
Scalable and Performance-Critical Data Structures for Multicores
(extended abstract of the MSc dissertation)

Mudit Verma
Departamento de Engenharia Informática

Instituto Superior Técnico

Abstract. In this work, we study the scalability, performance, design and implementation of basic data structure
abstractions, such as a queue, for next generation multicore systems. We propose two algorithms for concurrent
queue. Our first algorithm, a wait-free queue, provides an efficient replacement to a lock-free queue. Lock-free
queue is considered very efficient, but does not provide local progress guarantee for each thread. It also performs
badly under stressed conditions. Our wait-free queue, not only provides local progress guarantee, but also depicts
high performance and positive scalability under highly stressed conditions. Our second algorithm, a sequentially
consistent queue, further achieves high performance by changing the consistency model. All the queue algroithms
provide linearizability, which orders the operations on a global time scale. However, our sequentially consistent
queue orders the operations in a program order, which is local to a thread. Our experimental results shows that our
algorithms outperforms existing state-of-the-art algorithm by a factor of 10 to 15.

1 Introduction

Contrary to the rapid development in multicore hardware architectures, softwares are still not able take full advantage
of these massively parallel working units. Much of the problem lies in the way applications are designed and the way
they utilize basic data structures. Parallel and concurrent programming is naturally hard. Therefore, programmers tend
to pursue conservative approaches in order to avoid race conditions, while working on shared memory systems on mul-
ticores [1]. In a multithreaded application, threads running on different cores access the globally shared data structures.
Concurrent access to these data structure becomes a bottleneck if the access rate is very high, which consequently
results in degraded application performance. This problem increases as the number of threads in an application and
number of cores in a machine increases [2].

Linear scalability is the ideal desired outcome for any application running on multicore machine. However, our
experimental results shows us that few of the sophisticated concurrent data structure algorithms are far from achieving
ideal linear scalability. Infact, they do not even achieve positive scalability. Figure 1 presents the scalability of state-
of-the-art Michael and Scott’s lock-free queue algorithm which is also implemented in java.util.concurrent library.
This algorithm shows negative scalability under high concurrent access rate. On 32 cores, this algorithm is only able
to perform 200 operation/ms as compared to 6000 operation/ms on a single core machine where it needs to perform
all the operations sequentially. Therefore, the problem is not with running the code sequentially, but with the inherent
underlying communication overheads, which these data structures suffer from on a multicore machines.

Considering the scalability and performance issues with existing algorithms, we foresee a fundamental shift in data
structure’s design for next generation multicores. Therefore, we are interested in designing and implementing efficient
algorithms that are more scalable and perform better under stressed conditions. Currently, all the practiced algorithms
provide semantics such as linearizability and lock-freedom. However, we look into alternate directions. We explore
wait-free algorithms which can perform better than lock-free algorithms. Wait-free algorithms have gained the atten-
tion only recently, and they are not widely covered in the literature [3].

Unlike lock-free algorithms, which provide progress guarantee for one worker, wait-free algorithms provide a
progress guarantee for all the workers. We emphasize that, with cloud computing being the future, where compute
is governed by service level agreements (SLAs) and the quality of service (QoS), wait-free algorithms will replace
lock-free algorithms. Therefore, we work on the design of efficient wait-free algorithms.

We also explore the trade-off between the correctness and performance. High performance can be obtained at the
expense of correctness. Therefore, we consider the relaxation of consistency model from linearizability to sequential

1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 4 8 16 32

Th
ro

ug
hp

ut
 -

 n
o

of
 o

pe
ra

tio
n

pe
r

m
s

of Threads

LF Queue

Fig. 1. Scalability of Michael and Scott’s lock-free queue

consistency and apply it to basic data structures. We apply our techniques to concurrent queue and introduce two new
efficient algorithms for a wait-free concurrent queue and a sequentially consistent concurrent queue. However, same
techniques can also be applied to other concurrent data structures such as stacks, linked lists and skip lists.

Our primary aim is to target situations, where applications heavily access the concurrent objects and cause high
contention. For other cases, existing algorithms provide fair results and is out of the scope of this work. This extended
abstract summarizes my contributions related to scalability and performance of concurrent data structures with queue
as a design example. Our main contributions are:

– We present a wait-free linearizable queue as a replacement to state-of-the-art Michael and Scott’s lock-free lin-
earizable queue, which is also implemented in JAVA concurrent library.

– We present a sequentially consistent queue. We achieve high performance by semantically relaxing the consistency
model from linearizability to sequential consistency.

The remainder of this document is organized as follows. Section 2 covers the related work in the concurrent data
structures on multicores, consistency models and state-of-the-art queue algorithms. Section 3 covers the algorithmic
design and implementation of two algorithms, a wait-free queue and a sequentially consistent queue. Section 4 covers
the performance and scalability evaluation of both the algorithms. Finally, section 5 concludes the extended abstract.

2 Related Work

In this section, we analyze the multicore architectures, consistency models and various algorithms and techniques for
concurrent data structures in multicore machines. In 1st subsection, we analyze different types of multicore architec-
tures and their associated problems with regard to the concurrent data structures. In 2nd subsection, we audit different
types of consistency models in the literature. In 3rd subsection, we study various algorithms for concurrent queues.

2.1 Multicore Architecture

There are two main classes of multicore architectures. First and most common is Symmetric Multiprocessing (SMP)
architecture. In this architecture two or more identical processing units are connected to a shared main memory. These
types of machines can be found in mobile phones, laptops, desktops and servers. The second type of architecture is
Non-Uniform Memory Access (NUMA) architecture. In NUMA architecture, many SMP machines (also called nodes)
are connected using a network. This provides scaling over SMP machines.

Shared interconnect between the processors in SMP machines provides a homogeneous access to the resources.
However, this design does not work well as the number of processors increases. The shared bus connecting the proces-
sors to memory becomes a bottleneck due to the limited bandwidth [4]. For example, a 4 processor SMP machines is
only 2.7 times faster than a uniprocessor machine. This bottleneck at the hardware level does not allow applications to
fully utilize the computational power of these machines.

2

Although NUMA architecture allows fast access to local memory, it becomes problematic for a multithreaded
program running across the nodes that accesses a globally shared data structure. The problem becomes worse in case
of cache coherent NUMA machine, where cache has to be kept consistent cross the nodes. If the threads running
across the nodes, access the shared data structure too frequently, in becomes impossible for data to remain locally
available. Therefore, it causes the remote memory access in almost every operation on the shared data structure. This
creates a ping-pong type behavior which saturates the network. This increased contention results in severally reduced
performance of an application [5].

2.2 Consistency Model

In a shared memory systems, Consistency model, provides a set rules for memory consistency. If these rules are fol-
lowed by the programmers, system will provide a predictable outcome of memory operations. There are two main
types of consistency models, linearizability and sequential consistency.

According to linearizability consistency model, for an observer, each operation applied by processes sharing a con-
current data structure (object), happens to take effect instantaneously at some point between the operation’s invocation
and the response. Therefore, all the operations can be given a pre-condition and a post-condition. Pre-condition defines
the state of a concurrent object before the operation invocation event, whereas, post-condition defines the state of a
concurrent object after the operation response event. Linearizability is considered one of the strongest level of consis-
tency guarantee. It provides a global ordering of operations on a linear time scale.

Sequential consistency is a weaker consistency model as compared to linearizability. Unlike linearizability, which
considers global time as the basis of ordering, sequential consistency considers program order as the basis of order-
ing. This model was introduced by Lamport as a consistency model for multiprocessor systems [6]. According to this
model, for an observer, all the operations applied on a shared concurrent object, happens to come in effect according
to program order.

Program order is defined by the order in which a process (thread in case of multithreaded program) applies the
operations to a concurrent shared object. The preservation of program order in sequential consistency restricts an
observer to view an inconsistent ordering of the operations issued by the same process. However, it does not restrict a
global order to come in effect in which operations between the processes are reordered.

2.3 Concurrent Queues

In this subsection, we critically analyze various concurrent first-in first-out (FIFO) queue algorithms. First, we analyze
the blocking queue algorithms which use locks for mutual exclusion, followed by the lock-free queue algorithms, which
uses low level atomic primitive such as CAS (compare and swap). Finally, we analyze the wait-free queue algorithms.

A concurrent queue supports two fundamental operations, enqueue and dequeue. Enqueue operation appends the
element to end (tail) of the queue, whereas a dequeue operation remove the element from the start (head) of the queue.
Head holds the element which is present in the queue for the longest time, whereas, tail holds the element which is in
queue for the shortest time.

2.3.1 Blocking queues:

Just like other blocking algorithms, blocking queue synchronizes the access to the queue. Queue has two access points,
head and tail. In a conservative approach, a single lock can be used for the queue which synchronizes the enqueue
and dequeue operations. This gives a safe implementation of a concurrent queue. However, Amdahl’s law suggest that
concurrent data structures, whose operations hold exclusive lock, fails to scale on a multicore machine [7].

2.3.2 Lock-free queues:

Lock-free algorithms presents an efficient alternative to blocking algorithms. Not only the lock-free algorithms provide
better performance because of the lock freedom, they also provide a global progress guarantees. Most of the practical

3

lock-free algorithms are based on compare-and-swap (CAS) primitive.

One of the most efficient lock-free concurrent queue algorithm was presented by Michael and Scott [8]. In litera-
ture, it is considered as state-of-the-art lock-free algorithm [7,9,10].

A lock-free algorithm based on CAS works very efficiently as compared to lock based algorithms. It does not
require any conservative locking while accessing the globally shared data structure, the queue. Also, it provides a
global progress guarantee. However, the efficient functioning of queue depends a lot on the contention level and the
multicore topology. Although it provides global progress guarantee, there can be cases where one of the threads will
have to wait unfairly long to complete its operations as compared to other threads. This leads to starvation. One such
case arises due to data locality.

2.3.3 Wait-Free queues:

Although, Lock-free concurrent queue algorithms provide global progress guarantee, they do not provide process
(thread) level progress guarantee. To overcome this problem, wait-free queue algorithms were proposed. However,
constructing a wait-free algorithm is not easy and they generally do not perform well as compared to lock-free queues.

One of the first wait-free algorithm was proposed by Lamport [11]. He presented a single producer (enqueuer) and
single consumer (dequeuer) wait-free circular buffer. Subsequently, this circular buffer can also be used to implement
a single producer and single consumer queue. Although, this implementation is wait-free, it limits the concurrency to
only one consumer and one producer. Also, since the circular buffer is based on a static array, it limits the number of
elements a queue can hold.

David proposed another wait-free algorithm that supports multiple concurrent dequeuers but only one enqueuer.
This queue is based on an array which is infinitely large [12]. This requirement makes the algorithm impractical. There
have been other proposals but none of them presented a multiple enqueuer and multiple dequeuer queue algorithm.

This first practical multiple enqueuer and multiple dequeuer concurrent queue algorithm is presented by Kogan
and Petrank [3]. In this algorithm, faster threads try to help other slower threads in applying their operations. Each
operation, enqueue or dequeue starts by choosing a phase number. This phase number is higher than all the phase
numbers chosen previously by other threads. The thread performing the operation, records its operation information
at a designated position in a state array. This algorithm has a very complex implementation. Though, it provides the
wait-freedom, their results shows that it does not perform better than the Michael Scott’s lock-free algorithm.

3 Scalable and Performance-Critical Queues

Having studied existing wait-free algorithms in literature, we have come to a conclusion that designing a simple and
efficient wait-free algorithm is not easy. As covered in detail in related work sections, one of the most practical wait-
free algorithm resort to use mutual helping during process execution. If few of the workers are not able to complete
their operations, one of the workers which is fast enough, and is able to get hold of the object, helps other waiting
workers in completing their operations. However, most of the wait-free algorithms are very complex in nature and do
not perform better overall in throughput as compared to lock-free algorithms. Therefore, while designing this queue,
our prime focus is to come up with a wait-free algorithm which is practical, simple and yet provides very efficient
access to a concurrent queue.

3.1 Wait-Free Queue

Our queue is based on an underlying singly linked list which holds references to head and tail of the queue. Our idea
extends the notion of mutual help in previous wait-free algorithms to an external help provided by a dedicated worker,
whose job is to help other threads to complete their operations in a fair manner. Following are the two additions to our

4

wait-free queue algorithm.

– External Helper: Queue maintains an external helper for queue operations. The workers (enqueuers and de-
queuers) do not directly interact with the underlying queue structure which is a linked list. Instead, they submit
their requests to Helper which, in turn, completes their requests by enqueuing or dequeuing the elements to/from
the queue.

– State Array: Queue internally maintains a state array that acts as a placeholder for incoming requests for enqueues
and dequeues. The size of state array is equal to the number of workers in the program. Each position in the state
array is dedicate to a worker. Whenever a worker needs to do an operation on the queue, it places the request at its
designated position in the array.

The basic logic behind the algorithm is simple. Each worker puts its request for enqueue or dequeue in the state
array and waits for its operation to be applied to the queue. Helper worker traverse through the state array, looking
for new incoming requests. If a new request is found, it processes it on behalf of the requester. Workers wait until their
operations are successfully picked up and applied by the Helper. Following is a brief description of how the enqueue
and dequeue operations are performed:

– Enqueue: Algorithm for enqueue operation is given in Listing 1.1. Worker creates a Request with the element
e and operation type as ENQUEUE. It then places this request in its designated position in the state array and
waits for the operation to be picked up by the Helper. It continuously checks the status of the Request by checking
isCompleted flag. If it is set true that means the operation has been completed by the Helper. Following that, it
clears the request from state array and method returns as success. This operation never fails, assuming that the
Helper will always complete the operation.

Listing 1.1. Algorithm for enqueue operation (Wait-Free Queue)

1 boo l enqueue (e) {
2 i d = g e t T h r e a d I d () ;
3 r e q = c r e a t e R e q u e s t (e ,ENQUEUE) ;
4 s t a t e A r r [i d] = r e q ;
5 whi le (! r e q . i s C o m p l e t e d) ;
6 s t a t e A r r [i d] = n u l l ;
7 re turn t r u e ;
8 }

– Dequeue: Just like the enqueue operation, dequeue also creates a Request with empty element field and operation
type as DEQUEUE. It places this request in its position in state array. The Helper threads picks this request and
processes it. Once completed, the element field in Request structure contains the top element from the queue and
isCompleted flag is marked as true. When the operation completes, the request is cleared from state array and the
element is returned. Listing 1.2 presents the algorithm.

5

Listing 1.2. Algorithm for dequeue operation (Wait-Free Queue)
1 E dequeue () {
2 i d = g e t T h r e a d I d () ;
3 r e q = c r e a t e R e q u e s t (n u l l ,DEQUEUE) ;
4 s t a t e A r r [i d] = r e q ;
5 whi le (! r e q . i s C o m p l e t e d) ;
6 s t a t e A r r [i d] = n u l l ;
7 re turn r e q . e ;
8 }

The algorithm for Helper is given by Listing 1.3. It traverse through the state array in a round robin fashion in a tight
loop. If it sees a Request from a worker it fulfills it before moving to next index in state array. It first reads the operation
field in Request. If it is an enqueue operation, it creates a new node with the element in request field. It then appends
the node to the tail and updates the tail of the linked list. In the end it marks the operation as completed.

If it is a dequeue operation, it checks if the linked list is empty. If it is empty, it returns null and marks the operation
as completed. If the list is not empty, it removes the top element and updates the references to head and tail (if required)
respectively. It changes the element field in Request from null to the removed element and marks the flag isCompleted
as success.

Listing 1.3. Algorithm of Helper (Wait-Free Queue)
1 void h e l p e r () {
2 i d = 0 ;
3 whi le (t r u e) {
4 r e q = s t a t e A r r [i d] ;
5 i f (r e q != n u l l && ! r e q . i s C o m p l e t e d) {
6 i f (r e q . o p e r a t i o n == ENQUEUE) {
7 n = new node (r e q . e) ;
8 t a i l . n e x t =n ;
9 t a i l = n ;

10 s i z e ++;
11 r e q . i s C o m p l e t e d = t r u e ;
12 } / / enqueue c o m p l e t e s
13 / / Dequeue or P o l l
14 i f (r e q . o p e r a t i o n == DEQUEUE) {
15 i f (head . n e x t == n u l l) {
16 r e q . e = n u l l ;
17 r e q . i s C o m p l e t e d = t r u e ;
18 }
19 e l s e {
20 n = head . n e x t ;
21 head . n e x t = n . n e x t ;
22 i f (n . n e x t == n u l l) {
23 t a i l = head ;
24 }
25 r e q . e = n . e ;
26 s i z e −−;
27 r e q . i s C o m p l e t e d = t r u e ;
28 }
29 } / / dequeue c o m p l e t e s
30 }
31 / / i n c r e m e n t i n d e x i d++%worker
32 i d = i n c r e m e n t I d () ;
33 }
34 }

6

3.2 Sequentially Consistent Queue

It is practically impossible to provide a very fast FIFO Queue implementation that works on large multicore systems
under stressed conditions. However, performance can be achieved by weakening the consistency. In our design, we
explore the possibility of changing the consistency guarantees from linearizability to sequential consistency.

This algorithm is an optimized enhancement to our previous wait-free algorithm. The basic structural details of
this algorithm remains similar to our previous design. Additionally, this queue maintains an internal local linked list
structure for each worker. On enqueue, an element is appended to the local linked list. This local list is exclusive to
the worker. Therefore, there is no possibility of contention and race among workers. This allows very fast enqueue
operation. Queue also maintains a global linked list structure, where workers perform dequeue operations. However,
this global structure is not directly accessed by the workers. Instead, they submit their request to Helper with the help
of state array and wait until the operation is completed.

The Helper continuously checks for dequeue requests in state array, and if found it processes them. The Helper
also, in the background, periodically merges the local lists with the global list. The Helper freezes (locks) the local
linked list for a worker when it merges it with global linked list. This is done to avoid updating incorrect or stale
references by enqueue operation. Listing 1.4 and 1.5 illustrates how enqueue and merge operations work for this
sequentially consistent queue. Dequeue operation has same algorithmic steps as shown in wait-free algorithm.

Listing 1.4. Algorithm for enqueue operation (Sequentially Consistent Queue)
1 boo l enqueue (E e) {
2 i d = g e t T h r e a d I d () ;
3 whi le (! l o c k [i d] . CAS(f a l s e , t r u e)) ;
4 t a i l = l o c a l T a i l s [i d] ;
5 i f (t a i l == n u l l)
6 re turn f a l s e ;
7 t a i l . n e x t = new node (e) ;
8 l o c a l T a i l s [i d] = t a i l . n e x t ;
9 l o c k [i d] . s e t (f a l s e) ;

10 re turn t r u e ;
11 }

Listing 1.5. Algorithm for merge operation (Sequentially Consistent Queue)
1 void merge (i d) {
2 l o c a l H e a d = l o c a l H e a d s [i d] ;
3 l o c a l T a i l = l o c a l T a i l s [i d] ;
4 i f (l o c a l H e a d != l o c a l T a i l){
5 whi le (! l o c k [i d] . CAS(f a l s e , t r u e))
6 t a i l . n e x t = l o c a l H e a d . n e x t ;
7 t a i l = l o c a l T a i l ;
8 l o c a l T a i l s [i d]= l o c a l H e a d s [i d] ;
9 l o c k [i d] . s e t (f a l s e) ;

10 }
11 }

3.3 Correctness

We claim that our first algorithm implement a wait-free queue and our 2nd algorithm implements a sequentially con-
sistent queue. Following is a brief discussion on the same.

– Wait-Freedom: Wait-freedom comes from the fact that an operation completes in a bounded number of steps. If
we consider the number of workers predetermined and known (whose id ranges from 0 to n-1), we can instantiate
the size of state array to a size proportional to the number of workers. In our first algorithm, any enqueue or de-
queue operation will complete in maximum n steps, given there are n workers. This is so, because Helper iterates

7

over the state array. Let?s consider the worst case, where a worker Ti places a request in state array when the
pointer of Helper is at location i+1. Now, the helper needs to complete the whole round by jumping n places be-
fore it comes back to location i. Therefore, the upper bound for enqueue and dequeue operation is n, which is fixed.

– Sequential Consistency: Sequential consistency guarantees the program order. The order in which a worker
(thread) issues operations is called program order. This order is unrelated to how and when operations are is-
sued by different threads. We claim that our algorithm is sequentially consistent but not linearizable. This is so
because enqueue() call returns as soon as the element is appended in the local linked list. Helper does not guar-
antee which local list will be merged first, therefore, it is possible that an element, enqueued at a later time by
different worker, may be dequeued first by some other worker. This violates the linearizability property. Nonethe-
less, our program still follows the program order as two elements enqueued by the same worker will be dequeued
in same order irrespective of who performed the dequeue operation. Our algorithm preserves this property because
the local ordering is maintained when a worker issues enequeue operations in local linked list.

4 Evaluation

In this section, we evaluate the performance and scalability of both of our algorithms, the wait-free linearizable queue
(WF Queue) and the sequentially consistent queue (SC Queue). We compare the performance and scalability of these
algorithms with state-of-the-art lock-free queue algorithm presented by Michael and Scott.

We implemented both the algorithms in java in a controlled configurable environment. We have also implemented
a benchmark framework for the experiments. All the experiments are run on a 48 core NUMA machine with x86 64
bit architecture running Linux with kernel 3.0.0. The machine has 4 sockets and 8 nodes where each node has 6 cores.
All the micro benchmarks are taken in a careful manner in order to minimize the noise. Our evaluation framework
emulates a multi worker (producer-consumer) workload where each worker is allowed to perform both enqueue and
dequeue operations. Following are the benchmarks used.

– Enqueue-Dequeue pair: The queue is initially empty. At each iteration, each worker enqueues a random integer in
the queue followed by a dequeue operation. This emulates the 50-50 percent producer-consumer workload under
the stressed conditions. Each experiment performs approximately 2.5 million operations divided equally between
all the workers. The number of maximum workers is 32 which is unchanged in all the experiments. Helper runs on
a separate core.

– Think-Time: Think-Time is nothing but the work done by the worker between the two operations. We measure
the performance of our algorithms as a function of increasing Think-Time. Ideally, with the increasing Think-Time
contention in the system should decrease. Think-Time is presented in number of cycles. Each experiment performs
approximately 2.5 million operations divided equally between all the workers. The number of maximum workers
are 32.

4.1 Performance and Scalability

Following subsections present the scalability and performance experiments and its results.

4.1.1 Per operation Completion time:

In this experiment we have measured average per operation completion time for each of the three algorithms, lock-free
(LF) Queue, wait-free (WF) Queue and sequentially consistent (SC) Queue under very high contention. Results are
shown in Figure 2. Under such stressed conditions, is it important to known how long does each operation takes to
complete. As we can see from the graph, it is evident that our algorithms takes far less time as compared to LF queue.
With the increasing number of workers, per operation time increases for all the Queue implementations. For LF queue,

8

by doubling the number of workers, per operation time increases by approximately 4 times, however, for WF queue
and SC queue it increases approximately twice which is understandable.

With 32 workers, one single operation in LF queue takes as much as 0.1 ms. This converts to 300000 cycles of
work, which LF queue does in a single enqueue or a dequeue operation. In comparison to that, our WF queue takes
9 times lesser time and our SC queue takes 16 times lesser time. SC queue perform better than WF queue because of
weaker consistency semantics. If we increase the number of workers, this performance gap between LF queue and WF
queue increases.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 4 8 12 16 20 24 28 32

pe
r

op
er

at
io

n
tim

e
(n

s)
 :

 le
ss

er
 is

 b
et

te
r

of Threads

LF Queue
WF Queue
SC Queue

Fig. 2. A per operation completion time comparison with the increasing number of threads (workers)

4.2 Total Execution Time

The performance of an application depends on how fast it completes a given task irrespective of how workers perform
it individually. In this experiment, we evaluate the time taken to complete the whole execution of the program. Results
are shown in Figure 3. We can see from the graph that upto 2 threads (workers), WF Queue and SC Queue take
more time to complete the task. However, for LF queue, as the number of workers increase, the total execution time
increases drastically. This depicts the worst kind of negative scalability and goes against the very purpose of parallel
programming. On the contrary, WF depicts some positive scalability, where total execution time either remains stable or
decreases. SC Queue performs best, where its total execution is least among all. Also, similar to WF Queue, it depicts
positive scalability. With 32 workers, WF queue performs approximately 10 times faster and SC Queue performs
approximately 15 times faster.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 4 8 12 16 20 24 28 32

To
ta

l e
xe

cu
tio

n
tim

e(
m

s)
 :

 le
ss

er
 is

 b
et

te
r

of Threads

LF Queue
WF Queue
SC Queue

Fig. 3. A total execution time comparison with the increasing number of threads (workers)

4.3 Throughput

Scalability and performance of a queue also depends on how many operations it can successfully perform in a unit time.
In this experiment, we show the throughput as a function of increasing number of workers. Results are presented in

9

Figure 4. In this case also, LF queue depicts negative scalability and the throughput decreases with increasing number
of workers. WF Queue and SC queue shows sharp positive scalability upto 6 workers, after which throughput remains
stable with the increasing number of workers. However, in comparison with the LF Queue, throughput remains ap-
proximately 10 times more for WF queue and 15 times more for SL queue. This higher throughput directly translates
to better performance for an application using the concurrent queue.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 4 8 12 16 20 24 28 32

Th
ro

ug
hp

ut
 p

er
 m

s
:

m
or

e
is

 b
et

te
r

of Threads

LF Queue
WF Queue
SC Queue

Fig. 4. Throughput comparison with the increasing number of threads (workers)

4.4 Think Time

In real scenarios, applications do some work between two operations. For some applications, this work can be compu-
tationally intensive, for others it can be computationally low. We call this work as think time. In this experiment we
compare the performance of the Queues with increasing think time. In our experiment, it ranges from 0 to 1 million
cycles. The number of workers are fixed to 32. Helper runs on a separate core. Results are shown Figure 5. Up to 1000
cycles of think time, per operation time remains stable for all three queues. Also, in comparison with LF queue, WF
queue and SL queue take 10 to 15 times lesser time to complete an operation. After 10,000 cycles of think time, con-
tention starts to reduce and performance improves for all three algorithms. Nonetheless, our algorithms still perform
significantly better in comparison of LF queue.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

0 10 100 1000 10000 100000 1000000

Pe
r

op
er

at
io

n
tim

e
(n

s)

Think Time in # of cycles

CL Queue
WF Queue
SC Queue

Fig. 5. Performance comparison with increasing Think Time (work done between two operations)

4.5 Analysis

High performance and wait freedom both are necessary properties required for next generation softwares running on
multicore machines. Wait-free algorithms are gaining momentum and are being considered a replacement for lock-free
algorithms. Yet, we did not find any wait-free algorithm in literature for queues, which can perform 8 to 10 times better

10

than lock-free algorithms. We have achieved this performance gap with just 32 workers. If, we increase the number of
workers, this gap will further increase. We believe that this is the first time an algorithm is able to provide wait-freedom
and high performance at the same time. Similarly, we also did not find any sequentially consistent version of a queue.
It is a known fact that high performance can be achieved by compromising strict notions of correctness. Yet there was
no implementation, which exploit the trade-off between the performance and correctness in terms of the consistency
model.

5 Conclusions

This extended abstract summarized our work on the scalability and performance of concurrent data structures on multi-
core machines. We showed that it is possible to implement a wait-free algorithm that can perform better than a lock-free
algorithm. We also showed that it is possible to exploit the trade-off between the performance and the notion of cor-
rectness. We presented our algorithms for concurrent queue which is one of the widely used basic data structure. Our
wait-free queue outperforms existing state-of-the-art Michael and Scott’s lock-free queue while providing stricter local
progress guarantee for each worker. We further achieved high performance by relaxing the FIFO ordering of a queue.
Both of our algorithms also depict positive or stable scalability, which was non existent in previous algorithms.

In our algorithmic design, we introduced the concept of external Helper. This concept can be applied to other
concurrent data structures such as stack, skip-lists and linked-lists. For example, a stack is very similar to a queue. The
only difference is the order in which elements are inserted and removed. Queue provides FIFO ordering while stack
provides LIFO ordering. We believe that our techniques and algorithms will become highly beneficial in future, as the
number of cores continues to grow on multicore machines.

Acknowledgments

This work was supported by the International Internship program 2013 at INRIA Paris. This work have been performed
under the guidance of Dr. Marc Shapiro from INRIA Paris and Prof. Luis Veiga from INESC-ID Lisboa. I would also
like to thank Gael Thomas and Lokesh Girda from LIP6 laboratory who participated in discussions regularly and
provided their invaluable feedback.

References

1. M. Herlihy and N. Shavit, The Art of Multiprocessor Programming. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.
2. C. M. Kirsch and H. Payer, “Incorrect systems: it’s not the problem, it’s the solution,” in Proceedings of the 49th Annual Design Automation Conference. ACM,

2012, pp. 913–917.
3. A. Kogan and E. Petrank, “Wait-free queues with multiple enqueuers and dequeuers,” in Proceedings of the 16th ACM symposium on Principles and practice of

parallel programming. ACM, 2011, pp. 223–234.
4. R. C. Unrau, “Scalable memory management through hierarchical symmetric multiprocessing,” Ph.D. dissertation, Citeseer, 1993.
5. W. Bolosky, R. Fitzgerald, and M. Scott, “Simple but effective techniques for numa memory management,” in ACM SIGOPS Operating Systems Review, vol. 23,

no. 5. ACM, 1989, pp. 19–31.
6. L. Lamport, “How to make a multiprocessor computer that correctly executes multiprocess programs,” Computers, IEEE Transactions on, vol. 100, no. 9, pp.

690–691, 1979.
7. M. Herlihy and N. Shavit, The Art of Multiprocessor Programming, Revised Reprint. Morgan Kaufmann, 2012.
8. M. M. Michael and M. L. Scott, “Simple, fast, and practical non-blocking and blocking concurrent queue algorithms,” in Proceedings of the fifteenth annual ACM

symposium on Principles of distributed computing. ACM, 1996, pp. 267–275.
9. P. Tsigas and Y. Zhang, “A simple, fast and scalable non-blocking concurrent fifo queue for shared memory multiprocessor systems,” in Proceedings of the thirteenth

annual ACM symposium on Parallel algorithms and architectures. ACM, 2001, pp. 134–143.
10. E. Ladan-Mozes and N. Shavit, An optimistic approach to lock-free fifo queues. Springer, 2004.
11. M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and M. Torquati, “An efficient unbounded lock-free queue for multi-core systems,” in Euro-Par 2012

Parallel Processing. Springer, 2012, pp. 662–673.
12. M. David, “A single-enqueuer wait-free queue implementation,” in Distributed Computing. Springer, 2004, pp. 132–143.

11

