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Abstract 

 

In the last few years, peer-to-peer systems became well known to the general public by allowing 

fast and simple exchange of resources between users. The complexity of these systems resides in the 

fact that each user can act both as a client and a server and, due to the absence of a central authority, 

the need for self-regulation. There is also the need to guarantee that every user contributes to the 

system as, if that isn’t ensured, the performance of the system will decay due to the disparity between 

demand and offer of resources. 

 

This paper describes our work developing incentive mechanisms, which enable the correct 

operation of peer-to-peer systems, imposing a balance between demand for resources and the 

existing offer. All the incentive mechanisms take into account the attacks these systems are subject to, 

as well as the structure of the system, so that they do not pose an unnecessary burden, slowing down 

the system excessively. 

We explore concepts such as reputation and currency, which are used in other systems and, more 

importantly, in our everyday life, enabling a coherent scheme to detect untrustworthy users and 

reward truthful peers with faster access to the resources. 

 

Our work is part of a larger project called GINGER, an acronym for Grid In a Non-Grid 

Environment, a peer-to-peer infrastructure intended to ease the sharing of computer resources 

between users. 
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Resumo 

 

Nos últimos anos, os sistemas peer-to-peer tornaram-se conhecidos do grande público por 

permitirem uma partilha de recursos entre utilizadores de forma rápida e simples. A complexidade 

destes sistemas é causada pelo facto de cada utilizador actuar como cliente e servidor e também pela 

necessidade de existir auto-regulação, já que não está presente qualquer entidade reguladora central. 

Caso não seja possível garantir que todos os utilizadores contribuem para o sistema, a diferença 

entre procura e oferta de recursos vai aumentando, levando a uma situação de ruptura. 

 

Este documento descreve o nosso trabalho de desenvolvimento de mecanismos de incentivos 

para redes peer-to-peer, que criam um equilíbrio entre procura e oferta de recursos. Estes 

mecanismos levam em conta todas as preocupações de segurança necessárias neste tipo de 

sistemas, bem como o seu impacto na velocidade da rede, para que não se tornem um problema 

ainda maior do que o que pretendem resolver. 

Exploramos conceitos como reputação e moeda, que são utilizados não só em outros sistemas 

semelhantes, mas também no nosso quotidiano, permitindo uma forma coerente de detectar 

utilizadores desleais e, por outro lado, premiar os que têm um comportamento correcto garantindo-

lhes acesso rápido aos recursos. 

 

O nosso trabalho está incluído no contexto de um projecto denominado GINGER, acrónimo do 

inglês “Grid In a Non-Grid Environment”, que pretende permitir uma infra-estrutura para facilitar a 

partilha de recursos computacionais entre utilizadores. 

 

 

Palavras-chave: 
Sistema peer-to-peer, Mecanismos de Incentivos, Reputação, Moeda, Ataque Sybil, Puzzles 

computacionais
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1 Introduction 
 

The exchange of information between users has always been the main purpose of any computer 

network. While P2P systems have long been used in laboratories and company offices to share 

resources and information, they became more popular as the number of Internet users and the 

bandwidth available to them increased. The traditional Client-Server architecture could not offer the 

flexibility demanded and centralized servers became the major source of complications, not only due 

to poor performance but also as targets for attacks that could easily disrupt the correct functioning of 

several applications. 

The possibility to communicate directly with other users, along with the increased performance, 

proved to be the key feature of P2P networks and, although they have been mainly associated with file 

exchange applications, the structure of the network allows the exchange of any resource between the 

users. 

These complex systems have, until now, only been put into operation in controlled contexts, such 

as laboratories, mainly due to the difficulty to control user behavior. Our work contributes to the faster 

dissemination of these applications, allowing access to ordinary users, outside controlled 

environments. 

Our main concern is related to the overall fairness of the system, guaranteeing that vicious users 

will not be able to corrupt the entire system, by not contributing to the resource pool or delivering false 

results. We developed an incentive schema taking into account these possible attacks to the system, 

already confirmed in other peer-to-peer networks, as well as every concern with the security of 

communications between users. 

This research is encompassed in a larger project, GINGER, focused in grid computation on the 

Internet. However, the incentive mechanisms developed in this project can be used in complex 

systems, regardless of the resources being shared. The implementation of our work can be easily 

adapted to other applications, since it is developed on top of the Pastry overlay network [28], which 

can be used by other peer-to-peer applications. 
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1.1 Motivation 

The reason we felt urgent the development of incentive mechanisms for peer-to-peer networks is 

mainly related to current fragilities of these applications. The intention to implement resource-sharing 

communities in highly demanding contexts calls for very strict policies in the network, and the 

problems verified in large file sharing communities have to be resolved. 

A central server is always a target for attacks and cause for failures; this is why decentralization is 

vital. But decentralizing also expands the complexity of the system, making difficult the task of 

identifying users in order to prevent abuse and attacks. In controlled environments, it is possible to 

request user authentication via smartcards or biometric data because direct physical contact with the 

users exists. But in a scalable peer-to-peer network, users are geographically distributed and 

anonymous, hence the necessity to develop incentive mechanisms compatible with this network 

structure and capable of identifying attackers and prevent system collapse. 

The most common attack in peer-to-peer networks is the Sybil attack [7], consisting in a single user 

deploying multiple virtual identities in order to obtain resources without ever contributing to the system. 

Another common attack is collusion, where two or more peers arrange resource exchanges between 

them in a way to create the illusion of fair sharing, to improve their reputation in the community. The 

presence of malicious users in the system can lead to total disruption, therefore the main concern 

must be to guarantee that these users are promptly detected and eliminated or otherwise rendered 

harmless. 

 

1.2 Objectives 

Our work aims to provide a solution capable of guaranteeing balance between resources demand 

and supply in the network, by ensuring that cooperating users are rewarded and malicious users 

punished. The resource sharing applications using our incentive mechanisms ensure that only 

cooperating users have access to the resource pool and attackers are excluded from the system. We 

will develop our solution on top of the Pastry overlay, so that it can then be adopted by all resource 

sharing applications also using Pastry. 

Our solution will be tested using a simulator and we will assess the impact on performance to 

guarantee that it is minimal. High overhead is unacceptable as it most definitely means the incentive 

mechanisms would not be implemented, no matter how reliable they are. 

We are confident that, with the implementation of these incentive mechanisms, the dissemination 

of applications for sharing computational resources is possible; allowing the access to ordinary users, 

with all the benefits these applications can accomplish. 
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1.3 Organization 

The central focus of this proposal is the design of effective incentive mechanisms for peer-to-peer 

networks. In particular, we intend to prevent abuse from malicious users, ensuring that each peer must 

contribute with resources to the community, in order to have access to the pool of resources. 

Throughout this document, we detail the most important aspects of peer-to-peer applications, 

describe well-known attacks and introduce our solution. 

The document is organized according to the following scheme: 

 

• Peer-to-Peer Architecture – In this chapter we present an explanation of the main features 

of P2P systems and compare them with the Client-Server architecture. We present an 

overview of the Pastry framework over which our work is developed, list and analyze 

successful systems with different approaches to the P2P philosophy and describe the 

PeerSim simulator, used to assess the effectiveness of the incentive mechanisms. 

• Related Work – Here we present a description of current research in this field, 

improvements made to P2P systems throughout the last years the opinion of several 

authors about the most important aspects of resource sharing applications, namely 

reputation and currency. 

• System Design – This chapter contains information about the development of the incentive 

mechanisms, the solutions we designed, our main concerns and the most important 

features. 

• Implementation Details – Here we provide specific information regarding application 

parameters and interaction between the different components. 

• Simulation and Evaluation – In this chapter we analyze the effectiveness of the 

implementation and report our findings, the impact of the incentive mechanisms on 

performance and the effectiveness of the solution developed. 

• Conclusions & Future Work – In the final chapter we make an analysis from a critical point 

of view, mentioning the main features but also possible adjustments to improve the system. 

3 



 

4 



 

 
 

2 Peer-to-Peer Architecture 
 

The characteristic that defines the P2P architecture is the ability the participants have to 

communicate with each other and share resources between them, acting as clients and servers, 

without the necessity for a central coordination entity. These entities can be integrated to maximize the 

performance and make possible a structure, which can be desirable when the number of members is 

very high. 

Several dimensions of Peer-to-Peer systems can be classified and taken into account. All the 

aspects considered have an impact on future development and usability of the system. The purpose 

determines most of the system’s characteristics, along with security and integrity concerns, but certain 

aspects deserve a careful plan, since a small decision can turn into a big advantage or disadvantage 

in terms of performance and scalability. 

A number of incentive mechanisms have been developed, according to immediate preoccupations 

and specific objectives. A categorization of reputation systems is presented in [21], and identifies three 

main components in these systems, namely: 1) information gathering, 2) scoring and ranking, and 3) 

response. We believe that decomposing the system will improve the final quality by allowing us to 

focus in each aspect and agree with the categories suggested. 

The main issues when considering incentive mechanisms for peer-to-peer networks, according to 

[15], are: 

• Self-policing, which means that there is no central authority and peers themselves must 

enforce the existing policies; 

• Anonymity of users; 

• No profit for newcomers, so that users are not encouraged to change identity; 

• Minimal overhead to the application; 

• Robustness to malicious users, even if they collude to achieve advantage over other users. 

 

Any incentive mechanism has to fulfill these requirements in order to be effective. 
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2.1 Comparison with a Client-Server Architecture 

Traditional computer systems are hierarchical, with different levels of responsibility. This happens, 

for instance, with the DNS used to translate domain names into IP addresses. This approach is 

perhaps the most evident, since almost all of our society is structured hierarchically, from Governs to 

Companies. The key decisions are made at the top of the pyramid, where the responsibility lies. This 

provides trust and accountability, but results in a bottleneck and single point of failure, meaning that if 

something happens to the entity responsible for the decisions, the whole system halts. 

Peer-to-peer systems have tried to minimize this risk by enabling each user to make all necessary 

decisions and, by eliminating the central point of failure, guaranteeing that the system remains in 

operation, even if most of the nodes fail. This flexibility reflects also in the scalability of the system, 

allowing the users to communicate directly with each other without the need of powerful servers to 

route the messages and control active users. 

The downside is obvious: without a central authority, trust becomes a fundamental problem. This 

“trust no one” environment is harmful, especially when we are developing a system to share 

resources, and so, unless trust issues can be worked out, users will not be inclined to share their 

resources and the system collapses. One of the deciding factors in deciding if users should be trusted 

is the reputation of those users, i.e., information about their past behavior. 

 

2.2 Pastry Overlay Network 

The Pastry overlay [28] provides the basis for the development of various peer-to-peer systems, 

with purposes ranging from file sharing to naming systems. 

The network is structured as a ring of nodes, each node in Pastry having a unique 128-bit numeric 

identifier, known as nodeID, keeping a list of its neighbors and communicating the arrival or departure 

of nodes to the application running on the Pastry overlay. When a node receives a message and the 

nodeID of the target node, it routes that message efficiently to the node with a nodeID closest to the 

target. The expected number of hops is O(log N), where N is the number of nodes in the network. 

An example of the routing process is illustrated in Figure 1. 

The nodeID is assigned randomly when a node joins the network. Besides the neighbor list, each 

node also maintains a routing table with the IP addresses of nodes with the same nodeID prefix. Using 

a proximity metric, such as the number of IP routing hops in the Internet, it is possible to improve the 

message’s route. 

To enter the system, a new node needs only to know the address of a Pastry node, to which it 

sends a “join” message, becoming its neighbor. The new node initializes its routing and neighbor 

tables and requests more information about other nodes, increasing its knowledge of the network and 

contacting nodes to announce the new arrival. 
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Figure 1 – Pastry network and the route of a message 

 

The failing or unannounced departure of nodes in the Pastry network is also easily detected and 

treated. A node is said to have departed when its neighbors can no longer contact it. At that point, a 

new node must be inserted into the routing table to replace the departed node and to maintain the 

table’s integrity. To obtain a new node, a request is made to a random neighbor. That neighbor sends 

its neighbors table and a node, which is not already in the routing table, is selected as a replacement. 

To cope with malicious nodes, Pastry uses a random route to deliver a message to its destiny, 

instead of a deterministic routing scheme. With this mechanism, a series of messages sent from node 

A to node B would almost certainly use different routes, making it impossible for a malicious node to 

intercept those messages. 

 
2.3 Successful Peer-to-Peer Systems 

The first decade of this century saw the growth of several applications using P2P networks, and the 

birth of the most famous ones. We take a closer look upon three emblematic P2P applications. 

One of the most well-known protocols today, BitTorrent, responsible for more than 30% of all 

Internet traffic and as much as 70% of all P2P traffic in 2004, according to an extensive internet traffic 

study [23]. 

KaZaA was also a well-accepted application, used by millions around the world, with a different 

approach regarding the system architecture, based on a two-level hierarchy model, we find particularly 

interesting. 

SETI@Home is the oldest of the three and the only one focused on sharing computational 

resources, namely CPU cycles, since both BitTorrent and KaZaA are devoted solely to file sharing. 
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2.3.1 BitTorrent 

Designed and implemented in 2001, the BitTorrent protocol [2] is used to distribute large amount of 

data without requiring enormous resources from the hosts. The principle is quite simple and uses viral 

propagation to distribute files in a large network. The first user makes a file available to the network so 

that anyone can download it and, as multiple users obtain parts of that file, they can start to share 

them, removing the burden from the original provider. The more users with that file available, the 

easier and faster it gets to download the file, as the number of sources reduces the saturation of the 

network. 

To address the problem of users who only downloaded content, without contributing to the sharing 

community, BitTorrent deployed basic incentive mechanisms to encourage resource sharing. 

However, these basic procedures, such as tit-for-tat [6], have proven to be fragile and inefficient. For 

instance, in [30] authors demonstrate that the Large View Exploit is effective against the incentive 

mechanisms used in BitTorrent. The exploit consists in connecting to a large number of peers instead 

of being restricted to the default swarm size. This way the user increases the chances of being 

unchoked and discovering seeders, without ever contributing to the system. The authors of [25] even 

state that the only reason BitTorrent performs well is because most people use the default settings of 

client software, since, as this paper shows, it is extremely easy to improve performance while reducing 

contributions to the system with just minor modifications in the settings, namely carefully selecting 

peers as well as contribution rates. 

In [1] authors explore ways to improve fairness in BitTorrent by making simple changes to the 

tracker and tit-for-tat policy. They conclude that BitTorrent’s rate-based tit-for-tat policy is ineffective 

but it is possible to achieve fairness using a combination of pairwise block-level tit-for-tat and a 

bandwidth-matching tracker. The behavior of the seed nodes and Local Rarest First policy are also 

included in the solution to improve performance. 

On the other hand, some authors have sustained that simple algorithms, with low impact on system 

performance, are the best solution. In [18] authors support that Rarest First and Choke algorithms are 

effective and that there is no need for complex policies such as bit level tit-for-tat. Nevertheless, we 

find that a complex economy-based peer-to-peer application will always demand a more sophisticated 

incentive system. 

 

2.3.2 KaZaA 

Also developed in 2001, KaZaA [16] represents one of the most successful peer-to-peer 

applications ever, considering both the number of participating users and traffic volume. The main 

difference between the BitTorrent protocol and the FastTrack protocol used in KaZaA is that not all 

peers are equal; there are ordinary nodes (ON) and super nodes (SN), with different responsibilities 

[20]. Super Nodes are not dedicated servers and the lifetime of a SN is no longer than a few hours, 

avoiding potential problems related to single points of failure. The idea is that nodes with higher 

resources can act as small servers to organize ON in groups and compile information about the 

resources being shared by ON assigned to them. 
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When ON join the network, they upload the metadata of shared files to their assigned SN, which 

then acts as a small hub. Ordinary users then query their SN to obtain about information about the 

resources they need and, if necessary, the SN relays the query to other Super Nodes. It could be 

decided to have super nodes know not only the resources shared by their group of ordinary nodes, but 

by all the ordinary nodes in the network. However, this would impact the performance of super nodes, 

which are not dedicated servers as we have pointed out, and slow down the system. 

KaZaA benefits from this architectural approach and shows that, even without central points of 

failure, structuring peer-to-peer networks is possible and can have a positive impact on reliability and 

performance, improving scalability. 

 

2.3.3 SETI@Home 

Launched by the University of California in 1999, SETI@Home [29] is probably the most 

recognized application for P2P distributed computing, with over 5.2 million participants worldwide. In 

order to find intelligence outside our planet based on electromagnetic transmissions analysis, 

scientists collect large amounts of data, which require large computational power to process. Not 

having the financial capability to invest in super computers, and knowing the number of people 

interested in this area, the Space Sciences Laboratory developed this application so that anyone 

connected to the Internet could donate spare CPU cycles from their personal computers to process 

data and then convey that information back to the servers. 

Since the resources were being shared with no kind of payment and the users did not expect 

anything in return, incentive mechanisms were not necessary. However, to guarantee the accuracy of 

the computations made, the same tranches of data were dispatched to multiple users and the results 

compared among them. 

 

2.4 Peersim 

The Peersim [24] application is a complex simulator, capable of reproducing the operation of a 

large P2P network. Since a large-scale P2P network can have several thousand users exchanging 

resources simultaneously, as well as constant arrival and departure of peers, to evaluate the 

effectiveness of our incentive mechanisms we have to simulate, as accurately as possible, the 

behavior of a P2P network, with random actions from the peers. This is where Peersim comes in, 

allowing for extensive testing to assess the dependability of the developed mechanisms. 

The Peersim simulator supports multiple configurations, the most important ones being the number 

of nodes in the network, the protocols used and the controls to monitor the state of the network. 

Varying the parameters, we can simulate the presence of malicious nodes in the network and evaluate 

the effectiveness of the incentive mechanisms. 

Each simulation starts loading the prototype node, the first super node, and then continues to 

perform join requests and all other actions, making decisions according to the specified parameters. 

The major components of the simulator are: 
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• The simulator engine, responsible by invoking every other component in the correct 

sequence; 

• The network, where the information about all nodes is stored; 

• Nodes, with a common implementation and operation. 

All the parameters are passed to the simulator engine in the beginning of the execution and then 

passed on to the nodes as instructed. 

 

We built our incentive mechanisms on top of an implementation of the Pastry Protocol for Peersim 

maintained by Manuel Cortella and Elisa Bisoffi and available at the Peersim website. 
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3 Related Work 
 

3.1 Making Resources Available 

In a system designed to assist the exchange of resources between users, the manner in which the 

resources are made available and to whom they are available is of the utmost importance. 

When an application is used only by a restricted number of people and the demand for resources is 

not greater than the supply, it is possible to satisfy every request. However, when the demand 

escalates, there is a necessity to prioritize requests and the efficiency of the system relies deeply on 

the quality of the solution. 

 

3.1.1 Virtual Machines 

One of the most straightforward manners to share computational resources is presented in [12]. 

The authors recommend a system based on the operation of a Laundromat, called Evil Man. The 

requesting party is responsible for providing all the information as a Virtual Machine, which is then 

loaded by the provider. The interaction between users is very simple, with low impact on performance. 

Every time a request is fulfilled currency changes hands, from the requesting party to the service 

provider, therefore obliging every peer to share resources in order to obtain the currency it needs to 

pay for services. Although this model is undoubtedly efficient, it does not account for previous 

interactions, with no information being given about the quality of the service a user provides. 

 

3.1.2 Overbooking and Queues 

A way to deal with resource allocation, considering overbooking and queues, is explained in [9]. 

When the demand for resources surpasses the offer, peers will have to wait to obtain resources. Since 

we are mostly considering computational resources and not specific content, it is not crucial for a peer 

to obtain the resources from one determinate user. Therefore it will have the tendency to ask for 

resources from multiple peers, guaranteeing that the waiting period is as narrow as possible. SHARP 

offers a solution to cope with this situation, distinguishing between claims and leases. A claim simply 

represents the request made by a peer, while a lease corresponds to a promise to make a resource 

available. Peers are then evaluated according to their actions, seeing that they have to comply with 

the promises made to other peers. 
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3.2 Currency and Reputation 

 

3.2.1 Currency 

As all devices man has developed throughout centuries of history, computers are as complex as a 

person can master their use. Economic systems have become more and more dense and what was a 

simple evolution from bartering has become what we now know as currency, with all the concepts 

involved, such as inflation, deflation, interest and exchange rates. 

The economy in a resource exchange system can be as complex as we want it to be. We can have 

a barter economy, where a user asks for a resource from another user and gives a resource he owns 

in return, or we can go as far as various types of currencies, each one with a purpose and exchange 

rates between them. 

In a barter economy resources are a form of currency and, when peers exchange resources 

between them, the trade is mutually beneficial hence there is no need for other types of payment. 

However this would mean that users could only consume resources is they had something the other 

party needed in that precise moment. As we know, the demand fluctuation renders this option 

ineffective, posing unnecessary limitations to the sharing community. Introducing currency translates 

into users being able to share resources even when they do not require any in return, accumulating 

currency to use when needed. 

Some argue that there should be a payment in every exchange, and that payment should have 

nothing to do with the reputation measure we have talked about before. Another approach is to 

consider only reputation – good and bad members of the network. Good members should have 

access to the resources and pay nothing for them, except the obligation to participate in the reputation 

system, praising the member who shared his resources. 

Then another aspect can be brought up: should every resource have the same value? Some 

resources are scarcer than others, and there are “rush hours”, where the resource pool is insufficient. 

This is the difference between a token economy, where a token equals a resource, and a currency 

economy, where the value of a resource fluctuates. 

 

3.2.2 Reputation 

As we have pointed out, knowing which users you can trust is crucial. To address this problem 

many solutions have been proposed, but the most used is, by far, the reputation of the user. The 

reputation of an entity can be described as the result of the trust that every peer places on that entity. 

EBay [8] is probably the most notorious example. The system works as follows: when you buy a 

product from another user you are asked to classify the seller according to the quality of the product, 

communication, packaging and delivery time. If a user gets good reviews, it adds to his reputation and 

he becomes a renowned seller, attracting more potential buyers. 

The major problem is convincing users to cooperate, by accurately reporting the result of their 

resource exchanges. Without any incentive mechanisms, the user has no advantage in cooperating 
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[9]. By reporting positive ratings, it creates advantages to other peers, who increase their reputation 

and, by reporting fake negative ratings, the user increases its reputation comparatively to other users. 

In [34], the authors present a reputation system intended for peer-to-peer file sharing systems, 

Credence, which can be adapted to other types of resources. The main purpose of the system 

presented is to avoid contaminating the network with mislabeled or dangerous content, such as 

viruses, by encouraging peers to classify the resources obtained from other peers. This is 

accomplished by linking the reputation of every user not only to the quality of the resources it shares, 

but also to quality of its evaluation on other peers’ resources. Using a system like Credence, it is 

possible to motivate users to share their insight on other peers and distinguishing untrustworthy users. 

With a solid reputation mechanism it is possible to distinguish good service providers from bad. 

However, assembling this mechanism is far more complicated than it seems, and we will talk about 

the most prominent problems ahead. 

 

3.2.3 Reputation vs. Currency 

As we have seen in the last sections, reputation and currency are different concepts that can be 

used separately or combined. A single representation is a common approach, as can be seen in 

KARMA [33], which uses a single scalar value that can be seen as the reputation of a peer but also 

the currency used to pay for resources. The KARMA of each peer is incremented or decreased every 

time a transaction occurs, constituting the payment for that transaction, but the amount of KARMA 

users possess is also an indicator for their reputation. 

This approach, also the basis for the Eigentrust algorithm [15], is simpler and can very well be 

effective in most environments, but is ultimately too shallow for more complex applications, since it 

cannot distinguish the value of the resource nor the efficiency demonstrated in the sharing process. 

If we think of eBay, where currency and reputation are used as separate concepts, we can take 

into account several aspects when we are choosing a seller, for instance comparing the prices for the 

product with other sellers and knowing if the seller has positive feedback from other transactions. 

In [14] authors focus on the problem of trust and support the existence of reputation agents (R-

agents), from whom users can buy information about the reputation of other users and, after they have 

participated in resource exchanges, they can also sell information they have to the same R-agents. 

The currency used to pay reputation agents is different from the one used to pay other peers for 

resources, so that users are compelled to participate with information gathered from their experience, 

in order to use the reputation system. 

Even if the system consists only of one kind of resources and a fixed value is used for every 

transaction, an adequate reputation representation can distinguish the quality of the resources 

provided. As an example we can think of computational resources sharing, and the difference between 

sharing a single core processor or a quad core processor, admitting that the resource is shared in time 

slots, which is the most obvious. 
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3.2.4 Reputation Distribution 

After a solution to identify cooperative and trustful users has been achieved, a manner to 

propagate that information must be developed. 

Once again, had we a central authority mechanism and it should be relatively easy, since every 

user could ask the “market regulator” which users he could trust. Still, since a P2P system must not be 

centralized, things get a little more complicated. 

Pragmatically, a user can only trust itself and users he has interacted with. However, this is very 

limited, and the next step is to trust in users that are trusted by the users we trust, and so forth. This 

process is called Reputation Distribution or Trust Distribution and consists in each user having a set of 

trusted users and sharing it with others. If I have interacted with a user and I decide he is trustworthy, 

then maybe I should ask that user information about other users, expanding my trust network. 

However, this process has to be approached with caution, since my trust in another user cannot be 

total. Even if I have a positive association with another user, maybe he will fail in the future, and so the 

problem of how to distribute reputation comes up. 

We can adopt two methods: either we prune the network, saying that we only accept a certain level 

of trust distribution or we weight that distribution. 

The first option is more restrictive. For instance, we trust only the users we have had direct contact 

with and those user’s direct contacts. This only propagates trust one level, becoming a 2 level network 

tree. 

The second option is a bit more inclusive, although it demands the users to weight each 

association. For instance, if I have several resource exchanges with a user and most of them are 

successful, I can say that I trust that user to a certain amount, say 90%. Then, when I ask that user for 

a list of trustworthy “business partners”, I must weight that list, taking into account that I only trust the 

source to 90%. This method allows a user 7 levels down the tree to be trusted almost fully, if the path 

is trustworthy, on contrary to the pruning option, while still being reluctant when classifying users, 

taking the distortion factor into account. 

When we are considering a network of peers who classify each other by sharing their experience 

with previous transactions, we immediately come upon the need to introduce a method for reporting 

untrustworthy users – negative reputation. In [10], authors develop and test a framework for 

propagating trust and distrust. If we consider only positive reputation, a malicious user will have the 

chance to perform several faulty transactions before its reputation reflects those actions; it can be 

seen as a slow death. The upside is that a framework with only positive reputation has less traffic 

circulating between peers and the security issues are simpler, since there is no need to worry about 

false negative votes and coalitions of peers to expel fair users. 

The framework presented in [10] changes the focus of trust from the number of voters to trust 

relationships developed over time, much like in real world, where you trust the opinion of a long 

acquaintance more than that of ten strangers. Then there is the question of how to model distrust in 

the system: should votes range from 0 to 10, for example, or should 0 be a neutral vote and 

introducing negative numbers instead as a solution? 

14 



 
The following trust propagation schemes are the most common and effective: 

 

1. Direct propagation, the most straightforward propagation scheme, can be explained by a 

simple example: if John trusts Hannah and Hannah trusts Karl, then John also trusts Karl. 

If a node builds a trust relationship with a neighbor after multiple successful transactions, it 

may be inclined to ask the opinion of that neighbor about other peers, expanding the 

information stored about users in the network. 

 

 

Figure 2 – Direct Trust Propagation 

 

2. Co-citation means that, if John trusts Hannah and Karl, and Rudolph trusts Karl, then 

Rudolph also trusts Hannah. This trust propagation method is more inclusive and builds on 

current knowledge about the neighbors to infer a trust measure on unrecognized peers by 

trusting peers who have positive feedback about nodes already on the trust network. 

Analyzing the opinion of other nodes about peers we trust can be an effective way to 

determine the reliability of such nodes. 

 

 

Figure 3 – Co-Citation Trust Propagation 

 

3. Transpose trust is a mutual trust, if John trusts Hannah then Hannah also trusts John. This 

simple trust propagation method implies trusting in users who trust us, which can be 

unreliable since fraud is a strong possibility. 
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Figure 4 – Transpose Trust Propagation 

 

4. Trust coupling is a propagation of trust by common ideas – if John and Hannah trust Karl, 

Rudolph trusts Karl, then, if Rudolph trusts John, then he also trusts Hannah. 

 

Figure 5 – Trust Coupling Propagation 

 

Distrust can be propagated in the same manner as trust, or the system can opt for one-step 

distrust. This means that, when a peer does not trust another peer, he simply disregards those peer’s 

opinions. 

Results of the experiments with this framework show that co-citation performed quite well as a 

method for propagating trust and, as expected, the introduction of distrust was helpful, except when 

using only direct trust propagation. The authors recommend therefore using co-citation and one-step 

distrust for achieving better results. 

As we have pointed out in the objectives of our work, the weight of the trust propagation 

mechanism must be taken into account when designing the system, so that its impact does not 

minimize the positive effects of having an incentive mechanism. Regarding this subject, the work in 

[26] presents a mechanism for lightweight and distributed trust propagation, with the intent of 

implementation in low capacity devices, such as mobile phones. The authors advocate that direct 

propagation is only meant for applications with centralized servers and does not scale on distributed 

environments; therefore the idea is that a user only stores a limited subset of the trust web and applies 

a machine learning technique for propagating trust as well as distrust. 
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3.3 Robustness and Security 

When we think about the robustness of the system we intend to develop, we have to take into 

consideration all the limitations inherent to remote interaction between users. We have to establish 

identities for the users of the system, so that we can discriminate who has access to the resources 

and identify users who fail to comply with established rules. 

The problem with electronic identities is that a physical user can create as many virtual identities as 

he wants. In a controlled environment, such as a company department, the number of nodes is static, 

and therefore the access can be limited to the known terminal nodes. User identification can be 

achieved at the terminal level, with a mandatory login. However, this cannot be applied in a distributed 

environment, where nodes are constantly entering and exiting the network and there is no central 

authority to authenticate users. 

There are also other threats to consider besides user identification, such as collusion between 

users to obtain advantages over other users and bribery, where users pay for privileged access to 

resources. A cryptographic key infrastructure is essential to provide for accountability, since almost 

every security solution uses this method to authenticate users. 

 

3.3.1 The Sybil Attack 

The Sybil attack, as described by Douceur [7], consists in a single user operating multiple virtual 

identities to abuse his permission to access resources. With the ability to create multiple virtual 

identities, a user needs not to worry about sharing resources and reputation. When one of the 

identities is considered to have had poor behavior, the attacker simply uses another. If the system is 

permeable to Sybil attacks, it cannot attract good resources, and falls apart. 

Various attacks against computer systems are conducted creating multiple virtual identities, 

classifying those attacks as Sybil attacks. We all suffer from this type of attacks every day, mostly 

spam. The low cost of creating virtual identities is the major incentive for attackers and another 

example are the denial of service attacks, where a large number of requests are made to a server, 

flooding it and degrading the performance. It is curious that the same kind of attack can be used 

against peer-to-peer systems, since a great motivation for these systems is avoiding the congestion 

and security problems of a central server. 

Preventing Sybil attacks has been the motivation for countless works and [19] presents an 

interesting survey on how existing applications cope with the existence of Sybil attacks. It shows that, 

although the attack is prominent, several applications are completely vulnerable and did not adopt any 

security mechanisms. 

In this section we focused on attacks where a single physical user creates multiple virtual identities 

and uses them at will, to avoid the necessity of contributing to the system with resources. In fact, Sybil 

attacks can be used in a more strategic manner, with extended presence of cooperating attackers. We 

distinguish this kind of complex attacks in the next section. 
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3.3.2 Collusion 

Collusion is also a major problem and, as we have mentioned above, coalition between users may 

not involve multiple physical users, but just multiple virtual identities for a single physical user. This 

phenomenon can be described as a coalition between users to improve each other’s reputation in the 

system, gaining the trust of other users and profiting from that situation. Since the system uses the 

reputation of users to determine access to resources, if the reputation of a user can be manipulated to 

unfaithfully reflect the behavior of that user, it will lead to unfair exchanges, where a user does not 

share as much as his reputation implies. 

Mechanisms to detect collusion have to be effective, determining if a group of users is forging 

reputation to get ahead in resource queues and access resources. 

In his PhD Thesis, Jesi [13] focused on techniques to avoid the possibility of system disruption by a 

group of coordinated attackers exploring frailties in the neighbor’s list propagation methods. The 

example used by the author is a system where users gather neighbors for their own list from their 

neighbors’ lists. If a group of cooperating attackers list only each other in their respective lists, and 

tamper the timestamps so that the list appears to be fresher, those lists are propagated in the network 

and legitimate users progressively replace their neighbors with links to the attackers. After a pre-

determined amount of time attackers would leave the system and the remaining users would have no 

connections between them, resulting in a completely partitioned network. 

In [22] authors develop a mechanism to prevent collusion based on peer auditing. The idea is that 

users are compelled to publish signed records of their actions, which can then be audited by other 

peers. However, the incentives in this paper are designed for a remote file storage application, where 

the sharing of resources is a lengthy process. On the contrary, if we are considering a system where 

shared resources are immediately consumed the incentives have to suffer some adjustments. The 

solution proposed also demands the implementation of anonymous communications to protect the 

identity of the auditors and preventing not only collusion but also bribery attacks. The incentive for 

users to perform audits on their peers is that the system, as a whole, benefits from cheaters being 

discovered and ejected. 

 

3.3.3 Malicious Users 

The robustness of the system can only be increased if selfish users, who do not contribute to the 

system, are detected and banned. We also have to consider untrustworthy users, who give the 

impression of sharing resources, while in fact they just introduce entropy in the system. A good 

example is the proliferation of fake content in the system, or responding with false results to requested 

calculations. 

There are a number of situations where this strategy was used to cause degradation of Peer-to-

Peer systems such as Napster and KaZaA, to name the most known. If the contents of a system 

become untrustworthy, users are less inclined to use that system. The quality of the resources being 

shared is as essential to the system as the behavior of the users who share them. 

The detection of fake content is simpler when we consider file-sharing applications. In systems 

where the shared resource is computational power, the used method is to send the same data to be 
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processed by multiple peers and then comparing the results. The SETI@Home application uses this 

approach to guard against malicious actions that could compromise the ability to achieve the wanted 

results. However, due to the increased cost of replicating requests, peers may choose to trust the 

result, requiring verification only if the importance of the result is important enough. 

Another important aspect, one that can also be used to measure the quality of service, is the time 

elapsed between the request and the actual response from the resource provider. However, in order 

to consider a maximum amount of time allowed for a request, it is necessary to have a central 

authority capable of providing accurate timing information. 

In [36], authors describe the design and implementation of a solution to identify fraudulent behavior 

from peers in cycle sharing systems. This application focuses in situations where nodes make 

available only part of the promised resources, namely using only a fraction of the computational power 

promised. 

 

3.3.4 Newcomers 

Users joining the network have no past interactions to prove their commitment to the system and 

therefore their reputation information is non-existent. Two simple strategies can be followed, namely 

optimistically trust new peers or, on the other hand, refusing to interact with those peers. If the first 

strategy is chosen, the system is encouraging whitewashing attacks and users with a rather negative 

reputation would prefer to exit the network and rejoin with a clean slate. If the system has a 

pessimistic approach newcomers face great difficulties to start exchanging resources and building up 

reputation and are limited to interactions with other recently joined peers. 

While a slow start can in fact be a solution and a guarantee that users really intend to contribute to 

the system, an adaptive solution based on the behavior of newcomers can prove to benefit the 

application [17]. The idea is to compile information on interactions with recently joined peers on a 

specific group, determining if the system has a high rate of whitewashing, to decide how to cope with 

new users. The information is constantly being updated by the broker, according to received reports, 

so that changes in the conduct of newcomers reflect on the policy adopted. 

 

3.3.5 Computational Puzzles 

There have been several solutions to deal with Sybil attacks, not only in peer-to-peer networks but 

also to combat spam and denial of service attacks. The most common solutions opt for artificially 

raising the computational cost of using the service, creating human time delays or imposing financial 

costs. 

In the peer-to-peer context, the most adequate is the use of computational puzzles. If every user 

has to solve a puzzle in order to enter the network, or even to request a resource if that is the policy 

enforced, it creates a cost that not all attackers are comfortable with. The creation of multiple virtual 

identities would then have an associated cost so great that the profit from using the Sybil attack would 

not pay off. 
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The major difficulty in using computational puzzles is guaranteeing that attackers do not reuse 

puzzle solutions and, in [3], a fully decentralized scheme to continually distribute challenges is 

proposed. Other authors [35, 4] have suggested the use of a public source of random challenges, but 

it would create a central point of failure, reason because a decentralized scheme is far more suitable. 

Halderman and Waters [11] present a framework for deriving challenges using data from various 

online sources. The main concerns are the freshness of the challenges, the capability of verification by 

multiple agents and resilience against attackers who try to inject their own input as part of the 

challenges. The policies for gathering data can be customized based on the goal of the application. In 

some contexts it may be more important to use fresh information, from newspaper sites for instance, 

and in others it may be more useful to use more stable information, such as stock price history. Users 

must then harvest data from multiple online sources, according to the application’s policy and perform 

computation over that data. Verifiers can validate the challenges by checking just a random subset of 

the original sources. Authors present Sybil attacks as an example of problems this framework can 

mitigate, along with remote storage and auditing applications. 

 

The complexity of the puzzles has to be the result of careful consideration, as it is the vital 

condition for the successful protection against Sybil attacks. Puzzles must be difficult to solve, 

requiring large amount of computation, but easy to verify. As we have said, puzzles must incorporate 

constantly modified challenges, to avoid the possibility of precomputation. If the puzzle challenge is 

constant, e.g. generating a pair of public/private keys according to a certain pattern, an attacker can 

develop a manner to precompute the solution, decreasing the effectiveness of the security 

mechanism. On the other hand, we have to take into account that often attackers have at their 

disposal a computational power far greater than legitimate users, and therefore creating excessively 

complex puzzles could then pose enormous difficulties to computational constrained users. Since we 

are focusing our research in finding appropriate incentives to implement in computational resource 

sharing networks, severely computationally constrained users are not our main targets. We will, 

nevertheless, take into account the limitations of users and maintain the effort required to solve 

computational puzzles between adequate boundaries. 

 
The scheme proposed in [3] consists in creating random challenges based in inputs from all the 

participants in the network. That way, whenever a user A contacts another user B, B can verify not 

only that A has solved a puzzle but also that the puzzle included the input provided by B and is 

therefore valid. This solution introduces an all-to-all broadcast of challenges, which constitutes a 

burden to the network. However, the authors support the efficiency of the solution and show that the 

mechanisms can be implemented on top of the Chord overlay. 

 

Rivest, Shamir and Wagner [27] propose a different approach, using puzzles with time restrictions, 

which they refer to as Time-Lock Puzzles. The idea is to create a Puzzle that cannot be solved until a 

pre-determined amount of time has passed, be it because the puzzle is so complex that it takes a 

considerable amount of time to solve or using trusted agents to keep information secret for a period of 

time. We are, evidently, more interested in the first option. The algorithms to solve the puzzles should 
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ideally be non-parallelizable, so that multiple machines must take as much time to solve the puzzles 

as simple, single processor computers. This approach can introduce a delay to requests in the 

network, and has the advantage of possible adjustment, since it is easier to control the complexity of 

the puzzle, different complexities can be used according to the situation. For example, if a user is 

flooding the network with requests, a puzzle with a longer solution time can be sent. Although this 

scenario is not simple, since not every user can decide on the complexity of the puzzles, it is 

nevertheless possible. 

 

Tsang and Smith [32] argue that crypto puzzles have fundamental problems, namely their 

imprecision, since it is impossible to calculate solving times due to the extreme heterogeneity of 

computing devices, and the environmental impact of using innumerous CPU cycles without useful 

outcome. The authors propose a completely different approach based on trusted computing, which 

relies on security provided by physical hardware. Even though we acknowledge the relevance of 

problems presented, it is our goal to develop universal mechanisms, which can run on every system, 

without specific hardware requirements. 

 

One of the most straightforward solutions is presented in [35] and consists in reversing a 

cryptographic hash, given the original random input with a number of bits deleted. The challenge is 

very simple to create and verify but demands intense computation from the challenged node to 

perform a brute force attack in order to identify the deleted bits. The downside of this approach resides 

on the fact that the solution can be parallelized and, therefore, the workload can be distributed 

provided the attacker possesses several processors. 

We summarize the major benefits and disadvantages of these approaches in Table 1. 

 

Puzzle Advantages Disadvantages 

Gathered from Online 
Sources • Freshness 

• Dependency from sources 
outside the network 

• Difficulty to create puzzles and 
verify solutions 

Public Source of 
Challenges 

• No burden to the nodes in the 
system 

• Dependency from sources 
outside the network 

• Central point of failure 
• Scalability issues 

Puzzles with 
Contribution from Peers 

• Distributed verification of 
solution 

• Increased complexity 
• Increased network traffic 

Time-Lock Puzzles • Precise definition of elapsed 
time until the puzzle is soluble 

• Multiple inputs necessary in 
different occasions 

• Larger burden to challengers 

Hash Reversal • Simple creation and verification • Parallelizable solution 

Table 1 – Computational Puzzles Comparison 
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4 System Design 
After an extensive survey of existing systems and solutions to problems we’re bound to encounter 

during this project, we could anticipate some pitfalls and utilize the knowledge gathered on the subject. 

Our focus was always the balance between a currency and reputation system capable of delivering 

proper incentives to users, and the impact that system and all the security measures have on the 

performance of the network. As we have said when introducing the problem in hand, our mechanisms 

are intended to work in a decentralized application, therefore rendering any solution based on central 

servers unfit. Nevertheless, we have arrived at the conclusion that a good incentive-based application 

must rely on both reputation and currency and, as a result, the existence of brokers presents several 

advantages, as the FastTrack protocol used in KaZaA demonstrated. The responsibility of being a 

broker should be shared among users, as a manner to keep the principle of decentralization, but it is 

important that this responsibility does not become a giant burden to users, incapacitating them to 

produce useful computation. To achieve this compromise, we had to restrict the number of users 

assigned to each broker and develop architecture to efficiently cope with communication between 

brokers, in order to maintain coherence throughout the system. 

 

4.1 Network Architecture 

Our solution is built on top of the Pastry overlay network and, as a result, the network is 

represented as a ring of peers connected to their immediate neighbors. We implemented virtual 

groups of users to structure the network. Each group has an assigned broker and functions as a 

system within the system. These groups are self-regulated; the users classify their peers and the 

broker, a user responsible not only for the emission of currency but also for guaranteeing good 

performance, acts according to that classification. 

All nodes are based on the same prototype and capable of performing the duties of the broker, 

although some components remain inactive until they are promoted to that status. During regular 

operation, every node maintains information about its neighbors, such as public cryptographic keys 

and reputation. Upon promotion that information is refreshed and completed and the new broker starts 

to update it as well. 

The major differences between data processed by a broker and regular nodes are the need to 

collect the public cryptographic keys and reputation from all peers in the group instead of only from 
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neighbors, monitor transactions to detect fraudulent behavior and, most importantly, information about 

the amount of currency each node possesses. A broker must also maintain a list of neighbor brokers. 

The groups are highly dynamic, but the number of users in one group is always kept inside defined 

thresholds, since a very large group would become almost impossible to control by a single broker, 

resulting in a bottleneck, and, on the other hand, a group with a small number of peers cannot satisfy 

those users needs. 

The existence of brokers means that our architecture can be classified as partially hierarchical and 

structured. In the following sections we describe the processes of creation, dissolution and fusion of 

groups in further detail. 

 

4.2 Groups 

The process of adjusting the number of groups according to the needs of the system must be as 

straightforward and effective as possible so as to maximize the performance of the application. We 

describe the situations when changes to the groups are necessary and how the processes develop. 

 

4.2.1 Initialization 

To bootstrap the system, a small set of trustworthy users is needed, to act as super nodes. In fact it 

is possible to initialize the system with just one super node, however in this situation the initial user 

would be vulnerable to attacks, which could lead to a total failure in bootstrapping the system. These 

users only need to reside in the system long enough for other users to be accurately classified as 

trustworthy. From that point on the brokers will be elected from the pool of peers, according to their 

reputation. 

In order for a new user to enter the network, it has to contact a user already in the system, meaning 

that some sort of contact outside the application is required, for instance publication of IP addresses in 

public lists. This is the common method all P2P applications use to perform the initial peer discovery, 

the most prominent example being the publication of torrent files for BitTorrent in web pages. 

After acceptance into the network, a new unique ID is created and assigned to the user, who can 

be allocated to the same group of the peer contacted, if the objective is to reduce the number of 

messages between groups. If the network traffic is not a critical factor, the user can be assigned to a 

random group, to avoid the possibility of malicious users choosing which group they want to join. The 

broker responsible for that group will then contact the new user, presenting its credentials, and send 

its neighbors list so that the new node can start contacting other peers. There is no point in 

establishing a relation between the node ID and the group that node belongs to, since the groups are 

dynamic and, as we explain in the following sections, users can be transferred to other groups 

transparently. 

 

4.2.2 Group Partition 

The users of the system are very heterogenic; therefore the threshold for group size must be set 

accordingly to the computational capability of the broker responsible for that group, which can be 
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assessed using computational puzzles. When a group is growing and the size threshold is about to be 

attained, the most reputed user should be appointed as the broker for a new group. Half of users, 

chosen randomly, are transferred to the new group. 

 

4.2.3 Group Merge 

When a group is not performing as expected, with the demand for resources far greater than the 

supply inside that group, there is a choice to be made. Either the group is dissolved and the users 

scattered among other groups, or the group is merged with another group. While the first option is 

undoubtedly simpler, the second can be much more effective, provided that the brokers exchange 

information, conducting the stalled group towards a group with a large amount of unused resources. 

 
4.3 Currency 

The brokers are the only users capable of introducing currency in the system and are responsible 

for controlling the amount of currency inside their group. 

When a user enters the system and is integrated in a group, the broker of that group registers an 

additional amount of currency, distributed not to the new user but to the most reputed users in that 

group. This mechanism prevents users entering a group from using all the initial currency and then 

exit the group giving nothing in exchange. 

Inversely, when users exit a group, the broker must make sure that the amount of currency in the 

group remains unchanged. If the exiting user has more currency than introduced when he entered, 

that amount must be distributed, otherwise currency is removed from the users in that group. This 

process guarantees that there is no shortage of currency and, more importantly, that even highly 

reputed users cannot retain such a quantity of currency that allows them to stop sharing resources 

and still having enough to acquire other user’s resources for a long period, which is to say that no user 

can be allowed to obtain and maintain a dominant position. 

 
4.4 Reputation 

As we have mentioned in section 3.2, currency and reputation are essential to the well functioning 

of the network. Through our research, we have come to the conclusion that using both currency and 

reputation as two separate concepts is the most adequate manner to cope with all the problems 

present in peer-to-peer applications. Reputation is not only necessary to deal with problems such as 

users accumulating currency and then make the system imbalanced, but can also provide basis for a 

more complex resource economy, where prices fluctuate and the quality of the resources may vary. 

The differences between the role of currency and reputation emerge immediately when we 

consider a resource transaction. Currency is passed from the buyer to the seller and, as a result, the 

seller becomes wealthier and the buyer poorer. However, if the transaction was carried out correctly, 

both users see their reputation rise, since every correct transaction is positive for the system. The 

buyer provided payment and the seller kept his promise to deliver the resource, so the position of both 

users becomes stronger within the system. 
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On the other hand, a user with little need for resources who is a great contributor to the system will 

see the amount of currency in his possession rise indefinitely. The reputation of a user must not follow 

this line of thought and a limit has to be set, as a measure to guarantee the balance of the system and 

the availability of resources. If users who have accumulated large amounts of currency decide to stop 

sharing resources and use that currency only to consume resources from their peers, it creates an 

unbalanced situation and the system will undoubtedly be harmed. 

The reputation of users is periodically adjusted downwards to promote activity and, additionally, 

when a broker records a bulk of transactions with the same buyer, that user also has his reputation 

decreased. We find this latter adjustment necessary to maintain the system’s throughput, since users 

with large amounts of currency can flood the network with requests, degrading the experience of other 

users. However, to avoid excessive penalization of idle users, the reputation adjustment can never 

lower the reputation below the initial value. 

Using these precautions when awarding and removing reputation will balance the system and 

prevent unfair behavior from users. 

 

4.5 Security 

As we have mentioned before, the basis for a fair sharing system is the ability to detect and cope 

with malicious users, therefore our solution based on currency and reputation will only be as effective 

as it is trustworthy. 

Since there are no means to establish a direct connection between physical and virtual identities, 

the main threat to the system are attackers who create multiple bogus identities for their own profit, 

subverting the classification parameters. This type of attack is known as Sybil attack, as described in 

section 3.3.1, and can provide attackers with unfair advantage over legitimate users. Moreover, it can 

be a vehicle for further attacks, mainly Denial-of-Service attacks. In this section we describe the 

security mechanisms included to deal with Sybil attacks and other possible threats to the system. 

 

4.5.1 Cryptographic Key Infrastructure 

As the cornerstone of the security mechanisms, we deem vital the existence of a cryptographic key 

infrastructure. To circumvent the problems presented by remote operations and communications using 

anonymous networks, the usage of cryptographic mechanisms to prove the identity of users has 

become customary in many distributed systems and applications. 

The outline and complexity of these cryptographic mechanisms vary according to the specific 

necessities and capabilities of the systems using them. The most common option to provide security 

assurance against malicious users is to employ digital certificates, which identifies the entity signing 

the data, or cryptographic keys, symmetric or asymmetric, capable of guaranteeing integrity, 

authenticity and privacy of the data. 

For the type of system we are considering, the digital certificate option does not seem appropriate, 

since it requires a trusted entity, a certificate authority, capable of validating these certificates, which is 

not present in a P2P network. 
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The utilization of symmetric keys is more efficient than using a pair of public and private keys; 

however it implies a way to share a key between two peers in a secure manner. The reliability of this 

process cannot be guaranteed without an additional effort and, since our architecture entails the 

dynamic allocation of peers in groups and, consequently, constant changes in the super nodes pool, 

the use of asymmetric cryptography is more appropriate. If each node possesses a key pair, there is 

only a need to maintain one of the keys private, while the public key can be transmitted freely. The 

responsibility of creating the pair of cryptographic keys relies on each user, relieving the broker of the 

group from that rather computational expensive task. 

The size of the cryptographic key is determining to the reliability of the encryption. Using the RSA 

algorithm, which allows both signing and encryption, a key length of either 1024 or 2048 bits is 

considered secure. Since the average time a user spends in the system is relatively low, we find 

acceptable the use of 512-bit keys to minimize the computational cost of generating the keys and 

signing the messages. 

 

It is essential to the correct operation of the system that basic properties are guaranteed: 

• Authenticity of Origin, so that there is no doubt on the identity of the sender; 

• Non-Repudiation, forcing the sender to assume the authorship of the message; 

• Integrity, to guarantee that the message was not adulterated. 

 

Users must sign each message sent using their private key, so that the properties above are 

maintained. Although the broker of the group is responsible for providing nodes the public key 

necessary to verify the authenticity and integrity, this duty has no significant impact on performance 

since the nodes are able to store that information for future interactions with the same peer. 

 

4.5.2 Sybil Attack 

When a malicious user resorts to the Sybil attack in the context of peer-to-peer application, usually 

the objective is to obtain some advantage over other users in order to consume resources without 

contributing to the system. Our currency allocation policy deals with this issue and, since we do not 

provide new users with currency, they are obliged to contribute to the system in order to acquire 

means to pay for resources. Attackers may also use their multiple identities to praise each other or 

criticize legitimate users, undermining the reputation system. The restrictions we implement regarding 

multiple transactions from the same user in a small time frame in addition to the certification of 

messages between users guarantee that it is not possible for attackers to tamper with their own 

reputation or to discredit legitimate users. 

 

Nonetheless, the Sybil attack may just be a preparation for a more extensive attack, namely 

Denial-of-Service attacks against brokers. 

To protect the application from Sybil attacks we use computational puzzles, described in section 

3.3.5. The complexity of the puzzles was tested and adjusted accordingly to benchmarks in a 

simulated environment, so that legitimate users are able to use the application as intended, while 
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possible attackers have to deal with a heavy burden and cannot profit from using multiple virtual 

identities. The detailed analysis of the results of the simulations is in chapter 6. 

 

4.5.3 Selfish and Malicious Users 

The detection of users who are not contributing to the system or are failing in their responsibilities 

is based on the reputation of those users. If a user is only consuming resources from other peers, it 

will eventually have no currency to make payments and the necessity to share resources will arise. 

However, if that user has a large amount of currency, collected along an extensive period of time, 

there is the possibility he would stop contributing and still be able to pay for resources. That is why the 

use of reputation is also important. While a user can retain as much currency as it intends, there is a 

limit for the amount of reputation, so that each user must continue to put in its resources, even if in a 

smaller amount than it uses other peers’ resources. 

The problem of untrustworthy users is more complicated. Those are users who pretend to share 

their resources but then fail to deliver them, deliver false results of computation or fake content. 

Untrustworthy users are a liability to the application not only because of the entropy they introduce in 

the network, but also due to the decrease in performance and throughput they cause and must 

therefore be dealt with efficiently. Peers can report a user and the broker of that group acts so as to 

expel the malicious user. 

In order to protect the system from badmouthing attacks, wrongful claims that a peer is 

untrustworthy, the peer who files the report presents proof that a promise was made and not fulfilled. 

Since every message exchanged between nodes must be signed with the private key of the sender, 

the log of those messages can be used as proof that a resource was promised but not delivered, or 

that the resource provided did not match the promise made. 

The mandatory signature of every message also guarantees that it is impossible for users to create 

bogus messages praising themselves, as the broker will always validate the identity of the node 

responsible for the message. 

So that every user is encouraged to report bad peers, the broker, upon confirming the information, 

awards reputation from the reported peer to the legitimate user. Without this incentive, users could 

decide to keep the information only for their personal use, without taking the time to contact the 

broker. 

 

4.5.4 Newcomers 

A delicate problem occurs every time a user joins the network, due to the lack of information the 

community has about the reliability of the new peer. Since our solution features super users, the 

brokers of each group, every new user must be registered and recognized by the broker of the group 

he enters. 

The only option for a newcomer to build up reputation and accumulate currency is providing 

resources to other users but those reputed users will not be inclined to acquire resources from 

unknown peers, as the probability of defection is higher. 
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The act of sharing resources with a peer who does not yet possess reputation information is known 

as optimistic unchoking. This principle is used in every P2P application to allow progressive integration 

of a new user in the network, otherwise newcomers would never be able to start exchanging 

resources. This optimistic unchoking is, in most of the cases, random, which is to say that the process 

of integration of new users is not analyzed and bears no consequences to the system. 

We pretend to use a different approach and rely on the broker to maintain a record of recent 

transactions involving recently arrived users and posting the average cooperation rate from these 

users. There is still a random factor to optimistically unchoke a node, but the probability is continually 

adjusted using this record of past experiences. If the number of defections increases, this method also 

provides protection against whitewashing – users leaving the system and rejoining with a new identity 

to avoid penalties in their reputation. Every node can choose to consult the broker asking for advice or 

decide whether to accept the exchange partner based on its own experience. 

We consider a newcomer to be a peer that has not yet had the opportunity to show its reliability or 

had the time to communicate with an acceptable number of nodes to build trust relationships. The 

threshold defined to decide if a node is considered to be a newcomer could be adjusted depending on 

the size of the group, to better integrate the impact untrustworthy newcomers could have on the 

network. However, we do not find the additional complexity and consequences to the performance of 

brokers justified, and prefer to adopt a common sense attitude and settle a permanent value. 

After simulation, we considered that 10 interactions, either as asker or provider of resources, are 

plenty to start using the reputation points as a viable indicator of the behavior a node will show; 

consequently, after these interactions a user is no longer considered a newcomer by the system. We 

arrived at this conclusion by verifying that, simulating the presence of erratic nodes in the system, the 

probability of a malicious node behaving correctly in the first 10 interactions is less than 5%. There is, 

obviously, the possibility of a peer discovering this method and simulate a different behavior precisely 

in the initial interactions. We feel that possibility is not a threat to the system, as long as the malicious 

nodes are later detected, and that this approach will be efficient in the large majority of situations. 

 

4.5.5 User Exclusion 

After the decision to exclude a user from the system has been taken, the broker contacts that user 

to communicate the situation and proceeds to correct its neighbor’s list to reflect the decision. Nodes 

that enter the system after that moment no longer have contact with the expelled user and, while other 

peers can continue to contact the expelled node using stored information, no more exchanges 

involving that node are authorized by the broker. As some attempts fail, the users will remove the 

expelled node from their own neighbor’s list, progressively eliminating any record of that node. 

This information can take some time propagating to all peers and some interactions will have to be 

interrupted, resulting in unfruitful effort for some nodes. However, the other possible approach consists 

in flooding the network with messages notifying each user of the eviction, which is clearly worse in 

terms of performance and would no doubt have a higher impact on the system. 
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5 Implementation Details 

5.1 Message Structure 

Every message exchanged between users in the network has the same structure, being composed 

of two fields: type and body. 

We summarize the contents of the body of the most important messages in Table 2. 

 

Message Type Message Body 

Join Request Destination Source Public Key Signature  

Computational 
Challenge Destination Source Nounce Hash Signature 

Challenge Response Destination Source Solution Signature  

Join Reply Destination Source Neighbors Set Signature  

Leave Notification Destination Source Signature   

Service Request Destination Source Request Signature  

Service Reply Destination Source Value Signature  

Service Demand Destination Source Details Signature  

Service Supply Destination Source Resource Signature  

Table 2 – Message Contents 

 

5.2 Interactions 

In this section we detail the message flow between peers in each major situation. We do not regard 

as necessary presenting low-level information in the sequence diagrams, such as representing 

cryptographic signature details, but it will be referred to when considered relevant. 
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5.2.1 New User Joining the Network 

To enter the network, a user must possess the address of a node that is already active and send a 

join request to that node. Since only Super Nodes can accept new members, any other nodes forward 

the request to the broker of the group they are in. 

The broker assigns the 128-bit ID of the new node resorting to a Uniform Random Generator, 

which is given a random seed as parameter. Constant synchronization between brokers is unfeasible 

due to the scalability limitation it would introduce, so the solution adopted is an acceptable 

compromise, since there is a probabilistic guarantee that each ID generated is different. 

When the Super Node communicates the UID to the new user, it also includes the cryptographic 

puzzle to be solved by that user. This challenge, described in detail in section 5.4, has the purpose of 

posing a barrier against attacks, but can also be used as a benchmark for the computational capacity 

the new node possesses. The joining user becomes a member of the network only when the correct 

solution is sent back to the broker and verified. The Super User then conveys the acceptance 

information to the new member and also information about other users in that group, the neighbors, so 

that the newcomer can start participating in the resource exchange. 

The entire process is exemplified in Figure 2. 

 

 
Figure 6 – Join (Sequence Diagram) 
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5.2.2 Successful Exchange of Resources 

When a user intends to acquire resources from other members of the application, he starts by 

selecting a neighbor, who must belong to the same group. He can then ask the broker for information 

about the selected peer, if he deems it necessary, however this step can be averted if the user has 

had previous successful interactions with that neighbor. The broker can provide information about the 

reputation of another user, as well as the public cryptographic key needed to verify the authenticity of 

the messages received from the exchange partner, as mention in section 4.5.1. 

The request for a resource must also be signed to guarantee authenticity and non-repudiation 

since a large number of requests can be considered a denial-of-service attack to the network, 

therefore it is necessary to identify the attacker without any doubts. 

The provider has to keep information about the resources he has supplied to provide proof in case 

the asking peer tries to deny the exchange. The same applies to the payment made. 

After both parties confirm the exchange and notify the broker, the broker awards a reputation 

bonus to both users to reward their correct behavior. If the peers have already had previous 

interactions and have the information needed already stored, the broker needs only to get involved in 

this last step. By allowing the major part of the operation to be carried out by the peers, without 

participation from the broker, we keep the broadcast of messages to a minimum, benefiting the 

performance of the network and relieving the super node from additional chores. 

Figure 3 represents the steps in a normal resource exchange process, including a request to the 

broker about the reputation of the selected neighbor and the reward process after the exchange. As 

we have discussed before, the implicated peers may have had previous interaction and, as a result, 

have information stored that eliminates the need to contact the broker prior to the exchange. In that 

case, steps 2, 3, 5 and 6 are not necessary and do not occur. 
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Figure 7 – Successful Exchange (Sequence Diagram) 

 

As a protection against collusion between peers and also to prevent abuse from peers with a 

dominant position, the broker only awards reputation if certain assumptions are verified. We tested the 

probability of a node being wrongfully accused of collusion by performing simulations with correct 

nodes only. It is acceptable to the broker to maintain information about the last 50 interactions and, if a 

pair of nodes exchanged resources at least 10 times in that timeframe they are accused of collusion 

and penalized. In Table 3 we summarize the results of our simulations, presented the averages values 

resulting from 10 runs for each simulation, with an average of approximately 8500 transactions. We 

repeated the same tests with faulty nodes in the system and confirmed that setting the threshold at 10 

exchanges guarantees virtually no false detections. However, the determinant factors to the accuracy 

of collusion detection are the average number of nodes in each group and, for that reason, the 

detection mechanism is enabled only when the group has, at least, 15 nodes, otherwise it is 

impossible to maintain the same efficiency determining collusion penalties. 
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False Positives 
Threshold 

1 2 3 4 5 6 7 8 9 10 Average 

3 29 36 35 33 34 33 29 36 31 32 32,8 

5 13 12 15 13 14 14 13 15 14 13 13,6 

7 6 3 4 4 5 4 6 4 5 5 4,6 

9 0 0 1 0 0 0 0 0 1 0 0,2 

10 0 0 0 0 0 0 0 0 0 0 0 

Table 3 – Collusion Detection Efficiency 

 

Using the same line of thought, and the same measurements, a node is also penalized if it 

participates in more than 10 transactions, considering 50 consecutive transactions, as the buyer, 

because it is considered to constitute an unbalancing factor capable of reducing the performance of 

the system and the ability for other nodes to have access to resources. If a user is considered to be 

taking advantage of a dominant position and accumulated currency, the broker acts as to reduce the 

reputation of that node and, consequently, to reduce the probability of another peers accepting that 

user as a partner. 

In Figure 4 we represent a situation where two nodes collude to improve their reputation and, 

because the limit of transactions has been exceeded, the broker penalizes both users. In the case of a 

single user taking advantage of a dominant position, the provider of resources is still rewarded, while 

the offender is penalized. The modification is in step 8, which becomes a reward instead of a 

penalization. 

 

 

Figure 8 – Collusion Detection (Sequence Diagram) 
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An additional interaction between the asker and the broker or the provider and the broker may exist 

if one of the peers has only recently arrived to the network. In this case, the broker is able to provide 

information about newcomers in the system, information used to decide if the transaction continues 

with the selected neighbor. Figure 9 represents a situation when the providing node is a newcomer to 

the system, but the interactions are exactly the same if the new user in the network is the provider. 

Since the information about the reputation of newcomers is inconclusive, the broker includes 

information about the compliance rate of newcomers in the system and, in this case, the asker 

continues with the transaction. 

 

 

Figure 9 – Newcomer Situation (Sequence Diagram) 
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5.2.3 Corrupt Resources 

To maintain the quality of resources in the system and accurately detect malicious users, it is 

possible to denounce peers if they fail to deliver the resources promised or deliver corrupt resources, 

described in section 3.3.3. In Figure 10 an example of one such episode is given. 

The offended user, who is obliged to provide evidence of that claim, can then contact the broker. 

Since every message exchanged between users is signed, the messages sent by the malicious user, 

both during the negotiation phase and then the delivery of results, can be used as evidence to 

corroborate the claim. 

We leave the implementation of specific means to detect fraudulent behavior to the developers of 

applications using these incentive mechanisms, since these can vary immensely depending on the 

purpose and environment in which the application is run. Our implementation makes it possible to 

report those actions and the actions performed by the broker as a consequence are also in place. 

To encourage users to report malicious peers, a bonus is awarded in case the claim is verified, 

besides the obvious penalty for the malicious user. 

 

 

Figure 10 – Delivery of Corrupt Resources (Sequence Diagram) 
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5.3 Computational Puzzles 

As we mentioned in section 3.3.5, computational challenges are one of the most efficient ways to 

combat Sybil attacks. This method, also used sometimes to determine the computational resources of 

a node, is based on intensive computation, specifically mathematical problems. 

After considering several approaches, described in section 3.3.5, and bearing in mind that both 

efficiency and complexity are vital variables, we opted by using Hash Reversal challenges. In this 

approach, a challenger produces a cryptographic hash and, after erasing n bits from the input, sends 

that information to the challenged nodes so that they determine the complete original input, also called 

nounce. 

 

The challenged nodes must perform a brute force search, exemplified in Figure 11, and multiple 

hashing actions to determine the correct value. The complexity of the computation can be easily 

adjusted by varying the parameter n. Both generation and verification are simple procedures, which 

guarantees that the Super Nodes, the challengers, will not be burdened. 

 

 

findNounce(nounce) 

 if nounce is complete 

  newHash ← hash(nounce) 

  return (newHash == outputHash) 

 else 

  index ← first null bit in nounce 

  for i ← 0..1 

   nounce[index] ← i; 

   newNounce ← nounce; 

   result ← findNounce(newNounce) 

   if result is TRUE 

    return newNounce 

   end 

  end 

 end 

end 

Figure 11 – Hash Reversal Algorithm 
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The downside of using hash reversal challenges lies in the method of solving these challenges, 

which can be parallelized. As a consequence, some authors have made efforts to develop non-

parallelizable puzzles. An interesting approach is described in [31], where authors compare several 

approaches to the use of computational puzzles, their positive and negative aspects and ways to 

enhance them. Nevertheless, and as pointed out in that paper, even parallelizable puzzles are 

effective against the majority of attacks, with the advantage of simplicity in both construction and 

verification. 

We find the hash reversal solution balanced and adequate to the objectives in hand, allowing for 

relatively low costs for the Super Nodes and mitigation of existent threats. The results of our 

simulations suggest that the computational puzzles are efficient and do not pose an excessive burden 

to the system and to legitimate users. However, considering possible future developments, our 

framework can be easily adapted to different challenges and fine tuning of puzzle complexity. 

We chose to use an alphanumeric nounce with a length of 512 bits, and defined n as 40 bits. The 

simulation values that lead to this choice are detailed in Table 4, with all the values expressed in 

seconds. The simulations were run on a MacBook Pro laptop with an Intel Core 2 Duo processor 

running at 2.2GHz, 4GB of DDR2 667MHz RAM and Java version 1.5.0_19. 

 

 

n Simulation 1 Simulation 2 Simulation 3 Simulation 4 Average 
24 bits 0,55 s 0,57 s 0,59 s 0,50 s 0,55 s 
32 bits 0,79 s 1,21 s 1,23 s 1,18 s 1,10 s 
40 bits 13,4 s 8,3 s 10,8 s 11,6 s 11 s 
48 bits 295 s 313 s 504 s 176 s 322 s 

Table 4 – Hash Reversal Simulations 

 
Considering the values obtained through simulation, we believe that n should be set to 40 bits. The 

necessary computation is reasonable for a legitimate node, since it is only performed once, when 

entering the network. However, for an attacker wishing to deploy multiple identities in the application, 

the required time to satisfy enough computational puzzles is very high, even if the attacker has access 

to high-end technology and fast processors. 

Nevertheless, n is just a parameter and can easily be adjusted if the person responsible for the 

application considers it unsuitable or if the computational requirements to solve reverse hash 

problems become easier to satisfy with technology development. 
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6 Simulation and Evaluation 
Our solution was tested using a simulation framework, PeerSim, which provided us with the 

opportunity to tune certain parameters and to increase the accuracy of our incentive mechanisms. The 

parameters are passed to the simulator via a configuration text file. 

After hundreds of simulations we have reason to believe our system is stable and can be 

successfully implemented in real applications. 

 

6.1 Faulty Nodes 

In order to evaluate the effectiveness of the incentive mechanisms developed, it is necessary to 

simulate network operation as close to reality as possible, including the presence of users who try to 

get an undeserved advantage over other users. We use the term faulty users to identify every member 

of the network who does not comply with established rules and aims to gain an advantage over other 

users exploiting weaknesses in the system. 

Using information gathered during our research we could point out the major problems these 

systems suffer from and, consequently, deliberately instructed some of the nodes to adopt erratic 

behaviors, giving us the opportunity to access the stability of the application. We introduced random 

parameters so that multiple conducts are followed; therefore there is not a simple configuration for 

these faulty nodes but in fact several different approaches and levels of aggressiveness to the 

possible frailties in the system. 

According to the parameters of the simulation we define, these nodes might try to collude with each 

other so that their reputation and amount of resources rapidly increases, perform praising or 

badmouthing attacks to manipulate reputation measures, or carry out overbooking of resources 

making promises and then failing to deliver the resources. 

Not only it is possible to increase the aggressiveness of faulty nodes and preferred attack methods, 

but we can also control the approximate number of faulty nodes in the system. This is particularly 

important since we must measure the impact on the system of the faulty nodes. 
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6.2 Configuration Parameters 

Table 5 contains a summary of all relevant parameters provided to the simulation and a simple 

explanation for each one. Further details and in-depth analysis are given in the next section. 
 

Parameter Purpose 

Duration 
Controls the duration of the simulation, making possible to 
analyze the effectiveness of the mechanisms in short and long 
simulations 

Initial Budget Sets the initial currency amount, which limits the possibility of a 
node acquiring resources from a peer 

Initial Reputation 
The amount of reputation, if the penalties are fixed, determines 
the number of faulty behaviors a user can have before being 
expelled 

Maximum Group Size 
The maximum number of nodes simultaneously on a group 
allows us to measure the impact on the performance of super 
nodes 

Maximum Cost of a Resource 

The variation on the average cost of acquiring resources has a 
direct impact on the number of exchanges a user can 
accomplish. This parameter is necessary and has a different 
objective than the initial budget 

Probability of a Node Being Faulty Adjusts the percentage of faulty nodes in the system 
Probability of a Node Refusing to 
Provide Resources 

Simulates a situation in which resources are scarce and 
therefore can be difficult to acquire 

Probability of a Node Being Added 
to the Network 
Probability of a Node Being 
Removed from the Network 
Probability of a Node Asking Other 
Peers for Resources 

These parameters are used to control the behavior of nodes in 
the system, increasing and decreasing the rate of entrance and 
abandoning. 
The sum of these three probabilities must be 1 

Probability of Faulty Node Making 
Fake Requests or Acceptances 
Probability of a Faulty Node 
performing Badmouthing or 
Praising Attacks 
Probability of a Faulty Node 
Colluding With Other Faulty Nodes 

Parameters to adjust the behavior of faulty nodes, making them 
more or less aggressive 

Probability of a Node Optimistically 
Unchoking a New Peer 

This parameter is used if a node chooses not to consult the 
broker to decide if newcomers are to be trusted 

Use of Signatures Enables or disables the use of cryptographic signatures, 
calculating the impact on performance 

Existence of Super Nodes Enables or disables the existence of super nodes and groups, 
allowing to access the impact of our architecture 

Progressively Award Currency and 
Reputation 

Enabling this option we guarantee that users do not enter the 
system possessing a large budget and must contribute with 
resources in order to accumulate currency 

Periodic Reputation Adjustment 
Periodically decreasing the reputation of nodes one can oblige 
nodes to continuously contribute, instead of just using 
accumulated currency 

Collusion Detection 

The broker of each group maintains a record of transactions to 
verify possible collusion between nodes by searching for 
multiple exchanges involving the same nodes in a short period 
of time 

Table 5 – Simulation Parameters 
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We decided to keep two of the parameters constant throughout the simulations, namely the 

number of cycles in each simulation and the initial reputation of each node. The penalties for incorrect 

behavior and awards for successful exchanges are also stable so that the number of detected 

infractions needed to expel a node is the same in all simulations. 

 

We chose to award 50 reputation points (kudos) to each new node. The penalties and awards are 

listed in Table 6 and Table 7, respectively. The ceiling for reputation is 100 points. 

 

 

Reputation Penalties 
Insufficient Funds -5 
Denying Promised 

Resources -5 

Praising or 
Badmouthing -25 

Collusion -50 
Falsely Reporting 

other Node -25 

Periodic Adjustment -1 

Table 6 – Reputation Penalty Values 

 

Reputation Awards 
Successful Exchange 

(Asker) 1 

Successful Exchange 
(Provider) 2 

Accurately Reporting a 
Faulty Node 2 

Table 7 – Reputation Award Values 
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6.3 Simulation Analysis 

In this section we present the results of our simulations and given parameters. Knowing that the 

number of possible configurations is almost unlimited, we selected what we consider to be the most 

interesting and relevant possibilities. 

It was our objective not only to measure the effectiveness of our system, but also to determine the 

impact of all mechanisms in the performance. 

All the simulations were run on the same hardware, a MacBook Pro laptop with an Intel Core 2 Duo 

processor running at 2.2GHz, 4GB of DDR2 667MHz RAM and Java version 1.5.0_19. 

 

6.3.1 Simulation 1 - Zero Configuration 

This initial simulation is made without any protection mechanisms, so that performance impacts 

can be measured. We assume that there are no faulty nodes to allow for future analysis of the 

throughput the application can attain. 

 

Initial Budget 100 
Existence of Super Nodes and Groups False 
Maximum Group Size N/A 
Resource Availability 100% 
Maximum Price of Resources 5 
Signature of Messages False 
Progressive Reputation and Budget False 
Periodic Reputation Adjustment False 
Collusion Detection False 
Probability of Adding a Node 10,5% 
Probability of Removing a Node 0,5% 
Probability of Exchange of Resources 89% 
Percentage of Faulty Nodes 0% 
Probability of Overbooking N/A 
Probability of Praising/Badmouthing N/A 
Probability of Collusion N/A 

Table 8 – Zero Configuration: Simulation Parameters 
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Joins 2378 Average 72 

Departures 79 
Reputation (Correct Nodes) Standard 

Deviation 17 

Expelled Nodes 0 Average 100 

Final Number of Nodes 2300 
Budget (Correct Nodes) Standard 

Deviation 10 

Super Nodes 0 Successful Exchanges 
(Correct Nodes) Average 8.44 

Faulty Nodes 0 Reputation (Faulty Nodes) Average N/A 
Exchanges Attempted 20040 Budget (Faulty Nodes) Average N/A 

Exchanges Failed 0 Successful Exchanges 
(Faulty Nodes) Average N/A 

Elapsed Time: 46 seconds 

Table 9 – Zero Configuration: Simulation Results 

 
 

6.3.2 Simulation 2 - Inexistent Incentive Mechanisms 

In this simulation we intend to verify the consequences of a peer-to-peer application without any 

incentive mechanisms, where some of the nodes perform attacks in order to maximize their profits. 

 

Initial Budget 100 
Existence of Super Nodes and Groups False 
Maximum Group Size N/A 
Resource Availability 100% 
Maximum Price of Resources 5 
Signature of Messages False 
Progressive Reputation and Budget False 
Periodic Reputation Adjustment False 
Collusion Detection False 
Probability of Adding a Node 10,5% 
Probability of Removing a Node 0,5% 
Probability of Exchange of Resources 89% 
Percentage of Faulty Nodes 10% 
Probability of Overbooking 25% 
Probability of Praising/Badmouthing 25% 
Probability of Collusion 25% 

Table 10 – Inexistent Incentive Mechanisms: Simulation Parameters 
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Joins 2344 Average 72 

Departures 96 
Reputation (Correct Nodes) Standard 

Deviation 16 

Expelled Nodes 0 Average 100 

Final Number of Nodes 2249 
Budget (Correct Nodes) Standard 

Deviation 10 

Super Nodes 0 Successful Exchanges 
(Correct Nodes) Average 8.57 

Faulty Nodes 211 Reputation (Faulty Nodes) Average 74 
Exchanges Attempted 21960 Budget (Faulty Nodes) Average 109 

Exchanges Failed 0 Successful Exchanges 
(Faulty Nodes) Average 17.14 

Elapsed Time: 45 seconds 

Table 11 – Inexistent Incentive Mechanisms: Simulation Results 

 
 

6.3.3 Simulation 3 - Collusion Detection 

This simulation includes collusion detection. To identify the possibility of collusion attacks it is 

necessary the presence of at least one Super Node, however we prefer to perform this simulation 

without the possibility of multiple groups, to separate the consequences of a different architecture. To 

achieve that goal, the maximum number of nodes in a group is very large so that there is only one 

pastry ring. 

 

Initial Budget 100 
Existence of Super Nodes and Groups True 
Maximum Group Size 500000 
Resource Availability 100% 
Maximum Price of Resources 5 
Signature of Messages False 
Progressive Reputation and Budget False 
Periodic Reputation Adjustment False 
Collusion Detection True 
Probability of Adding a Node 10,5% 
Probability of Removing a Node 0,5% 
Probability of Exchange of Resources 89% 
Percentage of Faulty Nodes 10% 
Probability of Overbooking 0% 
Probability of Praising/Badmouthing 0% 
Probability of Collusion 25% 

Table 12 – Collusion Detection: Simulation Parameters 
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Joins 2376 Average 71 

Departures 144 
Reputation (Correct Nodes) Standard 

Deviation 17 

Expelled Nodes 98 Average 100 

Final Number of Nodes 2135 
Budget (Correct Nodes) Standard 

Deviation 10 

Super Nodes 1 Successful Exchanges 
(Correct Nodes) Average 8.80 

Faulty Nodes 165 Reputation (Faulty Nodes) Average 72 
Exchanges Attempted 21345 Budget (Faulty Nodes) Average 82 

Exchanges Failed 21 Successful Exchanges 
(Faulty Nodes) Average 10.75 

Elapsed Time: 46 seconds 

Table 13 – Collusion Detection: Simulation Results 

 

The collusion detection mechanism did not result in any false positive detection, which means that 

all 98 nodes expelled were faulty nodes. We cannot verify if the faulty nodes still in the system 

resorted to collusion, remembering that there is only a 25% chance of that happening, but 

nevertheless, their reputation was slightly reduced, their budget decreased substantially as well as the 

average number of exchanges. 

 

6.3.4 Simulation 4 - Message Signing 

With this configuration we intend to verify the benefits of introducing message signing to prevent 

attacks such as badmouthing and praising, as well as allowing nodes to report malicious peers who 

fail to deliver promised resources. We maintain the configuration regarding the size of groups. 

 

Initial Budget 100 
Existence of Super Nodes and Groups True 
Maximum Group Size 500000 
Resource Availability 100% 
Maximum Price of Resources 5 
Signature of Messages True 
Progressive Reputation and Budget False 
Periodic Reputation Adjustment False 
Collusion Detection True 
Probability of Adding a Node 10,5% 
Probability of Removing a Node 0,5% 
Probability of Exchange of Resources 89% 
Percentage of Faulty Nodes 10% 
Probability of Overbooking 25% 
Probability of Praising/Badmouthing 25% 
Probability of Collusion 25% 

Table 14 – Message Signing: Simulation Parameters 
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Joins 2330 Average 73 

Departures 116 
Reputation (Correct Nodes) Standard 

Deviation 17 

Expelled Nodes 293 Average 100 

Final Number of Nodes 1922 
Budget (Correct Nodes) Standard 

Deviation 10 

Super Nodes 1 Successful Exchanges 
(Correct Nodes) Average 9.02 

Faulty Nodes 64 Reputation (Faulty Nodes) Average 48 
Exchanges Attempted 20986 Budget (Faulty Nodes) Average 94 

Exchanges Failed 506 Successful Exchanges 
(Faulty Nodes) Average 4.2 

Elapsed Time: 102 seconds 

Table 15 – Message Signing: Simulation Results 

 
In this simulation we can see the impact on the number of exchanges correct nodes accomplish 

and also that the reputation of faulty nodes denotes that their actions were detected. In combination 

with other mechanisms, the diminished reputation can be used to segregate faulty nodes, minimizing 

the impact on the rest of the network. 

The most relevant result is the number of expelled nodes, approximately three times more than 

with just collusion detection, and the number of faulty nodes remaining in the network. This clearly 

shows that the effectiveness of the detection mechanisms was drastically improved and must be taken 

into account when analyzing the reputation and budget of the faulty nodes in the network. Since the 

penalties for incorrect behavior are severe, especially for collusion, those nodes are expelled and their 

data is not reflected on other indicators. 

We must also take notice of the elapsed time of the simulation, which more than doubled, due to 

the computational requirements of cryptographic mechanisms. Although the elapsed time of this 

simulation is not especially high, the impact on performance must be taken into account when we 

consider the scalability of the system. The stage with higher computational requirements is the 

creation of the cryptographic keys but, after an extended period, that factor is softened and signing the 

messages, as well as verifying signatures, becomes a considerable burden, mainly for the Super 

Users. Distributing that responsibility is one of the predominant reasons for the change in architecture 

we proposed earlier and test in the next simulation. 

It is very important to note that, in our simulations, we are using 512-bit keys, less than what is 

commonly recommended. We explain that decision in section 4.5.1 but we feel it is worth referring that 

the same simulation using 1024-bit keys takes considerably longer, 184 seconds in average. 
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6.3.5 Simulation 5 - Full Incentive Mechanisms 

This simulation includes all our incentive mechanisms as well as the architecture described in 

section 4.1, with multiple groups. We set the maximum number of users in each group at 500 after 

simulations with different values, as it proved to be an equilibrate value considering the number of 

nodes in the simulation. 

 

Initial Budget 1 
Existence of Super Nodes and Groups True 
Maximum Group Size 500 
Resource Availability 100% 
Maximum Price of Resources 5 
Signature of Messages True 
Progressive Reputation and Budget True 
Periodic Reputation Adjustment True 
Collusion Detection True 
Probability of Adding a Node 10,5% 
Probability of Removing a Node 0,5% 
Probability of Exchange of Resources 89% 
Percentage of Faulty Nodes 10% 
Probability of Overbooking 25% 
Probability of Praising/Badmouthing 25% 
Probability of Collusion 25% 

Table 16 – Full Incentive Mechanisms: Simulation Parameters 

 

Joins 2444 Average 60 

Departures 101 
Reputation (Correct Nodes) Standard 

Deviation 14 

Expelled Nodes 308 Average 28 

Final Number of Nodes 2036 
Budget (Correct Nodes) Standard 

Deviation 27 

Super Nodes 5 Successful Exchanges 
(Correct Nodes) Average 7.98 

Faulty Nodes 27 Reputation (Faulty Nodes) Average 36 
Exchanges Attempted 19294 Budget (Faulty Nodes) Average 3.0 

Exchanges Failed 850 Successful Exchanges 
(Faulty Nodes) Average 0.9 

Elapsed Time: 108 seconds 

Table 17 – Full Incentive Mechanisms: Simulation Results 

 
Using our incentive mechanisms it was possible to accurately detect nodes misbehavior. A large 

number of faulty nodes were expelled, 90% of all detected. Even the nodes that were not withdrawn 

could only perform, in average, approximately one exchange, one third of the amount correct nodes 

achieved. The elapsed time allows us conclude that the only significant impact on performance 

caused by our incentive mechanisms is due to the cryptographic signature of messages, all the other 

security measures have a negligible impact on the system. 
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6.3.6 Simulation 6 – High Number of Faulty Nodes 

With this simulation we intend to measure the impact malicious users have over the network, 

determining the consequences in throughput to correct users. Not only will the number of faulty nodes 

be higher, but those users will also be more aggressive, attacking the network more frequently. 

 

Initial Budget 1 
Existence of Super Nodes and Groups True 
Maximum Group Size 500 
Resource Availability 100% 
Maximum Price of Resources 5 
Signature of Messages True 
Progressive Reputation and Budget True 
Periodic Reputation Adjustment True 
Collusion Detection True 
Probability of Adding a Node 10,5% 
Probability of Removing a Node 0,5% 
Probability of Exchange of Resources 89% 
Percentage of Faulty Nodes 50% 
Probability of Overbooking 50% 
Probability of Praising/Badmouthing 10% 
Probability of Collusion 50% 

Table 18 – High Number of Faulty Nodes: Simulation Parameters 

Joins 2382 Average 62 

Departures 105 
Reputation (Correct Nodes) Standard 

Deviation 14 

Expelled Nodes 531 Average 39 

Final Number of Nodes 1746 
Budget (Correct Nodes) Standard 

Deviation 27 

Super Nodes 5 Successful Exchanges 
(Correct Nodes) Average 8.6 

Faulty Nodes 621 Reputation (Faulty Nodes) Average 39 
Exchanges Attempted 17823 Budget (Faulty Nodes) Average 4.8 

Exchanges Failed 822 Successful Exchanges 
(Faulty Nodes) Average 2.2 

Elapsed Time: 107 seconds 

Table 19 – High Number of Faulty Nodes: Simulation Results 

 
We verify that the presence of malicious users does not have a major impact on the performance of 

the system, resulting only in a decrease of the total number of exchange attempts and an increase of 

failures during transactions. The number of successful exchanges by correct nodes even increases as 

a result of the low reputation values faulty nodes can obtain. Taking advantage of the fact that it is 

easier to detect malicious nodes, accurate users can select trustworthy neighbors to interact with, 

avoiding potential failures during the transaction. 

The bonuses awarded to nodes that report incorrect behavior are also reflected on the final budget 

and reputation of correct nodes. 
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6.3.7 Simulation 7 – Scarce Resources 

By simulating resource scarcity we can test the process of dissolving groups and the effects of this 

situation on the number of successful exchanges. To better analyze the behavior of the application, 

we reduce the maximum size of groups. 

Initial Budget 1 
Existence of Super Nodes and Groups True 
Maximum Group Size 100 
Resource Availability 30% 
Maximum Price of Resources 5 
Signature of Messages True 
Progressive Reputation and Budget True 
Periodic Reputation Adjustment True 
Collusion Detection True 
Probability of Adding a Node 10,5% 
Probability of Removing a Node 0,5% 
Probability of Exchange of Resources 89% 
Percentage of Faulty Nodes 10% 
Probability of Overbooking 25% 
Probability of Praising/Badmouthing 10% 
Probability of Collusion 10% 

Table 20 – Scarce Resources: Simulation Parameters 

Joins 2344 Average 60 

Departures 111 
Reputation (Correct Nodes) Standard 

Deviation 14 

Expelled Nodes 73 Average 29 

Final Number of Nodes 2160 
Budget (Correct Nodes) Standard 

Deviation 28 

Super Nodes 24 Successful Exchanges 
(Correct Nodes) Average 7.53 

Faulty Nodes 156 Reputation (Faulty Nodes) Average 38 
Exchanges Attempted 17266 Budget (Faulty Nodes) Average 3.0 

Exchanges Failed 747 Successful Exchanges 
(Faulty Nodes) Average 2.18 

Elapsed Time: 109 seconds 

Table 21 – Scarce Resources: Simulation Results 

By reducing the availability of resources, we impose greater effort on the users, requiring them to 

perform multiple requests until they can satisfy their objectives. The decreased number of successful 

exchanges, accompanied by the decrease on the available budget, allows us to measure the impact 

on the system of the scarcity of resources, intensified by the constraints of smaller groups. The 

difficulty to find suitable partners for transactions drives users to demand resources from peers with 

lower reputation, increasing their throughput. 

Looking at the final results, we consider them to be positive, considering that we simulated a 

situation where 70% of the requests for resources are turned down coupled with fewer nodes in each 

group, resulting only in a 9% drop of attempted exchanges and average transactions. 
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7 Conclusions & Future Work 
As the computational power of personal computers grew and tasks were performed faster, the 

amount of time users make full use of their resources diminished. Realizing this, efforts were made to 

optimize the usage of resources and minimize the need for expensive high-end computers. While in 

controlled environments policies can easily be enforced to guarantee the correct behavior of users, it 

has been a challenge to develop a reliable system to share resources in the Internet, among 

thousands of anonymous peers. 

With this problem in mind, the main objective of this thesis was the development of effective and 

reliable incentive mechanisms for peer-to-peer applications. After careful and comprehensive 

research, we strived not to ignore any relevant contribution made by other researchers in this area of 

study. To achieve better results and a more balanced network, we decided to implement a solution 

based on multiple groups of users, with a 2-tier hierarchy – Super Nodes and Regular Nodes. 

The architecture of the system guarantees scalability by dividing users into groups, which are 

easier to manage by the Super Nodes. The existence of these nodes is necessary to oversee the 

behavior of nodes in the network, acting as a judge to disputes and enforcing all the defined policies, 

indispensable to maintain the correct functioning and high throughput of the system. 

Preventing attacks to the system that could compromise its stability and drive users away was the 

major objective. Bearing in mind that the most prominent threat comes from the well-known Sybil 

Attack, we focused on this problem and came upon documented processes to thwart it. We resorted to 

a computational test based on hash reversal and, after several simulations and comprehensive 

analysis, defined the exact parameters adequate to an effective initial cost which signifies an 

acceptable burden to legitimate users while it is also a considerable barrier to malicious ones. 

 

The entire system is based upon two different but related concepts: currency and reputation. The 

first one consists in a payment method, obtained by providing services to other peers and consumed 

when the node requests resources from neighbors on the network. The value of resources can be 

adjusted dynamically, accounting for rush hour effects and other fluctuations on demand and offer of 

resources. 

On the other hand, reputation intends to symbolize if the user is reliable, based on past interactions 

between that user and all other nodes. The reputation of nodes becomes a central indicator for 

neighbors when choosing transaction partners, allowing them to overlook and avoid potential hazards 

and complications, which would delay their access to the resources needed. 
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Super Nodes play a vital role handling these two values, acting as brokers to the group they are 

managing and assigning themselves the rewards and penalties when necessary. These nodes 

maintain all the information needed to simplify procedures and thwart any attempts to deceive the 

reputation and currency schemes. 

We developed our incentive mechanisms on top of the Pastry overlay network, making it very easy 

to adapt to other applications already using the same framework, and hoping that, by resorting to a 

well-known structure, we can benefit the performance and widespread of these systems. 

Each portion of our solution was tested individually and then as a whole using the Peersim 

simulator and fine-tuned to achieve the best results possible. The many configurable parameters we 

could pass on to the simulation engine made possible complex and detailed simulations as well as the 

construction of diverse possible scenarios to replicate known attacks. After this process, we feel 

comfortable stating that our solution is reliable and correctly addresses the major problems posed to 

every peer-to-peer network. 

 

7.1 Future Work 

We have established that the Super Nodes are responsible for guaranteeing the correct functioning 

of the system by identifying potential threats and making sure all nodes comply with the requirements. 

However, we have not yet defined the entity responsible for controlling the correct operation of the 

Super Nodes. On other words, as soon as any user becomes a Super Node, the system has no way 

to assure those users are not taking advantage of the position attained to benefit them or collude with 

others. 

The approach we consider to be more correct is to develop a way by which Super Nodes can judge 

one another and, when needed, achieve the necessary quorum to expel a malicious Super Node. 

Mimicking a principle some countries apply in their political system, a limitation on mandates can 

also be set, which would mean that Super Nodes could only execute that post during a limited amount 

of time, being automatically substituted once their validity expired. 
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