
Optimistic Concurrency Control in a Distributed NameNode
Architecture for Hadoop Distributed File System

Qi Qi

Instituto Superior Técnico - IST (Portugal)
Royal Institute of Technology - KTH (Sweden)

Abstract. The Hadoop Distributed File System (HDFS) is the storage layer for Apache Hadoop
ecosystem, persisting large data sets across multiple machines. However, the overall storage capacity
is limited since the metadata is stored in-memory on a single server, called the NameNode. The
heap size of the NameNode restricts the number of data files and addressable blocks persisted in
the file system.
The Hadoop Open Platform-as-a-service (Hop) is an open platform-as-a-Service (PaaS) support of
the Hadoop ecosystem on existing cloud platforms including Amazon Web Service and OpenStack.
The storage layer of Hop, called the Hop-HDFS, is a highly available implementation of HDFS, based
on storing the metadata in a distributed, in-memory, replicated database, called the MySQL Cluster.
It aims to overcome the NameNode’s limitation while maintaining the strong consistency semantics
of HDFS so that applications written for HDFS can run on Hop-HDFS without modifications.
Precedent thesis works have contributed for a transaction model for Hop-HDFS. From system-level
coarse grained locking to row-level fine grained locking, the strong consistency semantics have been
ensured in Hop-HDFS, but the overall performance is restricted compared to the original HDFS.
In this thesis, we first analyze the limitation in HDFS NameNode implementation and provide an
overview of Hop-HDFS illustrating how we overcome those problems. Then we give a systematic
assessment on precedent works for Hop-HDFS comparing to HDFS, and also analyze the restriction
when using pessimistic locking mechanisms to ensure the strong consistency semantics. Finally,
based on the investigation of current shortcomings, we provide a solution for Hop-HDFS based on
optimistic concurrency control with snapshot isolation on semantic related group to improve the
operation throughput while maintaining the strong consistency semantics in HDFS. The evaluation
shows the significant improvement of this new model. The correctness of our implementation has
been validated by 300+ Apache HDFS unit tests passing.

Keywords: HDFS, MySQL Cluster, Concurrency Control, Snapshot Isolation, Throughput

1 Introduction

The Hadoop Distributed File System (HDFS) is the storage layer for Apache Hadoop, which enables
petabytes of data to be persisted on clusters of commodity hardware at relatively low cost [1]. Inspired
by the Google File System (GFS) [2], the namespace, metadata, is decoupled from data and stored in-
memory on a single server, called the NameNode. The file datasets are stored as sequences of blocks and
replicated across potentially thousands of machines for fault tolerance.

Built upon the single namespace server (the NameNode) architecture, one well-known shortcoming
of HDFS is the limitation to growth [3]. Since the metadata is kept in-memory for fast operation in
NameNode, the number of file objects in the filesystem is limited by the amount of memory of a single
machine.

The Hadoop Open Platform-as-a-service (Hop) is an open platform-as-a-Service (PaaS) support of
the Hadoop ecosystem on existing cloud platforms including Amazon Web Service and OpenStack. The
storage layer of Hop, called the Hop-HDFS, is a highly available implementation of HDFS, based on
storing the metadata in a distributed, in-memory, replicated database, called the MySQL Cluster. It aims
to overcome the NameNode’s limitation while maintaining the strong consistency semantics of HDFS so
that applications written for HDFS can run on Hop-HDFS without modifications.

However, in HDFS, the correctness and consistency of the namespace is ensured by atomic metadata
mutation [4]. In order to maintain the same level of strong consistency semantics, system-level coarse
grained locking and row-level fine grained locking are adopted in precedent projects of Hop-HDFS, but
the overall performance is heavily restricted compared to the original HDFS. Therefore, investigation for
better concurrency control methods to improve the performance of Hop-HDFS is the main motivation of
this thesis.



2 Authors Suppressed Due to Excessive Length

Contribution

In this thesis, we contribute to the following three ways: First, we discuss the architectures of related dis-
tributed file systems, including Google File System, HDFS and Hop-HDFS. With focus on their namespace
concurrency control schemes, we analyzes the limitation of HDFS’s NameNode implementation. Second,
we provide an overview of Hop-HDFS illustrating how it overcomes limitations in HDFS. With a sys-
tematic performance assessment between Hop-HDFS and HDFS, we discuss the current shortcomings
in Hop-HDFS, which motivates this thesis for a better concurrency control scheme. Third, we provide
a solution for Hop-HDFS based on optimistic concurrency control with snapshot isolation on semantic
related group to improve the operation throughput while maintaining the strong consistency semantics
in HDFS. As a proof of concept, the evaluation shows the significant improvement of this new model.
The correctness of our implementation has been validated by 300+ Apache HDFS unit tests passing.

2 Background and Related Work

2.1 The Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is inspired by the Google File System. Initially, HDFS is built
for Hadoop Map-Reduce computational framework. With the development of Hadoop ecosystem including
HBase, Pig, Mahout, Spark, etc, HDFS becomes the storage layer for all these big data applications. While
enabling petabytes of data to be persisted on clusters of commodity hardware at relatively low cost, HDFS
aims to stream these large data sets at high bandwidth to user applications. Therefore, like GFS, HDFS
is optimized for delivering a high throughput of data at the expense of latency [5].

Similar to GFS, HDFS stores metadata and file data separately. The architecture of a HDFS cluster
consists of a single NameNode, multiple DataNodes, and is accessed by multiple clients. Files in HDFS are
split into smaller blocks stored in DataNodes. For fault tolerance, each block is replicated across multiple
DataNodes. The NameNode is a single dedicated metadata server maintaining the namespace, access
control information, and file blocks mappings to DataNodes. The entire namespace is kept in-memory,
called the image, of the NameNode. The persistent record of image, called the checkpoint, is stored in the
local physical file system. The modification of the namespace (image), called the journal, is also persisted
in the local physical file system. Copies of the checkpoints and the journals can be stored at other servers
for durability. Therefore, the NameNode restores the namespace by loading the checkpoint and replaying
the journal during its restart.

2.2 Hadoop Open Platform-as-a-service and Hop-HDFS

The Hadoop Open Platform-as-a-service (Hop) is an open platform-as-a-Service (PaaS) support of the
Hadoop ecosystem on existing cloud platforms including Amazon Web Service and OpenStack. The goal
is to automate the installation of both HDFS and Apache YARN so that unsophisticated users can deploy
the stack on the cloud easily by a few clicks from our portal website.

The storage layer of Hop, called the Hop-HDFS, is a new high available model for HDFS’s metadata,
aiming to overcome the major limitations of HDFS NameNode architecture: (1) the scalability of the
namespace - the memory size restricts the storage capacity in the system; (2) the throughput problem -
the throughput of the metadata operations is bounded by the ability of the single machine (NameNode);
(3) the failure recovery - it takes a long time for the NameNode to restart since it needs to load the
checkpoint and replay the edit logs from the journal into the memory.

The architecture of Hop-HDFS consists of multiple NameNodes, multiple DataNodes, a MySQL cluster
and is accessed by multiple clients as shown in Figure 1. The design purpose for Hop-HDFS is to migrate
the metadata from NameNode to an external distributed, in-memory, replicated database MySQL Cluster.
Therefore, the size of the metadata is not limited by a single NameNode’s heap size so that the scalability
problem can be solved. In Hop-HDFS, we have this multiple stateless NameNodes architecture so that
multiple-writers and multiple-readers are allowed to operate on the namespace to improve the throughput.

Moreover, the fault tolerance of the metadata is handled by MySQL Cluster, which grantees high
availability of 99.999%. The checkpoint and the journal for namespace is removed as a result, which
reduces the time on writing edit logs as well as restarting new NameNodes on namespace recovery. Note
that we have a leader election process in this distributed NameNode architecture. The leader, master,
will be responsible for tasks like block reporting and statistic functions.

The size of the metadata for a single file object having two blocks (replicated three times by default)
is 600 bytes. It requires 60 GB of RAM to store 100 million files in HDFS, 100 million files is also the



Title Suppressed Due to Excessive Length 3

...NN3 (Leader)NN2 NN4NN1

...DN2 DN4DN1 DN3

Client

Client

Client

Client

Load 
Balancer

...

metadata metadata metadata

Fig. 1: The Architecture of Hop-HDFS

maximum storage capacity for HDFS in practice. For MySQL Cluster, it supports up to 48 datanodes,
which means that it can scale up to 12 TB in size with 256 GB RAM for each node in size. But conserva-
tively, we assume that MySQL Cluster can support up to 3.072 TB for metadata with a data replication
of 2, which means that Hop-HDFS can store up to 4.1 billion files. A factor of 40 times increase over
Shvachko’s estimate [3] for HDFS from 2010.

2.3 Namespace Concurrency Control and Performance Assessment in Hop-HDFS

Namespace Structure In HDFS, the namespace is kept in-memory as arrays and optimized data
structure (like LinkedList) of objects with references for semantic constraints. Therefore, it has a directed
tree structure.

In Hop-HDFS, the namespace is stored into tables of MySQL Cluster database, so all INode objects
are represented as individual row records in a single inodes table. In order to preserve the directed tree
structure, we add an id column and a parent id column to each row of in inodes table. Therefore, the
graphical representation of the filesystem hierarchy for INodes is like Figure 2. The table representation
in the database is like Table 1.

id parent id name other parameters...

1 0 / ...

2 1 a ...

3 1 b ...

4 1 c ...

5 2 d ...

6 3 e ...

7 5 f ...

8 6 g ...

9 7 h ...

10 7 i ...

Table 1: INode Table for Hop-HDFS

Since the id is unique and atomically generated for INodes in each new transaction, the Primary Key
for the table is <name, parent id> pair. Because the INode id is not known beforehand on the application
side, but the <name, parent id> pair is known since it can be resolved from the path string. Therefore,
data rows can be looked up by the <name, parent id> pair Primary Key directly from database on the



4 Authors Suppressed Due to Excessive Length

/
id: 1

a
id: 2

b
id: 3

c
id: 4

e
id: 6

d
id: 5

h
id: 9

f
id: 7

i
id: 10

g
id: 8

Fig. 2: Filesystem Hierarchy with ID for INodes in Hop-HDFS

application side. With the id and parent id relationship, the hierarchy will be constructed correctly from
the data rows to in-memory objects used by the name system.

Namespace Concurrency Control In the first version of Hop-HDFS [6] (also named as KTHFS),
the main task is to migrate the metadata from memory to MySQL Cluster. Therefore, it still depends
on the system-level lock in HDFS NameNode (fsLock in FSNamesystem - ReentrantReadWriteLock to
serialize the operations and maintain the semantics. This becomes a big problem since the network latency
between NameNode and database is far more larger than it was when operated in-memory in original
HDFS. Hence, each operation will take a long time lock on the name system. The throughput heavily
decreases. A fine grained locking scheme is needed to improve the concurrency.

In the second version of Hop-HDFS [7] (also named as KTHFS), it adopts a fine-grained row-level
locking mechanism to improve the throughput while maintaining the strong consistency semantics. It uses
transactions with Pessimistic Concurrency Control (PCC) to ensure the safety and progress of metadata
operations. Based on a hierarchical concurrency model, it builds a directed acyclic graph (DAG) for the
namespace. Metadata operation that mutates the DAG either commit or abort (for partial failures) in a
single transaction. Besides, implicit locking [8] is used to lock on the root of a subtree in a transaction,
which implicitly acquires locks on all the descendants, so that the strong consistent semantics from original
HDFS can be maintained.

Limitations There are two major limitations in this locking scheme:
1) It lowers the concurrency when multiple transactions try to mutate different descendants within

the same subtree. Only one writer is allowed to work on INodes under one directory due to the implicit
lock (Write Lock) for the parent directory. For example, if transaction Tx1 wants to mutate INode h,
and another transaction Tx2 wants to mutate INode i concurrently in Figure 2, Tx1 will take a parent
lock on INode f first and then perform operations. No more transactions can work under INode f at the
moment. Tx2 will be blocked by the implicit lock until Tx1 commits. See Table 2.

2) There is un-avoided duplicated database round trips overhead. It takes two transactions to finish
the implicit locking. The first transaction is used to resolve the path in the database so that we know
which rows existed in the database so that the INode’s parent directory can be taken the implicit write
lock in the second transaction, or last existing INode directory can be taken the implicit write lock if the
path is not full resolved(HDFS will build up the missing intermediate INodeDirectories). For example, if
transaction Tx1 wants to mutate INode h in Figure 2, in the first database round trip, it needs to resolve
the path to see if the related rows of INode /, a, d, f, h are all in the database. If yes, in the second
database round trip, INode /, a, d will be taken Read Locks 1 and the INode f will be taken a Write
Lock; if no, the last existing INode will be taken a Write Lock while others will be taken Read Locks.

1 The third version of Hop-HDFS is trying to Replace Read Lock to Read Committed for this PCC scheme



Title Suppressed Due to Excessive Length 5

id parent id name Locks by Tx1 Locks by Tx2

1 0 / Read Lock Read Lock

2 1 a Read Lock Read Lock

3 1 b

4 1 c

5 2 d Read Lock Read Lock

6 3 e

7 5 f Write Lock Write Lock (Blocked!)

8 6 g

9 7 h (Mutated by Tx1) Write Lock (Implicit) Write Lock (Implicit) (Blocked!)

10 7 i (Mutated by Tx2) Write Lock (Implicit) Write Lock (Implicit) (Blocked!)

Table 2: Implicit Lock Table in Hop-HDFS

Namespace Operation Performance Assessment Here we will give the namespace operation per-
formance assessment between the second version (PCC version) of Hop-HDFS and original HDFS under
single NameNode. All the tests in this chapter are performed under same the experimental testbed de-
scribed in Section 4.

We aims to give a performance comparison between HDFS and PCC. Since the workload is generated
from a single machine by the NNThroughtBenchmark [3], we set the number of operations to be 100 and
the number of threads to be 3. For operations create, delete and rename, the total number of files involved
is 100. They are placed under 4 different directories equally. For operation mkdirs, the total number of
directories created is 100 and they are also placed under 4 different directories equally. See Table 3 for
the operation performance comparison between HDFS and PCC.

We find that the throughput of mkdirs in PCC is 64.9 % of HDFS, while others are all less than 30%.
The reason why the performance of create, delete and rename is worse is because they involve multiple
NameNode primitive operations. For example, to finish the create operations, it takes two NameNode
primitive operations (two transactions): startFile and completeFile. Since each NameNode primitive op-
eration is implemented as a single transaction, the more primitive operations involved, the more parent
write locks will be, which means that more transactions will be blocked.

Operations per Second create mkdirs delete rename

HDFS 609 636 833 869

PCC 188 413 242 132

PCC / HDFS 30.9% 64.9% 29.1% 15.2%

Table 3: Operation Performance Comparison between HDFS and PCC

The worst case in PCC happens when all concurrent operations try to work under the same directory.
Even though they mutate different INodes, all handling transactions will put a parent directory write
lock to block each other. Therefore, the parent directory becomes a contention point. We design a test for
the parent directory contention assessment. We build a thread pool with size 1024 for clients. We have
three tests with 1000, 10000 and 100000 concurrent clients separately. Each client creates (mkdirs())
one sub-directory. All these sub-directories are different, but they are all created under the same parent
directory. The parent directory is the contention point in each task. We measure the elapsed time to
finish all the concurrent creation tasks in each test.

As we can see from Table 4, it takes 4 - 5 more times in PCC to finish all these tasks compared to
HDFS. However, when the size of concurrent tasks increases, this ratio decreases. Because under heavy
workload, the edit logs in HDFS degrade the NameNode performance. Since there is no edit logging and
check pointing part in Hop-HDFS, it works more efficiently than HDFS.

Note that the tests performed in this chapter is based on single NameNode. The multi-NameNode
architecture in Hop-HDFS will help to improve the overall throughput.

3 Solution

The solution we propose to improve the throughput can be summarized as Optimistic Concurrency Con-
trol with Snapshot Isolation on Semantic Related Group. The solution algorithm consists of the following



6 Authors Suppressed Due to Excessive Length

Num. of Concurrent Creation 1000 10000 100000

HDFS 0.82s 7.83s 77.13s

PCC 4.35s 36.74s 332.36s

PCC / HDFS 530.5% 469.2% 430.9%

Table 4: Parent Directory Contention Assessment between HDFS and PCC

four phases. (1) Read Phase: resolving the semantic related group and cache the snapshot copy within
the handling transaction. (2)Execution Phase: transaction read/write operations are performed on its
own snapshot and never fetch data from database. (3)Validation Phase: snapshot’s related data rows
are fetched from the database. If their versions all match with the snapshot copy, go to update phase;
else, abort and retry current transaction.(4)Update Phase: update related data in the database table.
Abort and retry transactions if the instance already exists in the database for ”new” data. For successful
updates, the versions of the modified rows will be increased by 1.

3.1 Resolving the Semantic Related Group

Resolving the semantic related group for each transaction is the fundamental step to preclude anomalies
in our implementation. The constraint violation [9] between individual data is formed within a semantic
related group. In Hop-HDFS, each metadata operation is implemented as a single transaction running by
a worker thread. Any metadata operation related to the namespace will have one or two input parameters,
called Path.

Each Path object is related to a string representation of the ”/” based absolute path name. For
example, in Figure 2, the path for INode h is: h: {/->a->d->f}. In other words, when mutating INode
h, all the semantic constraint can be found within INodes /, a, d, f. With this knowledge, we can maintain
the strong consistency semantics in original HDFS.

For each row in inodes table, the <name, parent id> pair is the Primary Key. With the full path
string, we can iteratively resolve its semantic related rows by primary key lookups directly from database
as shown in Table 5.

id parent id name other parameters...

Related * 1 0 / ...

Related * 2 1 a ...

3 1 b ...

4 1 c ...

Related * 5 2 d ...

6 3 e ...

Related * 7 5 f ...

8 6 g ...

Selected X 9 7 h ...

10 7 i ...

Table 5: Table Representation for the Semantic Related Group

3.2 Per-Transaction Snapshot Isolation

As we mentioned before, MySQL Cluster supports only the READ COMMITTED transaction isolation
level, which means that the committed results of write operations in transactions will be exposed by
reads in other transactions. Within a long running transaction, it could read two different versions of
data, known as fuzzy read, and it could also get two different sets of results if the same query is issued
twice, known as phantom read.

Snapshot isolation guarantees that all reads made within a transaction see a consistent view of at
the database. At the beginning of the transaction, it reads data from a snapshot of the latest committed
value. During transaction execution, reads and writes are performed on the this snapshot.

In commercial database management systems, like Microsoft SQL Server, Oracle, etc, snapshot iso-
lation is implemented within multi version concurrency control (MVCC) [9] on database server side.



Title Suppressed Due to Excessive Length 7

However, we need to implement snapshot isolation on the application side since MySQL Cluster supports
only the READ COMMITTED isolation level.

After resolving the semantic related group, we take a snapshot on selected rows as well as all related
rows of the committed values from database. This snapshot will be cached in-memory within its transac-
tion. Each transaction will have its own copy of snapshot during the lifetime. All transaction operations
will be performed on its own snapshot. Therefore, we called it Per-Transaction Snapshot Isolation.

Fuzzy Read and Phantom Read are Precluded Before validation phase, the transaction will never
fetch any data from database since it has all the semantic related rows in the cached snapshot. Therefore,
the snapshot provides a consistent view of data for each transaction from read phase until validation
phase. Hence: 1. Fuzzy Read is precluded by snapshot isolation: Transactions read from snapshot instead
of database, not affected by the value committed by others. 2. Phantom Read is also precluded by
snapshot isolation on Semantic Related Group: Transactions snapshot the semantic related group of after
the operation. So if same operation peformed, it is not affected by the value committed by others since
it operate from the snapshot.

3.3 ClusterJ and Lock Mode in MySQL Cluster

ClusterJ is a Java connector based on object-relational mapping persistence frameworks to access data
in MySQL Cluster. It doesn’t depend on the MySQL Server to access data in MySQL Cluster as it
communicates with data nodes directly, which means that ClusterJ can perform some operations much
more quickly.

Unlike Two-Phase Locking (2PL), there are three lock modes in MySQL Cluster. (1) SHARED
(Read Lock, RL): Set a shared lock on rows; (2) EXCLUSIVE (Write Lock, WL): Set an exclusive lock
on rows; (3) READ COMMITTED (Read Committed, RC): Set no locks but read the most recent
committed values. For Read Committed, it is implemented for consistent nonlocking reads, which means
that a fresh committed snapshot of data row is always presented to a query of database, regardless of
whether Shared Lock or Exclusive Lock are taken on the current row or not.

3.4 Optimistic Concurrency Control

Our algorithm is based on Optimistic Concurrency Control (OCC) method to improve the overall
read/write performance. Transactions are allowed to perform operations without blocking each other
with optimistic methods. Concurrent transactions need to pass through a validation phase before com-
mitting, so that the serializability is not violated. Transactions will abort and restart if they fail in the
validation phase. OCC is the key approach so that the parent directory lock is not needed in Hop-HDFS.
Hence, transactions can operate under the same directory concurrently.

In read phase, transactions use Read Committed Lock Mode to fetch semantic related group as snap-
shots and cache them in-memory for their own use without being blocked. In validation phase, transactions
will fetch the modified rows using Exclusive Lock and fetch the semantic related rows using Shared Lock.
Then they compare the fetched values and the snapshot copy in the cache for their versions. If versions
are all the same, go to update phase. If not, abort current transaction, wait for a random milliseconds,
and retry a new transaction from read phase. Note that using Shared Lock to fetch semantic related rows
can guarantee a consistent view in database until the transaction commits while allowing other Shared
Locks taken on the same rows for their validation phase.

Write Skew is Precluded The Write Skew anomaly is precluded by the validation phase on the
snapshot of semantic related group in OCC, because constraint violation on all related data rows will be
checked before transaction committed.

3.5 Total Order Update, Abort and Version Increase in Update Phase

We have a total order update rule in update phase so that dead lock will not occur by lock cycle. If
multiple INodes needed to be updated during update phase, they will be sorted first by the id values.
Then they will be updated in ascending order according by ids. Since we can not take an Exclusive lock on
the ”new” row which not yet exists in the database, multiple transactions may try to persist ”new” rows
with the same Primary Key, and one might be overwritten by the other. Using makePersistent() function
in ClusterJ can throw exception if the instance already exists in the database. Finally, for successful
updates, the versions of the modified rows will be increased by 1.



8 Authors Suppressed Due to Excessive Length

3.6 Pseudocode of the Complete Algorithm

The complete algorithm pseudocode can be found in Algorithm 1.

Algorithm 1 Pseudocode of the Complete Algorithm
Optimistic Concurrency Control with Snapshot Isolation on Semantic Related Group

1: init: restart = true, try = 0, path = operation.src, TotalRetry = 10
2: while restart and try < TotalRetry do
3: restart = false
4: try += 1
5: tx.snapshot.clear()
6: tx.begin()
7: /* 1. Read Phase */
8: tx.lockMode(Read Committed)
9: tx.snapshot = resolve semantic related group(path)

10: /* 2. Execution Phase */
11: operation performTask(tx.snapshot) // HDFS operation performs on its snapshot
12: /* 3. Validation Phase */
13: tx.lockMode(Shared)
14: relatedRows DataBase = batchRead Database(tx.snapshot)
15: tx.lockMode(Exclusive)
16: modifiedRows DataBase = batchRead Database(tx.snapshot)
17: if versionCompare(relatedRows DataBase, tx.snapshot) == true and versionCom-

pare(modifiedRows DataBase, tx.snapshot) == true then
18: /* 4. Update Phase */
19: operation.modifiedRows.version+=1
20: total order sort(operation.modifiedRows)
21: if batchPersist Database(operation.modifiedRows) success then
22: tx.commit()
23: return SUCCESS // Return HDFS Operation Success
24: else
25: tx.abort()
26: waitForRandomMilliseconds()
27: retry = true
28: end if
29: else
30: tx.abort()
31: waitForRandomMilliseconds()
32: retry = true
33: end if
34: end while
35: return FAIL // Return HDFS Operation

4 Evaluation

The goal of this chapter is to proof that our OCC model performs better than PCC. As a proof of
concept, we implemented the OCC version for the operation mkdirs and also give a detailed evaluation
on it compared with the PCC version. For this purpose, we concern about the execution time (elapsed
time) needed to finish all the concurrent tasks.

Testbed Setup: The MySQL Cluster consists of six data nodes connected by 1 Gigabit LAN. Each
data node has an Intel Xeon X5660 CPU at 2.80GHz, and contributes 6 GB RAM (5 GB Data Memory
+ 1 GB Index Memory) separately. Therefore, the total available memory for the cluster is 36 GB. The
number of data replicas is 2. The maximum concurrent transactions is 10000 for each data node, and
the inactive timeout for each transaction is 5 seconds. To avoid any communication overhead caused by
RPC connections and serialization, we run the NameNode and Clients on the same machine with Intel
i7-4770T CPU at 2.50GHz and 16 GB RAM. This machine is connected with the MySQL Cluster data
nodes by 100 Megabits LAN.



Title Suppressed Due to Excessive Length 9

4.1 Parent Directory Contention Assessment

This experiment is the same as described in Section 2.3 but we expand it to include the results with OCC.
Therefore, we have a full performance comparison here among HDFS, PCC and OCC. From Table ??, we
can see that OCC significantly outperforms PCC by almost 70 % on this concurrent write-write parent
directory contention workload. Under heavy workload, the execution time is just 1.3 times of HDFS.
Remember that this is just a single NameNode performance test. We believe that OCC can greatly
outperform HDFS in our multiple NameNodes architecture.

Num. of Concurrent Creation 1000 10000 100000

HDFS 0.82s 7.83s 77.13s

PCC 4.35s 36.74s 332.36s

OCC 1.36s 12.01s 103.23s

PCC / HDFS 530.5% 469.2% 430.9%

OCC / HDFS 165.9% 153.4% 133.8%

OCC Improvement:
(PCC-OCC) / PCC

68.7% 67.3% 68.9%

Table 6: OCC Performance Improvement on Parent Directory Contention

4.2 Read-Write Mixed Workload Assessment

In this experiment, we did a test for a read-write mixed workload assessment while the parent directory
is still the contention point for PCC. So we assume that OCC will still outperform PCC in this kind of
workload. Similar to the experiment in Section 2.3, we have 1000, 10000 and 100000 concurrent clients’
operations running under the same parent directory. But in each task, half of them will do the metadata
read operation getFileStatus(), while the other half will do the write operation mkdirs().

From Table 7, we can see that OCC still significantly outperforms PCC by 65 % on this concurrent
read-write mixed workload.

Num. of Concurrent Creation 1000 10000 100000

PCC 4.92s 50.69s 352.25s

OCC 1.78s 15.31s 120.64s

OCC Improvement:
(PCC-OCC) / PCC

63.8% 69.8% 65.8%

Table 7: OCC Performance Improvement on Read-Write Mixed Workload

4.3 OCC Performance with Different Size of Conflicts

When OCC conflicts happen, transactions will abort, wait for random milliseconds and retry. Eventually
one transaction will success, and others will get updated values after retry and return RPC callbacks.
Here we have 10000 concurrent operations running under the same parent directory. Each operation
creates only one sub-directory. Some of them will success and some others will fail due to conflicts. These
operations will try to create same sub-directories in different numbers from 1 (all conflicts), to 10000 (no
conflicts). Therefore, we have different size of conflicts.

From Table 8, we can find that the maximum OCC performance decrease is only 23.7% when 100 %
of the operations conflict: (14.53 − 11.75) ÷ 11.75 = 23.7%. Besides, we find that the OCC performance
decrease rate grows very slowly after conflict size 10%. From conflict size 10% to conflict size 100 %, the
performance decrease rate only grows from 20.1 % to 23.7 %.

4.4 Correctness Assessment

The correctness of our OCC implementation for mkdirs() 2 has been validated by 300+ Apache HDFS
2.0.4 Alpha unit tests passing.

2 other operations are PCC



10 Authors Suppressed Due to Excessive Length

Total Num. of Sub-Directories
Created for 10000 Operations

Conflict
Size

Elapsed Time
(Second)

Performance Decrease
Compared to Zero Conflict

1 100% 14.53 23.7%

10 10% 14.11 20.1%

100 1% 13.51 15.0%

1000 0.1% 12.72 8.23%

10000 0% 11.75 0%

Table 8: OCC Performance with Different Size of Conflicts

5 Conclusion

In this thesis, we provide a solution for Hop-HDFS based on optimistic concurrency control with snapshot
isolation on semantic related group to improve the operation throughput while maintaining the strong
consistency semantics in HDFS.

First, we discuss the architectures HDFS and Hop-HDFS. With focus on the namespace concur-
rency control schemes, we analyzes the limitation of HDFS’s NameNode implementation and provide
an overview of Hop-HDFS illustrating how we overcome those problems in the distributed NameNode
architecture.

MySQL Cluster is selected to be the distributed in-memory storage layer for the metadata in Hop-
HDFS due to its the high operation throughput and high reliability. However, the trade off is that the
cluster storage engine of MySQL cluster supports only the READ COMMITTED transaction isolation
level. Anomalies like fuzzy read, phantom, write skew will appear because the write results in transactions
will be exposed to reads in different concurrent transactions without proper implementation.

Then, based on optimistic concurrency control with snapshot isolation on semantic related group, we
demonstrate how concurrency is improved and anomalies - fuzzy read, phantom, write skew are precluded,
so that the strong consistency semantics in HDFS is maintained.

Finally, as a proof of concept, we implemented the OCC version for the operation mkdirs and also
give a detailed evaluation on it compared with the PCC version. Our solution outperforms previous work
of Hop-HDFS up to 70 %. Under heavy workload, the single NameNode performance of HDFS is just a
slightly better than OCC. We believe that OCC can greatly outperform HDFS in Hop-HDFS multiple
NameNodes architecture. The correctness of our implementation has been validated by 300+ Apache
HDFS unit tests passing.

5.1 Future work

The result of our OCC solution is promising. Other operations in Hop-HDFS can also adopt the same
algorithm to achieve better performance. Future evaluation on Hop-HDFS in multiple NameNodes ar-
chitecture with OCC solution is needed to prove that it can achieve better performance than HDFS in
single NameNode architecture.

References

1. Borthakur, Dhruba. ”HDFS architecture guide.” HADOOP APACHE PROJECT http://hadoop. apache.
org/common/docs/current/hdfs design. pdf (2008).

2. Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. ”The Google file system.” ACM SIGOPS Operating
Systems Review 37, no. 5 (2003): 29-43.

3. Shvachko, Konstantin V. ”HDFS Scalability: The limits to growth.” login 35, no. 2 (2010): 6-16.
4. Shvachko, Konstantin, Hairong Kuang, Sanjay Radia, and Robert Chansler. ”The hadoop distributed file

system.” In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, pp. 1-10. IEEE,
2010.

5. White, Tom. ”Hadoop: The definitive guide.” (2012).
6. Wasif, Malik. ”A Distributed Namespace for a Distributed File System.” (2012).
7. Peiro Sajjad, Hooman, and Mahmoud Hakimzadeh Harirbaf. ”Maintaining Strong Consistency Semantics in a

Horizontally Scalable and Highly Available Implementation of HDFS.” (2013).
8. Lorie, Raymond A., Gianfranco R. Putzolu, and Irving L. Traiger. ”Granularity of locks and degrees of consis-

tency in a shared data base.” In IFIP Working Conference on Modelling in Data Base Management Systems,
pp. 365-394. 1976.

9. Berenson, Hal, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. ”A critique of
ANSI SQL isolation levels.” ACM SIGMOD Record 24, no. 2 (1995): 1-10.


