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ABSTRACT

This article resumes the development of a solution for sim-
ulating peer-to-peer overlays in the Peersim system.

This project and its motivation in the imposed limits of the
current version of peersim on not being able to take advan-
tage of multi core processor and is severly limited by the
available physical memory of the machine it’s running in
when defining the size of the simulation.

This document is comprised of an introduction to the con-
cepts of grid computing and their uses and benefits, to the
concept of the Terracotta distributed virtual machine and
finally to the concept of a peer-to-peer overlay. It contains
also a description of several current projects from the men-
tioned areas of expertise, filed and ranked according to eval-
uation criteria.

Here comprised is also a detailed description of the archi-
tecture and implementation of the developed solution, be-
ginning with the changes made so that the simulator may
maintain coherence and synchronization when running in
the multithreaded mode, explaining the new protocol API
and the memory sharing strategies used in the distributed
execution. Finally, this dissertation ends with a detailed de-
scription of the architecture and implementation of the de-
veloped solution and and evaluation of the obtained results
that prove the validity and usefulness of this project.
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1. INTRODUCTION

The objective of this work consists in developing a system
that allows and application designed to be based in a peer-
to-peer overlay can be executing in a simulated environment
and additionally that this simulation is able to run in a par-
allel execution environment (as a multicore/multicpu com-
puter) or in a multi machine cluster (as opposed to single
machine sequential execution).

1.1 Grid Computing

A Grid system is defined as a infrastructure that permits
and facilitates the rapid sharing of computational resources
ina a large scale so that they can be available to distributed
computing applications. This infrastructure must encom-
pass the necessary tools to manage the shared data between
the various participants, all scheduling and planingm and all
the requests of operations over the same shared data [8].
All work must be coordinated by an orchestrating entity
that coordinates all activity in the grid.

1.2 Peer-to-peer

A peer-to-peer network can be defined as a network infras-
tructure that allows an easy way to distributed data or re-
sources to a group of various machines (nodes or peers) as-
sociated together in a common context. This infrastructure
does note require a mandatory central organization unit or
server.

The peer-to-peer networks are nowadays associated to the
online file sharing movement, proving this way the viability
of a distributed system with a enfasys on the efficient data
search and transmission, but there are also other applica-
tions for this tecnology, being the example of this distributed
storage software and chat applications.

A peer-to-peer network allows in this way the construction
of an organized system for data sharing and transmission
(or other resources of computational interest) between var-
ious heterogeneous machines (nodes) without the necessity
of a central control, in which all nodes can actively partici-
pate, these being able to resist to failures in their peers and
maintain connectivity without the necessity of specialized
intervention by a coordinating agent.

1.3 Terracotta

Terracotta appears as an essential tool for the construction
of the distributed layer of the application. With the emer-
gence of these Grid and Peer-to-Peer technologies and the
prominence of Java as the leading free and open source pro-
gramming language (that is also implemented in a variety
of th operative systems and hardware), some applications
began to emerge in the last years a systems being able to
run Java applications in a distributed fashion over a cluster
of various machines. Terracotta is defined by a distributed
Java virtual machine based on a client/server architecture
in which is possible to execute programs, originally coded to
single machine execution, in a cluster, without the need to
alter its implementation or add any modules.



1.4 Peersim

A peer-to-peer simulator consists in a system able to sim-
ulate a peer-to-peer overlay with an arbitrary number of
nodes, and arbitrary protocols and node operations, in a
single machine. This software allows the emulation of algo-
rithm and code structure behavior in a computer network,
without having actually to install physical machines in a
physical network. Peersim is a peer-to-peer overlay simula-
tor written in Java that supplies some protocols and easily
allows it’s enhancement with newer or custom made ones.
Besides the greater apparent scalability it offers (compared
with other Java based simulators) with it’s ability to sim-
ulate with reasonable efficiency an overlay composed of a
million (10°) simulated nodes [15][16].

2. RELATED WORK
2.1 Peer-to-Peer Network

The various different peer-to-peer network protocols may be
classified according to it’s degree of centralization and being
structured (or not).

A structured peer-to-peer network maintains, during it’s
execution, a structure similar to a distributed Hash Table
where it keeps information about all the participants in the
network, so that it can maintain their location int the net-
work always available, and also all the keys for quick search
times in the overlay.

A key represents something for which a node is responsi-
ble (in a data-sharing application a key bay represent a
file or a data block, in a DNS server it would represent a
name/address pair, in a library it would represent an article,
etc.). The way this structure is implemented depends on the
protocol itself, as the communication and search mechanics
vary in each one of them, although normally a specific node
in the overlay will maintain a limited number of other nodes
(it’s neighbors). The overlay assigns an unique identifier to
each node and to each key. This allows the construction of a
virtual graph of the overlay in which we can easily identify
the node responsible for each key.

The balance and maintenance of a structured network has a
high degree of complexity, making it difficult and inefficient
to keep the overlay coherent when there’s a high volume
of nodes entering and exiting the network with it’s set of
keys. This makes unstructured and centralized overlays as
the popular implementations of choice when building data
sharing networks.

The centralization degree of a peer-to-peer overlay is defined
by the need of a central semi-coordination in the network.
Semi-coordination because if we build a network in which
a centralized server does all the work, it can no longer be
called a peer-to-peer network, as it violates its main goal of
work sharing.

A peer-to-peer overlay may be:

e Completely decentralized. All the nodes have the
same statute in the network. This alternative has the
advantage of not maintaining a complete control over
the total state of the overlay.

e Partially decentralized or hybrid. Some of the
nodes in the network are called super-peers, and to-
gether they coordinate all entries and exits of the net-
work, although each node by itself only has knowledge
about a subset of the entire network.

e Completely centralized. The network has the need
of a central server that controls all the entries and exits
of the network and it may or may not have knowledge
of all the objects or data blocks stored in the network.
The obvious drawback is the central server being a
major fail point in the entire network, as all the work
depends on it’s availability. [14]

2.1.1 Structured Networks

The prime examples of Structured networks would be Chord|[20],

Kademlia[13] and CAN[?].

Chord is a peer-to-peer overlay where the nodes are dis-
posed in a virtual ring in which each node only knows about
a small subset of nodes located all around the ring. The
nodes are responsible to all keys whose identifier is less than
it’s own identifier and bigger than the identifier of the prede-
cessor. When a node needs a key, it sends a message to the
closest node to the and the request is then relayed forward
if needed.

Tapestry makes use of a technique similar to Plaxton ([18])
to locate a key from a certain node. Each node keeps a ad-
dress table of it’s neighbors with a number of levels equal to
the number of digits of the highest possible identifier. Each
level stores z entries (x being the the base of the addresses.
z = 10 for decimal, z = 2 for binary, etc.). Inspired by
Tapestry, comes the Pastry overlay [19] in which the table
is a more complex structure using the number of bits re-
quired to store the addresses and using address prefix based
searches.

CAN makes use of a pseudo geographical organization of
the nodes, meaning the nodes are disposed in areas mapped
by a cartesian structure in which each node is defined by it’s
ID and coordinates in a virtual space (with N dimensions).
The neighboring is defined by adjacent areas in the virtual
space.

Other interesting examples of structures networks would be
Kademlia[13], based in a node distance metric, Viceroy[12]
with it’s multi level ring based network, Koorde[10] based
on Chord but in which each node has various neighbors and
Cyclone[4] also based on Chord with multiple rings.
Structured protocols where not designed with a single spe-
cific purpose but from the need of building a data sharing
and trasmission system, completely decentralized a capable
of support a high degree of node traffic without interfering
in the lookup process.

In the cited examples, the lookup times are similar, being
in the majority defined by O(logn) or slight variations of
it with the exception of Koorde, which uses a De Bruijn
graph for speedup, and CAN that provides a lookup time of
O((d* N)=(1/d)), d being the number of dimensions of the
virtual space.

2.1.2  Unstructured Networks

The first and most famous example of an unstructured net-
work would be Napster[3]. Napster was one of the earliest
file sharing network, alongside Gnutella[3] and Kazaa[9].
Napster used a central server that indexed all files in the
system alongside it’s location. Highly centralized, Napster
would hardly be a good example of a peer-to-peer network
nowadays although it’s was the first example of a public dis-
tributed file storage in a very large scale.

Reducing the centralization degree, comes Kazaa and it’s



definition of super-peers. Not having a completely central
server, each super-peer indexes a subset of the nodes and
it’s keys. A search is propagated from a node to it’s super-
peers and the rest of the super-peers making the search much
more efficient than in Gnutella that provides a completely
decentralized system where the search is propagated in flood
through all the neighbors.

Some good examples of unstructured peer-to-peer networks
with other objectives than file sharing we have Freenet[6]
and FreeHaven|[7] offering services of anonymous data pub-
lication.

Although centralization offers a good performance and ease
of data and location indexation, big problems come over the
high dependence of the network in it’s super-peers or central
servers.

2.2 Grid Systems

The concept of Grid System encompasses a vast lot of very
different projects with radically different methods and ob-
jectives, final purpose or even the resource sharing process.
On the subject of Desktop and Cooperative Grids, the prime

examples would be SETI@Home|[2] and Folding@Home][11].

A Cooperative Grid is an system open to whoever is inter-
ested to offer it’s resources to a common goal, in an approach
similar to a peer-to-peer network. Both these examples run
as Desktop Grids, which means they usually run in a back-
ground process so that the user can share only part of the
available resources (being able to run only in idle time for
example).

SETI@Home and Folding@Home are both scientific projects

in which the goal to attain would require a computational
cost too high to be viable. The Grid project consists in
the processing of data coming from the radiotelescope in
Arecibo, Puerto Rico. The goal of the project is to collect
all kinds of radio signals from outer space in search of an ar-
tificial source that may come from an extra-terrestrial civi-
lization. Using SETI@QHome each user runs an application
that fetches data blocks from the central server, processes
the same data and returns it to the server. In a similar fash-
ion, the project Folding@Home consists in the processing
of Protein Folding experiments for medical purposes, mainly
cancer investigation.

Both these projects are built over the BOINC]1] frame-
work. This toolkit was designed specifically so that a scien-
tist or a researcher would be able do build a Grid system in
the same fashion with little work.

Another good example of Grid systems would be the mar-
ketplace systems. The purpose of these systems is not to
participate directly in a specific project but to be able sim-
ply to share resources so that other people may use them
for their own purposes. The prime example of this appli-
cation is the Grid4All project[21]. This project was part
of an initiative in the European Union to create a commer-
cial market of resource sharing where prices are regulated
according to a market system of request and offer ratio.
These examples illustrate the multitude of final purposes
for a Grid system, although always with a common goal of
creating an environment where tasks with enourmous com-
putational need may be accomplished.

2.3 Peer-to-Peer Simulators
Peer-to-Peer simulators is a very specific area so there are
not many relevant projects to discuss. Besides Peersim, the

main projects in network simulation are GPS[22], P2Psim,
and OverSim][5].

GPS was peer-to-peer overlay simulator based in Java that’s
currently inactive. It was based in an event engine and
was extensible with custom made protocols. Also almost
abandoned is the P2Psim project. This project was also
based in an event engine and also allowed the use of cus-
tom made protocols, unfortunately because of scarce docu-
mentation, published benchmarks showed some difficulty in
running simulations with more than 3000 nodes[17].
OverSim is a very interesting project as it provides a very
complete package with statics module and a graphical in-
terface with an overlay visualizer. This software is more
directed to the simulation of actual TCP/IP networks and
it’s dynamics.

At last, Peersim[17] is the leading Peer-to-Peer simulator
with it’s Java based simulator, providing both a cycle-driven
and event-driven engine and high scalability and extensibil-
ity. Also, some of the most common peer-to-peer protocols
are already available for peersim.

3. ARCHITECTURE

In order to attain the propose objective, the current version
of Peersim would have to be changed t o abandoned the
main restriction it presents today: it’s purely sequential and
single-threaded execution. Although Terracotta provides a
solution out of the box to connect several Java virtual ma-
chines (VM) without being necessary to modify the code of
the program, this would only serve Peersim as having sev-
eral machines in communication but running independent
simulations. The simulation would be faster neither would
it have more memory at it’s disposal.

The approach to the objectvie was made in two main phases::

e Parallelization - Modifying the peersim simulation
engine so that it can be able to execute the simulation
in several threads.

e Distribution - Extend the same simulation engine so
that it can be able to use the shared memory platform
Terracotta.

3.1 Parallelization

As it was said, in it’s original version, Peersim provides two
independent simulation engines. A cycle-driven engine and
an event-driven engine. In it’s cycle-drive version, Peer-
sim runs a defined number of cycles. In each one, it cycles
through the entire list of nodes forming the overlay, and one
by one, activates all the protocols defined to run at each
cycle. (Fig. 1)

In it’s event-driven version, the simulator initializes an or-
dered queue with events representing node activation along-
side simulation control events. This queue is consumed in an
infinite loop, in which the events after activated are recycled
to the end of the queue. When the simulation reaches the
time limit (defined as a total of events to process), the re-
cycling stops, and when the queue is empty, the simulation
ends. (Fig. 2)
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For the simulation to be executed in various threads simul-
taneously, the entire set of nodes must be shared by them.
So, in a simple approach, in both cases, the solution to the
problem will be to have the various threads feeding of the
node list or queue and synchronizing all activity made in
each node.

This solution, although simple, lacks efficiency because of
the need to sincronize all the code pertaining to node inter-
action. This inefficiency comes for the fact that sincronized
code will always take more time to run than unsafe code.
As all threads eventually feed from a global set of nodes, it’s
not possible to determine which thread will activate node z,
so it’s necessary to synchronize all interactions.

From this problem we form the hipothesys of assigning only
a fixed set o the overlay to each thread permitting the simu-
lator to synchronize only some interactions between concur-
rent threads.

3.1.1 Overlay partitioning

So that it is possible to define and know which nodes will
be simulated by which thread, we added an overlay parti-
tioning mechanism to peersim. This network partitioning,
similar to graph coloring, is determined by an algorithm that
assigns to each node a color that determines which thread
will activate this node.

To maximize the efficiency of the coloring process, this should
be made according to the neighboring relations between the
nodes. This will effectively maximizer the interactions be-
tween nodes of the same color.

3.2 Distribution

After solving the parallelization problem, comes the prob-
lem associated to memory limits of the simulation. This
problem is what effectively limits peersim of it’s potential
because it imposes a hard limit to the size of the overlay to
simulate. Aditionally, the complexity of the protocols to use
in the simulation, may augment the cost of memory occu-
pation associated with each simulated node.

Terracotta and it’s capability of easily sharing objects be-
tween various VMs, without the need to change the original
code, comes as almost a miracle remedy to reach the objec-
tive, there are though some complications that need solu-
tion.

Although Terracotta allows the easy connection between
VMs, when a participant loads an object, or a set of objects,
this load is not shared through the rest of the participants,
only the machine who loaded it will have it’s memory occu-
pied by the object. As the majority of the simulation load
will be the node information itself, this task will have to be
shared by all the participants so that it may be possible to
increase the maximum simulation size.

When using the coloring process here, we can assign each
participant with a specific color so that each participant may
do only part of the work thus distributing the processing load
by the entire cluster.

3.3 Architecture

Figure 3 represents the general architecture of PC-Peersim.
There is described in a simplified fashion how the virtual
overlay is simulated by a physical cluster. On top of the
figure we have the peersim entry interface where the simula-
tion parameters are defined. In the base we have the interac-



tions between nodes. The Terracotta middleware comes as a
wrapper between the program and the Java virtual machine.
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In closer detail:

e Peersim Simulations - The configuration of simula-
tions remains unaltered compared to the original ver-
sion. This configuration defines parameters like over-
lay size, number of cycles and which protocols will
be executed, including initialization protocols (which
define how the node values are inititialized and now,
which partitioning algorithm to use)

o Peersim Interface - The main changes come now,
as the configuration stage no makes the full or partial
loading of the overlay. As referred, the partitioning is
defined as initialization protocol so it runs in the initial
stage of the simulation. To support these changes, the
code structures that represent nodes and the overlay
now have to maintain information about node coloring.

e Execution Engine - The execution engine is the com-
ponent that effectively runs through all the nodes in
each cycle (or event consumption) and executes the
configured operations. According to the engine and
mode of execution, it will do different things:

— Original mode - The cycle driven engine will
work with the whole overlay and will runt all cy-
cles to the end. The event-driven engine works
with a global queue of events configured with all

the nodes in the overlay until a time limit is at-
tained.

— Distributed mode - The cycle driven engine will
work over a partition of the overlay and remains
blocked until all participants end the same cycle.
The event-driven engine is not available in the
distributed mode.

— Multithreaded mode - The cycle driven engine
launches a thread each cyle and each thread works
with a partition of the overlay associated with it’s
color. The event-driven engine launches a thread
for each color also, and each of them works with
and independent queue. Each thread waits after
x events so that none of them becomes too much
ahead.

e Node Distribution Protocol - This protocol defines
how the node values are initialized. When storing val-
ues in a node, it’s impractical to define specific values
to each node, so algorithms are used to do this.

e Partitioning protocol - This protocol contains the
necessary implementation to make the correct and ef-
fective color distribution through the network.

e Peer-to-Peer Protocols - This protocol defines the
actual peer-to-peer overlay in use, with the search al-
gorithms and neighbor relations.

e Interaction protocols - This last component defines
all executions to be made for each node.

4. IMPLEMENTATION
4.1 Partitioning

Several approaches where made to partitioning algorithms
so that the simulator produces an overlay with cohesive col-
ored areas. Let’s assume as an example we have an overlay
with 37 nodes and 62 neighbor connections and we are go-
ing to make a simulation with 4 threads/colors. In the ideal
case, after the partitioning, the overlay would be divided in
4 areas (Fig. 4). In this example we would have a high con-
nection ratio between nodes of the same color (73.4 %, 13
inter partition connections). In a normal situation, the par-
titioning would be more fragmented as in Figure 5, lowering
the cohesion ration to 55.4

Figure 4: Ideal Partitioning

In the end, we reached two versions of the algorithm with
good results:



Figure 5: Fragmented Partitioning

e Breadth First Single Threaded

e Random

4.1.1 Breadth First Single Threaded

This algorithm tries to create the biggest possible area of a
color then passes to the next color when it reaches a num-
ber o nodes equal to the size of the overlay divided by the
number of colors. The execution is based around a list of
nodes being fed with uncolored nodes. Each time a node is
consumed it is colored, and it’s neighbors are inserted at the
head of the list.

If after cycling all colors, there are still uncolored nodes, this
situation is corrected by adding the color corresponding to
the one in majority in its neighbors.

In an overlay configure with a number of neighbors equal to
log,o IV being N it’s size, this algorithm reaches a cohesion
rate approaching 65

4.1.2 Random

A hypothesis that runs almost instantaneously is to assign
to each node a random color from the set of available colors.
This disregards completely the neighbor relations but has
no impact in the total simulation time.

In an overlay configure with a number of neighbors equal to
log,y N being N it’s size, this algorithm reaches a cohesion
rate approaching 50

4.2 Multithreaded overlay processing
4.2.1 Cycle-driven Engine

Instead of processing the entire overlay each cycle, the sim-
ulator now launches new threads each cycle that feed of a
new structure representing the overlay. Instead of storing
the overlays in a simple array, Peersim now manages a set
of lists for each region, stored in a hash map.(Fig. 6)

This solution of launching new threads at each cycle has an
associated cost so this is only effective when the execution
of the interaction protocols represents the majority of the
cpu load of the simulation.

In able to maintain the functionality of dynamically adding
and removing nodes during the simulation without a consid-
erable performance drop it was necessary to use unordered
lists (Set) to represent the nodes. In doing this PC-Peersim
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Figure 6: Overlay separated by color

lost the ability to cycle through the nodes in a specific order,
only in a pseudo random fashion.

4.2.2 Event-driven Engine

In order to change this engine to a multithreaded version
it was necessary to change que event queue to a structure
containing mini-queues, where for each color. The control
events are stored in one of the threads only so that they
are executed only once. In this fashion, the engine may
have the multiple threads running from the beginning of
the simulation consuming their assigned events. So that no
thread would become too much ahead of the others, after
simulating the interactions between a number of nodes the
thread stops at a cyclic barrier waiting for the other ones.
The Figure 7 we can observe how the control events are only
consumed by on thread only, and each thread keeps cycling
the node events.
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Figure 7: Queue modified to support multithreading

4.3 Node activity synchronization

As Peersim uses independent protocols to make the inter-
actions between nodes, we could not simply alter the same
protocols to effect synchronization because when other prot-
cols are to be used or adapted, they would simply not work
in PC-Peersim. To circumvent this, a strong API was de-
fined as the new structure to use in the protocols. It defines
new mandatory methods where to place specific node inter-
action code and defined new final methods that universally
decide if they need to synchronize the execution and then
invoke the interaction method.



With these minimal changes, it is possible to convert a proto-
col made for Peersim to use in PC-Peersim with the correct
synchronization.

4.4 Distributed Execution

When running the simulation in the distributed mode (over
terracotta), each participant will only be responsible for
onde color so that the work may be simplified without sac-
rificing the main goals. For the same reason, only the cycle-
driven engine was implemented over Terracotta.

The first participant will be the coordinator of the simulator,
performing all initializations and coordinating the shared
load. To be able to synchronize this execution and coor-
dinate the shared load, terracota must share the node and
overlay representing structures and also a set of locking ob-
jects and barriers.

To perform the object sharing Terracotta provides an XML
based configuration engine that allows to define shared ob-
jects called roots. Any change made to an object reachable
by a root object is propagated to all participants. It is not
possible to change the root itself. Also, in order to protect
the access to these objects, Terracotta requires mandatory
synchronization in all possible access points to them. To be
possible to do this without being necessary to change the
code, it is also possible to configure automatic synchroniza-
tion for all methods matching a regular expression, in the
same configuration, as expressed in this example:

<named-lock>
<method-expression>
* example.aggregation.AverageFunction.*(..)
</method-expression>
<lock-level>write</lock-level>
<lock-name>activateNodeInteraction</lock-name>
</named-lock>

S. EVALUATION

The tests presented here were made using two different con-
figurations for simulation time extension for a configured
overlay. In both engines, tests were made using the Peersim
base protocols, more specifically based in the example sim-
ulation number 2 included in the original Peersim distribu-
tion. This example uses the internal protocol WireKOut and
and interaction protocol name AverageFuncion that main-
tains a numeric value fore each node and for each interaction
it calculates the average between the values in both nodes
and assigns the new value to the nodes.

Besides these examples tests were made with a custom Chord
and Pastry implementation and finally with the same ex-
ample number 2 but running in the distributed mode over
Terracotta. The distributed example was made both using
two participants in a single machine and using the same two
participants in two separate machines over a 100 Mbits/s
LAN.

The test results are defined by the simulation time.

5.1 Event-driven results, Example 2

The event-driven engine revealed an interesting performance
gain. Contrary to the cycle-driven version, this engine main-
tains the configured number of threads in permanent execu-
tion, feeding of the event set available in the queues. This
fact permits the simuation to be able to be equally efficient in

(3 *x) Eventos (10 * x) Eventos

mSingle Threaded B2 Threads (with Random Part.) 2 Threads (with Adj. Part.)

Figure 8: Execution time comparison for the Sim-
ulation Example 2 in the FEvent-Driven engine for
250.000 nodes

(3% %) Eventos (10 x] Eventos

mSingle Threaded B2 Threads (with Random Part] =2 Threads (with Ad]. Part)

Figure 9: Execution time comparison for the Sim-
ulation Example 2 in the Ewvent-Driven engine for
2.500.000 nodes

overlays of lower(Fig. 8) and great dimension (Fig. 9). The
higher the computational cost for each cycle and protocol,
the higher will be the possibility of the threads occupying
100% of CPU time. As for partitioning, the Random ver-
sion revealed itself more efficient in the majority of cases,
although the adjacency based version may be effiecient in
big simulations.

5.2 Event-driven results, Chord Example

In the tests made with the Chord simulation example, the
results were very interesting, as we can see an excellent per-
formance gain in Fig. (10). One should notice that both this
simulation and Pastry simulation carry a big computational
cost when executing the interaction protocols, fairly larger
than the simple average calculation in example 2. This fac-
tor makes the simulator spend more CPU time executing the
protocols themselves instead of synchronization and event
rotation.
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Figure 10: Execution time comparison for the Chord
Example in the FEvent-Driven engine for 250.000
nodes

5.3 Event-driven results, Pastry Example
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Figure 11: Execution time comparison for the Pas-
try Example in the Event-Driven engine for 5.000
nodes

Similarly to the tests made with the Chord simulation, the
same performance gain was observed in the Pastry simula-
tion (11). Observing the time needed to perform the sim-
ulation over an overlay of 5000 nodes we can conclude the
high cpu requirements of this protocol.

5.4 Cycle-driven results, Example 2

The cycle driven engine revealed itself less efficient than ex-
pected. The implementation of this engine passed through
two versions during it’s development. Originally, the engine
would start a fixed number of threads as in the event-driven
version. These threads would execute the configured cycles,
and synchronized themselves at the end of each cycle. At the
end, we found that it would be more efficient to start these
same threads each cycle eliminating the need to synchronize
at the end of each cycle. Someway, the cost to launch a
new Thread by the VM was smaller than the inefficiencies
shower by the required synchronization. This gain is only
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Figure 12: Execution time comparison for the Sim-
ulation Example 2 in the Cycle-Driven engine for
250.000 nodes
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Figure 13: Execution time comparison for the Sim-
ulation Example 2 in the Cycle-Driven engine for
2.500.000 nodes

relevant when simulating bigger overlays. As we can see in
Fig. 12 there is a drop in performance largely overshadowed
by the gain in performance when running the bigger cycle
necessary to simulate a larger overlay ( Fig. 13).

5.5 Distributed simulation results

Contrary to the simulation running in a single machine, the
distributed version over Terracotta revealed itself extremely
inefficient and slow. In the almost the same time required to
run 30 cycles in an overlay with 2.500.000 nodes in a single
machine we can run 60 cycles in an overlay with 50 nodes
in a distributed version.

This huge overhead associated with the use of Terracotta
may be explained with several factors:

e Peersim makes use of an object array to represent the
set of nodes of the overlay. This array is one of the ob-
jects configured as root in Terracotta and we may con-
jecture that Terracotta isn’t able to share in an efficient
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Figure 14: Execution time comparison for the Simu-
lation Example 2 in the Cycle-Driven engine running
over Terracotta for 500 nodes

way an array of objects without having to replicate it
to each participant maintaining total synchronization
over the same in all participants. This synchronization
is maintained by the Terracotta server which appar-
ently also maintains the objects in cache.

This theory is supported by the fact that the processes
of all participants and of the Terracotta coordinator
present a bigger memory footprint than a simulation
of the same size running directly in a single VM. Al-
though we cannot conclude imediately that this mem-
ory is associated with the same objects, the conclusions
obtained by other Terracotta users in sharing the same
type of objects points in that direction.

e Since the nature of the simulation is to promote in-
teraction between various nodes that may "belong” to
different participants we can conclude that all data
and object exchanges between participants over the
TCP/IP layer will be a lot slower than the direct ac-
cesses in the original simulation.

5.6 Final Analysis

The first conclusion to take from these performance tests is
that there was effectively a strong success in accomplishing
the objectives of this thesis. With the exception of the dis-
tributed simulation, all tests showe an improvement in the
execution time necessary to complete the experiments.

The cycle-driven engine revealed itself less efficient than ex-
pected although it showed some improvement for bigger sim-
ulations. The event-driven engine showe a bigger perfor-
mance gain mainly when using protocols with larger cpu
requirements. The distributed simulation emerged as much
inneficient in terms of both memory footprint and execu-
tion time and it served only to prove the ease of sharing
objects between VMs using Terracotta and which problems
one should avoid in a future development of this distributed
version.

6. CONCLUSIONS

After analysing the results, we can safely say that the amin
objectives were achieved with great success. More precisely

we are able to affirm that it is possible to perform and ob-
tain simulation results in a more efficient and fast way when
using PC-Peersim. In almost all examples, there was very
satisfactory results in terms of execution times:

e The cycle-driven engine showed an improvement to
around 80% of the original execution time. This im-
provement however is only significant using a large
number of nodes in the simulated overlay. This small
gain in performance should not be overlooked as this
version of the engine is the least flexible of the two, be-
ing this an interesting result overall. The neighboring
partitioning algorithm was an underachievement, par-
ticularly using a small amount of nodes in the overlay
and a small number of cycles, because it consistently
added a delay to the overall simulation time making
the test run longer than using the random partitioner.

e The event-driven engine presents a much more inter-
esting improvement, around 50% of the original perfor-
mance. Here lies the true victory of this project as this
version of the engine is the most widely used for the
creation of protocols (custom made and simulations of
widely known overlays like Chord, Pastry, etc) by the
research community in the field of peer-to-peer. The
tests made using Chord and Pastry presented excel-
lente results, with an additional batch of results being
made on a quad-core machine. This batch of tests
continued to show a good performance gain faced with
the results already taken using two threads. As when
using these examples, the simulation is effectively run-
ning protocols with a higher degree of computational
charge, we can safely say that the development of the
PC-Peersim is definitely an asset to the future.

In it’s distributed version, the PC-Peersim integrated
in Terracotta presented very poor results. The mem-
ory overhead that Terracotta adds to the normal exe-
cution of the program added to the necessity of having
to run an external coordinator server and the problems
in Terracotta being able efficiently share some tipe of
objects, the tests revealed that, without some deeper
changes to the implementation, PC-Peersim will use
as much memory for each participant as it is necessary
for a single machine to simulate an overlay 10 times
bigger. As the nature of Peersim requires a high load
of information exchange (mainly Node objects), where
will always be a big bottleneck in performance as the
participants must always be exchanging objects with
others, making the initial memory load sharing quite
useless and ineffective. Besides the high memory foot-
print, this simulation had a big problem of execution
speed. The objective of simulation very large overlays
that would be impossible to load in a single machine
was, therefore, not achieved. This exercise was quite
useful though in providing the insight to which prob-
lems will erupt when using Terracotta, and to formu-
late possibilities of future work to achieve this same
objective.

6.1 Future work
After completing this thesis and the corresponding result
and objective analysis, we can conclude that there are big



perspectives of future work to attaining a version of Peersim
that can truly be distributed and efficient. The use of Ter-
racotta reveals itself as a wrong approach to the problem,
as we linger with the idea that it would be possible to reach
the same objective in a much simpler way, just by altering
it’s implementation. Using a lightweight messaging system
it’s quite possible to develop a version of Peersim capable of
simulate large scale overlays with a good memory efficiency.
After analyzing the results we also find that there’s the pos-
sibility of improvement in the cycle-driven engine by reim-
plementing some of it’s key features, although the long term
usefulness of this engine could be questioned.

In the end we consider that there is a lot of potential for the
development of a big part of all peer-to-peer protocols that
where analyzed in the related work section. The versions
of Chord and Pastry included where very useful when ana-
lyzing the results, so it would be very interesting to build a
bigger and stronger code and knowledge base in this area.
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