Presenca: Aplicagoes Conscientes
de Contexto

Joao Peixoto

October 22, 2009

Abstract

It’s undeniable the wide spread of mobile devices, from
cellphones to laptops, PDAs or handhelds. This de-
vices have the capability of easing everyday’s life tasks,
organize schedules, share information, allow anywhere-
anytime communication and so on. This detachment
from fixed locations has however major implications in
software design. How can we understand the global be-
haviour of multiple, concurrent, independent and self-
capable devices?

Context-aware software aims to simplify the manage-
ment of simple systems (which require user-intensive
interactions) or complex systems that require intensive
management. But what exactly is a context-aware sys-
tem? Context-aware systems are no more than applica-
tions, either in a network or in a device, that are aware
of their surrounding environment and through which
they are capable of adapting their operations dynami-
cally and automatically in order to ease our interaction
[7, 10, 1, 2].

The aim of this project is to provide a framework ca-
pable of gathering context from different sources, un-
derstand that levels of confidence are associated with
such context and infer, based on dynamically defined
rules, the best way to communicate with an user.

1 Introduction

Pervasive computing consists of countless ”pervasive”
devices equipped with limited resources and computing
power that in conjunction support end-to-end applica-
tions which far exceed their own capabilities. The com-
plexity of an application is directly proportional to the
difficulty to manage it, therefore, the growth of perva-
sive computing is pushing software engineers towards
the threshold of incapability to manage such systems.

Context-aware software aims to simplify the manage-
ment of simple systems (which require user-intensive
interactions) or complex systems that require intensive
management. But what exactly is a context-aware sys-
tem? Context-aware systems are no more than applica-
tions, either in a network or in a device, that are aware
of their surrounding environment and through which
they are capable of adapting their operations dynami-
cally and automatically in order to ease our interaction
[7, 10, 1, 2].

The aim of this project is to provide a framework ca-
pable of gathering context from different sources, un-
derstand that levels of confidence are associated with
such context and infer, based on dynamically defined
rules, the best way to communicate with an user.

We will present a brief analysis over existing tech-
niques to represent and reason with context, as well
as social groups and their information richness. We
will refer to data merging too. We then present
the project’s architecture, focusing too on the infor-
mation architecture behind the system. After some
technology-related considerations we present the eval-
uation for this project and the final considerations.

2 Related Work

In this section we will analyse context-aware appli-
cations at several different levels. We will begin by
exploring the concept context itself (see section 2.1),
context representation techniques (see section 2.1) and
different approaches to context reasoning (see section
2.1). Social groups (see section 2.2) will be covered
with an analysis over real-world social group services.
We will finalise with a perspective over extraction,
transformation and loading (ETL) of information (see
section 2.3).

2.1 Context-Awareness

Context is all about the whole situation relevant to an
application and its set of users. We cannot enumerate
which aspects of all situations are important, as this
will change from situation to situation. Dey[6] pro-
duced a very accurate definition of context that takes
into account these concerns.

Definition of Context

” Context is any information that can be
used to characterise the situation of an entity.
An entity is a person, place, or object that is
considered relevant to the interaction between
a user and an application, including the user
and application themselves.”

It becomes much easier to assess context information
in a specific situation/interaction using this definition,
and through that assessment designing and prototyp-
ing of applications are largely empowered, but still, we
must be able to identify what is important for each in-
teraction, rather than using all information available,
even if it is specific to an entity.

e Situation 1: Alice asks Bob to close the door.
Bob will (correctly) assume that the door to be
closed is the one from the room where they both
stand in.

Lets analyse situation 1 using Dey’s definition. The
actors of this interaction are (roughly) Alice, Bob, the
door and the room itself. These entities have properties

such as age, mood, color, clothing and so on. On table
1 we summarize a possible set of information. Among
all data available, some are truly important to the in-
teraction, like Alice’s mood, the number of doors on
the room, just to point out a few. But is Bob’s cloth-
ing relevant for instance? Let’s study another, slightly
different, interaction.

e Situation 1b, Alice asks Bob to adjust the air-
conditioning temperature level.

Situation 1b requires a completely different set of
information, for example Alice’s clothing. The room’s
color plays no part on it. A limitation found in Dey’s
definition consists on neglecting what is considered
contextual information (or simply entity’s information)
and context per se. In a more formal way, we have:

Context is relevant information that can
be used to characterize the situation of an en-
tity. An entity is a person, place, or object
that s considered relevant to the interaction
between a user and an application, including
the user and applications themselves. Rel-
evant information means information that,
given a specific interaction between a user and
an application, is useful and of meaning to
that interaction and intervening actors.

The main difference consists in distinguishing infor-
mation and context. Although an entity can be de-
scribed in different levels, not all information is useful
on a specific interaction.

There are immediate consequences in system perfor-
mance. Processing a complete set of information op-
posed to a sub-set of said information. Although an
overhead exists due to the distinction that has to be
made in order to only use relevant information, the
end-result can be more efficient.

Context Representation

Several possibilities exist for context representation, as
described in table 2, key-value models for instance are
clearly limited, influencing information richness and
quality, failing to address ambiguity, requiring that
each system knows about the key-value model and
how to use it. Partial validation should be highly
desirable[19].

As for mark-up scheme models, the partial valida-
tion represents a strong concern. Validation is possible
through schemas and validation tools, such as XSD or
DTD, but disambiguation of context information must
be done at application level. A comprehensive scheme
definition is a step towards a high level formalism and
thus may be used to determine interoperability[19].

The graphical approach comprehends the structure
of the contextual information, facilitating applicability,
although merging different models represents a limita-
tion to some extent. Such models are mainly used for
human interpretation of the problem.

Object-oriented modelling approaches are capable of
a high interoperability, and inherent to the Object-
Oriented paradigm, extension can be handled in a lin-
ear way.

Logic based models are very difficult to maintain,
due to their extremely high level of formalism and ap-
plicability can be considered as a major drawback since
in ubiquitous computing, logic reasoners are usually
not available.

Ontologies can address most of interoperability is-
sues. Validation (partial or total), formality, unam-
biguity and applicability make ontologies the most
promising context representation technique.

In table 3 we show a number of context-aware appli-
cations and their associated context representation.

Proposed Representation

One important dimension of this project is interoper-
ability between systems, as such, the context represen-
tation should be based on a standardised representa-
tion, such as OWL! and PIDF?.

This dimension, along side with representation
expressiveness and extensibility eliminates on-the-
fly some representation techniques, namely key-value
models, graphical models and logic-based models.

Being context highly dependent on the given interac-
tion (see 2.1) extensibility must also be assured. There-
fore, RPID? an extension to PIDF provides us with a
standard representation of context/presence informa-
tion which can be easily created, validated, shared and
extended.

Context reasoning

When a computer system knows something (often a
lot) about a user, it might have enough information
to take actions on behalf of that user. When should
an application take such actions? We will analyse dif-
ferent approaches to reasoning with different levels of
”intrusion”.

Passive context-awareness

There are genuine risks involved in allowing the system
to take the initiative in any activity in which human
participants are involved [17]. As we see, there is
simply too much variability as to what should be done,
given different conditions, for designers to successfully
model appropriate outcomes in advance. This may
not be problematic when the output of the application
simply represents the location of a sensed object.
Things get much more complicated when applications
take it upon themselves to interpret human activity
and ”do things” for people by invoking services[4].

LOWL Web Ontology Language:
http://www.w3.org/TR/owl-features/
2Presence Information Data Format - RFC 3863:

http://www.ietf.org/rfc/rfc3863.txt
3Rich Presence Extensions to the Presence Information Data
Format - RFC 4480: http://www.ietf.org/rfc/rfc4480.txt

Alice Bob Door Room
Clothing | Clothing Size Color
Context Information Mood Mood Color Temperature
Age Age Mechanical/Automatic | Number of doors
Etc. Etc. Etc. Etc.
Table 1: Context information based on Dey’s definition
Complexity | Effort required | Interoperability Computer
to extend Understandable
Key-Value Low High None Yes
Mark-up Median Low Total Yes
Graphical Median Low Total No
Object-Oriented Median Low Partial Yes
Logic-based Very High Very High Unknown Yes
Ontology High Median Total Yes

Table 2: Context Representation models analysis

Bellotti et al.[3] claim that user intervention must
always be required in order to a context-aware system
to be accepted[4]. Through a series of experiments,
Barkhuus et al. studied human reactions facing differ-
ent context-aware systems.

Passive context-awareness addresses Bellotti’s hu-
man concerns, allowing applications to directly
gather and reason about contextual information but,
rather that automatically and dynamically taking an
action[7], they simply suggest that action.

Active context-awareness

Gu et al.[7] on the Service-Oriented Context-Aware
Middleware (SOCAM) consider context-aware services
as agents (hopefully through standards, such the ones
defined by FIPA* and/or adequate languages, such
as KQML?), applications and services that make use
of different levels of context in order to adapt the
way they behave according to the current context.
This process does not take into account direct user
intervention aiming for highly adaptable services
during their life-cycle.

It is undeniable the diminishing of user control
through this approach and users do feel that decrease,
but still, most users prefer computers to take action on
their behalf, after a suitable learning period adequate
to the application purpose[3].

In our work we intend to composite passive and ac-
tive context-awareness, providing services capable of
automatically taking actions but based on user defined
rules.

User-defined context-awareness

Another possibility of reasoning about contextual in-
formation is simply based on learning patterns.

4Foundation for Intelligent Physical Agents: www.fipa.org
5Knowledge Query and Manipulation Language:
www.cs.umbc.edu/kqml/kqmlspec/spec.html

After a learning period the system might know
enough in order to provide the user with relevant
information. Google Inc., the famous search engine,
analysis search patterns and provide advertisement
links accordingly. Analogously, Kawsar et al. use
everyday objects, which maintain their original capa-
bilities, to obtain the users context. Based on user
pre-defined information (profession, interests, etc.)
the AwareMirror can provide to the user relevant
information (news, traffic conditions) on an usual
object (mirror) while he/she is brushing his/her teeth
(toothbrush is moving)[10].

Common social group’s applications, such as
MSN®?, empower users with explicit context defini-
tion capabilities. Based on this attributions the appli-
cation adapts (though slightly) its behaviour: a user’s
context of "Busy” avoids sound playing from the ap-
plication.

IRC” allows for the definition of ”away messages”,
providing additional information to possible incoming
communications.

2.2 Social Groups

It is undeniable the quantity of social group’s services
that exist today (AIM, IRQ, MSN, GTalk, MSN, IRC,
etc.), being evident that we couldn’t interact with ev-
ery single one (due to time and relevance restrictions),
however one service would not be enough either. Ex-
tensibility and scalability are two very important con-
ditionals that rule our system. This conditionals were
indeed met and will be discussed further on.

GTalk

GTalk®is Google’s approach to instant messaging.
one of the main features about this service is the ca-
pability of interacting with it through several different
means, from web-based applets to standalone desktop

6 Microsoft® Network
TInternet Relay Chat

Key- | Mark- | Graphical Object Logic- | Ontology
value up Graphical | Oriented | based | Ontology
Bucca et al.|13] X
Capeus]13] X
Centaurus[9] X
Eclipse (plugin) ! X
Hydrogen|[8] X
Jini[12] X
OpenSocial 2 X
SLP[12] X
StarUml 3 X
Stick-e[5] X

Table 3: Context Representation models and client applications analysis

applications, cellphone widgets or even email messages.

Since it uses XMPP (see section ??) it is even
possible for a person to develop their own application
to interact with the service.

Sapo Messenger

Like GTalk®), Sapo Messenger®uses the XMPP pro-

tocol, meaning that it is not required to use the Sapo

Messenger application to interact with the service.
One interesting feature however about their applica-

tion is the capability of using one application to inter-
act with both Sapo Messenger and MSN.

MSN

MSN®)is without a doubt is the most used social group
and instant messaging service. Although as mentioned
above their protocol is proprietary, there are ways of
interacting with this service that we explored.

Discussion

Social groups are roughly based on the same architec-
ture. Although protocols might vary from service to
service, the set of information provided by this services
is the same: address information (communication end-
point), and context information (presence).

Address information is not as rich as a address
book analogous information, it provides however a
communication end-point to the user. On the other
hand, context provides (with its associated confidence)
a new source of information regarding the user’s
availability or even activity.

All analysed social group services (MSN, GTalk
and Sapo Messenger) represent real world networks.
We have assessed the protocols that they use along
side the importance that each one represents to this
project.

2.3 Extract, Transform, and Load

(ETL) Information

We will analyse the object identification problem, spe-
cially duplicate detection, addressing in turn conflict
resolution.

2.3.1 Object Identification

Merging data from different sources requires that
different representations of the same real world object
be identified as such [11]. This process is called
object identification. Object identification is difficult,
because the available knowledge about the objects
under consideration may be incomplete, inconsistent,
and sparse. A particular problem occurs if no natural
identifiers (IDs) exist. For instance, the URL of a
Web page is a natural ID for the page. A meta-search
engine can use the URL of reported hits to find and
integrate duplicates. On the other hand, a used car
typically has no natural ID other than the registered
license plate for instance and sources about used
cars do not store an ID. An integrated information
system for used cars has no easy way of identifying
a specific car being advertised in different data sources.

Object identification in the absence of IDs, which is
essentially the same problem as duplicate detection,
record linkage, or object fusion [16][15], is typically
approached by statistical methods. Our approach is
no different.

2.3.2 Conflict Resolution

Once different tuples have been identified as represent-
ing the same real world object, the data from them can
be merged [14]. In general, a result that is integrated
from tuples of different sources, contains tuples where:

1. The value for some attribute is not provided by
any of the sources. Sources may not provide the
value, because they do not store the particular at-
tribute, or because they have stored a null value
for the particular tuple. Because none of the

sources provide a value, the tuple in the result has
no value either (null value).

2. The value for some attribute is provided by exactly
one source. In this case, there is also no actual
data conflict. When constructing the result, the
single attribute value can be used for the result
tuple. If a missing value has the meaning "not
applicable” instead of unknown”, the absence of
data can be taken into account as well. For the
remainder, we assume the "unknown” semantics
for null values.

3. The value for some attribute is provided by more
than one source. This case demands special atten-
tion, because several sources compete in filling the
result tuple with an attribute value. If all sources
provide the same value, that value can be used
in the result. If the values differ, there is a data
conflict and a resolution function must determine
what value shall appear in the result table.

3 Architecture

We want our system to be scalable, enhancing the
richness of information that can be used, achieving
that by providing an easy way to extend information
sources.

To provide a scalable infrastructure the system
was thought as a modular application. Each module
has its own responsibilities and implementation,
providing however a public, well-defined, generic
interface that allows external applications to access its
information and functionality.

In our exposition, specific vocabulary must be con-
sidered:

e Interfaces: Particular virtual classes that define
the methods (and their signatures) that any class
implementing such interface must provide.

e Components: Programming logic which provides
or consumes a set of services. Components are
the modules of an higher level application. Al-
though components represent modules, and im-
plement a generic interface, their inner workings
might require direct interaction with the ”outside”
environment, being responsible of transportation
of any ingoing or outgoing package.

During our analysis we found that our system re-
quires two types of information, one regarding context
information, the other regarding contact information.

Following this line of thought our system was
basically divided in two parts, each one addressing
each type of information.

The main component of our system, the Group
FEnabler, consumes contact and context sources in

order to provide its own set of features. The number
of each type’s sources should not be limited, hence we
used interfaces to catalyse scalability across the whole
system.

As we can also see in figure 1, each external sys-
tem has its own connector. This connector works as
an adaptation layer between said system and our own.
This approach allows for a standardized processing of
information within our system.

System Entities

As any slightly complex system different concepts are
involved. Furthermore the relationships between this
concepts represent the core guidelines of any project’s
design (see figure 2). The core concepts to take into
considerations are:

e Group: A set of group elements brought together
based on a specific criteria.

e Group Element: A member of a group strongly
connected to an entity, containing the mentioned
entity’s context (either external to the system or
internal) and contact addresses.

e Customer: A specialization of an entity which
represents a user of the developed system, having
privileges to execute the system’s features.

e External Entity: A specialization of an entity
which represents an external user for our system.
Although our system might have information re-
garding this entity (including context), that entity
might not be aware of that.

4 Implementation

In this chapter we will analyse implementation spe-
cific situations and problems that arose during the
development of the project. Since this project was
developed under the standards and objectives of a
communications company, several implementation
aspects had to address company specific concerns and
rules.

We will begin by focusing on social groups and
how it is possible (and relevant) to obtain and use
information provided by this type of systems. A tech-
nology discussion will address Enterprise JavaBeans
(EJB), the relevance of this programming framework,
and specific considerations regarding the Funambol
system.

4.1 Social groups

Social groups are an undeniable rich source of informa-
tion, but we also aim to go beyond the speculation and
theoretical levels, hence we focused on interacting with
real world, well-known services that not only provide

Context-Aware

Group Enabler
Interface

Context-Aware

Group Enabler

Contact Source
Interface

Funambol
Connector

Social

Sapo Messenger
Connector

Interfaces

. Components

Social Group
Aggregator

Connector Interface

GTalk
Connector

Context Source
Interface

Upcase
Connector

Group

MSN
Connector

Figure 1: Solution’s Architecture

the information we need but also adds to our applica-
tion a real world value and a tangible objective towards
commercial usage.

We will focus now on how does our system use these
groups to acquire the said value. Roughly the process
can be described in two stages, obtaining information
and using information.

4.1.1 Obtain Information

In order for our system to obtain information from so-
cial groups it must have a way of representing the user
before these groups.

The user must provide their authentication informa-
tion to our system, which triggers a well-known issue,
trust. Although our system does not use personal
information beyond the scope of its features many
users feel reluctant to share personal information with
third-party applications.

In a scenario where the user provides his/her au-
thentication information our system in term accesses
the services on behalf of that user. On systems that
allow multiple endpoints to coexist simultaneously
our system is invisible. This approach prevents the

occurrence of misunderstandings regarding the users
actual location and availability.

Our system follows all steps that a normal client-side
application does (see section ??) not allowing however
to communicate directly with anyone through it.

As any client-side application our system will be
aware of the user’s contact list, since the service itself
provides this information.

The initial information, both address and context, is
automatically gathered after successfully impersonat-
ing the owner. We however acknowledge that changes
can occur quite frequently, specially information
related to presence, and therefore context.

Virtually all social groups are based on the publisher-
subscriber design pattern and most of them work on
a push-based model (elaborate here or above?) to
propagate this changes. This model assumes the usage
of some type of listener to serve as a proxy of the
subscriber.

4.1.2 Use Information

With the address and context information related
to social groups gathered it is possible now to use

Group Element Context

Context-Aware Group Element

Entity

Contact Addresses

N

Group Context

Context-Aware Group
,

owWnern

] Customer

| External Entity

Contact Context

N

Funambol Contact Social Group Contact UPCASE Context Social Group Context
|5 i 1= ki
<<enumeration = < <enumeration =
Contact Types Context Types

Figure 2: Information Architecture

it as necessary. This low level information must be
converted to an agreed generic representation used
throughout the system (see section ?7).

In the last section (section 4.1) we discussed the
importance of keeping the low-level context informa-
tion as is, but one important aspect also is to be aware
if the aggregated information was provided by one or
several different sources.

Any object representing social group context has by
default an attribute which indicates from where the in-
formation was gathered. In the event that it originated
on more than one source a ”generic” label is applied.

4.2 Technology-related Aspects

All these techniques have a technological background,
being decisions based on future work within the
company’s philosophy, compliant with existing and
operating software infrastructures and technology
choices.

For interoperability purposes the programming
language used was Java. Java is a object-oriented
programming language developed and supported
by Sun Microsystems. Its execution is based on
pre-compiled source code (known as byte codes) that
run in any Java Virtual Machine (JVM), regardless of
the computer’s architecture. This disassociation with
a computer’s architecture and even operating system

allows the usage of the same program anywhere with
virtually no changes required.

Within the Java technology several different ways of
development can be taken, from web development,
applets, widgets, to enterprise applications. In our
case we developed our system with the objective of an
enterprise usage. To develop at this level Java provides
the so called Enterprise JavaBeans Technology (EJB).

Component Organization (EJB)

Enterprise JavaBeans (EJB) technology enables rapid
and simplified development of distributed, transac-
tional, secure and portable applications.

Similarly to JSLEE specifications, EJBs are no
more than building blocks that can be developed
independently or can be combined to provide higher
level features.

Having modularity, extensibility and scalability
as main conditionals of our system (see section 3) the
EJB technology provides an adequate development
environment.

Our system uses Enterprise Java Beans (EJBs) as
building blocks, most of which are stateless. This
means that upon a request a bean is created to address
it and upon completion it is eliminated. Lazy fetching
the information is not possible in this situation since
the objects themselves could (and most likely will) be

rule ”Under Age Rule”
when
person : Person()
eval(person.age < 18)
then
System.out.println(pessoa.name +
” is under age”);
end

Listing 1: Rule Example

treated in another EJB or application.

EJB technology only addresses the development
of building blocks, in turn these building blocks must
run on an application server that provides all the
technology’s features and execution environment.

Once again this choice was made given the com-
pany’s policy. The JBoss application server, an im-
plementation of Java Enterprise Edition (J2EE) devel-
oped by Red Hat, was used to accommodate our EJB
building blocks

Rule-based Inference and Rule Management

Rule-based systems satisfy the project’s needs regard-
ing context inference, which we built into our own sys-
tem in order to aid it while reasoning.

Several implementations are available as of today,
providing all sets of features related to this matter.
We will look now more deeply into the system used
during the project development, namely Drools Rule
Engine.

Drools Rule Engine is a rule-based system devel-
oped in Java, it is JSR94 compliant® and aims for an
open-source rule engine.

The system inner workings are beyond the scope
of this document, we will however focus on rules
themselves.

Whilst considering the possibility of using a rule-
based system to infer higher level context an issue
arose. What should be associated with rules? The
whole system should not be bounded by the same rules
across it nor an administrator should be restricted
to use the same custom rules for all their owned
groups. Rules are case-related hence each set of
rules is associated with a group or an element group
individually rather that being generic to all system.

The basic inner workings of a rule (see listing 1)
are rather simple: for every object of type ”Person”
present in the rule-engine working memory it fires the
"Under Age Rule” rule. If all conditions present in
the "when” section are met then any action present in
the "then” block will be triggered.

8JSR94: http://jcp.org/en/jsr/detail?id=94

5 Evaluation

In this section we will provide evaluation data regard-
ing the developed system. Several dimensions must be
considered and the tests undertaken simulate different
usage patterns and data intensity. This project was
developed under the scope of PT Inovagado®company.
The entire project is part of a commercial solution un-
der development by this company, being as so an im-
portant asset for the overhaul capabilities and flexibil-
ity of the final system.

The measures obtained during the evaluation phase
addressed different dimensions:

e Source multiplicity: determines if the number
of sources has a relevant impact in the system.

e Loading time: determines the time required for
the system to be fully functional and ready.

e Contact sources processing time: analyses
the cost of iterating through all contact sources.

e Context gathering: determines the required
time to obtain contextual information for all enti-
ties that need so.

e Entries scalability: determines how the system
behaves given a raising number of contact entries.

e Duplicate detection performance: Although
the algorithms are rather simple, the growth of
entries might affect this dimension.

e Database impact:
database persistence.

determines the impact of

Test Environment

All tests ran on a Core ™2 Duo CPU computer at 2.66
GHz frequency, with 4 GB ram memory and Windows
VistaT™ Business 32-bit operation system. The tests
were based on three prototypical test users with differ-
ent characteristics:

The test analysis tables are now presented, upon
which we will draw the evaluation results, but before
analysing the statistical tables it is important to under-
stand the difference, in terms of percentage, between
the test users.

e Test user 2 has 350% more contacts than test user
1

e Test user 3 has 88.8% more contacts than test user
2

Loading

Analysing all test user tables (tables 4 and 5) we
acknowledge that the loading time is constant, re-
gardless of the number of contacts. The system was
built having in mind scalability and extensibility, as
such the connectors to be loaded should not limit the
system.

Average | Standard | Variance | X-min | X-max % of %

‘ Deviation ‘ ‘ ‘ total time | increase
Load time 0.0568 0.028891 0.000835 | 0.026002 | 0.087598 0.5 17.8
Processing 3.4636 0.156292 0.024427 | 3.296992 | 3.630208 27.6 13.3
Contact
Source time
Total time to 0.0102 0.009284 8.62E-05 | 0.000303 | 0.020097 0.1 8.5
gather context
Total time to 6.4996 0.425991 0.181468 | 6.045494 | 6.953706 51.9 44.7
persist entries
Possible matches 0.0926 0.02851 0.000813 | 0.062209 | 0.122991 0.7 1087.2
detection time
Group 0.3024 0.021149 0.000447 | 0.279855 | 0.324945 2.4 169.5
persistence
time
Useless 2.019 0.005196 0.000027 | 2.013461 | 2.024539 16.1 0.6
Total 12.5342 0.529033 0.279876 | 11.97025 | 13.09815 100.0 27.8

Table 4: Test user 2 - Results
Average | Standard | Variance | X-min | X-max % of %

‘ Deviation ‘ ‘ total time | increase
Load time 0.0548 0.024763 0.000613 | 0.028403 | 0.081197 0.4 -3.5
Processing 3.2308 0.266993 0.071285 | 2.946186 | 3.515414 23.1 -6.7
Contact
Source time
Total time to 0.0264 0.021893 0.000479 | 0.003062 | 0.049738 0.2 158.8
gather context
Total time to 7.719 0.10464 0.010949 | 7.607454 | 7.830546 55.3 18.8
persist entries
Possible matches 0.3102 0.020389 0.000416 | 0.288466 | 0.331934 2.2 235.0
detection time
Group 0.5122 0.024601 0.000605 | 0.485976 | 0.538424 3.7 69.4
persistence
time
Useless 2.0362 0.005357 2.87E-05 | 2.030489 | 2.041911 14.6 0.9
Total 13.9632 0.283642 0.080453 | 13.66084 | 14.26556 100.0 11.4

Table 5: Test user 3 - Results

Furthermore the loading time represents a very
small fraction of the execution time, roughly 0.5% of
the total time.

Contact Sources Processing

The iteration through all contact sources is a very im-
portant aspect to be taken into account. Although it
represents solely the iteration through the entries of a
contact least, its performance affects significantly and
directly the overhaul system performance.

As we can analyse the processing contact sources
grows gracefully as contact entries grow. The major
difference detected was when there were a 350%
increase in the number of contacts (table 4) which
increased this processing by 13.3%.

This graceful growth is very successful given the
global impact of this dimension, which represents
more that one quarter of the total time.

Group Persistence

It is important to distinguish between the persistence
of raw auxiliary data from the processed refined group
persistence.

This persistence has a higher increase rate compared
to the previous persistence section. Its global impact
of the former is much lower than the latter, but us-
ing test user 2 results (table 4), for a 350% increase
in contact entries, connectors persistence grew 44.7%.

For the same user, the group persistence grew 169.5%.
Both types of persistence are below the contact growth
percentage but they do have an unavoidable impact on
the system.

Duplicate Detection

Duplicate detection, accordingly to the test results,
must be reformulated in future work. The approach
taken in this project revealed to be inefficient.

For a 350% contact entries growth (table 4) dupli-
cate detection grew 1087.2%, similarly for a 88.8%
contact entries growth (table 5) the same dimension
grew 235%. This is the only dimension that performs
worst than linear growth. Mathematical analysis
demonstrates that for a contact entry’s growth of N,
duplicate detection grows roughly 3N. Even though in
complexity calculus constants can be neglected, when
the value N tends to grow significantly, this ratio must
be addressed.

Duplicate detection represents the current bot-
tleneck of the developed system. For the tests
undertaken its global impact is small, however its
growth rate is reason for concerns.

Global Analysis

The developed system proved to be scalable. Given
a high rate of growth in the number of contact en-
tries, the overhaul performance of the system grew

Testerl

Tester2 | Tester3

| Number of Contacts

2

9 17

Table 6: Test users characteristics

gracefully. The addition of new sources, either address
sources or context sources, produce a minor impact in
the mentioned system.

Stateless Java Beans allowed for on-the-fly resource
allocation to take place.

Extensibility was achieved as well. The addition
of new sources (GTalk®) required close to no effort
aside from the interface implementation.

The interface approach was capable to provide a
real extensible framework.

The system was ported to another environment,
based on Linux operating system and PostgreSQL
database management system. It was not possible
due to company policies to perform tests in such
environment. It is possible however to assume that
the system is in fact portable.

Choosing the Java language and Hibernate as
the persistence manager empowered our system with
portability across platforms with very little effort re-
quired.

6 Conclusions

During the development of this project we concluded
that the need for a context-aware application in the
addressed scenario was real. The application should
be capable of adapting its behaviour autonomously and
dynamically according to external factors.

We analysed several existing approaches to context-
aware software, either in terms of representation,
reasoning, and sensing. Social groups are an impor-
tant component of this project. Their information
value (and commercial usage) meant a challenge and
an asset. Ensuring interoperability between hetero-
geneous systems required the definition of capable
data representation formats and translators. The
information provided by these systems proved to be
an asset based on the information richness gathered
through them.

Information merging proved to be a complex subject,
specially when customisation must be supported.
Although the performance regarding the duplicate
detection in particular was not as initially expected,
adaptability is still a reality, with users being able to
change merging rules as they see fit.

The architectural design of this project proved
to fit the objectives pre-determined. The system’s
scalability and portability were observed, being inter-
operability already proved, due to the interaction with
external systems.

10

References

(1

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

(11]

(12]

(13]

(14]

(18]

(16]

(17]

(18]

(19]

Matthias Baldauf. A survey on context-aware systems. Int. J.
Ad Hoc and Ubiquitous Computing, 2, 2007.

Louise Barkhuus. Context information vs. sensor information:
A model for categorizing context in context-aware mobile com-
puting. Symposium on Collaborative Technologies and Sys-
tems, pages 127-133, 2003.

Louise Barkhuus and Anind Dey. Is context-aware computing
taking control away from the user? three levels of interactivity
examined. Proceedings of UbiComp, pages 150-156, 2003.

Victoria Bellotti and Keith Edwards. Intelligibility and ac-
countability: Human considerations in context-aware systems.
HUMAN-COMPUTER INTERACTION, 16:193-212, 2001.

P. J. Brown. The stick-e document: a framework for creating
context-aware applications. FELECTRONIC PUBLISHING-
CHICHESTER, 1995.

Anind K. Dey. Understanding and using context. Personal and
Ubiquitous Computing, 2001.

Tao Gu, Hung Keng Pung, and Da Qing Zhang. A service-
oriented middleware for building context-aware services. Jour-
nal of Network and Computer Applications, 2005.

Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard
Leonhartsberger, Josef Altmann, and Werner Retschitzegger.
Context-awareness on mobile devices - the hydrogen approach.
In HICSS ’03: Proceedings of the 36th Annual Hawaii Inter-
national Conference on System Sciences (HICSS’03) - Track
9, page 292.1, Washington, DC, USA, 2003. IEEE Computer
Society.

Lalana Kagal, Vlad Korolev, Harry Chen, Anupam Joshi, and
Timothy Finin. Centaurus: A framework for intelligent ser-
vices in a mobile environment. In In Proceedings of the Inter-
national Workshop on Smart Appliances and Wearable Com-
puting (IWSAWC, 2001.

Fahim Kawsar, Kaori Fujinami, and Tatsuo Nakajima. Expe-
riences with developing context-aware applications with aug-
mented artefacts. Experiences with Developing Context- Aware
Applications with Augmented Artefacts, 2005.

William Kent. The breakdown of the information model in
multi-database systems. SIGMOD Rec., 20(4):10-15, 1991.

Ludwig and Maximilians.
tous Computing Environments.
nich, 2003.

Service Interoperability in Ubiqui-
PhD thesis, University Mu-

John McCarthy and Sasa Buvac. Formalizing context (ex-
panded notes). Technical report, Stanford, CA, USA, 1994.

Felix Naumann and Matthias Hiussler. Declarative data merg-
ing with conflict resolution. In International Conference on
Information Quality (IQ 2002). 2002, pages 212-224, 2002.

H. B. Newcombe. Handbook of record linkage: methods for
health and statistical studies, administration, and business.
Oxford University Press, Inc., New York, NY, USA, 1988.

Yannis Papakonstantinou, Serge Abiteboul, and Hector Garcia-
molina. Object fusion in mediator systems. pages 413-424,
1996.

Gene I. Rochlin. Trapped in the Net: The Unanticipated Con-
sequences of Computerization. Princeton University Press,
Princeton, NJ, 1997.

Michael Samulowitz, Florian Michahelles, and Claudia
Linnhoff-Popien. Capeus: An architecture for context-aware
selection and execution of services. In Proceedings of the IFIP
TC6 / WG6.1 Third International Working Conference on
New Developments in Distributed Applications and Interop-
erable Systems, pages 23-40, Deventer, The Netherlands, The
Netherlands, 2001. Kluwer, B.V.

Thomas Strang and Claudia Linnhoff-Popien. A context model-
ing survey. In In: Workshop on Advanced Context Modelling,
Reasoning and Management, UbiComp 2004 - The Sixzth In-
ternational Conference on Ubiquitous Computing, Notting-
ham/England, 2004.

	Introduction
	Related Work
	Context-Awareness
	Social Groups
	Extract, Transform, and Load (ETL) Information
	Object Identification
	Conflict Resolution

	Architecture
	Implementation
	Social groups
	Obtain Information
	Use Information

	Technology-related Aspects

	Evaluation
	Conclusions

