Distributed Clustering and Scheduling of VMs

~ Joéo Lemos
joao.lemos@ist.utl.pt

ABSTRACT

In this work, we have developed Caft, a middleware that runs on top
of the Terracotta system and has the capacity to run simple multi-
threaded Java applications in a transparent way, scheduling threads
across the several nodes in a Terracotta cluster and taking advan-
tage of the extra computational and memory resources available.
We use bytecode instrumentations to add clustering capabilities to
the multi-threaded Java application, as well as extra synchroniza-
tion if needed. The middleware supports several modes, in order to
achieve a balance between transparency and flexibility. We tested
the middleware with a Fibonacci computing application, an Open
Source renderer (Sunflow) and an application that multiplies a ma-
trix by a vector. We concluded that our middleware is scalable, as
it allows a multi-threaded application to achieve lower execution
times by adding more nodes to a Terracotta cluster.

Keywords

Java, Parallel and Distributed Computing, Single-System Image,
Bytecode Instrumentation, Terracotta

1. INTRODUCTION

In recent years, computer clusters made entirely of simple desk-
top computers are becoming the standard for high-performance com-
puting, as the scalability and cost-efficiency of such solution sur-
passes most high-end-mainframes. If the workstations in a clus-
ter can work collectively and provide the illusion of being a sin-
gle workstation with more resources, then we would have what is
referred in the literature as a Single System Image [10]. Much re-
search has been done in the area of SSIs, such as Distributed Shared
Memory (DSM) systems and Distributed Virtual Machines that can
run applications written in a high-level language in a cluster, be-
having as if it were on a single machine. There are three major
approaches for implementing these kind of systems:

e Extend a programming language at source or bytecode
level: allows a simple and straight-forward implementation.
Existing applications need to be modified or recompiled for
using a specific library. In either case, the application source
might not be available.

e Design a cluster-aware VM: gives full transparency to the
programmer but it requires the applications to use a specific
cluster-aware VM.

e Design a cluster infrastructure capable of running sev-
eral standard VMs: gives the best compromise between
portability and transparency but it is the hardest one to de-
velop and many implementations are incomplete and do not
provide a full SSIL.

One of the essential mechanisms necessary for providing SSI
systems is the scheduling of threads for load balancing across the
cluster. To the best of authors knowledge, no modern DSM system
can provide the full transparency desired for running already ex-
istent applications. The current most popular system that uses the
concept of a shared object space is Terracotta. At present, Terra-
cotta has no concept of global thread scheduler and the programmer
of a multi-threaded application needs to be concerned about man-
ually launching multiple instances of the applications, and manual
load-balancing. Considering these limitations, we believe that if
we had a middleware that could bridge both Terracotta and multi-
threaded Java applications, handling the scheduling of threads and
using the existent shared object space to keep data consistent, we
could run already existing applications in a distributed environment
with almost no extra effort and obtain scalability. This belief holds
the main motivation for developing Caft, a Cluster Abstraction for
Terracotta.

1.1 Development of Caft

The Caft middleware can be configured to either run as a master
or as a worker. The former will load and run the desired multi-
threaded Java application, while the latter will wait for requests
from the master to run threads. The idea is to deploy one mas-
ter and several workers and be able to obtain scalability by having
more CPUs and memory available for running threads and paral-
lelizing the application more than it would be possible with a sin-
gle node. Also, considering the performance versus transparency
trade-of, as well as the availability of source code, we developed
Caft with three different modes: Identity, Full SSI and Serializa-
tion. Identity mode should be used if we have a multi-threaded
Java application that is properly synchronized, or the programmer
has access to the source code and can add synchronization with
ease. Full SSI mode should be used if we have a multi-threaded
Java application that is not properly synchronized, or the program-
mer has no access to the source code. In both modes, all fields
belonging to a Java Runnable target that is passed to the Thread
class will be shared. Serialization mode allows the programmer
to specify the fields that need to be shared using Java annotations,
allowing for a more fine grained configuration.

1.2 Document Roadmap

The rest of this paper is organized as follows. Section 2 de-
scribes the context of our work, including some SSI systems that
share our topics of interest. Section 3 describes the architecture of
the middleware developed, using Terracotta as an infrastructure for
running multi-threaded applications. Section 4 describes the im-
plementation of the middleware in further detail, focusing on the
bytecode instrumentations that it performs on the Java application.
Section 5 describes the evaluation method to measure solution ad-

equacy and performance. Section 6 summarizes all work done, and
draws some conclusions.

2. RELATED WORK

In this section, we are going to focus on solutions developed in
the academic world and in the industry for providing a SSI view
of a cluster, particularly for providing a global address space. In
section 2.1 we describe the Distributed Shared Memory (DSM) ap-
proach, as well as the consistency models that support it and the
adaptations necessary to make a common application work with a
specific consistency model. In section 2.2 we are going to exam-
ine systems that integrate a global address space with a software
platform that can make a regular application written in Java to be-
come cluster-aware and run seamlessly with minimal programmer
intervention. To finalize, in section 2.3 we are going to focus on
scheduling algorithms and migration techniques to improve load-
balancing.

2.1 Distributed Shared Memory

Distributed Shared Memory (DSM) Systems have been around
for quite some time, and it was one of the first solutions adopted
for clustering [28]. Like in traditional shared memory systems,
there is a possibility that two or more processors are working in
the same data at the same time, and as soon as one of them updates
a value the others are working in an out-of-date copy. To solve this
problem, there are a significant number of possible data consistency
models that were adopted by DSM implementations [28]. We stud-
ied Sequential Consistency (SC)[23], Release Consistency (RC)
[17], Lazy Release Consistency (LRC) [22], Entry Consistency
(EC) [6], Automatic Update Release Consistency (AURC) [19] and
Scope Consistency (ScC) [20]. All these consistency models can
reduce communication and give some performance improvements,
but they are very dependent on the applications synchronization
mechanisms and the programmer must be aware of the underlying
model for the application to work properly.

The software DSM systems studied include Ivy [24], Munin [11],
TreadMarks [1] and Brazos [31]. All these prototypes imply a dif-
ferent programming approach that is impractical, as they rely on
one or more of the consistency models defined. It is not desir-
able to have to understand a complex consistency model in order to
guarantee that a multi-threaded application that is perfectly fine on
one computer works correctly on a software DSM.

2.1.1 Software Transactional Memory

So far, all systems and consistency models considered are based
on a pessimistic lock-based approach with the definition of criti-
cal sections to protect data. A new approach called Transactional
Memory [18] was developed to try to circumvent the three main
issues with lock-based solutions: Priority inversion, convoying and
deadlocks. Instead of having locks, all threads are allowed to exe-
cute a critical region at the same time and after finishing the opera-
tions a conflict detection algorithm is run. If there are no conflicts,
the writes are made permanent into memory, otherwise the atomic
operation is rolled back and retried at a later time.

There are two main approaches in implementing STMs: transac-
tion log and locks. The former is implemented by having a transac-
tion log local to each thread,while the latter just gives exclusive ac-
cess of the memory positions to a thread. Unfortunately, as there is
no standard hardware support for transactions, the overheads from
conflict detection and commit cannot be avoided.

2.2 Distributed Virtual Machines

The current techniques used for supporting distributed execution
in a cluster can be divided in three major categories. The first set
can be classified as Compiler-based DSMs and it consists of a com-
bination of a traditional compiler and a DSM system (see section
2.1). The second set can be classified as Cluster-aware Virtual Ma-
chines and it includes implementations of Virtual Machines that
provide clustering capabilities at middleware level. The last set can
be classified as Systems using standard VMs. In this approach, the
applications will run on standard VMs that run on top of a DSM
system.

2.2.1 Compiler-based DSMs

The systems studied that fit in this category are Jackal [35] and
Hyperion [3]. Both have good performance as the application runs
on native code. In this approach, classes with native methods can-
not be distributed as the already compiled code is not portable.
Also, these systems will only work in a homogeneous cluster.

2.2.2 Cluster-aware Virtual Machines

The systems studied that fit in this category are Java/DSM [36],
cJVM [4], Kaffemik [2] and JESSICA2 [38]. The major advantage
of this approach is not having to modify the applications, as all
clustering is done at the VM level. Unfortunately, all of them have
a major disadvantage as they sacrifice one of the most important
features of Java: cross-platform compatibility. Also, the already
existing JVM facilities such as local garbage collection and JIT
compiler are difficult to integrate in this type of systems.

2.2.3 Systems using standard VMs

The systems studied that fit in this category are JavaParty [37],
JavaSymphony [16], Addistant[32], J-Orchestra [34], JavaSplit [15]
and Terracotta [33]. This approach has full support for existing fea-
tures in standard VMs, such as Local GC and JITs. Also, by relying
on bytecode transformations and configurations, there is little need
to modify applications directly. However, these instrumentations
require some work from the programmer, and it is difficult to inte-
grate classes with native code in these type of systems.

2.3 Clustering and thread scheduling

Load-distribution algorithms [29] can be classified in the fol-
lowing categories: static, dynamic and adaptive. Static algorithms
are the most straight-forward approach, a new task is simply as-
signed to a node known a priori via a round-robin policy. Dy-
namic algorithms attempt to improve the performance of their static
counterparts by exploiting system-state information in runtime be-
fore making the decision. Adaptive algorithms consider the system
load, and the system state itself can change the scheduling policies.

Both dynamic and adaptive algorithms raise an important issue:
what is a “heavily-loaded node”? Some authors like Kuntz [21]
have defined the best metric as being the CPU queue length, and no
significant performance was gained by using or combining other
metrics such as the system call rate and the CPU utilization. Also,
a good scheduling algorithm should fulfil two basic requirements:
good locality and low space [26]. The former means that threads
that access the same memory pages should be scheduled to the
same processor, while the latter indicates that the memory require-
ments for the scheduling algorithm should be kept small to scale
with the number of threads or processors.

Work stealing schedulers [8] is a dynamic scheduling solution
where each processor keeps its own queue and when it runs out of
threads it steals and runs a thread from another processor queue.
This way, threads relatively close to each other in the computation
graph are often scheduled to the same processor, providing good

locality.

Depth-first search schedulers [7] is another dynamic scheduling
approach, computing a task graph by detecting certain breakpoints
that indicate a new series of actions that can be performed in paral-
lel by another processor (e.g. a fork). The tasks are then scheduled
to a set of worker processors that hold two queues, one for receiv-
ing tasks (@) and the other to put tasks created (Qo.+), While the
remaining processors are responsible to take tasks from the Qout
queues and schedule it to the Q;,, queue of another processor. This
algorithm aims for lower memory requirements, but it has worse
locality than work stealing schedulers.

DFDeques [26] is a dynamic scheduling approach that seeks the
best of both worlds. Threads are assigned to multiple ready queues
that are depth-first ordered, and are treated as LIFO stacks similar
to the work-stealing schedulers.

2.3.1 Thread Migration

Besides the initial placement, transparent thread migration has
long been used as a load-balancing mechanism to optimize resource
usage in distributed environments [14]. It should be noticed that
the communication costs should not exceed the costs of migra-
tion. Concerning Java systems, the following approaches to per-
form thread migration were found in the literature [30]:

o Static byte code instrumentation: thread migration support
is added by pre-processing the already compiled bytecode
source and adding statements which backup the thread state
in a special backup object. When an application requires a
snapshot of a thread state, it just has to use the backup object
produced by the code inserted by the pre-processor.

o Extending the JVM and its interpreter: thread migration
support is simply added as an extension to a normal JVM in-
terpreter, as done in systems such as JESSICA [25]. This is
accomplished by having a global thread space that spans the
entire cluster and a mechanism that can separate the hardware-

dependent contexts in native code and the hardware-independent

contexts at bytecode level. This way, a thread can migrate
with relatively good granularity between each bytecode in-
struction that is interpreted.

o Using the JVM Debugger Interface (JVMDI): thread mi-
gration support is added by compiling Java applications with
extra debugging information that allows access to the thread
stack as well as the introduction of thread migration points.

Another issue that we need to address is at which code points
should migration be considered as a good option. Cho-Li et all [13]
define two basic points: the beginning of a Java method invocation
and the beginning of a code block pointed by a back edge in the
computational graph. The former indicates a new operation that
can most likely be done in another node (very small methods that
do not typically compensate will be inlined by the compiler and not
considered for migration), while the latter represents the beginning
of a loop, which is also a good option as it needs a more or less
prolonged computation until it finishes.

2.3.2 Virtual Machine Migration

The need to provide a cluster to support multiple operating sys-
tems, applications, and heterogeneous hardware has led to the de-
velopment of Virtual Machine Monitors (VMM) or hypervisors that
run right on top of the hardware and schedule one or more operat-
ing systems across the physical CPUs. The live migration mech-
anism is less granular than thread migration. However, a recent

performance study made by Chen et all. [12] suggests that the vir-
tual machine migration approach can compete with thread migra-
tion. IBM have developed the z/VM solution [27], an hypervisor
software capable of supporting several thousands of Linux servers
running on a single mainframe. Xen [5] is another hypervisor that
runs on standard x86 machines, supporting many popular operating
systems such as Solaris, Linux and Windows.

3. ARCHITECTURE

This section describes the middleware Caft (Cluster Abstrac-
tion for Terracotta), developed during this work to allow Terra-
cotta to run simple Java multi-threaded applications with minimum
changes or concerns due to the different environment. We will start
by familiarizing the reader with the mechanisms already offered by
Terracotta that motivate it to be a very good choice for clustering
application servers such as Tomcat or JBoss. After this introduc-
tion, we will describe the high-level architecture of the middleware,
as well as all compromises assumed. To finalize, we are going
to present the packages and classes that compose the middleware,
along with a description of their functions and data structures used.

3.1 Terracotta

As Terracotta clusters JVMs transparently with no explicit API,
control over what gets clustered and which operations in the appli-
cation are sensitive to clustering is performed through the Terra-
cotta configuration. The three main sections of the Terracotta con-
figuration that must be specified by the developer are: roots, locks,
and classes to instrument.

e Root: A root defines a field to be put in the global heap and
shared across all JVMs, maintaining object identity. A root
is what forms the top of a clustered object graph and allows
Terracotta to distinguish which objects are shared and which
are not.

e Locks: Access to shared roots need to be locked in Terra-
cotta, in order to guarantee proper data consistency. It is the
only allowed way to access shared objects in Terracotta. Ter-
racotta supports auto and named locks. The former allows
Terracotta to use already existing synchronization present in
the methods that access shared objects while the latter allow
the definition of a global lock across the cluster.

e Instrumented Classes: Classes that access shared roots, or
are shared themselves in the global heap, need to be instru-
mented at bytecode level to guarantee that Terracotta applies
modifications and adds proper locking.

With the current version of Terracotta, threads created never leave
the home node and adapting an existing application implies that the
programmer needs to add synchronization where needed, which in
case of a large application can be troublesome.

3.2 Caft - a middleware that extends Terra-
cotta

The Caft middleware has two major components: worker and
master. The former runs a Thread Service that provides the in-
terface for instantiating new threads, as well as the operations pro-
vided by the Java Thread Class (whose methods can be regarded
as an implicit interface), while the latter runs the main class of
a runnable Jar containing a multi-threaded application, spawning
threads in worker machines as necessary. It is assumed that the Jar
needs to be available on both the master and the workers.

Both master and workers need to share the thread fields whose
identity must be preserved across the cluster and its changes prop-
agated. The master opens the Jar passed as argument, detects the
class defined as the main entry point and runs the main method us-
ing the Java reflection API. The master uses a custom Classloader,
also present in the worker, that applies the instrumentations nec-
essary to make the Thread calls cluster aware, and/or adding syn-
chronization. Bytecode instrumentations are made using the ASM
framework [9], allowing us to add methods and changing calls
without much overhead. For the master and worker communica-
tion, we use simple RMI calls supported by the Spring framework
to ease development and configuration.

To simplify the implementation, the coordinator component that
decides which node gets to execute the next thread is integrated as
a singleton in both components. The data structures that compose
the state of the coordinator, such as which nodes are available and
their loads, are maintained as roots in Terracotta’s Distributed Share
Objects (DSO) space. This approach also avoids the need to have
an extra node that serves as a coordinator and the persistence of its
state is guaranteed by the Terracotta Server.

To better illustrate our design, we present the Terracotta architec-
ture in Figure 1 with the Caft middleware, running a worker in one
of the Terracotta clients and a master in another. The middleware
runs on top of Terracotta, loading the application and performing
bytecode instrumentations at load time. If configured for running a
worker, Caft will start an RMI service using the Spring framework,
keeping the Java application in its own class path to ensure every-
thing works when it receives a Runnable target to execute in it. If
configured to run a master, it will simply run the application, just
as already described.

/—C

/—TErVaCDlla Client- /—Terlacotla Client-

Caft (Worker) {«—— Application

l l

Terracotta — Terracotta

— ——

Java Virtual Java Virtual
Machine Machine

Caft (Master) [«—— Application

Terracotta Server

l

Terracotta Server (Passive)

oo

Figure 1: Terracotta architecture running Caft

Considering that we need to have a trade-off between transparency
and performance, as less transparency should allow for better cus-

tomization and tuning, we developed Caft with three different modes.

The mode to be used is passed as an argument to both master and
workers, and they should not be mixed. The modes supported are
presented in the list below:

o Identity: Identity mode assumes that the application is prop-
erly synchronized, or at least, that the user has access to the
source code and can add synchronization with more or less

1 - register
2/5 - getLessLoadedNode()

Terracotta Server Array 1 - register

3 createThread(0)
4 clusterStart(0)
8 — clusterJoin(0)

Worker 1

6 — createThread(1)
7 - clusterStart(1)
9 — clusterJoin(1)

Figure 2: Terracotta deployment scenario with Caft

work. All thread fields are shared in the Terracotta DSO to
ensure that the writes are propagated and all methods are an-
notated with the AutolockWrite Terracotta annotation,
so that each synchronized block can be converted into a Ter-
racotta transaction.

Full SSI (Single System Image): Full SSI mode assumes
that the application lacks proper synchronization for usage
with Terracotta, or the source code is not available. Full SSI
behaves just like Identity mode but with extra instrumenta-
tions that add getters and setters to each field, with proper
synchronization, and it also synchronizes array writes.

e Serialization: Serialization mode allows the user to decide
which fields of the Runnable class to be run in a Thread are
meant to be clustered and have identity preserved, and the
rest are simply serialized and copied via RMI, allowing for
local thread variables that do not really need synchronization.

As an example, consider the following deployment scenario, il-
lustrated by Figure 2, with two worker machines that will receive
Java Runnable targets and use them to create local threads, one
master that will run the application, and a Terracotta Server Array
holding the DSO.

In this example, the master is running a multi-threaded applica-
tion that launches two threads and waits for them to finish. The
worker machines register themselves with the Coordinator in step
one, whose state is shared in the Terracotta Server Array in order to
be accessible by the other machines. The master checks the coordi-
nator state in step two, which determines that Worker 1 is the less
loaded node (at this point, could be either of them as both never
had any thread assigned). In step three, the master sends the thread
ID to that worker and makes the Runnable target available to it,
either copying it via RMI or putting it in the Terracotta DSO, de-
pending on the mode used. The worker creates a local instance of
a Java Thread using the Runnable target, which is started also by a
remote call of the master in step four. The master will then attempt
to create another thread, which after consulting the Coordinator in
step five it returns the node Worker 2 as being the most appropri-
ate, as the master already assigned a thread to Worker 1. A thread
is created and started in Worker 2 in steps six and seven, analo-
gous to the first thread created in Worker 1. After this, the master
joins both threads, illustrated by steps eight and nine, making an
RMI call to the workers which will execute a local join in the Java
Thread object corresponding to the thread. As we are using the
DSO in Terracotta, the master will see every relevant change in the
objects passed as a Runnable target to both threads.

4. IMPLEMENTATION

In Caft, we instrument the application classes using the ASM
framework [9]. We developed a method adapter named AddClust -
erThreadAdapter for implementing the indirections necessary
for replacing Java Thread instantiations and method calls with our
special ClusterThread class. We also developed a class adapter
named ThreadClassAdapter that applies method adapters and
adds annotations, depending on the mode chosen by the user.

4.1 Thread instrumentations

The AddClusterThreadAdapter instrumentation replaces
Java type opcodes that have the Java Thread type as argument with
equal opcodes with the ClusterThread type. It also replaces the
getfield and getstatic opcodes type with ClusterThread
instead of Thread. As the ClusterThread class extends the original
Java Thread class, type compatibility is guaranteed. For the method
calls, some of the methods belonging to the Thread class are final,
and therefore cannot be overridden. To circumvent this, we re-
named the final methods and replaced Thread method calls with the
renamed method. For example, if we have an invokevirtual
opcode that invokes the final “join” method of the Thread class, we
invoke the “clusterJoin” method instead.

The ThreadClassAdapter instrumentation is the class adapter

responsible for adding Terracotta annotations and applying instru-
mentations, depending on the mode chosen. This instrumentation
applies the AddClusterThreadAdapter to all methods of the
Java multi-threaded application that is going to run in the middle-
ware.

In Identity mode, the ThreadClassAdapter adds the Ter-
racotta AutolockWrite annotation, in order to take advantage
of the local synchronization to add a Terracotta transaction in ev-
ery method. In Full SSI mode, the ThreadClassAdapter also
applies the GetterSetterAdapter instrumentation for adding
synchronization at its lowest level, on field access and array writes.
To finalize, in Serialization mode, this instrumentation applies the
CaftRootAdapter instead. The CaftRootAdapter instru-
ments access to specific fields annotated by the programmer, and
does not apply any Terracotta annotation, as it is not needed due
to the fact that the remaining fields will be serialized. Also, this
instrumentation adds the Serializable interface to every class auto-
matically.

4.2 Fullssi instrumentations

For adding getters, we implemented an ASM class adapter trans-
formation that adds a getter for each non-static field. Each get-
ter has the Java synchronized method modifier and is anno-
tated with the Terracotta Aut olockRead annotation to allow for
concurrent reads of the field, but still in the context of a Terra-
cotta transaction. For generating setters, we implemented a sim-
ilar class adapter, with the corresponding AutolockWrite an-
notation. We also developed equivalent instrumentations for static
fields.

To use the getters and setters generated, we developed a method
adapter that replaces direct field accesses with method calls. As
such, the method adapter replaces the get field and putfield
instructions with invokevirtual instructions that will invoke

the generated corresponding getters and setters. Equivalent get static

and put static instructions will be replaced by invokestatic
instructions that will invoke the corresponding static getters and
setters. In array access, writes using array store instructions also
need synchronization at some point if the array is shared by Ter-
racotta. Considering this scenario, we developed a new class with
static methods that consumes exactly the same arguments and per-
forms the array store inside a synchronized block. Our method

adapter will then replace the array store instruction by an invoca-
tion of the method corresponding to the data type

4.3 Serialization mode - Caft Root mapping

So far, both the Identity and Full SSI mode rely exclusively on
the Terracotta DSO, sharing every field belonging to a Runnable
target and guaranteeing object identity for the entire thread con-
text. However, every field that is shared holds a communication
cost, and in some cases we could simply copy the data and read
it locally, without need for further synchronization with the mas-
ter node for the program to work correctly. This assumption is the
main motivation to add an extra mode, that relies on plain Java se-
rialization for passing a Runnable target to a worker node.

In this mode, we use ASM to add the Java Serializable interface,
along with the Serialization uid if it does not exist already, in order
to avoid the scenario where the user or programmer has to manually
change the source code to add a new interface that was not needed
before. This allows us to instantiate threads on remote workers with
Runnable targets that are serialized by RMI. However, to guaran-
tee correctness in some applications, we need to provide a way to
preserve object identity between fields of a Runnable target and
other fields that remain in the home node. It should be noticed that
the original Terracotta Root annotation for fields does not work in
this case, as the changes in the Runnable object in the worker node
are done in a serialized copy, which is considered by Terracotta as
just another different object, and as such the synchronization is not
done.

To solve this problem, we introduce a new Java annotation “Caft-
Root”. This annotation should be applied to all pairs of fields
whose identity should be the same across the cluster. Pairs of fields
are created by assigning the same string key in the key annotation
parameter. We illustrate this concept with a code example below,
taken directly from the Sunflow modification applied to Serializa-
tion mode. In this example, we show the BucketThread class
and the BucketRenderer class. A bucket is a Sunflow concept
corresponding to the set of pixels to be generated by a thread.

public class BucketThread implements
Runnable {
private int threadlD;

@CaftRoot(key="display")
private Display display;
@CaftRoot(key="bucketCounter")
Integer bucketCounter;
@CaftRoot(key="bucketCoords")
int[] bucketCoords;

}

public class BucketRenderer implements
ImageSampler {

@CaftRoot(key="display ")
Display display;
@CaftRoot(key="bucketCounter")
Integer bucketCounter;
@CaftRoot(key="bucketCoords")
int[] bucketCoords;

In this example, we map the Display object corresponding to
the shared data structure used by all threads to store the rendering

calculations, as well as the array used to determine the next bucket
to render and an Integer counter to keep track of the number of
buckets processed. When a new thread is instantiated for comput-
ing a new bucket, the instance of the BucketThread class will
be serialized and sent to a worker node. However, the Caft middle-
ware will use the Terracotta DSO to hold the fields annotated with
our special CaftRoot annotation. This annotation has the same
semantics as the original Terracotta Root annotation, meaning that
any fields annotated with it will be shared among all cluster nodes.
This way, the programmer gets the ability to choose pairs of fields
to preserve identity, while the remaining fields will be copied and
no synchronization will be done between them.

In practice, we implement the access to fields annotated with
the CaftRoot annotation by having two concurrent hash maps,
one that that associates a string composed by the concatenation of
the class name plus the field name with the key specified by the
user, and another that associates this key with the concrete object
instance. Both maps will belong to the Terracotta DSO to be acces-
sible in every node. The table 1 summarizes the mapping that will
be done for this example.

Table 1: CaftRoot mapping

Map Key Value
BucketRendererdisplay .
BucketThreaddisplay display
BucketRendererbucketCounter
fieldToKey BucketThreadbucketCounter bucketCounter
BucketRendererbucketCoords bucketCoords
BucketThreadbucketCoords

display Display instance

clusteredFields bucketCounter Integer instance

bucketCoords int[] instance

4.4 Caft Root Adapter

Considering the mapping done in the previous subsection, all
that is left to do is to find a way to fill the “fieldToKey” map, and
add instrumentations that intercept field access and get the values
from the “clusteredFields” map, leaving the stack in a correct state.
The “fieldToKey” map is filled at class load-time, using our custom
class loader and the Java reflection API to detect which fields have
the mapping put down by the programmer. The field access instru-
mentations are done by a special method adapter that is applied to
every method in the application, which after checking if there is a
key for a class and field name pair replaces the coded accesses as
follows:

// Getfield

Idec key

invokestatic org/terracotta/clusterthread/
caftroot/CaftRootMap getField (Ljava/lang
/Object;Ljava/lang/String ;) Ljava/lang/
Object;");

checkcast fieldType

For the get field bytecode, it should be reminded that at this

point we have the object instance on stack, so we simply generate

code that pushes the key and invokes a static method that will con-

sume both arguments and get the value present in the “clustered-

Fields” map. After this, we also generate a checkcast bytecode

to ensure that the value put on stack is the same type of the field.
The field type information is available via the ASM framework. For
the put field bytecode, we also need to push the key onto the
stack, so it can be used when our static method that puts the new
field value into the “clusteredFields” map. For the static versions,
the instrumentations are similar to the ones described for non-static
fields.

S. EVALUATION

In this section we are going to describe the methodology used for
evaluating the prototype, and its results. We used up to three ma-
chines in a cluster, with Intel(R) Core(TM)2 Quad processors (with
four cores each) and 8GB of RAM, running Linux Ubuntu 9.04,
with Java version 1.6.0_16, Terracotta Open Source edition, ver-
sion 3.3.0, and three multi-threaded Java applications that have the
potential to scale well with multiple processors, taking advantage
of the extra resources available in terms of computational power
and memory (Fibonacci, Sunflow renderer and Matrix by vector
multiplication). We are also concerned with the transparency of
our approach, and how much is the impact of our bytecode instru-
mentations.

5.1 Fibonacci

For testing purposes, we developed a simple application that
computes Fibonacci numbers using Binet’s Fibonacci number for-
mula. Our application takes the maximum number of Fibonacci to
compute, along with the number of threads, and splits the work-
load by having each thread compute a number of Fibonacci num-
bers corresponding to the maximum given divided by the number
of threads. Concerning the several modes of our middleware, in
Full SSI mode we simply edited the tc-config.xml file of
our middleware to add the classes necessary to be instrumented
by Terracotta. For Identity mode, we needed to add some syn-
chronized blocks using the corresponding keyword. For the Seri-
alization mode, we used a ConcurrentHashMap shared by all
threads and mapped by the CaftRoot, in order to store the private
arrays of each thread.

5.1.1 Bytecode size

For the bytecode size measurements, we ran the application in
our middleware in a single node, running both the master and the
worker components, and used our custom Classloader to keep track
of the bytecode size of each class, before and after applying our
instrumentations in each mode. Since each mode needs different
changes in the source code (or none), as described in the previous
section, the original bytecode size before applying the bytecode
instrumentations will be different, depending on the mode cho-
sen. Also, we have taken all the measurements in the master node,
which is the one that will load all the application classes needed.
The results are shown in the table below:

Table 2: Fibonacci - Bytecode size

Mode Original | After instr. | Overhead
(bytes) (bytes) ratio
Serialization 7419 8313 1.12
Identity 6275 6702 1.06
Full SST 6253 8174 1.31

As we can observe, the mode with the largest overhead is the Full
SSI mode, followed by the Serialization and Identity. Considering
the bytecode instrumentations defined in section 4, this is expected,
as the Full SSI mode adds more methods to each class. The Serial-
ization mode shares a ConcurrentHashMap as demonstrated in
the previous section, so it is expected to have the largest bytecode
in the end, while Identity mode gets to have the least impact.

5.1.2 Execution Time

For the execution time measurements, we configured our ap-
plication to compute the first 1200 numbers of the Fibonacci se-
quence, with a number of threads directly proportional to the num-
ber of threads available. Also, we tested our application using only
the Terracotta middleware, to have a general idea of how the usage
of the original Terracotta platform impacts the performance. We
considered two different scenarios for the tests: Terracotta Inst.
only and Terraocotta Inst + Sharing. The former tested the ap-
plication with only the Terracotta bytecode instrumentations acti-
vated, while the latter also shared the same data structures shared
in the Identity and Full SSI modes. Finally, we tested our appli-
cation in a standard local JVM, for comparison purposes with our
distributed solution. The results are presented in Figure 3.

Time (sec.)

10
5 N | .

2 4 8 12

Number of threads

mlocal = Terracotta-Inst.only ® Terracotta- Inst. + sharing ® Caft- Identity Mode m Caft - Full SS1 Mode

Figure 3: Fibonacci - Execution times for Identity and Full SSI
modes

As we can observe in the graph, the overhead introduced by Ter-
racotta is not much, as we only share a relatively small array in
each thread for storing the Fibonacci numbers, along with some
auxiliary variables. By adding our middleware, we introduce an
extra overhead which is not very significant, even when running it
in Full SSI mode and as such, it is possible to obtain smaller exe-
cution times by adding more nodes to the Terracotta cluster.

For Serialization mode, we made the necessary code changes and
measured the execution time in a local JVM, in our middleware,
in Terracotta with only the Terracotta instrumentations enabled, in
Terracotta with instrumentations and sharing of data equivalent to
the one needed for the Serialization mode to work in Caft. The
results are presented in Figure 4.

As we can observe in the graph, the overhead introduced by Ter-
racotta is very similar to the one in the previous case, despite the
source code being slightly different. The overhead introduced by
Serialization mode ends up being larger, but it is still able to achieve
lower execution times that a single node in a local JVM.

In this case, the Identity mode scales very well, followed by the
Full SST and as last, Serialization. The Serialization mode ends up
sharing almost the same structures as Identity mode, and the more
fine grained approach does not compensate. In the next section,
we are going to test our middleware with Sunflow, an Open Source
Java multi-threaded renderer.

5.2 Sunflow

Time (sec.)

m I
5
0

Number of threads

Local Terracotta- Inst. Only M Terracotta- Inst + sharing M Caft - Serialization Mode

Figure 4: Fibonacci - Execution times for Serialization mode

Sunflow is an Open Source rendering system for photo-realistic
image synthesis. It supports rendering of scenes to popular image
formats such as PNG, TGA and HDR. The scenes can be speci-
fied using Java or a special scene graph language, typical of other
similar applications such as POV-Ray.

5.2.1 Source code changes

As with the previous Fibonacci application, in Full SSI mode
we simply edited the tc-config.xml file of our application to
add the classes necessary to be instrumented by Terracotta. For
Identity mode, we needed to add some synchronized blocks. For
the Serialization mode, the code changes necessary were described
in section 4.3 as a pratical example. We measured the bytecode size
overhead of the several modes in the table below:

Table 3: Sunflow - Bytecode size

Mode Original | After instr. | Overhead
(bytes) (bytes) ratio
Serialization | 400559 408518 1.01
Identity 399819 416429 1.04
Full SSI 405687 542191 1.34

In the Sunflow application case, the quantity of classes that need
to be instrumented is larger than in the previous Fibonacci applica-
tion. As such, the Serialization mode bytecode overhead is less than
its counterparts, as the programmer annotates the specific methods
that require synchronization directly in the source code. Identity
mode will add the AutolockWrite annotation to every method,
and as such, the original bytecode is slightly smaller than its Se-
rialization counterpart, but after applying the instrumentations, it
becomes larger. The Full SSI still remains the mode that generates
the largest bytecode, due to the extra methods that need to be added
in each class.

5.2.2 Execution time

For the execution time measurements, we configured Sunflow to
render one of the example images, with a number of threads directly
proportional to the number of threads available. The results are
presented in figure 5:

As we can observe in the graph, the Terracotta bytecode in-
strumentations add a considerable overhead, even when we do not
share any data in the DSO. By adding the same data structures that
are shared in both Identity and Full SSI modes, the execution times

Time (min.)

40

35

30

20

15

10—

s i
0

2 4 8 12

Number of threads

Mlocal M Terracotta-Instonly M Terracotta- Inst+sharing M Caft - Identity Mode M Caft - Full SSI Mode

Figure 5: Sunflow - Execution times for Identity and Full SSI
modes

of the application in Terracotta for two and four threads are very
similar to the ones presented by Caft in Identity mode, for the same
number of threads. Our middleware can then obtain better exe-
cution times by using the extra processors and obtain scalability
compared to Terracotta by itself. The Full SSI mode adds a more
significant overhead, having the greatest execution times.

For Serialization mode, we performed the necessary code changes
and shared only the data structures necessary for storing the results.
For comparison purposes, we measured the execution time in Ter-
racotta with instrumentations enabled, and also with an equivalent
sharing of data. The results are presented in Figure 6.

Time (min.)

: 1 1

Number of threads

mlocal = Terracotta-Instonly ®Terracotta - Inst + sharing W Caft - Serialization Mode

Figure 6: Sunflow - Execution times for Serialization mode

As we can observe in the graph, the overhead introduced by both
the Terracotta instrumentations and sharing of data decreased and
its execution time is comparable with a standard JVM. With our
middleware on top, we are able to achieve better execution times
than the ones that are possible with only one node and a standard
JVM.

5.3 Matrix-vector multiplication

For testing purposes, we also developed a multi-threaded appli-
cation that multiplies a matrix by a vector, splitting the matrix rows
across the threads. As with the previous applications, in Full SSI
mode we simply edited the tc-config.xml file of our applica-
tion to add the classes necessary to be instrumented by Terracotta.
For Identity mode, we simply ran the application and hoped that
the synchronization present would suffice. For Serialization mode,
we added the CaftRoot annotation to share the array responsible
for storing the result of the multiplication of the matrix rows by the
vector.

5.3.1 Bytecode size

As with the previous examples, we ran the application in our
middleware in a single node, running both the master and the worker

components, and used our custom Classloader to keep track of the
bytecode size of each class, before and after applying our instru-
mentations in each node. The results are shown in the table below:

Table 4: Matrix-vector multiplication - Bytecode size

Mode Original | After instr. | Overhead
(bytes) (bytes) ratio
Serialization 6561 7466 1.13
Identity 6472 6863 1.06
Full SSI 6252 8813 1.41

In this case, the results concerning the bytecode size are simi-
lar to the ones obtained by the Fibonacci application. Before we
apply the instrumentations, code size is slightly smaller in the Full
SSI mode due to the fact that the programmer does not introduce
extra synchronization or Java annotations for clustering the appli-
cation. In Identity mode however, we require that the programmer
adds some synchronized blocks, impacting the original size. Code
size is further increased in Serialization mode, by also adding Java
annotations. After we apply the instrumentations, Full SSI mode
generates the largest code, followed by Serialization and Identity
mode.

5.3.2 Execution time

For the execution time measurements, we tested our application
by multiplying a matrix of 32768 rows by 32768 columns and a
vector of 32768 positions. As with previous applications, we ran
the matrix by vector multiplication with no more than one thread
per processor and measured the time taken by each mode with two,
four, eight and twelve processors. We also tested our application
in a standard local JVM, for comparison purposes with our dis-
tributed solution. The results for Identity and Serialization mode
are presented in Figure 7.

4000

3500

3000

2500
2000
1500
1000
1
0
2 4 8 12

Number of threads

Time (sec.)

mlocal #Terracotta-InstOnly. ®Terracotta-Inst+sharing M Caft - Identity Mode = Caft - Full SSI Mode

Figure 7: Matrix*vector - Execution times for Identity and Full
SSI modes

As we can observe in the graph, the Terracotta bytecode instru-
mentations add a small overhead, even when we do not share any
data in the DSO. By adding the same data structures that are shared
in both Identity and Full SSI modes, the execution times of the ap-
plication in Terracotta for two and four threads are very similar to
the ones presented by Caft in Identity mode, for the same number of
threads. Our middleware can then obtain better execution times by
using the extra processors and obtain scalability compared to Terra-
cotta by itself. The Full SSI mode adds a very significant overhead,
having execution times much greater than any of its counterparts,

as every write in an array of results needs to be propagated to the
Terracotta Server.

As with the Sunflow application, we still do not obtain scalability
when compared to a standard JVM. Considering this, we performed
the necessary code changes to run the application in Serialization
mode, and sharing only the data structures necessary for storing the
results. The results are presented in Figure 8.

600

500

400

300

200
" [
0

Number of threads

Time (sec.)

mlocal = Terracotta-Instonly M Terracotta- Inst+sharing M Caft- Serialization Mode

Figure 8: Matrix*vector - Execution times for Serialization
mode

As we can observe in the graph, the results are slightly better than
the previous modes, but the execution times are still not better than
a local JVM. This can be explained by the fact that this applica-
tion is much more memory-intensive than CPU intensive, spending
a more considerable amount of time writing results to array po-
sitions instead of computing the matrix, which is pretty trivial in
comparison with the previous applications, where we computed Fi-
bonacci numbers or performed ray-tracing calculations. This type
of applications should not scale very well in Terracotta, in terms of
speed-up, but we believe the extra memory available in the clus-
ter can still give a competitive advantage over a single node. This
assumption shall be tested and measured in section 5.3.3.

5.3.3 Memory usage

In this section, we attempted to stress test our middleware from
the memory usage perspective, to check if it was possible to take
advantage of the extra memory provided by several nodes. For this
purpose, we ran the application using three different matrix sizes:
32768x32768, 62556x32768, 53090x53090. The memory occu-
pied by each of them was estimated considering that each int
value has at least 4 bytes. The heap sized was fixed at 7 GB of
data, as the machines were limited to 8 GB of RAM and we wanted
to save some space for other JVM objects and other applications
running in each node. The results are shown in Figure 9:

In this example, we managed to allocate a matrix of 62556x32768
with two nodes, corresponding to 8 GB of data, while with one
node only we would get a java.lang.OutOfMemoryError.
In a similar way, with three nodes we could allocate about 10.5
GB of data, while with only two nodes we got the same exception.
In conclusion, adding more nodes allowed us to perform computa-
tions with a matrix in memory split across several machines, which
would not be possible if the application was running in a local JVM.

6. CONCLUSION

In this work, we explored a different use case for Terracotta, the
running of simple, multi-threaded applications, that were not de-
signed with Terracotta or clustering in mind. We attempted to de-
velop an approach with the best transparency possible that would
not require deep changes in the application, and still be powerful
enough to achieve good performance.

Memory (Gigas)

1 2 3

Number of machines

M Caft - Serialization Mode

Figure 9: Matrix*vector - Memory Stress

The Identity mode allows the programmer to run multi-threaded
applications in a distributed way, using only pure Java and adding
synchronization as necessary. The overhead will be very dependent
on the thread context itself, concerning the amount of data shared
and manipulated.

By implementing a bytecode approach that adds synchroniza-
tion on field and array access, we concluded that it is possible to
improve the Terracotta DSO usage by automatically adding some
extra synchronization that is needed for defining transaction bound-
aries. This mode should be kept optional in our middleware, due to
the extra overhead observed in the section 5.

And last, the Serialization approach allows for a more fine-grained
sharing of objects on the global heap. This provides a “mixed” se-
mantic that is not very typical of Terracotta, as the most common
use case is to use “Ehcache” replication which either serializes ev-
ery object put on cache or preserves identity. We concluded, in sec-
tion 5, that this approach can hold very good results in real-world
applications such as the Sunflow renderer.

7. REFERENCES

[1] C. Amza, A. L. Cox, S. Dwarkadas, H. Dwarkadas,

P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel.

Treadmarks: Shared memory computing on networks of

workstations. IEEE Computer, 29:18-28, 1996.

J. Andersson, S. Weber, E. Cecchet, C. Jensen, V. Cahill,

JA.Y,S.W.Y,E.C.b,C.1.Y, V.C. Y, and T. College.

Kaffemik - a distributed jvm on a single address space

architecture, 2001.

G. Antoniu, L. Boug, P. Hatcher, M. MacBeth, K. Mcguigan,

and R. Namyst. The hyperion system: Compiling

multithreaded java bytecode for distributed execution, 2001.

Y. Aridor, M. Factor, and A. Teperman. cjvm: a single

system image of a jvm on a cluster. In In Proceedings of the

International Conference on Parallel Processing, pages

4-11, 1999.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, L. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages
164-177, New York, NY, USA, 2003. ACM.

[6] B. Bershad, M. Zekauskas, and W. Sawdon. The midway

distributed shared memory system. In Compcon Spring ’93,

Digest of Papers., pages 528-537, Feb 1993.

G. E. Blelloch, P. B. Gibbons, G. J. Narlikar, and Y. Matias.

Space-efficient scheduling of parallelism with

synchronization variables. In SPAA "97: Proceedings of the

ninth annual ACM symposium on Parallel algorithms and

2

—

3

—

[4

—

[7

—

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

architectures, pages 12-23, New York, NY, USA, 1997.
ACM.

R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. J. ACM,
46(5):720-748, 1999.

E. Bruneton, R. Lenglet, and T. Coupaye. Asm: A code
manipulation tool to implement adaptable systems. In /n
Adaptable and extensible component systems, 2002.

R. Buyya, T. Cortes, and H. Jin. Single system image. Int. J.
High Perform. Comput. Appl., 15(2):124-135, 2001.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel.
Implementation and performance of munin. SIGOPS Oper:
Syst. Rev., 25(5):152-164, 1991.

P.-C. Chen, C.-I. Lin, S.-W. Huang, J.-B. Chang, C.-K.
Shieh, and T.-Y. Liang. A performance study of virtual
machine migration vs. thread migration for grid systems.
Advanced Information Networking and Applications
Workshops, International Conference on, 0:86-91, 2008.
W. Z. Cho-Li, C. li Wang, and F. C. M. Lau. Lightweight
transparent java thread migration for distributed jvm. In In
International Conference on Parallel Processing, pages
465472, 2003.

B. Dimitrov and V. Rego. Arachne: A portable threads
system supporting migrant threads on heterogeneous
network farms. IEEE Transactions on Parallel and
Distributed Systems, 9:459-469, 1998.

M. Factor, A. Schuster, and K. Shagin. Javasplit: A runtime
for execution of monolithic java programs on heterogeneous
collections of commodity workstations. Cluster Computing,
IEEE International Conference on, 0:110, 2003.

T. Fahringer. Javasymphony: A system for development of
locality-oriented distributed and parallel java applications. In
In Proceedings of the IEEE International Conference on
Cluster Computing (CLUSTER 2000. IEEE Computer
Society, 2000.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,

A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In In
Proceedings of the 17th Annual International Symposium on
Computer Architecture, pages 15-26, 1990.

M. Herlihy, J. E. B. Moss, J. Eliot, and B. Moss.
Transactional memory: Architectural support for lock-free
data structures. In in Proceedings of the 20th Annual
International Symposium on Computer Architecture, pages
289-300, 1993.

L. Iftode, C. Dubnicki, E. W. Felten, and K. Li. Improving
release-consistent shared virtual memory using automatic
update. In In The 2nd IEEE Symposium on
High-Performance Computer Architecture, pages 14-25,
1996.

L. Iftode, J. P. Singh, and K. Li. Scope consistency: A bridge
between release consistency and entry consistency. In In
Proceedings of the 8th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 277-287, 1996.

F. Informatik, T. H. Darmstadt, T. Kunz, and T. Kunz. The
influence of different workload descriptions on a heuristic
load balancing scheme. IEEE Transactions on Software
Engineering, 17(17):725-730, 1991.

P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release
consistency for software distributed shared memory. In In
Proceedings of the 19th Annual International Symposium on
Computer Architecture, pages 13-21, 1992.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]
[34]

[35]

[36]

(371

(38]

L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess progranm. /[EEE Trans.
Comput., 28(9):690-691, 1979.

K. Li. Ivy: a shared virtual memory system for parallel
computing. pages 94—101, Aug. 1988.

M.J. M. Ma, C.-L. Wang, and F. C. M. Lau. Jessica:
Java-enabled single-system-image computing architecture. J.
Farallel Distrib. Comput., 60(10):1194-1222, 2000.

G. J. Narlikar. Scheduling threads for low space requirement
and good locality. In SPAA *99: Proceedings of the eleventh
annual ACM symposium on Parallel algorithms and
architectures, pages 83-95, New York, NY, USA, 1999.
ACM.

L. Parziale, E. M. Dow, K. Egeler, J. J. Herne, C. Jordan,

E. L. Alves, E. P. Naveen, M. S. Pattabhiraman, and

K. Smith. Introduction to the new mainframe: z/vm basics.
IBM Corp., Riverton, NJ, USA, 2007.

J. Proti¢, M. Tomasevi¢, and V. Milutinovié. Distributed
Shared Memory: Concepts and Systems. John Wiley & Sons,
1998.

N. G. Shivaratri, P. Krueger, and M. Singhal. Load
distributing for locally distributed systems. Computer,
25(12):33-44, 1992.

B. H. Sirac, S. Bouchenak, and D. Hagimont. Approaches to
capturing java threads state. In In Middleware 2000, 2000.
E. Speight and J. K. Bennett. Brazos: A third generation dsm
system. In IN PROCEEDINGS OF THE 1ST USENIX
WINDOWS NT SYMPOSIUM, pages 95-106, 1997.

M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A bytecode
translator for distributed execution of "legacy" java software.
pages 236-255. Springer-Verlag, 2001.

Terracotta. A technical introduction to terracotta. 2008.

E. Tilevich and Y. Smaragdakis. J-orchestra: Automatic java
application partitioning. pages 178-204. Springer-Verlag,
2002.

R. Veldema, R. Bhoedjang, and H. Bal. Distributed shared
memory management for java. In In Proc. sixth annual
conference of the Advanced School for Computing and
Imaging (ASCI 2000, pages 256-264, 1999.

W. YU and A. COX. Java/dsm: A platform for
heterogeneous computing. 1997.

M. Zenger. Javaparty - transparent remote objects in java,
1997.

W. Zhu, C.-L. Wang, and F. C. M. Lau. Jessica2: A
distributed java virtual machine with transparent thread
migration support. Cluster Computing, IEEE International
Conference on, 0:381, 2002.

