchronization among them; replicas and 
users are highly autonomous allowing replicas 
to be added with no change to the existing 
ones and also asynchronous collaboration 
between users like in version control systems 
as CVS [2] and SVN [3]; finally, optimistic 
algorithms provide quick feedback since they 
can apply updates tentatively as soon as they 
are submitted. 

However, there is a big challenge in the 
optimistic techniques which is the possibility of 
diverging replicas and concurrent operations. 
Thus, it is only applicable to applications that 
can tolerate occasional conflicts and 
inconsistent data. 

Availability vs. Consistency 
In applications that can tolerate relaxed 

consistency there were different optimistic 
consistency models proposed [4-7]. 
Unfortunately, typically, optimistic models do 
not impose limits on the consistency of data 
that is made available to users. To solve this 
and limit the inconsistency of the objects some 
models emerged that tried to balance between 
availability and consistency. 

Real-time guarantees [8] allow obsolete 
object replicas to be used for a specified time 
without confirming its freshness. During those 
periods the system allows the data to be used 
even if it is stale, reducing considerably the 
cost of managing that replicated data and 
improving the availability. 

Order bounding [9] may be used to limit 
the number of uncommitted changes that may 
be applied to a replica. This allows 
transactions to proceed faster because a 
bounded number of preceding transactions 
can be ignored. 

Numeric bounding is based on the 
definition of acceptable limits for the number of 
possible updates for each replica. When the 
quota is exhausted in a given replica, it must 
be made consistent with the others. This 
concept was first introduced with TACT 
[10],[11]. 

2.2 Locality Awareness in 
multiplayer games 

The notions found in locality awareness 
are fundamentally related with the concept of 
interest management, used to filter a large 
number of data in large-scale distributed 
simulations [12]. By communicating only 
relevant data to other nodes it is possible to 
optimize the use of the communication 
channel. 

2.3 Main Genres of Multiplayer 
Games 

In order to improve the network 
performance in interactive multiplayer games it 
is necessary to understand the types of traffic 
generated in each game genre [13]. The 
communication network requirements of most 
of the games can be inserted in one of the 
following categories or, in some cases, might 
have a group of elements from each game 
genre: 

First Person Shooters (FPS) – this game 
genre involves a big part of combat that 
requires rapid response times. It is necessary 
to have a great number of messages, such as 
position updates or players’ actions. In [14] a 
study was made that shows that the latency 
starts being noticed at about 100ms and that 



 Page 3 of 10  

at approximately 200ms the game playability 
becomes impossible. This game genre has the 
highest latency requirements. 

Role Playing Games (RPG) – visually, this 
game genre is similar to FPS but the speed of 
the interactions of the players is less intense. 
Online RPGs usually aim at supporting a large 
number of players, and so, require good 
scalability. These games require the most in 
terms of concurrent game flows. 

Real-Time Strategy (RTS) – in this game 
genre the effect of latency, even if easily 
detectable by the player, does not interfere in 
the playability nor in the performance of the 
player due to its nature that clearly promotes 
the strategy over real-time aspects as studied 
in [15] and [16]. 

2.4 Multiplayer Games Architecture 
Nowadays, most of the commercial games 

are implemented with client-server 
architecture, using only one or a cluster of 
servers. Each client has an independent 
connection to the server and all the 
communication is made through it. This way it 
is easier to reduce the possibilities of cheating, 
assure the anonymity of the players and the 
administration is simplified. In this architecture 
the way we can deal with the generated traffic 
differs between server to client and client to 
server, for the following aspects: 

Server to client: servers identify groups of 
clients to which it sends the same information. 
Servers can use multicast as a way to improve 
the efficiency in the network use or, even if 
that is not possible, it is possible to prioritize or 
group the messages. 

Client to server: clients may generate 
events periodically or because of user 
interaction. Usually clients only communicate 
with a server and not directly between them. 

2.5 Assessment 
Optimistic consistency mechanisms favour 

significant improvements in the availability and 
performance of a system by relaxing the 
requirement for an exact match between 
replicas. 

Client-server architecture provides a single 
location for the coordination of the state of 
shared data, including coordination of the 
consistency level that must be applied to each 
replica. When choosing peer-to-peer for the 
system architecture many other concerns must 
be accounted for (e.g. synchronization of the 
permitted actions). 

Optimist consistency mechanisms typically 
apply divergence limits on the data by limiting: 
the interval in which a replica must be 
updated; the number of updates before a 

refresh must be made; the difference in value 
allowed for a replica. These limits are usually 
enforced to the data in general disregarding 
the importance of the locality and importance 
of the data to each user. By employing some 
awareness of the locality of interest of each 
participant, it is possible to prioritize and 
reserve resources where they are most 
needed. 

Multiplayer games represent systems 
which allow for an optimistic approach to be 
made since these can tolerate some 
inconsistencies. Particularly, for FPS games, 
we propose a mechanism for consistency 
enforcement that is: optimistic; centralized; 
and location-aware (inside the virtual world). 

3 Architecture 
This section describes the architecture for 

consistency enforcement in multiplayer 
games, used on the adaptation of Vector-Field 
Consistency to a multiplayer action game. 

Our solution was based on a XNA starter 
kit game called Net Rumble, modified to use 
client-server architecture, which would use a 
VFC model. 

To analyse the VFC model, originally 
proposed in [1], it is now proposed to 
implement it on a multiplayer game in an 
environment of distributed personal 
computers. In this section we describe the 
design of our solution. 

In this section we detail some important 
considerations of the VFC model. In 3.2 we 
describe possible approaches and 
considerations of the system architecture. 
Finally, in 3.3 the main aspects of the software 
architecture are explained, describing the 
platform used in this work and denoting some 
considerations about the integration of the 
specific layers. 

3.1 VFC Model 
In VFC, each object is positioned in an N-

dimensional space. Each node of the network 
has a local replica of the virtual world, its view. 
VFC delineates how the bounded 
inconsistencies between views are managed. 

Within each view, object consistency 
depends on their distance to a pivot. Pivots 
are characterized by a position in the virtual 
world and can move over time. Figure 1 
illustrates a virtual world populated with o1, o2, 
o3, o4 and o5, with the consistency zones z1, 
z2, z3 and z4. Depending on the object’s 
corresponding consistency zone, different 
requirements may apply. 



 Page 4 of 10  

 
Figure 1 - Consistency zones centred on a 

pivot within the virtual world 

Each zone maps to a consistency degree 
of a consistency scale. This scale is an 
ordered set of consistency degrees, which 
specify the consistency to be enforced for 
each zone. Determining the consistency 
degree of an object depends on its relative 
position with respect to the pivots. 

VFC describes the consistency degrees as 
a 3-dimensional vector. Each dimension is a 
numerical scalar that defines the maximum 
divergence of the constraints of time, 
sequence and value. 

The time dimension specifies the 
maximum period allowed for a replica not to be 
refreshed with its latest value, regardless of 
the number of updates performed during that 
interval. 

Sequence represents the maximum 
number of replica updates that can be lost, 
that is, updates not applied to a replica. 

Value represents the maximum relative 
difference between the replica contents 
against: the actual value (e.g. the difference 
between a player’s position and the replica’s 
value for it cannot exceed a certain value); or 
a constant (e.g. a player’s score is 
approaching the top value). 

To enforce this consistency model a 
coordinator is required. Its role is to control 
whether or not the consistency requirements 
for each pair of objects and pivots are being 
complied and act accordingly. 

3.2 System Architecture 
To make a comprehensive study of the 

effects of the use of VFC in the communication 
it is important to use multiple methods in the 
communication and compare the impact it has 
on all of them. Following we compare the 
approaches to the system architectures of 
client-server and peer-to-peer. We further 

describe the interaction in a multiplayer game 
in each of these architectures and the 
differences of behaviour in regards of 
consistency enforcement. 

Using client-server communication, the 
determination of the interest areas around 
each pivot is simplified because the server has 
the correct data for all players. Given this, the 
server can decide where to send the 
information needed and ensure that the 
consistency requirements are enforced. 

Besides security issues, that are out of the 
scope of this work, a peer-to-peer 
implementation also aggravates the work 
required to comply with the game rules. In this 
type of architecture, when allowing some 
divergence between the replicas, situations 
may happen where a certain player performs 
an action in a moment when it would not be 
allowed by some of the participants and 
disallowed by other. This would require an 
agreement mechanism which would increase 
the complexity of the coordination process. 

Considering that, it is better to implement 
the game in a client-server structure in which 
all clients send the desired actions to the 
server and only consider updates to the game 
state sent by the server. To minimize the delay 
between the player’s actions and its 
application to the controlled entity in the game, 
it can suppose that his action will be accepted 
by the server and correct possible differences 
in the execution (e.g. a packet sent to the 
server is lost). 

3.3 Software Architecture 
When designing an implementation of VFC 

in a multiplayer game it is advantageous to 
approach it as an independent module that 
abstracts from the game logic and grants the 
possibility to use it in different games with 
minimal effort. 

Besides the advantages exposed in the 
previous section, in client-server architecture, 
clients do not need to be aware of the use of 
VFC. For clients, the implementation of VFC is 
then transparent. In a peer-to-peer 
architecture all nodes would need to have the 
VFC logic and, in order to enforce a certain 
consistency, would need to settle the 
parameters among themselves. 

3.3.1 XNA 
XNA™ is a set of tools with a managed 

runtime environment provided by Microsoft® 
that facilitates video game development and 
management. 

The XNA Framework is the .NET-based 
framework for development of video games 
and simulations for deployment on Windows 



 Page 5 of 10  

PC, Xbox 360 or Zune. It includes an 
extensive set of class libraries, specific to 
game development, to promote maximum 
code reuse across target platforms. 

The XNA Framework was developed with 
two primary goals: to enable cross-platform 
game development; and to simplify game 
development. To describe the XNA 
Framework it is appropriate to think of it as a 
series of layers. In a bottom-up approach 
these are: 

Platform – the lowest layer which consists 
of the low-level native and managed APIs that 
the framework is built on top of; 

Core Framework – provides the core 
functionality extended by the other layers; 

Extended Framework – group of 
components focused on easing game 
development; 

Games – the highest layer which groups 
the game specific content 

3.3.2 VFC Integration 
Typically, in XNA and multiplayer games in 

general, a common method to update players’ 
actions and game state is to use packets 
containing relevant information. The selection 
of dispensable packets can be placed in an 
alternate method that, instead of updating all 
clients, enforces VFC and only sends the 
update to the relevant participants. 

3.3.3 Net Rumble Considerations 
Net Rumble

1
 is a complete XNA Game 

Studio game available under the Microsoft 
Permissive License. It consists of a two-
dimensional space shooter where the players 
compete inside an arena filled with asteroids 
and power-ups. This game can be included in 
the FPS genre by its network communication 
requirements as well as type of gameplay. So, 
it makes it very suitable for the study of the 
effects of the implementation of VFC since it 
belongs to the kind of game with the most 
strict requirements, as seen in 2.3. 

4 Implementation 
In this section we present the relevant 

difficulties and issues that arose during the 
development, explaining how these were 
overcome. 

Besides the necessary modifications to 
use VFC as the communication model, several 
features were added to help or improve the 
study of the impact of the model. 

                                                      
1
 http://creators.xna.com/en-

US/starterkit/netrumble   

Section 4.1 describes the details related 
with the changes that were made in the 
communication used in the game. Next, in 
section 4.2, the implementation of the VFC 
model applied to the Net Rumble prototype are 
explained. Section 4.3 we explain the 
automation and testing process of the 
prototype achieved. 

4.1 Communication 
The communication in Net Rumble is done 

by sending update messages between 
participants in the game session. For VFC to 
be enforced some changes in the game 
communication system were required. 

By centralizing the responsibility for the 
correct state of the game it’d be possible to 
later make accurate decisions related to 
locality interest. 

4.2 VFC Model 
The implementation of the VFC model is 

made as a module that can be easily 
integrated and detached of a similar game. It 
abstracts from the specific game logic in which 
it was implemented. 

4.2.1 Pivot 
Pivots are the centre of the consistency 

zones for each player. Since each player only 
controls one ship the pivot is given by the 
ship’s position. In XNA’s Gamer Services 
system, each gamer has a tag object to which 
the programmer can add required information 
(e.g. ship colour). The class that represents 
that information (PlayerData) then implements 
the IVFCPivot interface for the middleware to 
be able to extract its position. 

In addition to the position the interface also 
requires an ID to be defined so it can later 
identify each pivot in the lists of maintained 
consistencies. 

4.2.2 Objects 
Each object, for which updates are to be 

managed using VFC, implements IVFCObject 
interface. The object has a variable that 
specifies the consistency limits, made of an 
array of VFC zones. Furthermore, it contains a 
dictionary with the status vector for each 
player which is managed by the VFC 
middleware. This was done to encapsulate the 
necessary information, avoiding unique IDs for 
all objects. The logic that gives the current 
value VFC dimension is defined in the 
implementation of this interface as well. 

In this game the VFC objects are ships 
and asteroids. 

http://creators.xna.com/en-US/starterkit/netrumble
http://creators.xna.com/en-US/starterkit/netrumble


 Page 6 of 10  

4.2.3 Dimensions 
An essential procedure to use the VFC 

model is to define the logical dimensions to be 
used by the algorithm. 

To calculate the distance of objects and 
pivots, its positions in the virtual world were 
used. The distance then translates into a 
specified consistency zone. 

Time and sequence dimensions of the 
consistency vector correspond to the number 
of updates of each object and the time it was 
last updated. For the value dimension, which 
is a qualitative dimension, the length of the 
velocity of each object was used. 

4.2.4 Consistency Enforcement 
In this implementation the consistency is 

enforced in the method used to send packets 
to all players. This is encapsulated in the class 
VFCManager. Since a two-dimensional space 
is being considered here, the distance 
between pivots and other objects is given by 

√       
         

 . 

4.3 Automation and Testing 
To conduct the tests and be able to 

automate players’ and gather data about the 
gameplay in order to further study the 
behaviour of the VFC model along the game. 

4.3.1 Automated Player Simulation 
The need for automation of the ships 

controller was evident when trying to test the 
game. This led to the development of some 
basic artificial intelligence used to control the 
ships. To simulate the input the terminal would 
just follow some basic logic to keep wandering 
inside the arena and shooting randomly until 
an enemy ship approached. Then, it enters a 
pursuit mode in which it tries to eliminate the 
opponent. 

By ensuring the ships would constantly 
move and change their actions this certainly 
stresses the communication as well, or better, 
than a human player. 

4.3.2 Record game data 
During the gameplay, the necessary data 

is recorded in CSV format in order to later 
process the meaningful information to 
elaborate on the impact of VFC on the game 
communication mechanism. 

The data recorded include elapsed time, 
players’ positions, and average amount of data 
being sent and received. This enables a 
further study of the divergence that occurred. It 
also allows a deeper analysis of the effect of 
the VFC model on the performance and 
consistency. 

4.3.3 Deployment 
There is a XNA limitation to run only one 

game at a time on each terminal. This 
diminishes considerably the number of 
participants for testing purposes. To 
circumvent this, the VMware Workstation is 
used to increase the number of participants in 
each session. With this virtualization and 
simulating adverse network conditions it is 
then possible to examine, or at least 
speculate, the behaviour of the game in actual 
conditions (e.g. over the Internet). 

5 Evaluation 
This section presents the methods we 

used in the evaluation process and the results 
obtained in the experiments. The evaluation is 
done both qualitatively and quantitatively. 

5.1 Evaluation Method 
There are several methods for evaluating 

the effect of the implementation of VFC on a 
game.  In this section it is discussed what the 
relevant criteria are, and how they should or 
should not be affected. These range from 
accordance to the game rules to the 
bandwidth consumed in the course of the 
game: 

Bandwidth – Given that the comparison 
made to a model that does no filtering of 
messages and sends everything to all players, 
the use of VFC should greatly reduce the 
bandwidth used in the course of the game. 

Latency – The latency has an important 
role on the gameplay experience of players. 
For a given pivot, the latency grows with the 
virtual distance to it. It is important to measure 
the latency in each zone and compare it with 
the latency on without using VFC. It would also 
be interesting to possibly reduce the average 
latency. 

Frame-rate – the calculations needed to 
use the VFC model should be as light as 
possible and should not have a negative 
impact on the frame-rate possible. Preferably, 
by reducing the number of messages that 
need to be processed by each terminal, it 
should be possible to increase the frame-rate 
to improve user experience. 

User experience (playability) – an 
important factor on the evaluation of the work 
since all attempts to improve game 
communication have an essential goal: to 
improve user experience. The impact that the 
use of VFC has on the gameplay is an 
important study object. An experiment related 
to this is to simulate network conditions and 
compare the latency and packet loss that can 
be sustained by VFC. 



 Page 7 of 10  

Compliance with game rules – it is crucial 
for the game logic not to be modified and the 
rules must still be obeyed, even if some 
divergence is temporarily allowed. A major 
factor is that each player has, at least, enough 
information that does not affect negatively his 
decisions. It should as well have no effect on 
the score in the game, not favouring even the 
host player. 

5.2 Results 
The tests were run on two machines: a 

desktop computer with a quad-core AMD 
Phenom™ II X4 945 Processor 3.00 GHz, with 
8 GB of RAM, running Windows 7 64-bit OS; a 
laptop computer with a Intel® Core™2 Duo 
T6400 at 2.00 GHz with 4 GB of RAM. Each 
virtual machine had 512MB of RAM allocated 
and access to one processor and had 
Windows XP 32-bit OS. All virtual machines 
had to have Microsoft® Visual Studio® 2008 
and XNA Game Studio 3.1 installed, both 
needed for the use of networking provided by 
the XNA framework. The host player was run 
on the desktop machine and clients on virtual 
machines both on the desktop and on the 
laptop. The machines, even the virtual 
machines (which was bridged to the physical 
computers), are connected through a 100 
Mbps network. 

Multiple tests were run with each 
configuration to verify the integrity of the data 
acquired during gameplay. 

The data regarding network and players’ 
positions was recorded at a rate of about 5 
samples per second (0.2s intervals). 

The tests were run without the use of VFC, 
transmitting all packets, and with a VFC 
configuration that uses the definitions on Table 
1 for the consistency vectors. 

 
 

 Range Time 
(s) 

Sequence ValueDiff 

Zone1 500 0 0 0 
Zone2 1000 0.3 5 2 
Zone3 2000 0.5 10 5 
Zone4 5000 1 20 10 
Zone5 ∞ 3 40 20 

Table 1 – VFC Zones with strict constraints 

 

5.2.1 Bandwidth 
The relevant data for the study of 

bandwidth usage are: data received by each 
client; data sent by server. 

The data presented here refers to specific 
cases that can be used as examples for typical 
game progress. Surely there are variations in 
the traffic observed depending on the actual 

game session but these negligible in the 
comparisons made. 

Since there is no filtering on the messages 
that the client sends to the server there is no 
interest in analysing neither the data sent by 
clients nor data received by the server. These, 
as expected, are not affected by the usage of 
VFC. The maximum data sent by each client is 
around 4,5kBps. 

There was a substantial reduction of the 
rate at which data was transferred throughout 
the game with reduction of the average rate 
ranging from 25% for two players to 64% with 
ten players on the data sent by the server. On 
the client-side reductions on the rate of the 
amount of data received ranged from 25% with 
two players to 65% with ten players. 

5.2.2 Divergence 
Measuring the divergence on the clients 

turned out to be very complex. The game time 
has an intrinsic error among the participants in 
the game. This introduces a divergence in the 
positions between the data recorded in the 
host and other participants. The divergence 
due to this lack of synchronization of the data 
recorded during the game was too significant, 
so, it did not allow us to measure the real 
difference of the positions at a certain time 
frame during the game. 

5.2.3 Latency 
Due to the difficulties previously mentioned 

about the measurement of the divergence of 
the views of each client there was no precise 
method to measure the differences when 
using VFC and not with simulated conditions.  

In relation to packet loss simulation it 
revealed a fine equilibrium. The fact that there 
are fewer packets being transmitted means 
that there are also less packets dropped. On 
the other hand, there is a higher probability of 
a packet of greater importance (in a tight 
consistency zone) being dropped since these 
represent most of the traffic. 

5.2.4 User Experience 
The playability of the game was 

maintained with the decrease in network 
usage provided by the use of VFC. There were 
occasional controlled inconsistencies 
observed when viewing a large portion of the 
game arena (using the zoom feature) but 
these happened outside the radius of action of 
the player so had no effect on the players’ 
decisions. The information each player had 
was accurate enough to make a good decision 
because the deviation to the real position of 
other players does not have an impact on, for 
example, the direction the player had to 



 Page 8 of 10  

choose to move towards an opponent or 
shoot. 

5.2.5 Frame-rate 
Using a component to draw the frame-rate 

in-game, it was possible to observe the frame-
rate during the game. It suffered no effect from 
the use of VFC. This is a rather desirable 
situation since, if a decrease on the frame-rate 
was observed, it would possibly mean that the 
VFC model was unsuitable to be used in 
multiplayer games. 

5.2.6 Summary of results 
The results obtained with the testing of our 

solution are very encouraging. We were able 
to extend the XNA framework in order to 
implement new communication patterns and a 
new consistency model. This allows users to 
play games with larger scenarios and/or with 
an enlarged view of the playing field, which 
improves playability. We are able to provide 
this by reducing the network usage (both in 
number of messages as well as in total 
bandwidth). With the obtained results, many 
games can be played with good frame rates 
inside LANs and even on wide area networks. 

The tests have also shown us good signs 
of scalability of VFC since the reduction of the 
amount of data transferred was increasingly 
higher. This represents a decrease on the 
processing load both to transfer and to 
process the packets. Employing scenarios big 
enough for the playing field not to be 
saturated, VFC is expected to scale smoothly. 

6 Conclusions 
The network communication in multiplayer 

games is an object of extensive study and 
wide interest. Despite all the work done in the 
area there is yet to be a solution that can be 
generalized and applied intuitively. Some 
previous work incorporates the notions of 
locality of interest or consistency radius but, an 
all-or-nothing approximation is usually 
adopted. 

VFC is an intuitive and flexible model that 
is easily translated to most games’ semantics. 

Reiterating over the objectives of this 
thesis: 
1. An assessment of the related work was 

made that lead us to some specific 
decisions about the architecture of the 
system that was implemented; 

2. The VFC model was successfully applied 
to a shooter game developed in XNA for 
personal computers with minimal impact in 
the gameplay and very encouraging 
performance results; 

3. The XNA game implemented, using the 
developed VFC module had very good 
performance and resulted in high 
bandwidth savings and, consequently, 
avoided the need to process much of the 
data previously transferred between server 
and client; 

4. There is a considerable ease in the use of 
VFC for the game communication due to 
the modularity of the solution implemented 
which allowed us to easily switch between 
methods for prioritizing data used in the 
communication. It was possible to use 
VFC with a very small number of changes 
to the client-server approach of the game. 
We were able to implement a prototype of 

a game provided a case study for the test of 
the VFC model. VFC proved to be an efficient 
model that escalates well. 

The problems discussed in this work apply 
to a wide range of practical applications, other 
than distributed games. 

Consistency mechanisms are used in 
distributed systems in order to manage the 
divergence of replicas. By allowing controlled 
divergence among replicas it is possible to 
considerably increase the availability of 
systems. When applying these techniques to 
multiplayer games it is valuable to introduce 
locality awareness to sophisticated 
consistency models such as TACT. VFC 
provides a unified model with simple and 
flexible abstractions that allow it to be 
intuitively expressed according to the 
application semantics. 

As multiplayer games vary in genre, its 
requirements for consistency also change. 
VFC appears to be fit for any game genre 
since in all games there is some locality in the 
players’ interest. 

There are numerous combinations that 
can be used in the design of a system for 
multiplayer games. In terms of network 
organization of the nodes there are two main 
architectures: client-server and peer-to-peer. 
Frequently, in peer-to-peer systems there are 
portions of the applications’ logic that are 
centralized or grouped and distributed among 
the nodes (e.g. portions of a game playing 
field). 

The design of a consistency enforcement 
system for a multiplayer game must take into 
account numerous factors that may influence 
the user experience. The number of controlled 
entities, the importance of the information that 
may be disregarded, are some of the factors 
that must be considered. 

Implementing this consistency system in a 
modular manner allows seamless integration 



 Page 9 of 10  

with further games and comparison with other 
alternatives. 

It is crucial to have the means to test and 
study the behaviour of a system when new 
models are applied and it is useful to automate 
the testing process. 

By evaluating the VFC behaviour we 
were able to verify its applicability to game 
semantics and empirically observe the effects 
it has on the game. 

6.1 Future Work 
In the future, we intend to pursue the 

following lines of investigation. 
It would be interesting to study the 

performance of VFC compared to other 
consistency enforcement models, even if 
these have an all-or-nothing approach. 

The operation in a peer-to-peer 
architecture requires further investigation in 
order to comprehend the implications and 
requirements to enforce VFC. 

An interesting exercise would be to extend 
the VFC model implemented with dynamic 
consistency requirements. This needs to have 
a mechanism to either limit the network or 
enough resources to reach a saturation point 
of the network used. 

The implementation analysed in this work 
only accounts for one pivot. A study can be 
made of the behaviour of VFC using a multi-
pivot system, e.g. applied to a real-time 
strategy game. One factor that should be 
taken into account is that there might be a 
significant increase in the necessary effort to 
determine the consistency that needs to be 
enforced. 

7 References 
[1] N. Santos, L. Veiga, and P. Ferreira, 

“Vector-Field Consistency for Ad-Hoc 
Gaming,” Middleware 2007, 2007, pp. 
80-100. 

[2] P. Cederqvist and R. Pesch, Version 
Management with CVS, Network Theory 
Ltd., 2002. 

[3] B. Collins-Sussman, B.W. Fitzpatrick, 
and C.M. Pilato, Version Control With 
Subversion, O'Reilly Media, Inc., 2004. 

[4] D.B. Terry, M.M. Theimer, K. Petersen, 
A.J. Demers, M.J. Spreitzer, and C.H. 
Hauser, “Managing update conflicts in 
Bayou, a weakly connected replicated 
storage system,” Proceedings of the 
fifteenth ACM symposium on Operating 
systems principles, 1995, pp. 172-182. 

[5] R.G. Guy, J.S. Heidemann, W. Mak, 
T.W. Page Jr, G.J. Popek, and D. 
Rothmeier, “Implementation of the Ficus 

replicated file system,” USENIX 
Conference Proceedings,  vol. 74, 1990, 
pp. 63-71. 

[6] J.J. Kistler and M. Satyanarayanan, 
“Disconnected operation in the Coda file 
system,” ACM Transactions on 
Computer Systems,  vol. 10, 1992, pp. 3-
25. 

[7] R. Guy, P. Reiher, D. Ratner, M. Gunter, 
W. Ma, and G. Popek, “Rumor: Mobile 
Data Access Through Optimistic Peer-to-
Peer Replication,” Advances in Database 
Technologies: ER'98 Workshops on 
Data Warehousing and Data Mining, 
Mobile Data Access, and Collaborative 
Work Support and Spatio-Temporal Data 
Management, Singapore, November 19-
20, 1998: Proceedings, 1999. 

[8] Y. Saito and M. Shapiro, “Optimistic 
replication,” ACM Computing Surveys 
(CSUR),  vol. 37, 2005, pp. 42-81. 

[9] N. Krishnakumar and A.J. Bernstein, 
“Bounded ignorance: a technique for 
increasing concurrency in a replicated 
system,” ACM Transactions on Database 
Systems (TODS),  vol. 19, 1994, pp. 
586-625. 

[10] H. Yu and A. Vahdat, “Design and 
evaluation of a conit-based continuous 
consistency model for replicated 
services,” ACM Transactions on 
Computer Systems (TOCS), 2002, pp. 
239-282. 

[11] H. Yu, H. Yu, and A. Vahdat, “Building 
replicated Internet services using TACT: 
a toolkit for tunable availability and 
consistency tradeoffs,” Advanced Issues 
of E-Commerce and Web-Based 
Information Systems, 2000. WECWIS 
2000. Second International Workshop 
on, 2000, pp. 75-84. 

[12] K.L. Morse, Interest management in 
large-scale distributed simulations, 
Citeseer, 1996. 

[13] C. Majewski, C. Griwodz, and P. 
Halvorsen, “Translating latency 
requirements into resource requirements 
for game traffic,” to appear Proceedings 
of the International Network Conference 
(INC’06), Samos, Citeseer, 2006. 

[14] L. Pantel and L.C. Wolf, “On the impact 
of delay on real-time multiplayer games,” 
Proceedings of the 12th international 
workshop on Network and operating 
systems support for digital audio and 
video,  Miami, Florida, USA: ACM, 2002, 
pp. 23-29. 

[15] P. Bettner and M. Terrano, “1500 
Archers on a 28.8: Network 
Programming in Age of Empires and 



 Page 10 of 10  

Beyond,” Presented at GDC2001,  vol. 2, 
2001, p. 30p. 

[16] N. Sheldon, E. Girard, S. Borg, M. 
Claypool, and E. Agu, “The effect of 
latency on user performance in Warcraft 
III,” Proceedings of the 2nd workshop on 
Network and system support for games,  
Redwood City, California: ACM, 2003, 
pp. 3-14. 

 

 


	1 Introduction
	1.1 Objectives and contributions
	1.2 Document Roadmap

	2 Related Work
	2.1 Consistency Mechanisms
	2.1.1 Pessimistic Replication
	2.1.2 Optimistic Replication
	Availability vs. Consistency


	2.2 Locality Awareness in multiplayer games
	2.3 Main Genres of Multiplayer Games
	2.4 Multiplayer Games Architecture
	2.5 Assessment

	3 Architecture
	3.1 VFC Model
	3.2 System Architecture
	3.3 Software Architecture
	3.3.1 XNA
	3.3.2 VFC Integration
	3.3.3 Net Rumble Considerations


	4 Implementation
	4.1 Communication
	4.2 VFC Model
	4.2.1 Pivot
	4.2.2 Objects
	4.2.3 Dimensions
	4.2.4 Consistency Enforcement

	4.3 Automation and Testing
	4.3.1 Automated Player Simulation
	4.3.2 Record game data
	4.3.3 Deployment


	5 Evaluation
	5.1 Evaluation Method
	5.2 Results
	5.2.1 Bandwidth
	5.2.2 Divergence
	5.2.3 Latency
	5.2.4 User Experience
	5.2.5 Frame-rate
	5.2.6 Summary of results


	6 Conclusions
	6.1 Future Work

	7 References

