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Abstract

Approximate computing is a computing model that can be used to increase performance or use fewer

resources in stream and graph processing. This is achieved by lowering the results’ precision (i.e.

approximate results). Currently, there are multiple stream processing platforms, most of them do not

support approximate results natively. There are applications where a function (e.g. executing as a part

of a dataflow, or data pipeline) needs data that is a result of an operation made by another function,

and it does not have a way of receiving the data directly from the other. Instead, the other function

needs to write that data into persistent storage like a database, and then the data needs to be read

from there. This causes an issue with performance (high latency and/or low throughput) and resource

efficiency (wasted resources to write and read the data from disk) due to the I/O bottleneck, and also

increases the cost for the user because the application needs to do more requests to the storage.

Stateful Functions is a platform that uses Flink, and that addresses this by allowing message exchange

between functions. This document proposes the design and implementation of an extension to be used

with Stateful Functions. It can support more efficient stream processing by allocating the available

resources intelligently and variably and also using approximate results. To validate the results, the

performance of the extension was evaluated using benchmarks with real and synthetic data, running

locally and in cloud machines with typical stream processing applications.
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Resumo

A computação aproximada é um modelo de computação que pode ser utilizado para melhorar o de-

sempenho, ou utilizar menos recursos no processamento de streams e grafos. Isto é feito ao diminuir a

precisão dos resultados (i.e. resultados aproximados). Atualmente existem múltiplas plataformas para

processar streams, a maioria não suporta nativamente resultados aproximados. Existem aplicações

onde uma função (e.g. que está a ser executada como parte de um fluxo de dados) precisa de dados

que são o resultado de uma operação que foi efetuada por outra função, e não tem uma forma de

receber esses dados diretamente. Em vez disso, a outra função precisa de escrever os dados num

componente de armazenamento, e depois têm que ser lidos a partir daı́. Isto causa problemas com

o desempenho (aumento de latência) e com a eficiência dos recursos (desperdı́cio de recursos para

aceder ao armazenamento) por causa do bottleneck no I/O e também aumenta o custo para o utilizador

pois a aplicação necessita de realizar mais pedidos para o armazenamento. O Stateful Functions é uma

plataforma que aborda este problema ao permitir que as funções troquem messagens. Este documento

propõe o desenho e implementação de uma extensão para ser utilizada com o Stateful Functions. Ela

permite processar streams mais eficientemente ao alocar os recursos disponı́veis de uma maneira in-

teligente e variável e também utilizar computação aproximada. Para validar os resultados, a extensão

foi avaliada com benchmarks de dados reais e sintéticos, executados localmente e na nuvem com

aplicações tı́picas de processamento de streams.
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Chapter 1

Introduction

Cloud computing is becoming more popular every day, as it is a computing model that offers the

user resources like processing power, data storage, among others, without the user having to manage

those directly [1]. This model offers advantages such as the possibility of building applications that can

scale well on-demand and where it only charges the users for the resources they consume [2]. These

platforms usually are distributed and can employ servers in data centers that are spread across different

regions of the planet, which can cause some issues with latency and consistency.

Serverless computing [2, 3] is one of the service models of cloud computing in which the cloud

provider manages the virtual machines where the functions are being executed, the number of instances,

the fault-tolerance, and the communication between servers. Such a model is a good approach to use

with deterministic functions that only need the input to calculate the result. However, if they need to

get data from other functions, a bottleneck might be introduced in the application. This might happen

because of the approach used for state sharing: if that operation needs to write the data on persistent

storage, such as a database, and then the other function needs to read the state from there, this will

cause an I/O bottleneck. Also, it will increase the cost of operation for the client, as it needs to do more

requests to the storage and it is being charged for the number of requests.

Stream processing [1,4] is a form of programming that consists in processing items of data that are

continuously arriving at an application. Besides owned or rented clusters, it is also increasingly used

in serverless models. Stream processing applications are built using chains of functions (also called

operators) that are used to process the elements of the stream.

Graph processing [5–7] can also be combined with stream processing. The main specific aspect is

that the events come in the form of graph components. A graph is a set of edges and vertices where the

edges represent the relationships between the vertices. Graph processing can have more challenges

addressed than stream processing, like dynamic graphs and their partitioning.

Approximate computation [8–10] is a computing model that allows trading some accuracy for per-
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formance in systems that do not need precise results. There are multiple ways to achieve this, with one

being through load shedding [11,12] which consists of dropping some of the input events to reduce the

load on the system. The results’ accuracy can be lower, however, the results must be accurate enough

to be acceptable.

One of the most popular frameworks that is used to do stream processing (and can also be used for

graph processing) is Apache Flink [13], which offers many features, and it is used by Stateful Functions

[14]. Stateful Functions allows the functions to share state between them in an decoupled way without

relying on persistent storage.

1.1 Motivation

The motivation for this work is the fact that currently there are not many mainstream stream processing

platforms that cumulatively support dynamic resources allocation, allow to easily build applications, can

auto-scale efficiently, and can use state sharing between the operators without using a storage compo-

nent. Moreover there is a lack of platforms that allow the user to define the requirements that must be

meet by trading other characteristics (e.g. trade accuracy for throughput). Stateful Functions allow elas-

tic scaling and efficient state sharing, however, it does not allow trading characteristics to meet defined

execution requirements, nor a dynamically resource management.

The support for using less precise results in popular stream processing platforms is also not common

[15]. The loss of precision can be used to do the necessary trade-offs to achieve the user-defined

processing requirements. In summary there is not a platform that allows stateful stream processing with

approximate results and adaptive resource management driven by accuracy and performance tradeoffs.

1.2 Current Shortcomings

Some of the current shortcomings of stream processing are the state sharing between functions and the

data distribution that can cause issues with consistency and performance. Most platforms do not allow

an arbitrary communication between their functions (or operators), usually, the functions are organized

in a DAG (Directed Acyclic Graph) way and one function can only message the functions that have a

common edge (i.e. downstream the DAG). Some platforms also use storage to exchange state, which

is a costly operation that has a major impact on the performance and throughput.

One aspect related to the data distribution is the partitioning of the stream; if the relation between

the elements and the geographic location is not considered, then it can result in low performance [16].

Another important aspect related to the data distribution, the state sharing and the fault-tolerance is

the data consistency. If any of these is done in an incorrect way, the data will be inconsistent (e.g. if a

platform does not recover correctly from fails, the data loses the consistency).
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The scalability is also important and can also cause issues if not addressed adequately. If it is

done in a non-optimal way, it can lead to wasted resources by using more than necessary, or it can

lead the system into an inconsistent state (e.g. some operators might not support multiple instances,

others might need synchronization mechanisms). The auto-scaling is also an issue, some platforms

do not support variable resource management or auto-adjustment of the parallelization level. The fault-

tolerance can also impact the resource usage, if it is done in a non efficient way (e.g. costly save states,

synchronization issues with different operators), it can lead to wasted resources. Another problem that

some platforms, like Akka [17], may also have is the management of the operators’ lifecycle; when it is

not done correctly, the system may have instantiated operators that are not needed.

Another limitation is the lack of flexibility in choosing trade-offs. Most models will not allow the user

to configure trade-offs between the resources, accuracy, and performance. These trade-offs can be

done using approximate computation, however, it is lacking in commonly used platforms like Flink [13],

Spark [18] and Storm [19].

1.3 Proposed Solution

The proposed solution is Approxate: it is an extension that can be used with Stateful Functions, that

extends and executes over Flink. Stateful Functions already has an efficient state sharing between the

functions, and is capable of scaling horizontally with multiple instances of the same operators. It also has

data consistency, fault-tolerance, and can process graphs. Stateful Functions gets these characteristics

from Flink, but it simplifies the building and deployment process of applications by using a model of

decoupled operators that can have a state and interact with each other, instead of using a dataflow

model.

Approxate’s aims are to add adaptable resource management, to scale the application when it is

necessary, and to lower the precision of the results to improve performance if that is required. The

management of the resources and results’ precision is based on requirements that can be defined

by the applications’ users. Those requirements are: lag (number of input events that are yet to be

processed), throughput (number of events that are processed in a certain period), and the results’

latency (necessary time to return the results after their production).

The proposed solution contains the following components: i) a Stateful Functions library, that is

embedded in, and runs within, the context of Stateful Functions, therefore extending it (it is loaded by

applications and intercepts the input tuples before they are processed to perform load shedding and it

is used to achieve the approximate results); ii) a metrics reporter that is loaded in the Flink workers and

uses the Flink Metric System to collect the metrics and do a short analysis of the execution; and iii) a

middleware that receives the metrics, performs a more extensive analysis and manages the execution

resources, the scaling, and the trade-offs. It also interacts with Docker [20] to manage the applications’
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containers. It receives the events and return the results to Kafka [21].

1.4 Contributions and Goals

This work has the following contributions and goals:

• Presenting the current state of serverless computing, stream and graph processing, and the plat-

forms used for that;

• Design and development of a library that can be used with Stateful Functions to give the applica-

tions the ability to use approximate results;

• Design and development of a metrics reporter for Flink, that can collect the metrics periodically

and send them to be analysed;

• Design and development of a middleware that can communicate with Flink and Docker, receive

and analyse the metrics to manage the resources based on the user-defined requirements;

• Design and development of a model and API that uses those components in order to achieve

increased scalability and performance, with adaptable resource management that allows the users

to balance the performance, results’ accuracy, and used resources in their applications;

• Evaluate the solution and analyse the differences in performance and used resources.

1.5 Document Structure

This work contains the states of the art of serverless computing, stream processing, graph processing,

approximate computation, and an overview and analysis of the relevant stream and graph processing

platforms in Chapter 2. In Chapter 3 we describe the design of the Approxate and its components. There

is also an overview of the already existing components with which our solution interacts.

In Chapter 4 we present some details concerning how our solution was implemented. There is an

overview of the code structure and some examples of used methods, APIs and libraries. The reasons

why they were used are also stated.

Chapter 5 contains the used methods to evaluate the implemented solution. We describe the used

setups, the used workloads, the metrics that should be achieved and the results. Chapter 6 is the

conclusion of this work and it contains a summary and the future work that can be done with Approxate,

and also the aspects that can be improved.
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Chapter 2

Related Work

In this section, there is a brief overview of serverless computing (Section 2.1), since that is usually the

used cloud computing model of stream and graph processing applications and its shortcomings, that we

explain in Section 2.1.2, can also be found in the processing platforms.

After that, there is the state of the art of stream processing (Section 2.2) that explains its benefits,

the current issues, and also the desirable properties that stream platforms should have. Next is the

same but for graph processing (Section 2.3). Following that, there is the state of the art of approximate

computation (Section 2.4), and how this computation model can be used in stream/graph processing

platforms.

Next, there is an overview of some relevant platforms used for stream and graph processing (Section

2.5). Lastly, there is an analysis and comparison between the design, properties, and performance of

the platforms (Section 2.6).

2.1 Serverless Computing

Serverless computing is a model of cloud computing, in other words, the resources that are needed

to execute a determined job don’t need to be in a local or user-owned device, instead, they are in a

server that receives the input data, do the operations it must do, and then it can return the result. These

resources can be processing power, cloud storage, among others. Despite the name, servers are still

needed. The difference between this and other cloud models is that developers do not need to manage

the servers directly. The number of servers used and their capacity is managed by the cloud provider.

This can give the client an appearance of having infinite resources on-demand [2].
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2.1.1 Key Features

These models abstract away most of the operational concerns from the clients [1], like the managing of

low-level infrastructure, servers, resource allocation, and scalability. The client does not need to invest in

building an infrastructure, which eliminates the up-front commitment [2]. It also allows the cloud provider

the chance of controlling the entire development stack which can reduce the operations costs because

of the optimizations that can be performed. The cloud provider can also offer other platforms to work

together, so the client can have a more flexible and agile ecosystem to work with [1].

Usually, the functions that are run in the cloud are small pieces of code that are used in several micro-

services that comprise the application. These micro-services can be chain together and thus building

an application by making a composition of functions [3,22].

One of the advantages of having a partitioned application is the possibility of changing one micro-

service without needing to change the others. This approach can lead to faster application deployment,

update, and correction of bugs, without having the risk of doing some change that can break the entire

application, since a micro-service is a modular component. A micro-service can also scale individually,

thus leading to better efficiency of resource usage, as they can be applied only where they are needed

[22].

2.1.2 Shortcomings

The communication and coordination between functions can be done in a non-optimal way with a non-

efficient state sharing, like using storage to write and read the data which can lead to lower performance

[1–3]. One way of reducing the latency in the communication consists of having the application stored in

memory so that the functions, and their state, would be in memory and that way it could be shared with

almost zero latency [2].

Another disadvantage of this model is that the clients need to build the application around the platform

and know how it works [1].

2.2 Stream Processing

Stream processing is a way of programming that is used to process continuously arriving items of data

(e.g. tuples, strings), named events. This processing is done in a parallel way, where clusters can have

multiple nodes with different purposes in a composition. The events can be processed as soon as they

are created or can be stored for later processing [4].

For example, a user can have a sensor to know when a room temperature achieved a determined

value and the user wants to be warned when that happens. One way of doing this is to have the

temperatures collected by the sensor being streamed to some service that will analyze the values of
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In 1 In 2 In 3 

Stream Application

Out 1 Out 2 

Figure 2.1: Example of a stream transformation

that stream, in this case, each one of these temperatures (sensor data samples) that are streamed is

considered an event. The result of the processing can be a new stream of events or can be values that

are going to be stored in a database or can be a combination of them, as illustrated in Figure 2.1, where

there is a stream of events that are arriving into a stream application to be processed, and the results

can then be stored in a database or can be returned in a form of a new stream.

These events range from connections on social media to bank transactions, so different types of

events can have different approaches that are optimal, in some cases low latency is better than max-

imizing accuracy, in other cases consuming fewer resources is the better approach, just to nominate

some examples.

This type of processing can be done using a serverless model and it is useful to systems where there

are lots of changes on the data and those changes need to be constantly processed with low latency and

high throughput [23]. Another way of processing these events is to store them until they reach a certain

size and then they are all processed at once, this way is called batch processing and when compared to

stream processing it has a bigger delay since the data is stored until it is processed. It can also be worse

to process large quantities of data because the data can occupy more memory than the machines have,

in that cases, it cannot be processed all at once. Stream processing models can avoid problems of data

storing management since they do not necessarily need to store the data to process it, however, they

can store historical data that later can be used with the processing of the new elements [24].

There are two types of stream, bounded and unbounded, the difference between these two is that

bounded streams have a defined start and end, while with unbounded we only know the beginning and

not the end, it may even not have one. The unbounded type is common in cases where the data sources

constantly produce new data that needs to be processed in real-time.

Stream processing systems usually are distributed systems, so they need to address questions like

distributed memory management, the geographic distribution of the data, the latency in the commu-

nication between different data centers, and data consistency. The load balancing between different

instances should be done in a way where each instance gets a similar load [25].

The applications that use stream processing usually consist of multiple functions (or operators)

chained together where each one performs some transformation in each element that arrives at the

application, these functions can either store some state or be stateless. These chains of functions can

originate a dataflow.
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Besides state sharing and storing, stream processing can have more difficulties [26]. Some of them

are the fact that the stream is not all available, the order of each tuple cannot be controlled, the input

rate can suffer fluctuations, sometimes each tuple can only be processed once, and also storing all the

data in most cases is impossible, the data may never stop arriving. The data storing should be handled

in a way that minimizes the impact of the processing of the other elements of the stream [24]. The

stream processing platform should be capable of fault-tolerance and at the same time be able to keep

the deadlines which can be achieved by having efficient resource scheduling strategies [26].

Stream processing can allow the processing of events with low latency and high throughput with

accurate results and in a distributed and scalable way. However, this type of model can have issues

with the communication between functions, with data sharing, and with efficient scaling. It can also have

issues with the stream (e.g. elements arriving out of order).

Some aspects must be considered when we are doing data stream processing. These aspects can

also be applied to graph processing and other types, but are presented in the context of stream pro-

cessing in the next sections, and there are also some examples of how some of the stream processing

platforms solve the issues that result from these aspects.

2.2.1 Data Sharing

Some stream processing functions need data from other functions to process some event. In that case

one function will need the result from another and what is done for a lot of stream processing frameworks

is to simply write the result to persistent storage and then the other function will read the data from

there. However, the stream processing platforms must keep the dataflow without having a costly storage

operation in the middle, the storage access would increase the latency, so it must be able to do the

critical operations without it [14,24].

This can be solved by allowing the functions to have an internal state and to share it without using

storage [2, 13, 14, 17, 27, 28], it can be done by using the network. The state exchange can also be

improved by allowing arbitrary communication between the functions without the need of using the func-

tions’ order in the dataflow. The state should be kept in memory or in efficient disk-structures to load fast

and not cause a major decrease in performance. If the data sharing is done in an efficient way it can

have positive effects on the response time of the application.

The functions that receive the state can receive it instantly if they are instantiated or if are virtual

instances, or they can receive the state in the next iteration if the platform works in supersteps [14, 17,

27,29,30].
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2.2.2 Scalability And Performance

Some platforms focus on being efficient, fault-tolerant, and having low latency, even when working with

streams that are very large, this can be done by scaling up the system [18,30].

With large streams, and the need of scaling up the systems, come more difficulties related to job

scheduling, data consistency, memory management, race conditions, and other problems that must be

solved. The platform being capable of parallelism is a requirement to be able of scaling up.

Usually, latency is an important performance aspect in stream processing. It is affected by all of the

components of the platform being used and the architectural decisions. The latency should be low even

with large streams, and the scalability of the platform should be capable of keeping the performance and

the latency close to the ones it had on small streams. Some systems will focus on having the lowest

possible latency, even if it comes at the expense of other aspects. Other systems, the majority, will have

a more balanced approach. High latency in some components can lead to a huge bottleneck in the

entire system, so critical components should always have low latency.

The performance of the applications can be improved with parallelism by taking advantage of the

mapping of the different parts of the stream (the same part of the stream can be replicated in multiple

machines). By dividing the stream to multiple instances of the operators, or multiple machines it can be

processed in a parallel way.

However parallelization does not necessarily equate to better performance: it is necessary to have

the right amount of it, so there is a need for some mechanism that must be able to know when there is

a need of scaling up or down certain parts of the application [23].

To achieve auto-parallelization it is necessary to know which part of the application can be replicated

and which is necessary to be. The latter can be achieved through monitoring the resources that each

part of the application is using and also identifying where the bottlenecks are. Another important aspect

to consider when replication is used is the dataflow order, in a general way the operators need to be in

the same order after being replicated [23].

Scaling up can improve the performance but can also cause issues, one of the issues in distributed

models is the replication of state, which leads to higher periods of time being needed to scale up.

However, the performance can also be increased by using a cache system to keep data from the stream

with fast access when needed. Elastic scaling can also be used however, multiple factors need to be

considered, e.g. using parallelization in every part of the stream can lead to worse performance than

not using it [23,27].

2.2.3 Stream Partitioning

As mentioned in the previous section, partitioning the stream and distributing it to be processed in

multiple machines in a parallel way can improve the performance. However, there are some things to be
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considered like the distribution of operators with different demands of resources and also the distribution

of the stream after it is partitioned.

The performance can be increased by distributing the most demanding operators across multiple

machines. This way if a machine is busy with one operator, another machine can be used by other

operators. The processing can also be distributed through multiple clusters, so if a cluster is busy,

another one can process the events [31].

The data streams can also be dynamically redirected to the computing resources [32]. This feature

is useful in order to improve latency and throughput. A framework should be able to know when and

how data streams should be redirected based on the requirements of the application and the complexity

of the elements. The complexity of an element can be determined by the functions it implements, and it

is an important aspect when deciding the allocation of its instances and resources.

2.2.4 Operators

There are multiple optimizations that can improve the performance by adjusting the operators [31]. They

are the following:

• Operator reordering: There are cases when one value might be dropped by some operator be-

cause that operator knows that it will not change the final result. This value may already have

been processed by a previous operator, so if it is a situation where the relative order of those two

operators does not matter they can switch places;

• Redundancy elimination: There are cases where multiple instances of the same operator are being

used on the same data, achieving the same result, in different paths of the dataflow. This can be

avoided by having one instance of the operator sending the data to all the following operators;

• Operator Separation: There are cases where one operator is doing multiple tasks on the data. If

those tasks are decoupled into different operators they can have different resources reserved for

them. This can lead to better resource management;

• Fusion: There are cases when multiple operators are chained together in a flow. If one of these

operators is doing a very light-weighted task, the state sharing can be more demanding than the

task. If they are converted in a single operator we can have less latency;

• Fission: This one consists in splitting the data so it is processed in multiple instances of the same

operator and then the results are merged to get the final result.
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2.2.5 Data Consistency and Result Accuracy

Another important aspect of stream processing frameworks is their capacity of keeping the data consis-

tent, and correspondingly, keeping results accurate, i.e., completely reflecting all of the input. The data

consistency is related to the fault-tolerance because if a server (or machine) fails and does not recover

correctly, that server will have data that is not correct and that can affect the rest of the application. One

strategy to avoid this is to have replication, however, it comes at a cost of the need for more servers and

the replication of requests. Depending on the type of application that is being executed, the decision of

having total consistency might not be worth it, it will depend on the application’s criteria. The application

can get fewer consistency guarantees but have a lower replication factor or better performance. The

balance between data consistency, replication, latency, and others, can be different for each application.

The servers’ failures are not the only thing that can cause inconsistency in data, the distributed

memory systems also have to deal with this problem. The memory can be distributed across machines

that are in different data centers, and can also have some parts replicated, which can cause the need

for having some sort of mechanism to manage the writes and reads. If a machine changes some part of

the memory and the memory is shared, then all machines that have access must see that change if they

are going to use data from that part. This consistency can be done in multiple ways, e.g. the memory

can have locks, there might be race conditions, quorums can be used, just to name a few. The chosen

approach will have an impact on the performance of the system.

Another aspect is that the results should be predictable, if a stream gets a result after being pro-

cessed and if an equal stream is processed in the same conditions it should produce the same re-

sult [24], however, that is not the case in systems that allow losing accuracy and get approximate results

to improve performance, this is called approximate computation/computing.

Eventual consistency can also be used [17,27,33], in the same cluster different nodes can write and

read from the same memory at the same time, and then the results are converged. This allows only

eventual consistency to be upheld, and thus produce an eventually consistent state.

The opposite can also happen to guarantee consistency, a platform can have only one function

accessing the same memory at a determined time. The consistency can also be achieved without explicit

coordination between the functions that are using the data by using a clock system so the system knows

the modifications and their order. Functions that access critical memory to perform some actions must

only access the memory in a way that guarantee consistency.

2.2.6 Fault-Tolerance

Systems that process streams must have some sort of fault-tolerance to guarantee that they lose no data

in case of a failure. There are several ways of achieving this, some frameworks will store the stream’s

partition that is being processed until the results are in persistent memory, others will do that and also
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store the flow of operations that were executed on them. Others will save checkpoints from time to time

and there are multiple other ways. If the data is lost because of some failure the results would not be

consistent.

The method used for fault-tolerance will have a great impact on the time that a system needs to

recover from a failure, and can also affect the latency of processing, the costs of operation, the memory

used, and the time that is necessary for the system to scale up or scale down. Therefore, it should be a

method that is efficient for each scenario.

On average, current systems use a nominal value for checkpoint interval assuming roughly one failure

every nineteen days [34]. When the parallelism in a stream processing system increases, the mean time

to failure (MTTF) decreases. Using checkpoints to save the state that later can be used for recovery is

more efficient than state replication, some platforms [13, 19] store the messages at the source to avoid

local checkpoints (i.e. buffer the messages at every operator).

The platforms should do checkpoints where they maximize the total utilization time [34]. The uti-

lization time is the fraction of time of the system where its resources are available to do useful work,

it does not count the overhead to maintain the system running. A system can have different types of

checkpoints (e.g. store the state in persistent storage), some can be more costly than others and so

they can be performed less frequently than the less costly ones. In summary, the checkpoint optimal

interval only depends on checkpoint cost and failure rate.

In platforms that uses systems of operators with parental relationships in a tree way, if an operator

fails because of an internal error, then the situation is handled by the parent of that operator. That can

continue to the operator at the top of the tree. The parent operator can decide to stop the children or

restart them [17,28].

2.3 Graph Processing

A graph consists of a set of vertices and edges. The relationship between two vertices is represented

by the edge (or edges) connecting them. If a vertex has no parent (a previous vertex) then it is a source,

and if does not have a child it is a sink. In the graph stream context, each vertex represents an event.

The workflows usually are modeled as Directed Acyclic Graphs (DAGs).

Graph streaming consists of a series of events that are being streamed in the form of a graph to

an entry-point of some application that is going to process them. Usually, these applications apply

one function or more for each vertex, and because these events can be connected the result of the

processing of one can have consequences on the result of another one if they are related [35].

These graphs can suffer changes after started being processed, they can have a not known end

(unbounded streams), they can be related to other graphs that can be stored in data-centers in other

regions, among other situations, so it is only normal to exist multiple graph processing frameworks that
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have different purposes and advantages.

Graph processing has the same advantages and disadvantages as stream processing (Section 2.2).

It also has different issues and aspects that must be considered. Those are detailed in Section 2.3.1

(Graph Partitioning) and Section Section 2.3.2 (Dynamic Graphs).

2.3.1 Graph Partitioning

Some graphs have terabytes of data and when they need to be processed they must be distributed

across different machines because one machine often does not have enough memory to load the entire

graph. In these cases, or for another reason like improving performance, the graph will be partitioned

into a distributed graph. These machines usually are part of clusters, and a graph can be spread across

multiple clusters [18,35,36].

The way this distribution is made will take some factors into account, for example, an even distribution

can be ideal for a lot of cases, but not for all. There are situations where one cluster should get some

data the fastest it can, so in this particular situation, the data should be the closest possible to the

cluster’s physical location. One approach like this can result in some clusters having a larger part of the

graph than others.

However most of them use a hash function which generally results in an even distribution [28, 29],

but it also does not take into account the relationships between the vertices. Other approaches use

strategies like edge cutting to try to keep the vertices that are more related in the same cluster or nearby

clusters [36]. Comparing to the hash function, this approach takes more time to divide the graph but it

can have better results in the processing phase.

The partition strategy will influence the final result, one good strategy can lead to faster results, better

accuracy, and also reduce data transfers.

The partitioning can be done using online or offline methods [36]. Online methods are executed in

real-time when the graph is being streamed to the application, while the offline ones are executed before

the stream is done. The online has to be fast and is executed on one pass through the graph, while the

offline can be more complex and pass the graph multiple times.

The most common approach to edge cutting is to use a multilevel method, most commonly in an

offline way [36]. This algorithm consists of three phases: i) in the first, the coarsening phase, the graph

is transformed into a sequence of coarser graphs; ii) then in the second phase, the partitioning phase,

each of the coarse graphs is partitioned; iii) after that in the third phase, the uncoarsening phase, a

refinement algorithm is applied at each level to improve the cut size that was previously obtained in the

previous levels. This can be applied in an online way and due to the multiple levels, some vertices that

weren’t put in the ideal part will eventually get corrected, the algorithm can correct poor decisions that

were made in earlier iterations. In streaming graphs where the data arrives in batches or windows, the
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algorithm can be applied at each one that arrives, and then when newer batches arrive it can use the

location of the previous batches to do a better job.

2.3.2 Dynamic Graphs

Some graphs are static in the sense that their vertices and edges will remain the same. However, others

evolve with time, so at one moment some vertex can have a connection to another one, and in the next

moment, that connection might not exist anymore. These graphs are called dynamic or temporal and

can register the development of relationships between the vertices and edges of a graph throughout

time [37].

Dynamic graphs contain all the vertices history [37], those are the vertices that were added, changed,

or deleted. These changes occur through a stream of events, where each change is an action. Because

the stream can be unbounded, stream ingestion is a problem: before any action is done it must be

verified first if the pre-requisites are valid, for example, a vertex cannot be deleted if it does not exist. This

verification is necessary in order to not let the graph reach an inconsistent state. An update can arrive

out-of-order and the pre-requisites for it may still not exist. However, that update cannot be discarded

and should be kept until it can be performed, which can introduce a bottleneck in the system and can

also lead to the graph representation not reflecting the latest updates. Since normally the systems

are distributed and events can arrive out-of-order, keeping the data consistency is a bigger challenge

in dynamic graphs than it is in static graphs, but even with these conditions the graph should be in a

state where it can be processed at all times and it also should be able to perform computations at any

historical point.

The dynamic graphs can be processed by using snapshots of the different versions of the graph [38].

This way the snapshots can be treated as if they were a series of static graphs. The snapshots are

processed by their watermark time. This allows the platforms to keep a consistent state because the

platforms cannot perform updates with the wrong order and keep the consistency. The events (graph’s

modifications) can be aggregated by their timestamp and then be processed as a batch [39].

Another way of processing these graphs, and the more costly in terms of resources, is to maintain

the dynamic graphs over a distributed set of partitions and do the ingestion and updates in real-time.

This can be done by maintaining the entire graph in-memory and processing the events as they arrive,

instead of waiting for a certain number to reach a batch. This way is not necessary to use a snapshot

model [37].
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2.4 Approximate Computation

Approximate computation [8–10, 40, 41] is a computing model where the results are not completely

accurate. Such a model can be used in scenarios where the applications or systems can tolerate some

loss of accuracy.

There are multiple ways of implementing approximate computation, it can be done at the software

level, but it can also be done on the hardware level, i.e. a hardware component that must add two

values can be accurate on the most important bits and can generate the less important bits in a random

way [40]. There are also multiple ways of dealing with the data, we can compute only through a set

of samples instead of the entire data set, or we can process the entire input but with operations that

calculate an approximate result.

There are multiple advantages of using approximate computing, by lowering the results’ accuracy we

can increase the throughput and so it is possible to process data faster with the same resources, or at

the same time using fewer resources, and can also be more energy-efficient [41].

One way of using approximate computation is through load shedding [11, 15], where some of the

events are dropped when the system is overloaded. With load shedding we can lower the accuracy by

dropping some events instead of processing them, if we drop 10% of the events randomly we would

probably get 90% of accuracy. One concern with just randomly dropping some events is the fact that the

events can come from different data sources. This can lead to some data sources being less represented

than the others, so it is also necessary to have attention to the source of each event [15]. If the data

source of the events is not considered in the dropping decision, the approximate results will not reflect

the events from all of the data sources and will, possibly, be meaningless.

There are other techniques of approximate computation [8, 41, 42] like loop perforations, approxi-

mation of arithmetic computations, approximation of communication between computational elements,

precision scaling, among others.

The loop perforation method consists of skipping iterations in hot loops (a loop that heavily uses the

resources for a long time). This technique can skip approximately half of the loops, which cuts around

half of the processing time and still maintain acceptable results.

Another technique consists of a width reduction in the data, by reducing it to 10-16 bits instead of

the 32/64 that are common is still possible to get acceptable results. This is called reduced precision

computation. By using fewer bits the processing can be done in cheaper hardware and with less costs

in power consumption and time.

Relaxation of synchronization can also be used in parallel applications. It allows processing the

same amount of data in half of the time that is necessary when performing the same operations with

precise computing. This is done by not synchronize certain parts of the applications that would not lead

to a failure of the system. Another method to achieve approximate results is to store the results of some
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functions and then use those results when the input is similar and/or the function is similar, this is called

memoization.

One method that involves the hardware is voltage scaling. By reducing the voltage of some com-

ponents like the memory some errors will possibly be introduced, however, the same dataset can be

processed with less power, and the results will lose some accuracy due to the errors.

It is also possible to combine multiple techniques of approximate computing and, by tunning the

accuracy of each component is possible to produce acceptable results in the end.

StreamApprox [15] is an algorithm that was made to achieve approximate results in stream process-

ing environments. It is a generic algorithm that can be applied to Apache Spark or Flink. This algorithm

receives the available budget and uses approximate computing to process the stream without exceed-

ing it. This algorithm can be used in batch and pipeline models. It uses a stream aggregator to receive

multiple streams from different sources (sub-streams) that will form the input stream.

It uses two different techniques: Reservoir Sampling and Stratified Sampling. The Reservoir Sam-

pling works by aggregating a certain amount of events in the stream and then select which ones will

be processed with a certain probability. The Stratified Sampling does the same thing as the Reservoir

but instead of applying the randomness of selection in the input stream, it does that in each of the sub-

streams in order to guarantee that the samples chosen are fairly distributed among each data source,

however, this sampling method only works in sub-streams where the size is already known in advance,

because if the size is unknown then the number of samples that should be chosen from each data source

to make a fair distribution is also unknown.

The algorithm uses both techniques to achieve a sampling method that can select a number of sam-

ples from each sub-stream by calculating the total number of events that the sub-stream has, and then

uses a reservoir to store a certain number of samples. The next step is to decide, using a probabilistic

function which samples will be processed. Then each of the chosen samples gets a weight attribute that

depends on which sub-stream that each sample comes from. The purpose of this weight is to maintain

the statistical importance of each sample as they were in the original sub-streams, i.e. if the reservoir

has a size of three and one sub-stream has six in size, while the other has two, only half of the elements

of the first sub-stream could be chosen, but all of the elements of the second could be chosen. If the

samples did not have a weight, the impact of the samples from the second sub-stream would be greater

than the impact of the ones from the first when all of them should have the same impact.

Results can also be approximated by carefully delaying the re-execution of workloads (e.g., Map-

Reduce workflows) when new input or updated data arrives, providing previous results in response.

This way, execution is avoided until the amount and/or significance of the data pending processing

reaches application-defined criteria for Quality-of-Data. This can be useful to save resources in shared

or multi-tenant environments [43] and can be further fine-tuned with machine learning [44].
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2.5 Relevant Related Systems

Multiple platforms are used for stream and/or graph processing, each one has its strong and weak

points, and some of them are very close in terms of features. In the sections ahead there is a summary

overview of some of them, so it is visible how they compare with each other and also the current state of

stream and graph processing. There are different platforms and not all have the same focus point or are

optimized for the same scenarios. Some of them allow some flexibility in choosing trade-offs. They are

detailed in the next sections, the first ones will be the most common and the systems that were derived,

based, or are related to them. After that are the other stream processing platforms and in the end, are

the ones that are specific for graph processing.

2.5.1 Apache Flink

Flink [13] is a framework and distributed processing engine for stateful computations over streams.

Flink is able to perform the same actions on both, bound and unbounded streams so it is not neces-

sary to wait for several elements to form a batch. The reason why Flink can run any kind of application

on unbounded streams is because it has precise control of time and state. That control allows it to

treat an unbounded stream as if it was multiple bounded streams. Alternatively, it can just process each

element when it arrives.

Flink applications can run at any scale since this platform support multiple instances of the same

operators. Those applications are dataflow programs that contain stateful operators connected with

each other in a DAG way through data streams. The Flink operators can also be used in an iterative

model. When this model is used the stream has heads and tails to mark when a step has occurred. This

model can also be used to perform an iteration (also called superstep) when new data is added to the

stream.

The operators can have a state, which can be something like a sum of the values of each element

in the stream. Flink deals with the state by maintaining it on memory, or in access-efficient on-disk

structures in the case it exceeds the memory amount. The state can be shared among the operators

through intermediate data streams. An intermediate data stream is a logical handle to some data, it is

produced by some operator and can be consumed by other operators.

The data exchange between consumers and producers can be done in a pipelined way. This allows

them to exchange data in a continuous way, and Flink tries to avoid the materialization of data. The

other way of exchanging data is by using a blocking data stream, which keeps the results until it is full

and then delivers them. This approach needs more memory than the other but is useful for cases where

it is necessary to isolate successive operators.

Flink’s approach to balance latency and throughput is to serialize the data after being produced by

a producer and then divide it through one or more buffers. The buffer is sent when it is full or when it
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reaches a timeout, this way Flink can have a high throughput by defining a large size for the buffers and

also maintain low latency by setting the timeout to a small value.

Another important aspect of Flink is the control events. The streams can contain events that are

injected by the operators. They can be used to create checkpoint barriers that divide the stream into dif-

ferent parts that are saved into persistent storage. They can also be Watermarks that have the purpose

of signaling the progress state. Another use for events is to mark an iteration barrier.

Flink also guarantees exactly-once state consistency in case of failures by periodically and asyn-

chronously checkpointing the local state to durable storage. In case an application fails, it can retrieve

the last correct state that is checkpointed. The snapshots taken by Flink contain the state of the oper-

ators and also the state of the stream. This snapshot is consistent in regards to logical time among all

operators. This is done by injecting a checkpoint event into the stream. Then, the operators will process

the stream and when they see the event they will record a snapshot of their state, and then the stream

moves to the next operator who will do the same thing and so on. When all operators have done this, it

is achieved a global snapshot. When a failure occurs, the state is recovered from the snapshot.

2.5.1.1 Stateful Functions

Stateful Functions [14] is an API that uses Flink. This API has the purpose of making it easier to build

distributed stateful applications that have high-throughput and low latency and that can scale efficiently

by using Flink and adding arbitrary communication between the instances of the operators that are

processing the data. Stateful Functions retains Flink’s abilities to graph streaming, fault-tolerance with

its snapshot model, and others.

The functions (operators) of this platform are virtual, so when a function is not active it does not

consume resources, which allows the applications to scale horizontally. They are also invokable through

messages, so a function can invoke another one. Stateful Functions allows arbitrary communication

between functions, so the communication does not need to be done in the functions’ flow order, and

a function can message another or itself with exactly-once guarantees. The state exchange does not

need to use storage.

Also, there is no need for service discovery, the message exchange is done by logical addresses.

Each function’s instance is associated with a function type and an ID, both of them when combined form

the function’s unique Address. When a function is invoked it will be provided with context about the call,

this context can be something like the invoker’s function address, or its own address or some state that

will be used to update the function’s state. There are two types of functions, embedded and remote, but

despite that, remote functions can message embedded and the other way around.

The functions can also communicate with the outside world using ingresses and egresses. With

ingresses, the functions can be invoked by the outside world, and they can also send state to the outside

world with egresses using a data broker like Apache Kafka [21]. Stateful Functions uses a Flink cluster
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Figure 2.2: Stateful Functions’ Overview

to handle the messaging routing and state management, the functions can be deployed in a different

service.

In Figure 2.2 there is an overview of the way that Stateful Functions deals with the events: they are

received through the ingresses, then they are processed by the functions that can communicate and

save snapshots to persistent storage, and then the result can be returned to the outside world using

egresses.

2.5.2 Apache Spark

Spark [18] is a scalable framework that is used for processing large-scale data, it can process streams

and graphs. It offers functionalities like memory management, job scheduling, data shuffling, and fault

recovery. Spark uses Resilient Distributed Dataset (RDD) [45], which are read-only partitioned collec-

tions of records, as the data core abstraction. They are fault-tolerant and can be used to share data

between users. They can be used to generate new RDDs that can be the result of transformations or

operations applied to their data.

This platform supports linear scalability, fault-tolerance, and also in-memory processing, where mul-

tiple operators can process some data, and only after that, the results are stored in storage. Spark can

also work in a distributed way with the operators spread across multiple clusters.

Spark has cluster managers and like the name implies they are responsible for acquiring and releas-

ing cluster resources depending on the jobs that are being executed. The cluster manager also has the

job of managing the resource sharing between Spark applications.

GraphX [46] is part of Spark and is a library for large-scale graph analysis. It has features like the

abstraction of graph-oriented data, graph transformations, graph algorithms, and graph builders. It also

has an extension for the RDD API called Resilient Distributed Graph (RDG), which has a property graph

as the core data structure. A property graph is a directed multigraph. RDG has RDD’s immutability,

distributed data, and fault-tolerance. GraphX also has Spark’s graph operators for property graphs.

2.5.2.1 GraphTau

GraphTau [38] is a time-evolving graph processing framework that has the purpose of being efficient to

process dynamic graphs. GraphTau is built on top of Apache Spark.
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This platform treats time-evolving graphs as if they were a series of consistent graph snapshots, and

in the case of dynamic graph computations, they are treated as if they were a series of deterministic

batch computations.

Those graph snapshots can be processed by two different computational models. One of these

models is the Pause-Shift Resume, and its purpose is to be able to process graph snapshots that

can change to another snapshot. In other words, the algorithm that is responsible for processing the

graph will start to work as soon as the snapshot is available and then if another element arrives, the

computation is paused on the old snapshot and it is started on the new one, it is not mandatory to

process the elements that already have been processed.

The other offered model is the Online Rectification, and it consists of rectifying errors that are caused

by a different snapshot. If a value of the result of the algorithm computation on one vertex is affected by

the result of the previous and the new snapshot causes the previous one to be modified or deleted, then

it is necessary to re-calculate the result of the vertex on the new snapshot. The vertices that are not

affected by the new snapshot do not need to be re-calculated. Consistency is achieved by processing

the batch using timestamps, this way when the snapshots of an interval are processed, all changes

made in the period of that interval have been processed in the correct order. This leads to consistent

snapshots.

2.5.3 Apache Storm

Storm [19] is a real-time fault-tolerant distributed and scalable stream processing platform.

The data processing architecture consists of streams of tuples flowing through topologies, where a

topology is a directed graph. The vertices of the graph are the operators that process the events and the

edges are the relationship between the operators. The edges represent the data flow. The vertices are

divided into two categories, the spouts which are the sources for the topologies, and the bolts which are

the vertices that receive data from other vertices and then pass it to the next. Each topology can define

its own partition strategy.

The Storm distributed cluster has master nodes that receive topologies from the clients. Each mas-

ter is responsible for distributing and coordinating the execution of the topology, which is executed by

workers. If the system has enough memory, Storm can keep all the data and state from the operators in

memory, instead of using storage to get more efficient access to the data and improve the performance.

2.5.3.1 Twitter Heron

Heron [47] is an engine that is capable of real-time streaming for events like calculating the number of

active users on Twitter. Before using this engine Twitter used Apache Storm [19]. For Twitter’s use case

Storm had some issues related to scalability, debug-ability, manageability, and efficient sharing of cluster
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resources with other data services.

These issues came from different places, for example, a worker can have different tasks, and all of

them output logs to the same files, so when performance issues occur, it is hard to determine which

task is causing them, the usual solution is to restart all of them, even the ones that were good. Another

problem is the resource division, it was assumed by Storm that each worker will need an equivalent

share of resources, so this leads to a non-optimal resource allocation. Another one is that workers from

different topologies that are running in the same machine can interfere with each other, which leads to

not being possible, or being very difficult, to trace what is causing the performance issues.

Heron improves the communication between processes by using the protobuf protocol, also there is

one topology master for each topology, so the topology only has one single point of contact. It has a

Stream Manager to route the tuples efficiently. It also has a mechanism to dynamically adjust the rate at

which data flows through the topology, and a metric manager to collect system metrics. Those metrics

will then go into a monitoring system.

2.5.4 Cloudburst

Cloudburst [27] is a platform to be used with serverless computing models that allows stateful computa-

tions. The goal of this platform is to preserve the benefits of a serverless model, like auto-scaling, and

also add a shared state between the different functions.

This platform considers three types of state sharing, which are Function Composition, Direct Com-

munication, and Low-Latency Access to Shared Mutable State.

Function Composition is when the functions (operators) share state by invoking each other and pass

the state as an argument and then receive the return value, this is done in a DAG way by the platform,

however, the user can do an arbitrary function composition. Direct Communication is the case where a

function can message another and send it a value, usually, this state exchange is realized using storage,

which causes a high latency. The Low-Latency Access to Shared Mutable State is when two or more

functions or clusters are trying to access the same persistent memory and it is a concurrent access that

can lead to the need of using locks or race conditions.

The storage engine used by Cloudburst is Anna [33], and it provides consistency without the need of

having explicit coordination among the various requests that are made to the storage, this is achieved

with the help of a clock system that keeps track of when the last change was made in a determined

version of some data. The Anna KVS (Key-Value-Store) is used by the functions so they can manage

their state.

Regarding fault-tolerance, this system has it, but in two different ways. One of them is at the storage

level and it is a responsibility of Anna and its replication scheme. The other is at the computation level

and in the case of failure by a machine, the DAG that was being processed is re-processed from the
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beginning on another machine.

2.5.5 Akka

Akka [17] is a toolkit that can be used to process streams and graphs, it allows the building of concurrent,

distributed, message-driven, and scalable applications. The operators that process the data have a

parental relationship that is done in a tree way. The top-level operator receives all messages that are

sent to the system. After that, it can route them to other operators or process them itself. The operators

have an internal state and can communicate with each other by sending messages.

The operators are virtual instances, however, they need to be explicitly started, stopped, and de-

stroyed when they are not needed anymore. When an operator stops it will stop its children.

This platform offers solutions to problems like the distribution of work among the operators that are

part of the same cluster, recovering from internal errors, the scaling, the migration of entities from a

crashed system without losing their state, and also guarantee that an entity only exists in one system,

thus maintaining the system state consistent. The data sharing between nodes in a cluster supports

multiple operators writing at the same time and then the result is achieved by converging the writes,

leading to an eventual consistent state.

This platform also has fault-tolerance, the operators check their children for failures and if that occurs

the parent can restart the children or have another one process the data. Another method used for fault-

tolerance is persistent memory where the state of the operators and the stream can be saved at a certain

point. Then in case of a failure or a service crash, the operations can be resumed from that point. It

also supports having a single entity managing the same task distributed among different clusters, which

improves the fault-tolerance but limits the scaling abilities.

2.5.6 Orleans

Orleans [28] is a platform where the operators can have and manipulate state. The operators are virtual

instances, if they are not being used then they are not consuming resources.

Each operator has its state and memory, which is not shared, so the only way for two operators to

exchange data between them is through messages, with an exactly-once guarantee. These messages

are asynchronous. This allows the operators to keep working instead of being waiting in a blocked state

without explicit thread management. Also, an operator is always addressable because, since they are

virtual instances, they always exist. The runtime instantiates and deactivates the operators as they are

needed.

This platform uses a single-threaded style approach per activation, meaning if an operator is acti-

vated then it is the only one who will be reading its state, so there is no need for locks or race conditions.
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Orleans supports a scalable approach where an operator that has a state can only have one physical

instance, where a stateless operator can have multiple.

Another feature is the management of the reliability aspects, so if a server fails the state can be

recovered, however, this platform does not enforce a checkpointing state saving model; the user is the

one to choose how often the state is saved, so there is no guarantee of how recent is the latest saved

data. The runtime also check if an operator fails, and when that happens it will re-instantiate that operator

on another server, so there is no concern about an operator crashing, or to take care of checking if the

operator is alive, that responsibility is not being put on the users, the platform will do it.

2.5.7 Pregel

Pregel [29] is a distributed programming framework for graph processing. In this framework, applications

are expressed as a sequence of iterations or steps.

In each iteration, a vertex (operator) can receive messages that were sent to it in the previous iter-

ations. It can also send messages to other vertices or modify its own state. This framework allows the

vertices to retain a state that can be shared between them. It also allows a vertex to deactivate itself if it

does not have more work to do, although it can later be activated by receiving a message from another

vertex.

This framework divides the graph into different partitions. One copy of the program is the Master, and

it is responsible for knowing the state of the other copies (Workers), this is done by pinging the worker

machines periodically, if the worker does not answer then it is considered that it failed. When a worker

needs to contact another worker it sends a message that is stored in a buffer until the buffer is full and

then flushed. However, the worker can skip this step and send it directly to the worker’s message queue,

but, in most cases, it will have a higher network cost when compared to waiting for the buffer to reach a

certain size.

The Pregel programs iterate through supersteps, a superstep is when the framework invokes a user-

defined function for each vertex in a parallel way. Pregel also uses a checkpointing system to allow

fault-tolerance, the state of each partition is stored at the beginning of a new superstep, and the Master

can also ask a worker to store the state of its partitions.

2.5.8 Apache Giraph

Giraph [30] is an iterative graph processing framework, built on top of Apache Hadoop [48]. Hadoop

is a framework that is intended to be used for processing a large set of data across multiple different

clusters. It offers the ability to scale up and use a local state.

Giraph does computation over graphs, a graph being composed of vertices and their directed edges.

Each vertex and each edge store a value. The iterations are done over supersteps, in each one, a
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function provided by the user that is associated with each vertex is invoked. All vertices start in an

active state. The user-defined functions can message other vertices. In each superstep, the vertices

receive the messages that were sent to them in the previous superstep. For a vertex to know the value

of another vertex or of one of the edges it needs to ask them, in other words, they have to communicate

to share the state.

2.6 Analysis and Discussion

This section contains some performance comparisons (Section 2.6.1) between some of the previously

mentioned platforms and a summary of their design characteristics and properties (Section 2.6.2).

2.6.1 Performance Comparison

In this work by Inoubli et al. [49] there is a comparison made between some of the most popular data

processing frameworks. The tests were performed in similar conditions across all the platforms with

batching and stream models when possible. Some of the results achieved are the following:

• When comparing Flink, Hadoop, and Spark with small datasets, Hadoop was the slowest of all.

Until 1250 MB of data were used Flink was the fastest, after that point Spark was the best. This

test was done with a Wordcount processing using real data from Twitter in batching mode;

• Hadoop was slower because it was affected by the I/O operations that were necessary to process

the data;

• Spark deals with large datasets better than Hadoop and Flink, but it is not suitable for tasks that

have an intense memory utilization, because of the RDD creation process, Spark uses more mem-

ory than the other two;

• Hadoop performed well on all tested situations, but suffers from I/O access to intermediate states;

• Flink maximizes the CPU utilization which does not happen in the other two, and it also minimizes

the periods of idle;

• Flink has a high networking utilization because the communication between workers is done using

the network;

• In the stream scenario tests, Flink and Storm achieved similar results;

• For stream Flink, Spark, and Storm are all good alternatives;

• Spark and Flink are also good for batch processing;
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• Hadoop is not optimal for graph processing.

This work by Karimov et al. [50] compared the performance of Flink, Storm, and Spark. The perfor-

mance metrics used were latency, in this case, the time that it took from the data production at a source

until the engine produced an output, and throughput, in this case, the number of ingested and processed

records for a given time. There are two types of latency, event-time which is the time when an event is

captured, and processing time which is the time when an operator process the tuple.

To measure the latency it was created a mechanism that takes into consideration real-world scenarios

and also the maximum sustainable throughput. This mechanism was made to evaluate the performance

of stateful operators. The data was generated on-the-fly instead of reading it from a broker because in

a lot of cases this reading was the bottleneck and not the processing of the engines. In a general way,

Flink achieved the best results, except when the data was skewed, in this situation Spark performed

better. The results obtained by Karimov et al. [50] are similar to the ones from Inoubli et al. [49], where

both, Flink and Spark achieved similar results in performance.

2.6.2 Summary

In Table 2.1 are the most important design characteristics and properties of each of the platforms that

were mentioned in detail.

The operators/functions relationship model occurs in 4 different ways in the mentioned platforms:

• Decoupled Model: Any operator can send their results and data to any other operator or external

system. In this model any operator can also receive data from an external system;

• Directed Acyclic Graph: The operators communicate in the order of the graph (the operators are

the vertices and the edges the relationships), and the graph cannot have any cycle;

• Directed Graph: The same as the previous but with the difference that the graph can have cycles;

• Tree Structure: There is one operator on the top of the tree that receives all events and then

passes them to the others. Every other operator is a child of the top-level operator.

The decoupled model has the advantage of arbitrary communication between all operators and ex-

ternal systems. The operators can receive the data directly instead of having it routed to other operators.

The directed graphs have the advantage of knowing the order in which each operation is performed. The

tree structure has the advantage of the top-level operator deciding where each event should go, but has

the disadvantage of the events having to pass to all parent operators to get to an operator.

In Akka, the operators are resources that need to be explicitly started and stopped. They also need

to be destroyed when they are no longer needed. This is not a common approach, in the majority of the

platforms, that will be handled without the need for a user’s intervention. When an operator stops it will
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Table 2.1: Principal Design Characteristics and Properties of each platform

Platform Design Characteristics and Properties

Flink Stream and graph processing; Bounded and unbounded streams; Dataflow model;
Scalable; Control events; Fault-tolerance; Distributed;

Stateful
Functions

Same as Flink plus support to shared state in an arbitrary way without the use of
storage;

Spark Stream and graph processing; RDDs; State sharing with the RDDs; Cluster mana-
gers; Resource sharing between applications; Fault-tolerance; Distributed;

GraphTau Same as Spark plus dynamic graphs;

Storm Stream processing; Dataflow model; Dataflow can have cycles; Fault-tolerance;
Distributed;

Heron Same as Storm plus better debugging, fault-tolerance and scalability; Dynamic
and adjustable data rate through the dataflow;

Cloudburst Stream processing; Anna KVS for managing, manipulating and sharing state, also
used for fault-tolerance;

Orleans Stream processing; Fault-tolerance; Load-balacing; State sharing;

Akka Stream processing; Fault-tolerance; Can use eventual consistency; Tree structure;
Load-balacing; State sharing; Distributed;

Pregel Graph processing; Superstep model; Graph partitioning; Fault-tolerance;
Distributed;

Giraph Graph processing; Superstep model; Fault-tolerance; Distributed;

recursively stop all of its children operators and so on. This does not work the other way around, a child

operator cannot stop its parent even if it was stopped. Another feature that operators have is the ability

to watch other operators, this way when an operator is stopped, if another operator was observing it, it

will receive an event. Orleans also uses an operator system with virtual instances. Orleans simplifies the

management of operators’ lifecycle and race conditions to state updates in a shared database. Orleans’

operators also work similarly to the functions in Stateful Functions and Pregel, which are also virtual

instances.

Pregel has similar functionalities as the ones in Stateful Functions. This framework allows the user-

defined functions to share state with the other vertices’ functions in each step, which Stateful Functions

also allows. They both also provide fault-tolerance with a checkpoint system. In both of them, the

functions are virtual instances that can be paused when not in use to not consume resources. In Pregel,

a vertex can stop itself when its work is finished, so unlike Akka, they do not need to be explicitly started

and stopped. Apache Giraph is another system where the operators communicate using a superstep

model. It allows message exchanging in each step.

Apache Spark uses RDDs to represent the data. Spark and Flink both serve the purpose of batch

and stream processing. They are both distributed platforms. Flink can be faster than Spark in a lot of

situations because it uses a streaming model while Spark uses a micro-batch processing model.

GraphTau also uses RDDs, because it uses Spark. In GraphTau one graph is made of two RDDs,

one for the vertices and one for the edges. Since GraphTau uses GraphX, it has two recovery mech-

anisms, one of them is a parallel recovery of lost state and the other is speculative execution. When
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the system detects some failure it launches tasks to recompute the state from the last saved point, this

reconstruction is applied in the nodes that failed and it can recover the missing edges and vertices of

the graph.

Cloudburst uses functions in a DAG way, the same as Stateful Functions. It also allows these func-

tions to have a state and share it with other functions. Cloudburst’s functionalities are very similar to the

ones of Stateful Functions.

Heron is a stream processing platform that allows to dynamically adjust the rate at which data flows

through the functions, which is a functionality that the other platforms that were mentioned do not have.

All of the platforms that were previously mentioned support some sort of fault-tolerance and state

recovery, and in Table 2.1 we have a comparison between the principal properties of each platform. We

can see that Akka, Stateful Functions, and Cloudburst support arbitrary communication between their

operators/functions, although, Cloudburst is the less efficient one because it usually uses persistent

storage to exchange the state. Giraph and Pregel communicate with a superstep model, so the operators

have to wait until the end of the step to receive the messages. Spark can exchange the state using

RDDs, which are immutable, so it is necessary to create a new RDD to share different data. Storm and

Heron process directed graphs and do not support arbitrary communication between the operators, only

between those who are linked. GraphTau supports dynamic graphs. All of the mentioned platforms are

scalable.

Although the mentioned platforms have many features, none of them support approximate computa-

tion out of the box to improve the performance, however, that can be added with plugins/extensions to

the platforms that allow being extended.

Another important lacking feature in mainstream platforms is auto-parallelization, where the platform

should be able to change its parallelism level depending on the current load or on other metrics. This

feature was introduced in Flink in its latest release with the Reactive Mode. This mode adjusts the

parallelization based on the current load, however, the same resources are divided into the parallel

instances of the workers. Flink does not support a dynamic allocation of the resources, it only assigns

the resources to different operators, it can not use more than the ones that are allocated, the lack

of dynamic resource allocation is common in the mainstream platforms. Some platforms like Spark

can share resources from one application to another when they are available and running in the same

cluster. As previously mentioned, the mainstream platforms are lacking cumulatively support for dynamic

resource allocation, elastic scaling, efficient state sharing and approximate computing.
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Chapter 3

Solution

In this chapter we present and explain Approxate, which is the proposed solution. We start with an

overview in Section 3.1, after that we explain the architecture in Section 3.2. Lastly there is a summary

of this chapter in Section 3.3.

3.1 Overview

The proposed solution is Approxate, it is a system that manages stream and graph processing appli-

cations that are made with Stateful Functions [14], that internally uses Flink [13]. Approxate controls

the resource management and allows the applications to use approximate computing when necessary.

The applications use Kafka [21] to get the events and then to send their results after the processing is

done. The applications run in containers through Docker [51], since it is the official and simplest way of

deploying applications that use Stafeful Functions, so it is expected to be the most common approach

when using it. Approxate is designed primarily to work with stream processing, however, it can also be

applied to graph processing by using Gelly [13]. Gelly contains a library of algorithms that are used to

process graphs and can be used with Stateful Functions.

Approxate allows the user to define requirements for the lag (number of produced events pending,

i.e. that are not yet processed), the throughput (number of results being produced per unit of time),

and the latency of the producers (complete time that is necessary for a produced result to be sent to

Kafka). Approxate aims at fulfilling these requirements whenever is possible by increasing the necessary

resources and decreasing the accuracy of the results with approximate computing. The user can also

define the maximum and minimum values for the amount of memory that can be used, for the level

of parallelism, and the theoretical minimum accuracy which is defined as the percentage of processed

events (3.1). Naturally, the actual accuracy value can be different for several reasons since not all

applications use the events in the same way (e.g., one application where only extrema, i.e., maximum or
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minimum values are relevant, may suffer more than other applications where, for instance, only average

results are required).

Accuracy =
ProcessedEvents

TotalEvents
(3.1)

3.2 Architecture

In this chapter, we describe the components that are part of Approxate. It is composed of three com-

ponents, the Approximate Library (Section 3.2.5) which is responsible for receiving the events and then

deciding based on the accuracy level if they are processed or dropped (load shedding). The second

component is the Metrics Reporter (Section 3.2.6) which collects the execution’s metrics, verifies if the

application is under load and/or meeting the requirements, and if necessary reduces the accuracy. After

that, it sends the metrics to the final component, the Middleware (Section 3.2.7). The Middleware re-

ceives the metrics and does a more extensive analysis of them and then it decides if it should adjust the

application’s resources, the parallelism level, and the accuracy.

When the Middleware changes the memory that the application is allowed to use or the parallelism

level it is necessary to restart the application so the changes take effect. Usually, the restart is fast (few

seconds to a minute depending on how fast Flink takes and restores snapshots), and for the adjust-

ments in the resources to be worth, the time that the restart takes must be less than the time saved

by adjusting the requirements. The formula to calculate the time saved is in (3.2). The time saved is

given by multiplying the number of events that are to be processed by the difference between the rate

of processing with the adjusted resources and the rate before the adjustment, and then subtracting the

time it takes for the restart to happen.

TimeSaved = Events ∗ (Rate[AfterAdjustment]−Rate[BeforeAdjustment])−RestartT ime (3.2)

In Figure 3.1 there is a system overview where we can see how the different components will interact

with each other. The Approximate Library is instantiated in each Flink job. It does not communicate

with the other components directly. The Metrics Reporter runs inside the Flink Worker container, it

collects, uses, and sends the metrics to the Middleware. The Middleware can adjust the resources of

the applications and containers, and restart the applications. It interacts with Docker through the Docker

Client and with Flink through Flink’s REST API which uses the WebMonitorEndpoint class.

The components and their advantages that Approxate will use that already exist are described in the

next sections. Following that, we explain the architectures of the individual components that compose

Approxate. We also explain the responsibility of each component and their interactions with the other
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components.

3.2.1 Flink

Flink [13] is a processing engine for stateful computations over streams. As previously mentioned it is

scalable, distributed, can process data streams in a parallel way and the operators can maintain and

share the state between them. It has a snapshot model for fault-tolerance and control events that are

used to retrieve execution metrics.

Flink Program Client Job Manager (Master)

Task Manager (Worker)

Task Slot

Task

Task

Task

Task Slot

Task

Task

Task

Task Slot

Task

Task

Task

Task Manager (Worker)

Task Slot

Task

Task

Task

Task Slot

Task

Task

Task

Task Slot

Task

Task

Task

Data Stream

Dataflow

Figure 3.2: Flink’s Architecture

Figure 3.2 shows Flink’s architecture (i.e. of Flink Jobs workers) in more detail where we can see how

a Flink program is executed. The client, which is not part of Flink’s runtime, submits a job, in the form

of a dataflow, to the Job Manager. Then the Job Manager has to assign that dataflow to one or more

tasks. For this, the client needs to connect to a running Flink cluster that can accept job submissions.

There are different types of clusters:

• i) they can be session clusters whose session will be started and stopped manually, which are not

tied with the job’s lifetime;

• ii) another type is job clusters where a cluster is initiated for each submitted job and it is only used

for that one;

• iii) the last type is application clusters where the clusters only execute jobs that come from the

same application and the main() method runs on the cluster instead of running in the client. In this

approach, there is no need of having to start manually the cluster, the cluster entry-point will start

it and this type is bound with the application’s lifetime.

The Job Manager needs to coordinate the execution of the various Flink components. One of them

is the Resource Manager and its role is to allocate or deallocate the available resources among the
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clusters. This is done by managing task slots, which are used to execute the tasks from the dataflows.

They are also used to buffer and exchange data streams. Flink can chain several subtasks together into

a single task to reduce the overhead of changing threads and buffering. Each operator has a defined

number of task slots available and it assigns them to perform the dataflow tasks (the tasks are the

operators/functions).

Another component is the Dispatcher and it is used for submitting Flink applications and then it starts

a new Job Manager for each job that is part of the application. The last component that is part of the Job

Manager is the Job Master and it performs the management of the execution of a JobGraph, it will check

if the instances are running, perform checkpoints among others (a JobGraph is necessary for each job

that is being executed). When a job is saved the operators will save their state into persistent storage so

they can resume the job when it is restarted.

3.2.1.1 Metric System

Flink contains a Metric System that allows various execution metrics to be gathered. It also allows the

creation and use of custom metrics reporters, such as the one proposed in Approxate. This system

also collects the JVM metrics and the Kafka metrics by using the Kafka Connector. This system is

used in Approxate to collect the metrics periodically, which is done by using the AbstractReporter and

Scheduled classes of Flink.

The AbstractReporter gathers all metrics and separates them by their type. This class can be

extended to build custom reporters, by using this class the reporters already have the metrics gathered,

they just need to filter the necessary ones to use them. The Scheduled class is used to perform the

AbstractReporter and the custom reporters operations periodically.

Approxate uses this system to collect the following metrics:

• Recent CPU Load: This metric is produced by the JVM and indicates the load of the CPU for a

short period of time;

• Memory Heap Used and Memory Non-Heap Used: These metrics are produced by the JVM and

they indicate the amount of heap and non-heap memory in use;

• Memory Heap Committed and Memory Non-Heap Committed: These metrics are produced by

the JVM and they indicate the amount of heap and non-heap memory that is committed;

• Records Lag Max: This metric is produced by Kafka and indicates the maximum value of events

lag, it indicates the number of events that a consumer has not consumed in a Kafka partition;

• Request Latency Max: This metric is produced by the Kafka producers and it measures the time

between the sending of the message by the producer and the message being received;
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• Record Send Rate: This metric is produced by the Kafka producers and indicates the number of

events that are being sent by the producer per unit of time.

The latency value of the application (amount of time that a event takes to travel from the consumer

to the producer inside the application) is not being utilized nor calculated because there is no way of

calculating it in a general way. To calculate that value is necessary custom code for each application

and so, is not being used.

3.2.2 Stateful Functions

Approxate is designed to work with Stateful Functions [14] because it supports arbitrary communica-

tion between the functions (the communication does not need to happen in the operators’ order in the

dataflow), and any functions can share their state with another without the need of using persistent stor-

age. It also facilitates building streaming processing applications because it generates the dataflows that

are executed in Flink. Since Stateful Functions uses Flink it has the same advantages, like the snapshot

model and the ability to process graphs with the library Gelly.

In Figure 3.3 we can see how Flink gets the data that is sent to the Stateful Functions cluster through

the Ingress Connectors from Kafka, resulting in function instances being invoked by the Function Dis-

patcher to process the data, and after that, the results can be stored or/and sent to Kafka by the Egress

Connectors. We can also see that Flink uses the Metrics Reporter to communicate with the Middleware.

The Flink Master is responsible to manage the Flink components (Job Manager, Resource Manager,

Task Manager, and Dispatcher).

Stream

Flink Master
(Job Manager)

Ingress
Connector

Function
Dispatcher

Egress
Connector

Data  
Storage   External

State

Results

Internal
Functions

External
Functions

Middleware

Metrics
Reporter

Stateful Functions Cluster
(Task Manager / Flink Worker)

Kafka Kafka

Internal
State

Figure 3.3: Flink’s Execution Flow with Stateful Functions

The Stateful Functions cluster is responsible for routing the messages and also maintaining the state.

Unlike Flink, the computations do not need to happen in the cluster partitions, they can happen in the

functions’ services. Flink is also responsible for invoking the stateful functions.
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3.2.3 Kafka

Apache Kafka [21] is a distributed, partitioned, and replicated publish-subscribe messaging system.

It is used to route messages (events) through different applications. It has strong message durability

and also ordering of messages. Kafka uses Zookeeper [52] which is a logically centralized distributed

coordination service for distributed systems. Kafka uses it to store its metadata like the location of each

partition.

Kafka divides the messages into categories called Topics, which are part of Brokers, the Kafka

architecture is in Figure 3.4. Each broker can store a number of topics and each topic can be stored in

a number of brokers. The brokers divide the topics into partitions. Each partition can have consumers

consuming the messages and producers sending messages to the partition.

Kafka

Broker 1

Partition 1

Partition 6

Broker 2

Partition 4

Partition 2

Broker 3

Partition 3

Partition 5

Zookeeper

Producer 1 Producer ... Producer N

Consumer 1 Consumer ... Consumer N

Figure 3.4: Kafka’s Architecture

The Kafka integration with Flink is done with Kafka Connectors (Kafka-Consumers and Kafka-Producers).

The consumers and producers are executed inside the Flink applications. The consumers can consume

from one topic or more and will keep the offset value to know how many events they consumed and how

many are they behind from the latest (lag value), they usually consume events in batches. Similar to the

consumers, the producers can also write events to more than one partition. After a restart happens to

the applications, if the job was saved, the consumers and producers will know their offset and they can

continue to consume/produce events from where they left. The Flink internal metric system receives the

Kafka metrics by using the Kafka Connector which allows it to receive the metrics periodically.

3.2.4 Docker

Docker [51] is a platform that allows the user to run applications in containers. It offers controls to the

resources that an application can have access to, including a priority system for the CPU time, so one

container can have priority over the other, but if the containers with higher priorities are not using the

CPU, the containers with less priority can use it.

The running of applications in containers also has other advantages like the fact that the entire code
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and dependencies are all packaged together so it is easy to change from one computational environ-

ment to another. As previously mentioned Docker is the official way of deploying Stateful Functions

applications, so it is used in Approxate.

Approxate utilizes Docker to limit the resources that each application can have and also restart the

containers where the applications are running, if necessary. In Figure 3.5 is the representation of the

Docker containers that run through Docker. The Docker Engine is responsible to limit the resources of

the machine that the containers can use.

3.2.5 Approximate Library

This component is used inside the Stateful Functions applications. It intercepts the events that the

applications are receiving before they are routed to the functions that will process them. It is used to

perform load shedding based on the current accuracy value.

Rate =
DroppedEvents

TotalEvents
(3.3)

This component, whose logic is represented in Figure 3.6, is invoked for each event. Then it will use

a random selector to decide if that event should be dropped or not. This decision will be based on the

current minimum accuracy level in the application. Before a event is dropped, this component will verify

if it can drop that event by checking its origin, the data source. This is done so the Approximate Library

can drop events with the same percentage between the different data sources, this leads to an eventual

balance of the data sources’ representation in the results. To do this the Library registers the number

of skipped/dropped events and the total number of events (i.e. the rate (3.3)) globally and for each data

source. If there is only one data source that verification will not occur.

If that verification did not occur when using multiple data sources, some data sources could be under-

represented while others would be over-represented. Figure 3.7 contains an example of two ways of load

shedding on the same dataset. The dataset consists of 8 events from source A, 4 events from source B,

and 6 events from source C. They arrive with the order that is in Part (1) of the figure. After they arrive
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Figure 3.7: Load Shedding
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some events are randomly selected to be dropped. They are the A2, C2, C3, A3, A4, C4, A5, A8, B2,

B4, and C6. This part is equal for the two examples.

Part (2) represents the example where the load shedding is done without verification for the data

sources representations, so what happens is that the selected events are simply dropped. We can see

that the events that were not dropped do not represent all data sources equally, the source A has 3/8

(37,5%) of events represented. The B has 2/4 (50%) and the C has 2/6 (33.3%). This could affect the

accuracy of the results.

Rate(DataSource)− 0.1 ≤ Rate(Global) (3.4)

In Part (3) of the figure the load shedding is done with the algorithm. The events that were randomly

selected to be dropped must verify the condition of Equation (3.4). The GR is the current global rate

value in each iteration before deciding if that event is dropped or not. That value is used to decide if the

event is dropped, together with the XR value, which represents the rate for a specific data source X.

In the second iteration where the event A2 is selected both of the dropped rates are 0, so the event

can be dropped. In iteration 5 (event C2) the C data source rate is 0 and thus, the event can be dropped.

In the next iteration, the Global rate is 0.4, since that 2 events were dropped out of the 5 so far, and the

C rate is 0.5 because there were 2 events from data source C and only one had been dropped, so this

event can be dropped since 0.5 - 0.1 ≤ 0.4.

The iterations continue and in iteration 11, which corresponds to event A5, we have the first example

of the algorithm not dropping a selected event. The A data source rate was 0.75 and the global rate was

0.6, and since (0.75 - 0.1 = 0.65) is not less or equal to 0.6 the event was not dropped.

After all iterations, we can compare the result with the result from Part (2), and with the algorithm of

the Approximate Library, all data sources got an equal representation of 50%, contrary to what happened

before where each data source got a different representation, however, the percentage of dropped

events was 50% instead of 61%.

Even when the accuracy value changes, the library still uses the same formula (3.4) to decide if it

can skip an event, which means that the percentage of dropped events for each data source are close to

each other. Before that, the Approximate Library checks if the rate (3.3) from the data source with 10%

less is equal or lower than the global rate, and the event is only dropped if that condition is verified.

The value for dropped events that this component is targeting is the theoretic value, and in ideal

conditions (e.g. all of the events from different data sources arrive in a sequence where they have equal

representation among them) it can be achieved. However, the actual percentage of dropped events will

most likely be less than the targeted, because sometimes when an event is selected to be dropped, it

cannot be because of its data source rate and the global rate.

When that happens the Approximate Library will not select another event instead of the one that
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was not dropped, it will continue to select the events by chance, this way the overhead of the library is

smaller, but the actual percentage of dropped events in most cases will be lower than the theoretical

value.

The subtraction of 10%1 of the rate is necessary to keep the percentage of dropped events closer

to the one that is defined. Without that subtraction, the Library will not drop most of the events, unless

the events arrive in the ideal conditions described previously. With less 10%, the amount of dropped

events is closer to the targeted one and the representations between the different data sources are still

maintained.

The Equation (3.5) gives us the expected results’ accuracy, the accuracy is calculated by summing

the percentage of the number of processed events for each accuracy (Accuracy ⊆ [1, 100]) multiplied by

the accuracy value.

FinalAccuracy =

100∑
Acc=1

Events(Acc) ∗Acc

TotalEvents
(3.5)

Algorithm 1 Approximate Library Pseudo-Code

1: function INVOKE
2: event← received event
3: accuracy← get accuracy
4: if accuracy < 100 then
5: if randomSelect(accuracy) == true then
6: if EventCounter.canSkip() == true then
7: skip(event)
8: return
9: forward(event)

10: function CANSKIP
11: globalRate← global rate
12: sourceRate← data source rate
13: if sourceRate - 0.1 ≤ globalRate == true then
14: return true
15: return false

In Algorithm 1 is the pseudo-code of the Approximate Library. As we can see after the library is

invoked it verifies the accuracy and uses it to select or not the event randomly to be skipped, and then

verifies if it can skip that event. If it is not skipped then it is forwarded to the operator that will process it.

This component uses a model for approximate computation that employs an eventual balance of the

data sources’ representation. This component could have used a precise balance, however, that would

increase the processing of each arriving event when deciding if it would be dropped or forwarded to

the functions. The Approximate Library trades a total balance of the data sources representation for

performance.

1This is not a precise value, it was decided by observing how the Library behaved when different values were chosen.
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3.2.6 Metrics Reporter

This component uses Flink’s classes AbstractReporter, which allows the system to aggregate the

metrics, and Scheduled which allows the system to perform the reporter actions with constant intervals,

to collect the execution metrics periodically. As previously mentioned both of these classes are part of

Flink’s Metric System.

By using the Metric System (Section 3.2.1.1), the Reporter can collect the JVM and Kafka metrics

that are used to evaluate the processing. After collecting the metrics it analyses them by comparing their

values with the minimum desired values in the requirements if they exist. It will also verify if the CPU

usage or memory utilization is adequate to the quantity of allocated resources.

The Reporter can vary the execution’s minimum accuracy value immediately after analysing the met-

rics, this way is not necessary to wait for the Middleware decision if the requirements are not being met.

This component does not wait for the Middleware because they both analyse the metrics periodically.

Even if the period is the same on both, they will likely be desynchronized. This may happen because of

the period that it takes for the Flink applications to restart after some of their resources being modified,

every time an application is restarted it starts to count the time for the metrics’ analysis from zero.

After modifying the accuracy if it was necessary, the Metrics Reporter will send the metrics to the

Middleware that will do a more in-depth analysis of the metrics and decide what the execution resources

should be.

In Figure 3.8 we can see the two modules of this component. It uses an analyser for the metrics

produced by the Java Virtual Machine, which is where Flink is running, and they are used to verify the

processor and memory utilization. It uses a different analyser for the metrics produced by Kafka which

give us the necessary information about the events that are coming in and going out of the application,

e.g. how many events are waiting to be processed, and also how long it takes for a result to get to Kafka

after being generated.
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Algorithm 2 Metrics Reporter Pseudo-Code

1: function REPORTMETRICS
2: resourceMetrics← get resource metrics
3: requirementMetrics← get requirements metrics
4: requirements← get requirements
5: resourcesRes = AnalyseResources(resourceMetrics)
6: if ResourceUsageIsNotOk(resourcesRes) then
7: LowerAccuracy()
8: else
9: requirementsRes = AnalyseRequirements(requirementMetrics, requirements)

10: if RequirementsAreNotMet(requirementRes) then
11: LowerAccuracy()
12: else
13: if CanIncreaseAccuracy(resourcesRes, requirementsRes) then
14: IncreaseAccuracy()
15: SendMetrics() Send metrics to the Middleware

In Algorithm 2 we show the pseudo-code of the Metrics Reporter. As we can see the Reporter

gets the metrics and the desired requirements and check if it should increase, decrease or maintain the

current accuracy. After that, it sends the metrics to the Middleware.

3.2.7 Middleware

In this section we explain the Middleware logic and components. We start with an overview and the

pseudo-code, and then we explain each component that is part of the Middleware.

The Middleware is responsible for managing the applications’ executions by deciding the resource

allocation and the minimum accuracy. It receives the metrics that are sent by the Metrics Reporter

and after that, it analyses them. The analysis done by the Middleware take into consideration more

factors than the Metrics Reporter’s analysis, the Middleware has access to more information (quantity

of available resources, parallelism level) and can also do more adjustments than the Metrics Reporter,

which can only modify the accuracy level.

In Figure 3.9 we show a diagram of the Middleware. This component has three modules, the Con-

troller Module; the Metrics Analyser Module; and the Communication Module. The Controller Module

is responsible for controlling the other two modules. It uses the Communication Module to receive the

metrics from Flink and then it sends them to the Metrics Analyser Module where they are analysed.

After that, it receives the results from the Metrics Analyser Module and it verifies which adjustments are

possible to perform. When an adjustment can be done it uses the Communication Module to perform it.

Lastly, it will use again the Communication Module to restart the application if that is necessary.

In Algorithm 3 we show the pseudo-code of the Middleware. As we can see it starts by getting

the metrics and loading the configurations. After that, it will analyse the metrics using the user-defined

execution requirements, if they exist. Then the Middleware generates a result for each metric. When
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Algorithm 3 Middleware Pseudo-Code

1: function MAIN
2: configs← load configs
3: metrics← get metrics
4: results = AnalyseMetrics(metrics, configs)← get the new configurations
5: ApplyResults(results)← apply the new configuration if necessary
6: function ANALYSEMETRICS(metrics, configs)
7: resultsList← initialize empty list
8: for metric in metrics do
9: minDesiredValue = GetTarget(metric)← get desired value for the specific metric

10: result = AnalyseMetric(metric, minDesiredValue)
11: resultsList.Add(result)
12: finalResults = AnalyseAllResultsCombined(resultsList)
13: return finalResults
14: function APPLYRESULTS(results)
15: for result in results do
16: ApplyResult(result)← modify the configuration files and/or the Docker containers
17: if RestartIsNecesseray() == true then
18: Restart()
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all metrics have been analysed, the results are used to modify the execution resources and accuracy, if

necessary, and also the Docker containers resources. After the results have been applied it will restart

the application depending on the parameters that have been modified.

3.2.7.1 Controller Module

This module starts by loading the configurations of Middleware. It then uses the Communication Module

to receive the metrics from Flink. After receiving the metrics it uses the Metrics Analyser Module to

analyse them and decide what adjustments it will perform on the resources and accuracy.

After receiving the results this module verifies if the adjustments decided by the Metrics Analyser

Module can be performed (i.e. if it decided that the memory should increase it will verify if it is already

at the maximum). After that, it uses the Communication Module to perform the adjustments.

3.2.7.2 Metrics Analyser Module

This module analyses the metrics that are described in Section 3.2.1.1. It uses 2 levels for increasing or

decreasing the resources and the accuracy. We chose this approach because it allows a more precise

control than just using an increase or decrease as a result of an analysis. The maximum/minimum

levels are used to adjust the parallelism and accuracy to the maximum/minimum possible levels. The

other levels adjust them in steps, the parallelism step can be defined in the options and the accuracy is

adjusted 10% at a time. We chose this value because it is enough to have an impact on the performance,

but not a major one.

The memory is always adjusted in percentages that are relative to the increase/decrease level. It

can be increased by 25% or 50%. When it is decreasing it is by 25% or 40%. We chose these values

because they allow the system to increase without using all the memory, which could lead to instability

(i.e. if the memory increased to the maximum amount that can be used, it could lead to wasted memory

and so Approxate would have to decrease the memory afterward). When decreasing, it is used 40%

instead of 50% due to observations of how the different tested scenarios behaved, using 40% leads to

more stability than 50%.

The CPU increases are done with Docker shares, when the result is to increase to the maximum it

will increases the shares to double of the default value, so it has twice the default priority. Otherwise, it

increases a quarter of the default value at a time. When is to decrease it also decreases a quarter of the

default at a time. When is to decrease to the minimum it decreases to one-eighth of the default value.

The levels of adjustment are decided based on percentages. If a requirement is not being met by

a margin of at least 15% then it is considered that the resources should be increased to the maximum

level. This module uses a similar model in the analysis of the resources utilization (i.e. if the CPU load is

25% or less then CPU priority should be decreased to the minimum). We decided the values for defining
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each level of adjustment to get a progressive adjustment of the resources whenever is possible to avoid

over-increasing or decreasing. This way we can achieve a more stable system.

This module uses the CPU load to check if the system is under load or not. Depending on the load

the Middleware can increase or decrease the level of parallelism, the accuracy, and the priority of the

container where the application is running in Docker. Approxate does not put hard limits on the level of

CPU usage that the application can have, we use a soft limit by using Docker’s CPU shares. The number

of shares that a container has is the level of priority over other containers, which means that if the host

machine is not under load any container can use the CPU for any given time, but if the machine is

under load some containers will have priority over others. This approach was chosen because it allows

defining a priority given the conditions of each application. It also allows them to use more CPU time if

they need it and it is not being used.

The memory values are used to verify if the current reserved memory for that application is enough,

or if it is too much, given the memory in use and the memory committed. The Middleware can modify

the reserved memory for the application. It also changes the amount of memory that the container can

access through Docker. Defining a hard limit of memory when using Docker is important because if it is

not defined then Docker will continue to use the memory until the system crashes.

The lag value is used to verify if the lag requirement is being met. If the requirement is not being met,

the Middleware will increase the available resources and decrease the accuracy until the application is

meeting the requirement. If the lag value is high it means that the Kafka consumers that are running in

the application are not being able to keep with the rate of the events’ production.

The latency value is used in the same way as the lag one. A high latency value means that the

events produced in the Flink application that are sent to Kafka are taking a long time before being

received. This can mean that Kafka is under load and cannot keep with the rate of the producers or that

the application is under load and cannot send the events in a short amount of time after they have been

produced. Since Approxate is not analyzing Kafka, we assume that if the latency is high is because of a

lack of resources and the Middleware increases them and lowers the accuracy.

The record send rate is the throughput and it is used to check if the requirement is being met, if it is

not being met it would mean that the application can no longer keep the desired processing rate which

can be caused by having all of the resources being used and none available. This value is also used to

increase or decrease the resource allocation and accuracy.

After all of the metrics are analyzed this module combines their individual results to decide what

modification it will do. This combination starts by checking if the requirements are being met or not. If

any of the requirements is not being met by a large margin (15% of the target value), then it will increase

the parallelism level to the maximum and decrease the accuracy level to the minimum. After that it

verifies if any of the resources’ results about the processor and the memory is to decrease, and if that is

the case, then it changes the results to maintain the allocated resources. However, if those results are
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to decrease at the maximum level (which indicates that it has too many resources), they are modified to

just decrease. If those results are to increase then they are changed to increase to the maximum.

Another case that can happen is when some requirement is not being met by a smaller margin than

the previous case (less than 15%). When this happens, the Metrics Analyser decides that the accuracy

is decreased and the parallelism increased, but not to their maximum/minimum levels. The parallelism

increases by a amount that can be defined in the options and the accuracy decreases 10%. It also

checks the resources’ results and if they are to decrease at the maximum level they are modified to just

decrease, otherwise they stay the same.

If the requirements are being met then the focus is in checking the resources’ results and not generate

contradictory results (i.e. if the parallelism level increases it is expected that the CPU and memory

utilization will increase, so it does not make sense reducing those to the minimum level).

To verify the resources’ results, the Metrics Analyser adjusts the parallelism level according to the

CPU result (i.e. if the CPU increases the parallelism also increases, if the CPU increases to the max-

imum then the parallelism also increases to the maximum). The accuracy level is also adjusted in an

inverse proportion of the CPU level (i.e. if the CPU decreases to the minimum then the accuracy in-

creases to the maximum). The memory result can also be modified in the cases where the CPU result

indicates to increase it to the maximum and the memory result indicates to decrease it to the mini-

mum, in this case the memory just decreases since it is expected to get more usage after the CPU and

parallelism adjustment.

With this analysis, the Middleware can identify what resources are needed to increase or decrease

(e.g. it can increase the amount of memory while decreasing the CPU priority). To conclude, this com-

ponent can adjust the CPU priority, the memory limit, the level of parallelism, and the level of accuracy

based on the current metrics.

3.2.7.3 Communication Module

The Communication Module has three sub-modules. The first is the Flink Communication that is used

to receive the Flink metrics in an HTTP web socket and to trigger the savepoints in Flink’s webpoint

by using its REST API. The second is the System Communication which is used to change the Flink

application’s configuration files and to restart the execution by using the system to build new Docker

images with the new Flink configurations. The last one is Docker Communication that is responsible to

retrieve the containers’ information, changing the resources that the applications can use, and adjusting

the applications CPU priority over the others.
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3.3 Summary

This chapter describes Approxate’s architecture. It describes how Approxate interacts with Stateful

Functions’ applications, and how it interacts with Flink and Docker.

Approxate collects and analyses the metrics periodically. Based on the current load, and in the

user-defined values for lag, latency, and throughput, it adjusts the resource allocation and also utilizes

approximate computation to lower the results’ accuracy and increase the performance.

The approximate computation is done using a technique called load shedding which consists of

dropping some of the events instead of processing them. Approxate takes into account the data source

of the events before they being dropped, and so the results will eventually represent all of the data

sources in the same percentage as the received events. This way no data source is under-represented

in the results.

This chapter also shows how the theoretic value of the accuracy is calculated. It also shows the

formulas that can be used to calculate the final theoretic accuracy of the results and to verify if it com-

pensates, regarding the time, to restart the application after adjusting the resource allocation.
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Chapter 4

Implementation

We describe the implemented components in this chapter. We explain the used APIs/libraries and their

purpose. All of the components are implemented in Java, since it is the language that Flink and Stateful

Functions use.

4.1 Approximate Library: Implementation

The Approximate Library is comprised of four classes. The first class is the ApproximateMessage class

and it is used as a wrapper for the input events of the applications. It is a generic class, so it can work

with any type of event. This class represents an object and it stores the necessary information for the

Approximate Library to use about an event. This class contains 3 fields:

• Id: An object of String type and it is the event identifier, which is used to route the event in the

applications;

• Ingress: An object of String type and it is the identifier of the data source of the event;

• Message: An object of generic type and it is the event.

The next classes are the ApproximateSingleIngressResultsFunction and ApproximateMultiple-

IngressResultsFunction. They are used to select and drop the events according to the accuracy value.

The main difference between those is that one of them is used when there is only one data source, so it

does not keep a data source or global rate, it just drops the events that are randomly selected.

A code snippet of the creation of the ApproximateMultipleIngressResultsFunction is in Listing

4.1. The instance can be created in two ways, in the first it receives a Map that contains the relationship

between each input event data source and the functions that can process that event. In the second way,

it receives the identifier of the function that can process the events and receives a list of the data sources
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that can produce the events. Although it only has a single function type, it is still necessary to create

a map, since the methods that forward the events search the map using the data sources to obtain the

functions types.

These 2 ways exist because an application can have one or multiple functions to process the events

when they arrive. The FunctionType is a Stateful Functions object type and is used as part of the

functions’ identifiers. It is used when the events are routed to the functions that will do the processing.

After the instance of the Library is created it receives the events and performs the load shedding. The

method used to perform the load shedding gets the current accuracy by using the Java Virtual Machines

Properties. When the application is started, Flink loads the system property that contains the accuracy.

When an event is not dropped it is forwarded to the functions using its FunctionType and a Down-

stream object, which is a Stateful Functions’ object used to route events through the application.

The last class that is part of the Approximate Library is the RecordCount and it is used to keep track

of the percentage of global and data sources dropped events. This object contains a map to store the

information about each data source, that information is stored as an object of type CountInfo which is

an inner class of RecordCount. The CountInfo just stores the number of total events and how many

were dropped, and can also return the rate.

Listing 4.1: Library Instance Creation

1 public ApproximateMultipleIngressResultsFunction(Map <String , List <

FunctionType >> ingressMap){

2 this.ingressMap = ingressMap;

3 }

4

5 public ApproximateMultipleIngressResultsFunction(FunctionType functionType ,

List <String > ingresses) {

6 ingressMap = new HashMap <>();

7 List <FunctionType > list = new ArrayList <>();

8 list.add(functionType);

9 for (String ingress : ingresses) {

10 ingressMap.put(ingress , list);

11 }

12 }

48



4.2 Metrics Reporter: Implementation

The Metrics Reporter is a Flink plugin that is comprised of 5 classes. One is the Commom that is used

by the others to perform computation or extract values from Strings. Another class is the CustomRe-

porterFactory and it is used by Flink to create an instance of the Metrics Reporter.

Two of the classes are the JvmAnalyser which analyses the metrics generated by the JVM to check

the utilization of the available resources, and the KafkaAnalyser which is used to verify the metrics

generated by Kafka. It loads the user-defined requirements about throughput, latency, and lag through

the JVM properties system (the requirements are loaded by Flink when the application starts) and uses

the metrics to check if they are being met or not.

The analysers return a value between -1 and 2 for each metric. If it is -1 it means that a requirement

is not being met or the system’s resources are almost fully utilized and should be increased. If the value

is 1 or 2 it means that the system may have more allocated resources than those that are necessary.

If the value is 0 it means that it was not possible to be evaluated due to the user not having defined a

requirement for that metric. An example of one of the metrics being analysed is in Listing 4.2 where the

metric value is compared to the desired one.

Listing 4.2: Calculate Result

1 private static int calculateResult(String property , int curr) {

2 String propertyValue = System.getProperty(property);

3 if (propertyValue == null) {

4 return 0;

5 }

6 int max = Integer.parseInt(propertyValue);

7 int difference = max - curr;

8 if (difference <= 0) {

9 return -1;

10 }

11 return difference > max / 2 ? 2 : 1;

12 }

The CustomReporter class extends Flink’s AsbstractReporter and implements Flink’s Scheduled

classes. It is responsible for filtering the metrics collected by Flink’s Metric System. After it filters the

desired metrics it analyses them using the previously described analysers. The analysers return an

Integer value: if it is negative then the accuracy needs to be lowered, if it is positive and enough

metrics returned a positive value then the accuracy will be increased. It can also let the accuracy stay
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the same. The accuracy adjustment is done by modifying the JVM’s accuracy system property. This

component does not increase or decrease the resources, only the accuracy.

Lastly, it will send the metrics to the Middleware through a DatagramPacket, which is a component

of Java that is used to represent datagram packets. The datagrams are used to route messages be-

tween machines through the network. This is a fast way to send messages without the need of having to

establish a connection between the machines, however, there is no delivery guarantee, the packet can

get lost in the network.

4.3 Middleware: Implementation

The Middleware is comprised of 3 different modules, the Controller Module which contains the main()

method from the Middleware, this module controls the other two. Next is the Metrics Analyser Module

which is responsible for analysing the metrics, and the last module is the Communication Module which

is used to communicate with the outside world.

Middleware

ConfigReader

Main

Metrics
Analyser

Flink ControllerDocker Controller System Controller

Docker
Communication

Docker System
Communication

Flink
Communication

System
Communication

Plugin
Communication

Main Controller

Requirements
Analyser

Resources
Analyser

Figure 4.1: Middleware Classes

Some of the most important classes are represented in Figure 4.1. The less relevant classes like

utility or exception classes are not represented in the diagram.

The Main class starts and controls the Middleware. It starts by creating a ConfigReader object

and uses it to read the Middleware’s configuration file, which location must be passed as an argument

when starting the Middleware. The Configuration Reader is responsible for reading the configuration

parameters and loading them up. These parameters allow the user to define some options, the most

relevant are the following:

• The maximum number of processors that the application can use;
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• The minimum and maximum memory that the application can use;

• The minimum and maximum application’s parallelism level;

• The minimum value for the accuracy;

• The maximum value for lag;

• The maximum value for latency;

• The minimum value for throughput;

• How often the Middleware will check if it has new information and perform a metrics analysis;

• The time to wait for the application to save its state before assuming that an error has occurred.

After the configurations are loaded it creates the Main Controller and the Metrics Analyser. The

Main Controller creates the Web Socket that receives the metrics from the Metrics Reporter with the

Plugin Communication class. The Web Socket is kept running in a thread in the background. It

receives the metrics through datagrams and stores them in a concurrent linked queue. This class also

keeps a flag to know if the metrics were already used or not, so the Middleware does not analyse the

same metrics twice.

The Main Controller is also responsible for executing the commands sent by Main after getting the

results of the metrics analysis that are done by the Metrics Analyser. This component uses the other

three controllers to execute the commands.

The Docker Controller is used to retrieve statistics about Docker (priority of the application’s con-

tainers and information to identify which containers belong to the application) and to change the config-

urations (CPU time priority and maximum allowed memory) about the containers that are being used to

run the applications. It uses the Docker Communication class to send the commands to the Docker

daemon.

The communication with the Docker daemon is done through a DockerClient instance which is part

of docker-java.1 This is an API for Java applications that allows them to send requests to the Docker

daemon to perform various commands such as stopping containers, retrieving statistics, change the

priority of the resources, and restricting the resources that a container can use. This API uses Docker

Engine API, it converts the requests made in Java to requests that the Docker Engine’s API can accept

and understand. In Listing 4.3 there is an example of one request that is made with the DockerClient

to retrieve the statistics about one container.

Listing 4.3: Get Container Statistics Method

1https://github.com/docker-java/docker-java
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1 private Statistics getContainerStats(String containerId) throws

DockerRequestException {

2 Statistics stats;

3 InvocationBuilder.AsyncResultCallback <Statistics > callback = new

InvocationBuilder.AsyncResultCallback <>();

4 dockerClient.statsCmd(containerId).exec(callback);

5 try {

6 stats = callback.awaitResult ();

7 callback.close ();

8 return stats;

9 } catch (IOException e) {

10 throw new DockerRequestException(" to retrieve container statistics")

;

11 }

12 }

The Docker System Communication is also used to communicate with Docker, but instead of using

the Docker Engine API, it uses the Docker Compose as a way of managing the containers’ life-cycle.

This is done with the Java Runtime class which interacts with the operating system to call the Docker

Compose tool. The Docker Compose is used because the characteristics of the tested applications’

containers are defined in this format. This is one of the ways of deploying Stateful Functions through

Docker and was chosen to be used in this work because the applications use multiple containers, and

multiple containers can be created and started using Docker Compose configuration files. The Docker

System Communication is only used to build the container images when it is necessary to add a Flink’s

saved state location so the application can resume the work from where it was left, and then restart the

containers.

The Flink Controller is used to communicate with the Stateful Functions’ applications. It is only used

to send the necessary requests to save the state. It sends the requests using the Flink Communication

class and then it returns the saved state location. It also keeps a flag to know if a save is occurring so it

does not send two save requests at the same time.

The Flink Communication utilizes a OkHttpClient2 object to send the HTTP requests to Flink’s

REST API. This class builds the requests according to the Flink API, to do that it creates the necessary

JSON objects. To save the job it needs to know the job ID, so to save the state it needs to send a request

to receive the job ID, and then it uses the ID to build and send the request to save the state.

After that, it receives the response almost instantaneously, but the response just acknowledges that

the save was started. For the application to be restarted from the same state it needs to know the save
2https://square.github.io/okhttp/4.x/okhttp/okhttp3/-ok-http-client/
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location, so the Flink Communication will send another request about the save that was triggered and

Flink will respond that the save is in progress or will respond with the saved state location. This last

request will be retried a fixed amount of times (that can be changed in Middleware’s configuration file)

with a pause of 1 second between each try, or until the response includes the location.

The System Controller is used to read and modify the configuration files of Flink and Docker. It

also keeps an internal state of some configurations to avoid to re-read the files. This class receives the

desired resources’ adjustments (results from the Metrics Analyser) from the Main and modify the con-

figuration files using the System Communication class. It calculates the new values for the resources

based on the results, e.g. if it receives a result that indicates that the memory should be increased it will

calculate the new value based on the current reserved memory value.

It also verifies if the desired adjustments are possible, i.e. if an application is already with the max-

imum parallelism level and the analyse of the metrics returns a result that indicates to increase the

parallelism, the System Controller will not try to increase more. In the same way, it also verifies the

minimum values when it receives commands to lower the resources.

The System Communication class is used to read the configuration files, parse them, and then

modify the necessary lines. It contains methods to open Flink applications configuration files and read

and/or update the values for parallelism, accuracy, and memory. This class also reads the Docker

Compose files to insert the Flink saved state location that is necessary when restarting the applications.

The Metrics Analyser class is used to analyse the metrics and returns results that represent the

desired adjustments. It starts by analysing the utilization of the resources with the Resources Analyser

class. After that, it uses the Requirements Analyser class to check if the requirements that the user

can define for the processing are being met.

The Resources Analyser simply check if the application’s CPU usage is very low, low, high, or very

high, it does the same for the memory. This class also takes into account how many processors the

application can use because Docker can restrict that. The collected metrics indicate the CPU usage in

terms of the total host machine CPU utilization, so if the container where the application is running only

has access to 2 processors and the machine has 4, the reported value in the metric would be half of

the real utilization. A 50% utilization would mean that the application used 100% of the CPU that it can

access. After that, it does the same thing for memory utilization.

The Requirements Analyser will compare the metrics values about lag, throughput, and latency

with the user-defined requirements. It returns, for each requirement, if it is being met or if the resources

should be raised.

The Middleware uses two levels of increase/decrease to adjust the resources, parallelism, and accu-

racy. For any of those properties there is the X UP MAX, X UP, X DOWN MAX and X DOWN, where X

is the property identifier. An adjustment with an MAX variant means that the property will have a greater

increase/decrease than the non-MAX variant. For example, if a requirement value is not being met by a
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difference of 10% the returned result is that the resources should be increased, but not by much, so it is

the RESOURCES UP result.

Listing 4.4: Get Latency Result Method

1 protected static Result getLatencyResult(List <Metric > requestLatencyMax)

throws ConfigLoadException {

2 if (requestLatencyMax == null) {

3 return null;

4 }

5 double maximumLatency = configs.getMaximumLatency ();

6 double latency = greaterMetricValue(requestLatencyMax);

7 if (maximumLatency == -1) {

8 return OK;

9 }

10 if (latency > maximumLatency) {

11 double percentage = latency / maximumLatency;

12 if (percentage > 1.15) {

13 return RESOURCES_UP_MAX;

14 }

15 return RESOURCES_UP;

16 }

17 return OK;

18 }

In Listing 4.4 an example is shown of how the Requirements Analyser checks the latency require-

ment; the other requirements, and resources utilization are checked similarly.

The getLatencyResults method returns an object of type Result, which is a class of Middleware that

is an Java Enum (the Result class is used to represent the results from the Metrics Analyser). This

method starts by verifying if the latency list is null, a list is used because the latency of each Kafka-

Producer produces a metric, and the list contains the metrics of all producers.

After checking if the list is null, it checks if the user defined a value for the desired maximum latency,

if it is not defined the configs object, which is an instance of a Configurations Reader, returns -1. If that

is the case then it returns the OK result, which is a result that is neutral in the analysis of the combined

results.

If that requirement is defined, then it is compared with the greater latency value among the producers,

which is the maximum latency value of the application. If the producer latency is equal to or smaller than

the required value this method returns the OK result. However, if the latency is greater than the desired
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one, this method will calculate the percentage of how much greater it is. If the producer’s latency is 15%

or more than the required value it is returned the RESOURCES UP MAX result. If it is smaller than

15% it is returned the RESOURCES UP result. The thresholds where we decide which result should be

returned were defined to allow a balanced increase in resources allocation when the requirements are

not being met without allocating more than necessary.

After the resources’ utilization and the requirements are analysed, the Metrics Analyser uses all of

those results and combines them using Algorithm A.1 to decide the final results.

The function starts by creating a list where it will store the results. The next step is to check if any of

the requirement results is equal to RESOURCES UP MAX. This means that a requirement is not being

met by a large margin. If that is the case it adds the results that indicate to decrease the accuracy to the

minimum and to increase the parallelism to the maximum.

Following that it verifies if the CPU/memory utilization’s result is to increase and if it is, then it adds

to the list the result to do the maximum increase of that resource. If the result is to decrease to the

minimum level it changes that to only decrease slightly. This is done because the parallelism level is

going to increase, and thus it is excepted that the application will use more resources.

If no requirement result is RESOURCES UP MAX, and instead there is one RESOURCES UP re-

sult, the function will add the results to lower the accuracy and to increase the parallelism. However, it

will not increase the result value from the CPU or memory, if they are to increase or maintain they will

stay the same, but if they are to lower at the minimum level they will be changed to just lower.

If none of the results from the requirements’ analysis is to increase the resources, then this function

adds the results from the CPU analysis. Next, if that result is the maximum level increase, it will check

if the memory result is to decrease at the maximum level, or if it is to just decrease. In the first case it

is changed to just decrease, in the latter it is changed to maintain the same memory. In any other case

(other results), the memory result is not changed. The accuracy also decreases to the minimum and the

parallelism increases to the maximum.

This is done because is expected an increase in memory utilization. If the result is to decrease the

memory at the greater level it means that there is much memory that is not being utilized. However,

with the increase in the CPU and parallelism, the memory may increase, so it is not decreased at the

maximum level. If the memory decreases it still should be enough. Also if the function gets here, all

requirements are being met and they are expected to continue that way, thus the memory can decrease.

If the CPU result is any other it is checked to adjust the accuracy and parallel level accordingly. The

memory result stays the same.
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4.4 Summary

All components3 are implemented in Java because it is the used programming language for Flink and

Stateful Functions, although Scala is also officially supported.

The Approximate Library uses a data structure to keep track of the percentage of dropped events for

each event data source. The used algorithm allows for an eventual balance of data-sources represen-

tation in the approximate results. This approach is faster than using a total balance but is slower than

not doing any effort to represent all data sources equally. However, the latter could affect the results’

precision and they would not be representative of all the generated events. The Approximate Library

gets the accuracy value through the JVM properties, where Flink inserts the value from the configuration

file on start-up.

The Metrics Reporter utilizes Flink’s classes and Metric System to collect the metrics periodically, it

then filters them and does a basic analysis. Depending on the results it can adjust the accuracy value

through the JVM properties. It also creates a datagram to send the metrics to Middleware.

The Middleware receives the metrics in a Web Socket (Datagram Socket). It communicates with

Docker using docker-java which is a Java client for performing Docker commands using Docker En-

gine API. It also interacts with Docker through the Docker Compose, which is used to manage multi-

containers applications. The interaction with Docker Compose is done through Java Runtime instances

where the operating system is used to call the Docker Compose. The Middleware also uses the OkHttp-

Client to send HTTP requests to Fink’s REST API.

Although Flink and thus, Stateful Functions, support different cluster deployments, the currently im-

plemented solution only supports the application cluster type. Approxate supports clusters dedicated

to a single application in multicore machines (on to 16 cores as found in medium range cloud server

instances). It currently analyses the metrics from, and applies modifications to resource allocation to, a

single application cluster at a time. An extra layer of coordination to aggregate the metrics received from

several applications, and to manage each one, is left as future work.

3The project code can be found in the following repository: https://github.com/joao-francisco/Approxate; currently the
repository is private, but it will be switched to a public repository in the future.
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Chapter 5

Evaluation

This chapter describes the solution’s evaluation. We describe the used setups (Section 5.1), the metrics

(Section 5.2), and the workloads and benchmarks (Section 5.3) that are used to evaluate Approxate.

After that, in Section 5.4 are the results obtained when Approxate is used in applications that are

typical use cases of stream and graph processing. In this section, we describe how various types of

processing cases are affected by the approximate results and how Approxate can improve the scalability

and resource allocation. We also show the improvements that can be achieved in the time it takes to

process the data or how many resources are necessary to do it. Lastly there is a summary of this

chapter in Section 5.5.

5.1 Setup

All of the values presented in the subsequent sections are averages of multiple runs of each test to

reduce random performance variations that can occur due to external motives by other processes. The

local test setup consisted of a quad-core I7-6700HQ (2.60 GHz) with 16GB of RAM, and all of the

different tests had runs performed on the local machine. Some of them were also performed in up

to three different cloud machines1 (16/8/4 vCpus with 64/32/16 GB of memory). We used different

machines so we could illustrate how the system behaves in different scenarios where it has access to

different resources. They also show how approximate computation can improve the performance level

in lower-end machines to get near, or match, the performance of higher-end machines.

Approxate uses Stateful Functions, Flink, Docker, and three new components: the Approximate

Library, Metrics Reporter, and Middleware.

1https://cloud.google.com/compute
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5.2 Metrics

In the following list are described the metrics that are used to evaluate the impact and performance of

the solution when compared to vanilla Stateful Functions:

• Accuracy: Approxate must be able to utilize approximate computing to lower the results’ accuracy

in exchange for a performance improvement however, the results should still be acceptable;

• Scalability: Approxate must allow the applications to scale up and scale down according to their

load and the user-defined requirements;

• Processing Time: Approxate must take less time to process the same dataset with the same

resources;

• Throughput: Approxate must be able to process more data in the same time with the same

resources;

• Resource Utilization: Approxate must be able to process the same dataset with fewer resources

in the same time;

• Resources’ Overhead: Approxate’s overhead should not have a significant impact on the amount

of used resources;

• Cost-Benefit: In cases where it is not possible to improve any of the metrics above, Approxate

should not impact them negatively significantly. In cases where it can improve the overhead of

Approxate should be less than the performance gains.

5.3 Workloads and Benchmarks

We used micro-benchmarks (simple stream processing tests) to test the overhead in the communication

and processing of the new components and to observe the impact of running the components with

Stateful Functions. We also performed macro-benchmarks (realistic applications workloads) to test how

Approxate manages the resources and accuracy. These benchmarks were also used to test how using

approximate computing can affect the precision of the results in different stream and graph processing

applications. Some benchmarks used real data and others used synthetic data.

They are described in the following list:

• Greeter: This test counts the number of messages that each user sent and then replies to it, it

was used as a micro-benchmark and uses randomly generated synthetic data;
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• Ad Processing: This test calculates the ratio of users that clicked an ad and how many times

a user has clicked in each ad, it was used as a micro-benchmark and uses randomly generated

synthetic data;

• Taxi Trip:2 This benchmark uses real data from trips of taxis in New York and it was used to

calculate various averages from the trips, like the number of trips per weekday, the money earned

for each day of each month, among others. This was used to test the dynamic resource allocation

and the effects in the results precision;

• Linear Road:3 This benchmark uses synthetic data that is simulating a variable toll system in four

highways. It processes information about the vehicles that are traveling through the highways and

it calculates the accidents that happened, the tolls that each vehicle passed by, and it also uses

historical information to predict how long it will take to travel through the segments of the highway

based on the weekday and the hour. This was used to test the effects in the results precision;

• Synthetic Benchmark: This benchmark uses randomly generated synthetic data and simply ap-

plies a load for each received event that consists of creating and shuffling a list, we created this

benchmark to test situations where each input event can cause a high load on the CPU without

affecting much the memory usage. This was used to test the dynamic resource allocation;

• Yahoo! Groups:4 This benchmark uses real data from Yahoo Groups and is used to find commu-

nities between the users that are part of the groups, a community is a set of nodes that is densely

connected between each other. This was used to test the effects in the results precision;

• Yahoo! Messenger:5 This benchmark uses real data from Yahoo Messenger and is used to find

communities between the users based on the friendship relationships between them. This was

used to test the effects in the results precision;

• Triangle Counting:6 This benchmark uses synthetic data and is used to calculate the number of

triangles in a graph, a triangle is formed when three vertices are all connected between them. This

was used to test the effects in the results precision.

5.4 Results

This section contains the obtained results and their analysis. We start with Approxate’s overhead (Sec-

tion 5.4.1), after that there are the results that are related to the stream processing applications (Section

2https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
3https://www.cs.brandeis.edu/~linearroad/index.html
4https://webscope.sandbox.yahoo.com/catalog.php?datatype=g
5https://webscope.sandbox.yahoo.com/catalog.php?datatype=g
6http://graphchallenge.mit.edu/data-sets
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Table 5.1: Micro-Benchmarks’ Results (Local)

Test Time (Minutes) Relative Time
Greeter without Approxate (100% Accuracy) 13:55 100
Greeter with Approxate (100% Accuracy) 14:16 102
Greeter with Approxate (99% Accuracy) 13:21 96
Ad-processing without Approxate (100% Accuracy) 06:22 100
Ad-processing with Approxate (100% Accuracy) 06:29 102
Ad-processing with Approxate (99% Accuracy) 05:55 93

5.4.2), which contains the results related to the dynamic resource allocation (Section 5.4.2.1) and the

performance comparisons (Section 5.4.2.2). Following that, are the results from the graph processing

applications (Section 5.4.3). After that there are the results’ analysis (Section 5.4.4).

5.4.1 Overhead

We tested the overhead of Approxate with the micro-benchmarks. The tests that were used as micro-

benchmarks are simple applications where the processing of each event that the application receives is

very low, so the impact of Approxate’s components can be the most noticeable possible. The tests were

run without Approxate (vanilla Stateful Functions) and with Approxate’s components running. The tests

performed with the components used 100% of accuracy (where the library simply forwarded all events)

and with 99% accuracy (where the library need to perform the calculations but only 1% of the events are

dropped).

All runs of the same benchmark used the same datasets. Those datasets were randomly generated.

There are 2 micro-benchmarks, the first is the Greeter. It is an application that receives a message that

is associated with a user, and just counts the number of messages that were sent by that user. This is

one of the simplest and less resource-demanding stream processing applications that can be done.

The second, the Ad-processing, is an application that is processing advertisement information.

Each event received contains a user identifier, an advertisement identifier, and if the user clicked in that

ad or not. The application calculates the ratio for each ad (the percentage of users that clicked in that

ad). It also keeps a record of the times that each user clicked in each ad. This test also differs from

the last one in the number of data sources. The first one only had one data source, so the Approximate

Library did not need to know how many events it had dropped from each source. This test was made

with three data sources.

The results from the micro-benchmarks are in Table 5.1, and we can observe that the overhead of

Approxate was 2%. These values include the Metrics Reporter collecting and analysing the metrics and

also the Approximate Library overhead in the Stateful Functions application. The Middleware is running

outside of Stateful Functions but also consumes resources however, it stays mostly idling and thus it did

not have a noticeable impact. The tests with 99% of accuracy show the performance impact of dropping
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1% of the events in two of the most simple stream processing applications, where the necessary time

to process each event is one of the lowest. In the more simple test 4% of time was saved, while in the

more complex was 7%.

These results demonstrate that the overhead of Approxate is mostly negligible in situations where it

cannot improve the performance.

5.4.2 Stream Results

The stream results were used to evaluate how Approxate manages the resources and accuracy with

variations on the applications’ input rate (Section 5.4.2.1). They were also used to test the effects on

performance and results’ precision when using approximate computing (Section 5.4.2.2).

5.4.2.1 Dynamic Resource Allocation

In Figure 5.1 we can observe how Approxate managed the resources and the accuracy in Taxi-Trip

Benchmark. This test was performed with a minimum accuracy of 70% and with the following require-

ments: 30000 maximum lag events, 15000 milliseconds of maximum latency and a minimum throughput

of 15000 results per second. We can notice that the accuracy dropped when the CPU load increased

(minute 2). Then it incremented again when the load on the system decreased (minute 6). The mem-

ory utilization increased throughout the test period and then decreased in the end when the input rate

dropped (minute 11). The CPU load also lowered in the end. This test also shows Approxate’s auto-

parallelization, during which the parallelism increased at a constant level and then stabilized at 75%

(minute 5).

After that, when the load decreased, the parallelism level also decreased. Then the rate of the input

events increased (minute 10), and so the requirements were not being met. Due to this, Approxate

raised the parallelism level raised to 100% and stayed at that level until the load lowered. At around the

same time the accuracy also decreased to 70%, however, it was not necessary to increase the memory.

This test shows how Approxate reacts to the increase or decrease in the input rate by adjusting the

resources and the accuracy as necessary. We can observe that it did not adjust all the resources at the

same rate, it only increase/decrease some parameters when necessary.

The Synthetic Benchmark was tested with a variable load, minimum accuracy of 70%, and with the

following requirements: 150000 maximum of lag events, 10000 milliseconds of latency, and a minimum

throughput of 1000 records per second. The results are in Table 5.2, and, they also can be seen in

Figures 5.2, 5.3 and 5.4. We can observe that the system could identify the times when it was necessary

to engage more resources to keep up with the execution requirements, and then it scaled according to

that. Due to the application being very CPU-bounded, when the system receives a continuous load it

can’t keep the throughput and lag requirements.
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Figure 5.1: Taxi-Trip Benchmark (Local): Resources Variation

Table 5.2: Synthetic Benchmark: Cloud (16 vCpus/64GB)

Time (Minutes) CPU (%) Memory Reserved (GB) Parallelism Minimum Accuracy (%)
01 1 4 1 100
02 98 4 16 70
03 97 4 16 70
04 98 4 16 70
05 98 4 16 70
06 98 4 16 70
07 98 4 16 70
08 98 4 16 70
09 97 4 16 70
10 98 4 16 70
11 98 4 16 70
12 76 4 16 70
13 1 4 16 80
14 1 4 1 100
15 6 4 5 70
16 31 4 5 80
17 30 4 5 90
18 1 4 1 100
19 1 4 1 100
20 1 4 1 100
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We can see in the beginning that the system was running with the defined minimum resources, and

then when it started receiving the first events it scaled up, the parallelism went to the maximum level and

the accuracy to the minimum. The system stayed overloaded (the requirements were not being met, so

the accuracy never increased) until the received load was processed (minutes 12 to 13). After that in

minute 13 we see that the accuracy increased, this was caused by the Metrics Reporter that verified that

the application had enough resources to increase the accuracy based on the requirements and on the

load of the CPU which was 76%.
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Figure 5.2: Synthetic Benchmark: CPU utilization

In the next minute (minute 14), we can see that the accuracy went to 100%. The Middleware made

this decision when it analysed the metrics sent by the Metrics Reporter. Next, in minute 15, the system

received a load of events. The amount of received events were more than what it could process with

the parallelism set to 1. To the application achieve the requirements, the Middleware set the accuracy to

90% and increased the parallelism by 4 (from 1 to 5). However, during the same minute, the application

restarted and the Metrics Reporter analysed the metrics and since the requirements were still not being

met, it decreased the accuracy to the minimum (70%).

Then the system stabilized for two more minutes (this load had some idle after some events, so

it was not continuous), and the Metrics Reporter gradually increased the accuracy. After that, when

the application stopped receiving events the Middleware set the accuracy to the maximum and the

resources to the defined minimum values. We can see that the memory was not changed during the

entire execution time. This benchmark is heavily CPU-bounded, and 4GB was enough memory for this

workload in this CPU. These results also showed how the system verifies by how much the resources

are not being met and increases them according to that.
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Figure 5.3: Synthetic Benchmark: Parallelism variation
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Figure 5.4: Synthetic Benchmark: Accuracy variation

5.4.2.2 Performance Comparison

The Taxi-Trip Benchmark was also used to compare the Approxate’s performance improvements. This

test calculates some averages related to the taxi trips (number of trips/passengers per weekday, number

of trips per hour, money earned for each day of the month, money earned for each month). Those aver-

ages are calculated by dividing the values from the events for a fixed number of days/weekdays/months.

Table 5.3: Taxi-Trip (Local): General Results

Events (%) Time (Minutes) Precision (%) Relative Time (%)
100 13:03 100 100
95 12:20 96 95
90 09:19 91 71
70 08:34 73 66
50 05:54 52 45

The results are in Table 5.3 and we can observe that the final precision (the precision is the ratio

between the obtained values and the values when using 100% of the events) of the results is proportional

to the amount of dropped events, however, the saved time is not. Dropping 10% of the events can save

29% of time. Due to the nature of the test and how the results are calculated, by using (5.1) is possible

to calculate an approximation of the final result with a margin of error of 4%.
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Table 5.4: Taxi-Trip (Cloud - Best Machine): General Results

Events (%) Time (Minutes) Precision (%) Relative Time (%)
100 06:21 100 100
95 05:12 95 82
90 05:00 91 79
70 04:17 74 67
50 03:23 52 53

Table 5.5: Taxi-Trip (Cloud - Middle Machine): General Results

Events (%) Time (Minutes) Precision (%) Relative Time (%)
100 12:40 100 100
95 11:13 95 89
90 10:55 91 86
70 08:52 74 70
50 05:47 52 46

V alue =
ObtainedV alue ∗ 100

Accuracy
(5.1)

The Taxi-Trip was also used to compare the performance in different machines with approximate

results. In Table 5.4 are the results of the cloud machine with 16 vCpus and on Table 5.5 the ones of

the 8 vCpus machine. We can see that the time saved when dropping 5% and 10% were better than the

ones in the local machine, however, the rest of the results do not differ by much. These results show us

that we can save close to 50% of the time and get results with around 96% of precision using (5.1).

We performed the Linear Road Benchmark application with data from four different highways for

three hours of traffic. It was tested with 100, 70, and 50% of accuracy. In Table 5.6 we can see that

dropping 30% of the events kept the system with a high precision level (88%) while saving 27% of the

processing time. With 50% of dropping the time saved was 44%, however, the results lost 34% of

precision.

Table 5.6: Linear Road (Local): 4 Highways - 3 Hours

Events Used (%) Time (Minutes) Precision (%) Relative Time (%)
100 05:46 100 100
70 04:11 88 73
50 03:15 66 56

In Figure 5.5 there is a graph that demonstrates how lowering the precision can save time, the data

is the average of all of the tested datasets in all stream processing benchmarks in all machines. It

shows that the percentage of precision in the stream processing applications is always greater than the

necessary time to process. At around 90% of results precision, we can save around 20% of the time.
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Figure 5.5: Stream Results: Precision and Time Relation

5.4.3 Graph Results

The graph results were only used to evaluate how the approximate results affect the precision and

performance of graph processing applications.

The Yahoo Groups Benchmark was performed in different machines to test the impact of the per-

formance and results’ precision when using approximate results when different resources are available.

It also used different datasets with different densities to see how they would affect the results.

In Table 5.7 we show the results of this benchmark performed with the dataset that contained 500000

groups (events) performed in the machine with 8 vCpus and 32GB of memory. With 5% of dropped

events the performance only improved 1%, however with 10% of dropped events it increased 15%. For

the rest of the results in the table the performance gains were similar to the percentage of dropped

events, however, the precision of the results was much higher, even when dropping half of the events

the results are 78% precise.

Table 5.7: Community Counting (Cloud - 8 vCpus / 32GB): Groups (500000 Groups)

Events Used (%) Time (Minutes) Communities Precision (%) Relative Time (%)
100 18:36 1497084 100 100
95 18:22 1475620 99 99
90 15:54 1447914 97 85
70 12:30 1325154 89 67
50 08:49 1173440 78 47

The same benchmark with the same dataset was also performed in the machine with 16 vCpus and

64GB of memory, the results are in Table 5.8. The performance increases were smaller than the previous

ones, with the most difference where the dropped events were 10%, the performance only increased 3%

respectively, instead of the 15% of the previous tests. The rest of the results were similar.

The difference of the test with 10% of dropped events can be explained due to the test requiring much

memory: the machine with more memory got a more linear relationship between dropped events and

performance increases, while the machine with less memory got a great improvement at 10% of dropped
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Table 5.8: Community Counting (Cloud - 16 vCpus / 64GB): Groups (500000 Groups)

Events Used (%) Time (Minutes) Communities Precision (%) Relative Time (%)
100 16:30 1497084 100 100
95 16:10 1475575 99 98
90 16:01 1448409 97 97
70 11:32 1327682 89 70
50 08:14 1172374 78 50

Table 5.9: Community Counting (Local): Groups (250000 Groups)

Events Used (%) Time (Minutes) Communities Precision (%) Relative Time (%)
100 05:46 1165250 100 100
95 05:24 1147292 98 94
90 05:05 1123086 96 88
70 03:45 1015351 87 65
50 02:46 875315 75 48

events because with the previous tests with more processed events, the CPU was bottle-necked by the

memory. When the dropped events increased the system had enough memory to process all events

with the CPU being fully utilized, thus we got a linear scaling between dropped events and gained

performance.

This test was also performed with a smaller and more dense dataset (250000 groups), and thus

did not need as much memory. Because of that, the relation between dropped events and improved

performance is almost linear. The results are in Table 5.9. The precision was also similar to the more

dense graph dataset used in the previous tests.

The last test compares the processing times in two machines, one has double the resources of the

other, but is processing 100% of the events, while the one with fewer resources is processing 75% of

events. In Table 5.10 we can see that the machine with half of the resources took only 13% more time

and still kept a precision of 91%. This is a relevant result, showing that when resources are scarce or

machines are more constrained (e.g. edge devices, spot instances), the savings in resources do not

necessarily entail significant loss in performance or accuracy.

The Yahoo Messenger Benchmark was also performed with different datasets. The graph with

less density got good results as we can see in Table 5.11, where even with 50% of dropped events the

precision was 83%, and it only took 32% of the time.

However, this test performed with a graph with more density got bad results, we can see in Table 5.12

that even dropping 5% of the events made the results lose 26% of precision. This is explained by the fact

Table 5.10: Community Counting (Cloud): Comparison between different machines

Machine Events (%) Time (Minutes) Communities Precision (%) Time (%)
8 vCpus / 32GB 100 18:36 1497084 100 100
4 vCpus / 16GB 75 21:01 1359348 91 113
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Table 5.11: Community Counting (Local): Messenger (560444 Users)

Events Used (%) Time (Minutes) Communities Precision (%) Relative Time (%)
100 05:48 38067 100 100
95 03:35 39101 97 62
90 03:25 40294 95 59
70 02:28 43925 87 43
50 01:50 46028 83 32

Table 5.12: Community Counting (Local): Messenger (1520005 Users)

Events Used (%) Time (Minutes) Communities Precision (%) Relative Time (%)
100 17:47 3316 100 100
95 16:16 4500 74 92
90 13:38 6351 52 77
70 07:51 15596 21 44
50 05:21 28222 12 30

that the graph dataset is very dense, and so, dropping just a few events has a major impact when doing

community counting, since each event likely has many connections, by dropping it we are creating more

communities than the real ones. This test was also performed in a graph with an intermediate density

between the previous two, and the precision of the results is better than the higher-density graph and

worse than the lower-density graph.

The Triangle Counting Benchmark was performed with different datasets. The results from the test

with a higher-density graph are in Table 5.13, and they show that the precision of the results was almost

the same until 30% of the events were dropped. Even with 30% of the events dropped the results still

are 78% precise and more than half of the time was saved. In comparison with the results from the test

with the lower-density graph, which are in Table 5.14, the precision is similar, but the time saved is worst

until 50% of the events are dropped.

In Figure 5.6 we can see how dropping the results’ precision can save time, the used data comes

from averaging all of the graph benchmarks results. The graphic shows that the graph processing

applications got a better relationship between the time that can be saved and the results’ precision than

the stream processing applications. On average, we can save 25% of time and still get 90% of precision,

or even get 80% of precision in 60% of time.

Table 5.13: Triangle Counting (Local): High Density

Events Used (%) Time (Minutes) Triangles Precision (%) Relative Time (%)
100 02:27 160000 100 100
95 02:23 159731 100 98
90 02:19 157199 98 95
70 01:09 125220 78 47
50 01:00 73267 46 41
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Table 5.14: Triangle Counting (Local): Low Density

Events Used (%) Time (Minutes) Triangles Precision (%) Relative Time (%)
100 24:41 7 100 100
95 20:17 7 100 82
90 17:32 7 100 71
70 16:06 6 86 65
50 12:33 3 43 51

50

55

60

65

70

75

80

85

90

95

100

Time (%)

Precision (%)

Figure 5.6: Graph Results: Precision and Time Relation

5.4.4 Results Analysis

The Micro-Benchmarks (Section 5.4.1) shows that Approxate’s overhead has a small impact on the

performance (only decreased 2%) when Approxate is not using approximate results, which is mostly

negligible. When Approxate uses approximate results the impact is always positive. Even dropping 1%

of events increased the performance.

Then we have the Stream Processing Benchmarks (Section 5.4.2). The first tests demonstrate how

Approxate can identify when it is necessary to increase the applications’ resources allocation and it can

also identify when the resources are being wasted. This was tested multiple times and Approxate had a

similar behavior where it adjusted the resources and accuracy as necessary.

One example can be observed in Figure 5.1 where the different resources and accuracy are being

adjusted at different rates. We can observe that Approxate correctly identified the situations where the

application could not meet the requirements with the allocated resources and, in order to respond to that,

the system increased the resources and lowered the accuracy until the application’s state got stable.

Another example is the Synthetic Benchmark, where we can see that the system adjusted the exe-

cution’s resources accordingly to what was necessary; after the beginning of the test, where it received

an intense load, it scaled up and decreased the accuracy. After it processed the events it scaled down,

and then for a brief moment it scaled up a little and stayed stable for some time, then it scaled down

again. We can also see that the application had enough memory and it stayed constant throughout the

entire test.
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Following that there are the performance tests, where the applications just had to process the

datasets the fastest they could. This was done to observe how much time could be saved by using

approximate results and how they would affect the final results’ precision.

The benchmarks from the Taxi-Trip Benchmarks shows us that in types of tests where the results

are an average of values obtained from the input, but the division is made with a fixed number (number

of days/weeks/months of the year), the produced value for the used accuracy can be converted to an

approximation of the result that has total accuracy by using Equation (5.1). By doing that we can save

more than half of the necessary time than when not using approximate computation. This benchmark

was also executed in cloud machines and the results show that by using approximate computing we

can get approximate results in weaker machines (fewer resources) in around the same time as more

powerful machines and keep an acceptable precision.

With Linear Road Benchmarks we can observe that Approxate increased the application’s perfor-

mance by 27% and the results still retained 88% of precision, which again shows that the performance

can be greatly increased and the results still are acceptable, in scenarios where decision making needs

to be fast and perfect accuracy is not a mandatory requirement.

Following the Stream Processing Benchmarks, we have the Graph Processing Benchmarks (Sec-

tion 5.4.3). These tests were only used to observe how much performance can be gained by using

approximate results in graph processing applications and how much precision is lost.

The first benchmark from the Graph Benchmarks is the Yahoo! Groups Benchmark and it calculates

the number of communities based on the relationships between users and the groups that they belong

to. We can notice that the precision was at least 75% even with using only half of the events. Using 70%

of the events the application achieved at least 87% of precision with only 70% of the time. The results

were similar across the different datasets.

The next benchmark is the Yahoo! Messenger Benchmark. The test that used the largest dataset

was the one with worse results. Even using 95% of the events led to losing 16% of the precision.

The other runs with a lower number of users got better results, the one with 1021120 users got 91%

precision with only 70% of the time by dropping 5% of the events. The run with the dataset that contains

the lowest number of users got a result 83% precise in 32% of the time. These results are explained

because each user usually got a small number of friends, so by dropping even a low amount of events

we cut connections inside a community which leads to a community appearing as multiple communities

in the results.

The increase in precision in the datasets with fewer users is explained by the fact that with fewer

users there are no chains of users that can be formed as large as the ones with more users. This is

because the users are less connected between them, so there are more communities. By dropping

some events more communities are split into multiple, but since there were already a large number of

communities the end result is less affected. The large data set had only 3316 communities in total while
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the smallest data set had 38067.

The last benchmarks are the Triangle Counting Benchmarks which count the number of triangles in a

graph. We can see that the results from the graph with a high density were very accurate while dropping

95% and 90% of the events, but the time saved was small, 5% at most. However the run with 70% of

the events processed got 78% of precision but only used 47% of the time, so there is a point in terms of

the percentage of events being dropped where we can have a large amount of time saved with a small

loss of precision.

The second benchmark from Triangle Counting was using a graph with low density. By dropping 10%

of the events we got 100% of precision and 29% of time saved. Using 70% of the events we got 86% of

precision in 62% of the time, so we can save a large amount of time without losing much precision with

low-density graphs in this use case scenario.

Both the stream and graph benchmarks were executed in cloud machines, and so we can compare

results across machines with different resources. One of the comparisons is shown in Table 5.10 where

the machine with fewer resources could process the data in not much more time than a machine with

double the resources by using Approxate. The other benchmarks also show similar results where the

lower-end machines can sometimes get close or match the performance of the higher-end machines

without losing too much precision.

All of the results show that the number of events that can be dropped while keeping the results

meaningful and the time saved by doing that is different for each application, but in a general way, we

can save 5% to 50% of the time while keeping levels of precision close to 80%.

By analysing the results we can conclude that the system allows variable accuracy in order to improve

the performance or to meet one or multiple execution requirements (lag, latency, or throughput). The

system also improved the performance, i.e. it can process the same datasets quicker than vanilla Stateful

Functions, which leads to the system needing fewer resources to process the same amount of data. The

system also improved the scalability since it allows Stateful Functions to change the parallelism and the

amount of allocated resources as it needs. The results also indicate that the eventual balance of the

dropped events between the different data sources is enough to represent all of them in a meaningful

way. The resources overhead are also minimal and they do not have a significant impact on the amount

of resources used. The cloud tests also demonstrate that it is possible to process the same amount of

data with less powerful machines using approximate computation.

5.5 Summary

This chapter explains how we carried out the evaluation, it contains the necessary information about

the used setups, the evaluated metrics, and the used workloads and benchmarks. The analyses of the

benchmarks’ results allow us to make some conclusions. They show us that Approxate allows a variable
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accuracy in the results, the user can choose to trade-off accuracy for performance, which can allow

the applications to improve the performance up to around 50%. All of the tested cases got acceptable

results, except for one which has a graph with a high density of nodes. However, other tests which also

contained high-density graphs still got good results.

The results also show that Approxate can scale up and scale down the applications based on the

defined requirements about lag, latency, throughput, and the current load. By comparing the cloud tests

with each other and with the local tests we see that Approxate with approximate computation can reduce

the time that is needed to process the data, it can also process the same data in roughly the same time

with less resources, and it can also process more data in the same amount of time than vanilla Stateful

Functions would need.

The micro-benchmarks also show us that Approxate does not have a negative impact on the re-

sources utilization, and since it reduced the time needed to process the data in all tests, we can conclude

that the performance gains are greater than the overhead.

All of this confirms that all of the metrics used to evaluate the solution were achieved in almost all of

the tested cases.
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Chapter 6

Conclusion

In this work, we developed an extension to be used with Stateful Functions to add dynamic resource

allocation, to improve the scalability, the performance, and to allow the user to chose trade-offs between

performance and results accuracy.

6.1 Summary

This work contains an overview of cloud computing and its shortcomings usually, it is used in stream

and graph processing platforms. Its shortcomings also affect the platforms. This work also addresses

the state of the art of serverless computing, a cloud computing model that stream and graph processing

platforms use. This work presents and explains the key features those platforms should have. It also

presents some relevant platforms.

There is a comparison between the relevant stream and graph processing platforms, and also the

features of each one. That brings us to the motivation for this work, it is noticeable that generally,

they lack support for dynamic resource allocation, auto-scaling (elastic scaling), and to use approximate

computation that would allow them to trade some accuracy to improve performance based on preferential

user-defined requirements/metrics.

There are some difficulties associated with bringing those features, like controlling the quantity of

resources that are allocated depending on the load and on the requirements that must be met (i.e. if the

load spikes up it does not make sense to just allocate the maximum available resources, it is necessary

to know what resources should be allocated and in what quantity). The use of approximate results

also brings difficulties, because the accuracy can not be reduced to the point where the results are

not acceptable. Also, when using load shedding to decrease the accuracy, all data sources must be

equitably represented in the results.

This work contains a proposal and implementation of an extension to be used with Stateful Functions
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for stream processing, a platform that allows to easily build applications, fast state sharing between

functions, it is scalable, distributed, and contains fault-tolerance.

The proposed and implemented solution is named Approxate and is capable of improving the re-

source allocation, scalability, and performance. It also adds an intelligent and variable resource man-

agement that will vary the allocation of the resources, and the level of parallelism, based on the state of

the execution and the desired user requirements (latency, lag, throughout). It can also use approximate

computation to vary the level of accuracy whenever it is necessary to meet the requirements while keep-

ing the results meaningful. The extension can also be used in graph processing since those operations

are supported by Gelly in Flink and so they are supported in Stateful Functions.

Approxate allows the use of lower-end machines without a major degradation of performance and

results’ precision. This can be used in serverless computing models to increase the resources’ uti-

lization, machines that have less available resources can still be used to process loads that otherwise

they couldn’t (i.e. the processing may have requirements that would not be met without approximate

computing), instead of not being used.

Approxate also improves the resources’ management since they are adapted to the processing re-

quirements and the load at a given time. Since the management is improved, the amount of wasted

resources is also improved. When the resources are not necessary they are not allocated, so they are

not being wasted. The scalability is also improved because the systems can better adapt to variations

in the input load with an elastic scaling.

Chapter 3 describes the design of the proposed solution and its components (Approximate Library,

Metrics Reporter, and Middleware). The Approximate Library is the component that has the respon-

sibility to decrease the results’ accuracy through load shedding in the events that are arriving on the

applications. The Metrics Reporter takes advantage of Flink’s metric system to collect the relevant met-

rics periodically and can also adjust the accuracy level that the Approximate Library is targeting, it also

sends the metrics to the Middleware. The Middleware is responsible for analysing the metrics, and make

sure that the system is meeting the requirements about latency, throughput, and lag that the user can

define. If necessary, the Middleware changes the resources’ allocation, the parallelism level, and the

accuracy of the results to achieve the requirements.

In summary, it is described how Approxate gets the execution metrics, analyses them taking into

account the user-defined requirements, and then, based on those results, it can decide to adjust the

accuracy level of the results and/or modify the resource allocation. Although Flink supports multiple

applications in the same cluster, Approxate was not developed to work with multiple applications at the

same time.

Chapter 4 explains how Approxate was implemented, there is an overview of the code structure, and

some examples. Some of the technical aspects are also explained.

This work also contains the methods used for evaluating the solution. It presents the setups, the met-
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rics, the workloads, and benchmarks used to perform the evaluation. It also shows the effects of using

approximate results in some typical stream and graph processing use scenarios, wherein the majority of

cases the performance could increase in amounts up to 50% and the results still are acceptable. Those

results also show how Approxate improved the scalability and resource allocation. The evaluation also

shows the overhead of Approxate, which can be considered negligible.

6.2 Future Work

To improve stream processing with Stateful Functions, the Middleware (which already can modify the

state of Docker containers) could be extended to analyse the metrics of the containers of multiple appli-

cations, possibly the containers where Kafka is running, to manage multiple applications and even the

Kafka resources. This way it could take resources from any container and give them to another one

depending on the situation (e.g. if the Middleware knows that one application that is using one Kafka

container will not be able to process the amount of events that already arrived in a short period of time,

the Middleware could take resources from the Kafka container, which would delay a bit the receiving of

new events, and give those resources to a container where they can be better used).

Approxate can also be adapted to manage multiple applications that are running in the same cluster,

it can be adapted to work with the other Flink cluster types (i.e. job and session clusters).

Another way to improve Approxate is to convert the Approximate Library to work directly in the Kafka

Broker in situations where it knows the data sources. That would avoid the events being transferred

through the network to the application where they are dropped. This also involves adapting the Middle-

ware to communicate with Kafka.

Another way that stream processing could be improved is to develop extensions for the Approximate

Library adapted for specific types of events, instead of the one that is used for all types. By adapting for a

specific event type (and its expected value distribution) we could extract and process some information

of the event instead of discarding it completely. If a system is processing two types of information

that are contained in one event and the processing of one is preventing the application from achieving

the requirements, we could use approximate computing to process that information and increase the

performance of the application.
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Appendix A

Sample Code of the Project

Listing A.1: Combine Results Method

1 private List <Result > getCombinedResults(Result cpuRes , Result throughputRes ,

Result lagRes , Result memRes , Result latencyRes) throws

ConfigLoadException {

2 ArrayList <Result > results = new ArrayList <>();

3 if (throughputRes == RESOURCES_UP_MAX || lagRes == RESOURCES_UP_MAX ||

latencyRes == RESOURCES_UP_MAX) {

4 results.add(ACCURACY_DOWN_MAX);

5 results.add(PARALLEL_UP_MAX);

6 if (cpuRes == CPU_UP || cpuRes == CPU_UP_MAX) {

7 results.add(CPU_UP_MAX);

8 } else if (cpuRes == CPU_DOWN_MAX) {

9 results.add(CPU_DOWN);

10 }

11 if (memRes == MEMORY_UP || memRes == MEMORY_UP_MAX) {

12 results.add(MEMORY_UP_MAX);

13 } else if (memRes == MEMORY_DOWN_MAX) {

14 results.add(MEMORY_DOWN);

15 }

16 return results;

17 }

18 if (throughputRes == RESOURCES_UP || lagRes == RESOURCES_UP || latencyRes

== RESOURCES_UP) {

19 results.add(ACCURACY_DOWN);
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20 if (cpuRes == CPU_DOWN_MAX) {

21 results.add(CPU_DOWN);

22 } else {

23 results.add(cpuRes);

24 }

25 if (memRes == MEMORY_DOWN_MAX) {

26 results.add(MEMORY_DOWN);

27 } else {

28 results.add(memRes);

29 }

30 results.add(PARALLEL_UP);

31 return results;

32 }

33 if (cpuRes == CPU_UP_MAX) {

34 results.add(cpuRes);

35 results.add(PARALLEL_UP_MAX);

36 results.add(ACCURACY_DOWN_MAX);

37 if (memRes == MEMORY_DOWN_MAX) {

38 results.add(MEMORY_DOWN);

39 }

40 else if (memRes != MEMORY_DOWN) {

41 results.add(memRes);

42 }

43 return results;

44 }

45 results.add(cpuRes);

46 results.add(memRes);

47 if (cpuRes == CPU_DOWN_MAX) {

48 results.add(PARALLEL_DOWN_MAX);

49 results.add(ACCURACY_UP_MAX);

50 return results;

51 }

52 if (cpuRes == CPU_DOWN) {

53 results.add(PARALLEL_DOWN);

54 results.add(ACCURACY_UP);

55 return results;

56 }

57 if (cpuRes == CPU_UP) {
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58 results.add(PARALLEL_UP);

59 return results;

60 }

61 return results;

62 }
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