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Quero também agradecer ao meu avô António por todo o apoio e pela constante e importante presença
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André Filipe Pessoa Negrão





Aos meus tios, Maria Eduarda e Sidónio.





Resumo

Ao longo da última década os jogos de computador multijogador jogados através da Internet sofreram um

rápido crescimento de popularidade, ajudados pela expansão da largura de banda das ligações de rede

e os avanços nas capacidades gráficas e de processamento dos computadores pessoais. A acompanhar

este crescimento, também os jogadores se tornaram mais exigentes. Em particular, estes requerem alta

performance, disponibilidade e escalabilidade de modo a maximizarem a sua experiência de jogo. Actual-

mente, os principais jogos comerciais suportam estes requisitos através da utilização de hardware de alto

desempenho. Para conseguirem suportar o crescente número de utilizadores, estes jogos, tipicamente,

confinam os utilizadores a uma única divisão do espaço virtual, impedindo-os de interagirem livremente

com os restantes jogadores.

Neste trabalho propomos uma abordagem diferente em que, embora o espaço virtual também esteja

dividido entre servidores, se permite que os jogadores mudem de divisão e interajam livremente sem se

darem conta da topologia de suporte. Para melhorar o seu desempenho, o sistema aplica o modelo de

gestão de interesse Vector-Field Consistency. Assim, consegue-se reduzir a largura de banda necessária

para que cada participante represente o estado do jogo, sem, no entanto, prejudicar a consistência destes

dados.

Para testar o nosso sistema desenhámos uma infraestrutura de simulação que permite simular di-

versos ambientes de jogo, incluindo diferentes tipos de clientes e modelos de gestão de interesse. Os

resultados preliminares mostram que o sistema é capaz de suportar um elevado número de jogadores

mais eficientemente do que outras arquitecturas alternativas.





Abstract

In the last decade Multiplayer Online Games experienced a fast increase in popularity, helped by the

expansion of broadband Internet access and the advances in graphic cards and processing power. Ac-

companying this growth, the players of this games also became more demanding. In particular, game

users require high performance, availability and scalability in order to maximize their gaming experience.

Currently, most commercial games meet these requirements by confining users to isolated partitions

provisioned by powerful server clusters.

In this work, we propose a different approach to virtual world partition in which players are allowed

to freely interact and move around the game map. To improve performance, the system enforces the

Vector-Field Consistency model. This way it is able to reduce the bandwidth requirements imposed on

the participants of the game without injuring the consistency of game data.

To test our system we designed a simulation infrastructure that is able to simulate different system

architectures and interest management models, as well as different types of game clients. The preliminary

results show that our system is able to handle a large number of user in a more efficient manner than

other alternative architectures.
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Chapter 1

Introduction

In the last decade Multiplayer Online Games experienced a fast increase in popularity, helped by the

expansion of broadband Internet access and the advances in graphic cards and processing power [40]. In

few years, games evolved from one-time play, small environments to Massively Multiplayer Online Games

(MMOG) - worldwide networks with thousands of interacting users and, ever more often, persistent game

state [8, 37, 16].

Supporting this new form of game playing presents diverse and challenging issues. First of all, high

performance levels are required in order to provide the highly interactive experience demanded by the

players of the game. Second, these games must scale to an increasingly large number of active users and

size of game environment. Third, it is fundamental to provide constant availability, so users can play

whenever they want, for as long as they would like and with as few disruptions as possible.

To meet these requirements current commercial game companies deploy powerful and expensive cen-

tralized servers (or server clusters) provisioned with high bandwidth and computational power. To reduce

the restrictions to scalability imposed by the limitations of the hardware and, thus, allow a larger number

of users, a game’s virtual world is either duplicated or statically partitioned into several mini worlds [31].

Scalability is achieved by assigning each duplicate/partition to a different, independent server.

Although widely used, this approach presents several obvious drawbacks. First, and foremost, with

these strategies users are confined to a single server at each moment and are unable to see/interact

with players in other servers. Partitioned schemes do allow users to move to other partitions, but force

them to cross some form of artificial boundary (e.g., doors, portals, tunnels) specially designed for that

purpose. Scalability is, therefore, achieved at the expense of user interactivity. Moreover, although

multiple servers are employed, each server is essentially a centralized, completely (or almost completely)

independent system.

Another capital disadvantage of static partitioning is that it requires programmers to consider the

physical division of the map into zones when they design and develop the virtual world. They have

to carefully plan that division and predict the amount of resources (e.g., CPU, memory, bandwidth)

necessary to provision each partition. Prediction is a difficult and inexact task in which failure results in

either unnecessary expenses due to idle resources or in low performance.

In this work we aim at designing, develop and measure a scalable, efficient and highly available

network infrastructure to support Massively Multiplayer Online Games. The main goal is to design an
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infrastructure that does not rely on the static partitioning schemes used by commercial games to achieve

scalability. Instead, we intend to design an architecture in which the game is presented to its players as a

single large virtual world, regardless of the underlying organization of the system. This way players can

freely move around the game map and interact with each other, without further limitations than those

imposed by the logics of the game.

Moreover, we intend to design an architecture based on the cooperation of multiple distributed nodes

working together to provide the bandwidth and computational resources required to attain the desired

performance and scalability, instead of doing so through the use of high performance expensive server

clusters/grids. This increases the opportunities for smaller companies (that do not have the economic

capacity to acquire high performance hardware) to build and launch their own multiplayer game.

A secondary goal of our work is to design a middleware that aids programmers in the task of designing

multiplayer online games that use our designed infrastructure. Ideally, this middleware layer would take

care of all the work regarding the distributed and network aspects of the game, allowing programmers to

focus on the design of the logics and graphics of the game, interacting with the system only through a

mechanism easy to use and understand.

1.1 Challenges

Designing this distributed architecture, however, presents some challenges that need to be addressed. The

main decision consists in choosing on how to balance load among the distributed nodes, so that the system

can adapt to the movement of players across the game world. Both processing and bandwidth must be

efficiently balanced, otherwise it is impossible to match the performance of cluster-based architectures.

A major challenge regarding bandwidth is consistency management. To improve performance, game

state data (e.g., maps, player’s positions) is replicated on (i.e., copied to) the users’ computers. En-

forcing replica consistency requires intensive synchronization communication, which leads to strong cuts

in performance due to the high latency of large scale networks. Furthermore, as the number of users

and the size of the virtual world increases, the bandwidth required to manage replica consistency grows

immensely.

This fact is particularly dramatic on the side of the users of the game, whose hardware is typically

limited in both bandwidth and processing power, specially when compared to dedicated servers. If no

precautions are taken the players’ computers can easily become overloaded with large update messages

that not only block incoming bandwidth, but also force the player side game application to process high

amounts of (possibly useless) data. Hence, in order to effectively scale, a game’s supporting infrastructure

must apply a consistency model that minimizes the bandwidth and communication requirements imposed

by consistency enforcement without degrading users’ experience.

In the past years, several research/academic works have proposed both peer-to-peer(P2P) [19, 7,

25] and distributed client/server [5, 10, 4, 24, 14] alternatives to the commercial approach. In P2P

game infrastructures the game management is handled by the players themselves who directly forward

their update messages between each other. This approach offers computational power, bandwidth and

adaptability without the need for dedicated servers.

However, although the overall processing capacity of a peer to peer network - composed of the com-

bined computational power of each peer - grows as users join the game, the computational and bandwidth
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resources of each user remain scarce when compared to dedicated servers. As the dimensions of the game

increase, users - who, in P2P architectures, act both as players and servers - are required to manage (re-

ceive and process) increasingly large amounts of data. Because users’ resources are limited, bottlenecks

can arise and, therefore, peer to peer systems can not guarantee the demanded performance levels. Fur-

thermore, because P2P approaches depend completely on game users, who may or may not be present,

it does not guarantee the required availability.

Client/server (C/S) solutions, on the other hand, use multiple servers geographically distributed that

cooperate in order to efficiently balance computational and network load. Unlike P2P, C/S architectures

put the burden of game management on server machines dedicated exclusively to that task. Servers

collaborate by replicating [24, 14] or partitioning [5, 10, 4] the game state among each other. In a

replicated system, each server holds a complete copy of the virtual world, but manages only a subset of

the total number of players. The division of players is performed with the goal of minimizing latency

between players and their servers - players are assigned to the server that is geographically closer to him.

Because in these systems each server holds a different copy of the same data set there must be a means

to maintain a consistent view of the virtual world. This requires servers to synchronize with each other

- according to some synchronization protocol - a task that may negatively impact performance in large

scale highly interactive systems.

Partitioned systems, on the other hand, divide players by partitioning the virtual world into disjoint

regions, each assigned to a different server. Load balancing is achieved because each server manages only

those players located on their region. A key difference between partitioned and replicated schemes is the

fact that in the former systems each server holds a different portion of the complete data set. Therefore,

there is no need to perform server synchronization. The exception to this rule occurs when two (or more)

interacting players are located on regions managed by different servers.

In these approaches, in spite of the logical division of players and regions among servers, from the

perspective of the player there is a single virtual world. Both in replicated and partitioned systems

servers constantly communicate and synchronize to guarantee that players located on different servers

can freely interact. The division (either by replication or partition) is, therefore, completely unknown to

the players, unlike what happens on commercial games.

Regardless of the architecture, most of these systems rely on Interest Management [29] to minimize

bandwidth requirements both at the client and server side. IM is a technique that reduces the number

of state update messages - and, as a result, bandwidth - that travel through the network by sending to

clients only those updates that are within the players area of interest (AOI). Areas of interest can be, for

instance, the user’s line of sight visibility [17, 9] - forward only the updates that concern objects that are

within the player’s vision radius - or radius of visibility [5, 10] - send only the updates to objects that are

within an area surrounding the player. Although these strategies considerably reduce bandwidth, they

are too inflexible and follow an all-or-nothing approach that fails to capture the user’s real interest: every

update to objects within the AOI is forwarded to the player and none of those considered irrelevant - the

ones outside the player’s AOI - is. With these strategies players experience an abrupt loss of visibility

and end up seeing objects suddenly appearing/disappearing on/from their area of interest. Furthermore,

players may even see objects that are not actually in the position they see them.

A different approach to the one taken by common IM schemes was proposed by the Vector-Field

Consistency (VFC) [35] model. Instead of distinguishing only between relevant and irrelevant updates,

VFC defines degrees of relevancy in the form of consistency zones - concentric areas defined around special

objects (called pivots), to which is assigned a radius and a consistency degree defining the importance of
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the updates to objects that are inside that zone. VFC allows the definition of multiple consistency zones,

with different radius and consistency degrees that are weakened as the distance to the pivot increases.

Due to this fact, VFC is able to eliminate the abrupt visibility loss characteristic of other IM strategies.

Instead, it gracefully degrades player view, in a similar manner to human visibility.

Besides their contributions to the area of interest management, the authors of VFC developed their

work in the context of a middleware infrastructure (Mobihoc) designed with to help programmers to

develop wireless multiplayer games for mobile phones. Because it was specifically conceived to these

small, resource-constrained environments, Mobihoc employs a centralized architecture, where a single

server enforces VFC to every player of the game. As such, it is not suitable for large scale environments.

Despite these problems, we believe that VFC and Mobihoc have great potential and, if correctly

revised, can improve both the performance of MMOGs and the way these games are programmed. In this

work we propose Vector-Field Consistency Large Scale (VFCLS), a distributed client/server architecture

that uses as its interest management scheme a version of VFC extend to achieve improved scalability. In

our system, the virtual world is partitioned into different (but not independent) regions each handled by

a distinct server. Players can move around the virtual world, transparently switching between regions

handled by different servers. They are also able to seamlessly interact with players located in other

regions, limited only by the logics of the game and the consistency model defined using VFC. The server

organization enforces VFC through a subscription protocol that allows servers to apply VFC for players

located in other, contiguous or not, regions, thus effectively allowing inter-partition interaction. We also

provide a game programming interface that allows game programmers to design multiplayer online games

on top of our designed architecture.

To evaluate our system we designed a simulation infrastructure that allows us to simulate different

architectural settings, Interest Management models and game clients. The preliminary evaluation results

show that our system performs well when compared to other architectures and gives us indications of

possible future work to improve some aspects of VFCLS.

1.2 Contributions

In the work described by this dissertation we developed the following contributions:

∙ Distributed multiplayer online game support infrastructure

∙ Distributed Vector-Field Consistency model

∙ Game Programming Interface

∙ Flexible simulator infrastructure

∙ Evaluation of the system

1.3 Document Roadmap

This document is organized as follows. In Chapter 2 we describe in detail the context of our work and

the topics addressed by it. We also present a survey on commercial and academic works that share our
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topics of interest. Chapter 3 describes the architecture of our system and Chapter 4 presents details

about its implementation. In Chapter 5 we describe the evaluation environment and present the results

obtained, analyzing them at the same time. The text finishes with Chapter 6, where we summarize the

work performed, introduce our ideas for future work and draw some conclusions.
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Chapter 2

Related Work

This Chapter overviews the main concepts and background about the topic at hands. The following

section introduces some basic notions about multiplayer online games and further clarifies the context

and requirements associated with our work. After that we discuss the two main topics of this work,

system architectures and consistency management, clarifying, along the way their, importance. We finish

the Chapter with a review of concrete works that focus on the same topics as ours, addressing both

commercial and academic solutions.

2.1 Massively Multiplayer Online Games

In a massively multiplayer online game (MMOG), a large number of players interact through an extensive

virtual world, shared over a wide area network. This virtual world is typically represented as a complex

3D environment, that tries to simulate real life or fantasy/science fiction scenarios and situations. Games

have their own storyline, typically involving disputes between races of fictional characters over territorial

or racial dominance.

In online games, players control an entity (the avatar) that represents them in the game’s virtual

world. Avatars can move across the game map and interact with each other, either cooperating or

competing, according to the instructions given by the human player through some input device (e.g.,

a keyboard or a mouse). Players can also find several objects (e.g., health items, food, weapons) and

computer controlled characters (NPC)1 - with which they can also interact.

Each avatar has its own state that comprises several properties like position, health, abilities and

owned items. Interactions with other avatars or objects may change both its state and the others’; for

example, a player that drinks from an health potion from a bottle will gain health, while the content of

the bottle decreases. Moreover, although only these two objects are directly involved in this interaction,

other players must be notified about its results.

One main distinction between online games and most other commercial distributed systems is the

frequency of read and write operations. In most distributed systems and application reads are the

dominant operation - data is stored at some node of the network and users search, request and download

1“Non-player Characters”
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it to their local storage. This is the case of, for instance, file sharing systems and regular web sites,

where objects are mostly immutable. In distributed file systems writes are more frequent but reads are

still more common. Even in e-commerce and social networks - like e-bay2 and facebook3, respectively -

where users are required to input data in order to enjoy the full potentials of those systems, reads are

still considerably more frequent.

Multiplayer online games, on the other hand, are write intensive distributed application. This distin-

guishing characteristic stems from the fact that, to improve performance, game state information (e.g.,

the virtual world itself, other players’ avatars, computer controlled objects, scores) is replicated at each

player’s computer - i.e., it is copied to each player’s computer and kept synchronized according to some

consistency strategy. This way, players use only locally available information to perform graphic rendering

and game logics processing.

Having replicated data means that there must be some mechanism to maintain consistency. For

example, if a player attacks another player, the copy - in the context of replication it is called secondary

replica or simply replica- of the attacker’s avatar that is placed at the second player’s computer must be

updated with that action. Updated data can be achieved in two ways, either the node that holds the

replica issues read requests to the node that stores the real version of the data - called primary replica - or

the primary replica updates - either directly (P2P) or through a server (C/S) - its replicas. In multiplayer

games, it is the latter approach that is used, because it yields more efficient network usage. If the first

approach was to be used, clients would have to issue periodic read requests to all the primary copies of their

replicated data. This would result in high network traffic, with much of it corresponding to unnecessary

read requests to unmodified data. With the chosen approach, however, only relevant messages, containing

actual updates, are propagated. However, because player actions are performed frequently, so is update

sending, which results in the mentioned write intensity that characterizes multiplayer games.

User Requirements

The most important goal of any type of game is that it be fun [40]. Being fun means providing an

experience that captivates users and makes them want to keep on playing. Users usually are attracted

by rich, dynamic game stories with many features and complex/realistic 3-dimensional graphics. These

requirements are imposed on a game, be it multiplayer or single player. In multiplayer online environ-

ments, however, users impose additional requirements, related to the interactive and distributed nature

of these games:

∙ Performance: Single player games are limited by the capacity of the user’s hardware to process game

logic and render graphics. When playing online, however, network related aspects can become the

local bottleneck (as will be explained in the following subsection). Despite that, users expect an

online game to be efficient, as close to the performance of a single player game as possible. In

particular, players expect to “see” the actions performed by others reflected on their view of the

game under soft real time constraint - they can tolerate some delay, but only if it does not affect

them negatively.

∙ Scalability: The main purpose of a multiplayer game is to allow interaction between several users.

Users want to play with as many opponents/friends as possible. Moreover, they want to have

2www.e-bay.com
3www.facebook.com
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the same levels of performance, regardless of the number of simultaneous players. Scalability is the

most important requirement for an MMOG, because interaction in a large scale is what distinguishes

them from the other game genres.

∙ Availability: A player expects to have the game available at any time. In single player mode, the

game is available as long as the user has a computer with the game software installed. When playing

online, however, users can only play if the game’s network infrastructure is available. Therefore, a

game infrastructure has to provide 24/7 support. Furthermore, it has to be fault tolerant, so users

can play with as few disruption as possible.

Technical Challenges

Network communication places three main challenges to MMOGs [36]:

Latency Latency is the time necessary for a message to travel from one node to another. It has an

high influence on the time it takes for an action performed by one player to be perceived by the other

players. In large scale networks, latency is particularly high, due to the distance between nodes and

routing processing. If it is too high, the delays can have a severe impact on the interactive feeling of

the game. This impact, however, depends heavily on the game type. Research studies have shown that

fast paced games, like FPS, can tolerate latencies around 100ms, while RPGs can accept up to 500ms of

latency [6].

Bandwidth In MMOGs, players are constantly moving around the virtual world and interacting with

each other and the environment. To ensure the required real time interactivity, messages corresponding

to a player’s action must be sent to other players within strict time constraints. As the system grows,

the number and frequency of messages that arrive at and departure from a node increases immensely.

Bandwidth - the maximum amount of data that a communication line can send (outbound) or receive

(inbound) per unit of time - places a limit on the rate at which messages are exchanged and, therefore,

on the scalability of the game. To ensure that a game is capable of growing gracefully it is necessary to

reduce the bandwidth requirements. For that purpose, games use a technique called Interest Management

(more details in Section 2.4).

Computation The large number of users imposes high processing requirements on the participants

of the game. Besides the game logic and graphics computation, nodes must process the updates to the

replicated objects received from other nodes and the messages to send to the network. As the number

of users increases, so does the number of messages to send and receive and, consequently, the processing

requirements. Furthermore, while interest management reduces the bandwidth required, it can consider-

ably augment CPU usage.

The way these characteristics impact the game is highly dependent on the system architecture and

the state management strategies, as will be explained in the following sections.
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2.2 System Architectures

A system architecture defines how the nodes of the system are connected to each other, how they com-

municate and their responsibilities. Different architectures have distinct performance, scalability and

availability properties. This section describes the most relevant architectural settings and how they

apply to MMOGs.

There are two main classes of system architectures. The most common and historically most important

is the client/server (C/S). C/S systems are composed of two distinct types of nodes, clients and server.

A server is an application, usually running on an independent computer, dedicated to providing some

kind of service by responding to requests issued by client applications. A service can be supplied by a

single server or a server cluster (centralized C/S ) or by multiple distributed servers (distributed C/S ). A

client is the application that interacts with the server on behalf and under the control of a user (like a

game client that sends updates to a game server based on the data input by the game user).

The other main architectural class is peer-to-peer (P2P). P2P systems distinguishes from C/S by

the fact that a service is provided through the direct cooperation of the nodes (called peers) of the

system. In a pure P2P network, every node is equivalent, each performing the same tasks. In many

cases, however, some peers play special roles and, in other, there may even be dedicated servers, used to

assist in some tasks. Regardless of the actual topology, the premise is that, for most tasks, nodes can

directly cooperate/communicate without needing a central intermediate.

The following sections take a closer look at these two architectural groups and their variants in

a broader context than multiplayer games. We finalize with a discussion of their relative merits and

drawbacks regarding multiplayer games.

2.2.1 Centralized Client/Server

Centralized architectures can be composed of one server or a cluster of servers. In the former, the service

is provided by a single server, that responds to all the requests. It is the simplest architecture and the

easiest to implement. However, it is not scalable, since the number of clients that a server can efficiently

handle is limited. After such limit is exceeded, performance decreases dramatically; it can even lead the

server to crash, rendering the service completely unavailable. Thus, single server systems cannot provide

strong guarantees regarding scalability.

A centralized server cluster is an agglomerate composed of several servers distributed over a high speed

local private network. For this reason they are referred to as Locally Distributed Systems [11]. Clusters

can be formed by numerous computers/workstations and, thus, are able to provide high processing power.

Clusters are connected to the outside world by a router/switch that is responsible for balancing

workload among the servers of the local the network. Hence, they can be seen as a powerful single server

that achieves scalability due to its (possibly expensive) dedicated computational and network hardware.

Hereafter, the term server will interchangeably refer to a single server or to a cluster of locally distributed

servers.
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Figure 2.1: Example Centralized Client-Server network. Note that the server can be a single machine or
a locally distributed system.

2.2.2 Distributed Client/Server

In a distributed client/server system, multiple interconnected and geographically distributed servers work

together to divide computational and network load. Clients connect to servers based on load sharing

rules and can switch servers according to those rules. Servers respond to clients’ requests, possibly after

communicating with each other. From the user’s perspective, there is only one service, regardless of the

number of servers used to provide it.

Figure 2.2: Example Distributed Client-Server network.

One major challenge that arises when designing a distributed C/S system is deciding on how to divide

work between the servers. The generic goal of load balancing - i.e., the distribution of workload between

the nodes of a distributed systems - is to improve the overall performance of the system. Performance,

in this case, does not necessarily means efficiency; it can mean improved availability, fault tolerance or

scalability, among other things.

Different load balancing strategies have different properties regarding these, and other, factors. Gener-
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ically speaking, it is possible to identify to main superclasses of load balancing for client server architec-

tures [15]:

∙ State replication: Each server has a copy of the same logical application state(e.g., files in a dis-

tributed file system (DFS), avatar and item objects in MMOGs, pages in a web site). Load is shared

by distributing users between servers.

∙ State partition: The application state is partitioned into several distinct groups and each group is

assigned to a different server.

State Replication

In a replicated system, there are several copies of the same logical data space. Clients’ requests are serviced

by any of the available servers. Deciding which server responds to a client can be based on diverse factors.

The most straightforward form of sharing load between servers consists in sending requests randomly or

in round robin to servers. Despite its simplicity, it is not an efficient solution, as it may leave the system

unbalanced.

Figure 2.3: Replicated system with four servers and different types of objects (represented by the circles
and square). Each server stores the exact same data.

More sophisticated approaches base client assignment on the state of the system in order to minimize

the load on servers or the response time [12]:

∙ Server load: Clients are assigned according to server state metrics (e.g., computational load, avail-

able bandwidth) with the goal of minimizing the load in each server.

∙ Distance to users: Client assignment is based on proximity between clients and servers. Clients

connect to the nearest available server in order to improve performance by minimizing message

latency and, as a result, response times.

∙ Hybrid: This strategy considers both server state and proximity to try to balance both server load

and latency in client assignment.

To avoid overloading on the servers, replicated systems can dynamically readjust the system. If a

server gets overloaded during execution, clients are reassigned to other less busy servers. In general, the

goal of rebalancing is to equally divide the load on servers. Alternative load sharing strategies can try

to minimize both server load and latency (e.g., by redistributing clients to the nearest server that is not

full) [30].
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A major challenge in replicated systems is maintaining data consistency. Because several copies of the

same application state are available on different locations, a change to a copy located at a server must be

propagated to the other sites. Moreover, concurrent updates to different copies of the same logical data

may result in inconsistencies (e.g., two users simultaneously change the same file on different servers of a

DFS; two players grab the same health item in an MMOG).

There are two main techniques to achieve consistency in replicated systems: pessimistic and optimistic

replication [18]. Pessimistic strategies prevent inconsistencies by forcing server synchronization as part

of an update request. A response is sent back to the client only after synchronization is complete. As a

result, response times increase and the performance of the system decreases. On the other hand, optimistic

approaches reduce response times by performing synchronization only after answering to clients. Response

time and performance are improved, but clients may end up seeing inconsistent data. (More details about

this issue in Section 2.3).

State Partition

In these systems clients connect to the server that holds the information the user wishes to obtain. In a

single request, they may have to contact several servers if the data they want is scattered across several

distinct locations. For example, in an multiplayer online game the virtual world may be partitioned

between various servers. While players explore the game world they may have to connect to several

different servers.

In this approach, the primary issue revolves around the decision of how to partition the state of the

application. A simple approach that evenly divides the application data between each server may lead

to unbalanced load on certain servers if a portion of the state is more requested than others. When it is

known, a priori, that some subsets of the data are more frequently requested than others it is possible

to apply more efficient and elegant approaches. For instance, some servers can be statically assigned a

larger set of less requested data, while others handle smaller subsets of the most requested information.

Alternatively, the most requested partitions may be provisioned, regardless of its size, by more pow-

erful servers. Geographic Decomposition, a technique employed by some successful MMOGs [37], follows

this later approach.

Figure 2.4: Partitioned representation of the same application state represented in Figure 2.3.

Unfortunately it is not always possible to predict which portions of the application state are more
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accessed. Furthermore, in many cases user interest on data changes dynamically. If a static partition

scheme is used under these conditions some servers may become overcrowded while others are idle most

of the time. In these cases a more appropriate approach is to dynamically partition the state according

to the load on servers. This way if a server gets overloaded, repartition can be employed to ease excessive

load.

Since each server is responsible for a distinct set of the application state, in most applications, updates

to a server do not influence the data managed by others. MMOGs are an exception to this rule. Consider,

for example, two avatars, each located on the border of one of two different, adjacent regions of the virtual

world. If one of the players shoots the other, that action is felt on the two regions and, therefore, on two

different servers.

2.2.3 Peer-to-peer

Unlike client/server, peer-to-peer systems aim at providing services through the direct sharing of resources

(e.g.,computation, bandwidth, content) between the nodes of the network [15] mostly or completely

without the mediation of a central entity. In a P2P based multiplayer game like Age of Empires, for

example, players exchange updates directly with no central server involved in the process. However,

many P2P systems may have some degree of centralization. According to this aspect P2P systems can

be classified as follows [3]:

∙ Purely Decentralized (Pure P2P): Every peer has the same functionalities. They can interchange-

ably act as clients and servers.

∙ Partially Centralized: Some peers (called superpeers or supernodes) play special roles. Promotion

to superpeer is dynamic and any peer can become one.

∙ Hybrid Decentralized: Like in a partially centralized system, there are some special nodes. However,

in these cases those nodes are not dynamically assigned peers, but dedicated and statically allocated

servers.

Purely Decentralized

A purely decentralized system can be viewed as a flat hierarchy where every participant has the same

responsibilities and can perform any task. Peers can act both as clients and servers of a given resource/ser-

vice at the same time.

Depending on the existence or not of an underlying node organization these systems can be classified

as structured and unstructured, respectively. In an unstructured P2P infrastructure there is no assurance

about where resources (e.g., files in a file sharing system or avatars in an MMOG) and peers are. Each

peer only knows a set of nodes, through which they try to find resources.

Flooding is a simple location mechanism in which peers send query messages to all their neighbors [3].

Neighbor peers, in turn, forward the query message to their peers, and so forth, until the resource is

found or a given number of lookup iterations is completed. In spite of its simplicity flooding can lead to

poor performance due to high number of messages that travel the network and have to be processed by

each peer.
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Figure 2.5: Example P2P network with eight peers (P).

In structured architectures resources are organized in such a way that peers deterministically know

how to reach them. A common way of organizing the network is to use a distributed hash table (DHT)

[38, 33]. Unstructured networks are highly self-organizing and scalable systems. However, because they

have to maintain a certain structure, they may suffer from churn - the independent and constant arrival

and departure of users [39]. Churn is problematic because when peers leave or enter the network, it has

to adapt to that change by reconfiguring its structure. If the arrival/departure rate is high the constant

reconfiguration prevents the network from maintaining its necessary structure, which incapacitates the

system.

Partially Centralized

In partially centralized architectures, superpeers are employed to help other peers in some tasks. A

typical role of a superpeer is to store information about the location of a small part of the data. This

way peers can find data faster and more easily by directly consulting superpeers, instead of running a

lookup protocol involving other nodes.

Although supernodes play special roles in a P2P network, they are still peers like the rest of the

nodes and any peer can become a supernode. If a superpeer leaves the network or crashes the system

automatically reorganizes and another one takes its place.

Hybrid Decentralized

Instead of having one of the peers playing a special role, hybrid decentralized systems use a dedicated

server. Servers essentially play the same roles of a superpeer (e.g., resource location, routing). However,

because they are managed by a central authority they can provide other services like authentication and

authenticity. Furthermore, because they have dedicated bandwidth and CPU they can provide better

performance than a superpeers.
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Figure 2.6: Hybrid/Partial P2P network.

P2P example: Content Addressable Network

An interesting example of a P2P infrastructure is the Content Addressable Network (CAN) [32]. CAN

employs a purely decentralized scheme where peers cooperate to divide the responsibility for storing a

set of objects. It is highly scalable, dynamic and self-organizing system.

In a CAN, each peer is responsible for a region of a logical virtual d-dimensional Cartesian space.

Objects in the system are mapped onto a given position P in the virtual space according to a uniform

hash function and are assigned to the peer responsible for the region where P lies. It should be noted

that the virtual space is purely logical and is not related to any real physical coordinate system; objects

in a CAN can be files in a distributed file system or in file sharing system and peers those systems’ users.

They could also be avatars and other objects of a multiplayer game, in which case the peers could be the

players themselves or even the servers of the game.

In a CAN each peer knows only their direct neighbors (and possibly a small set of non neighbors).

To find an object in a non neighboring region a node has to execute a lookup protocol that consists in

sending a lookup message to the neighbor that is closer to the position of the desired object, who in turn

forwards it to its neighbor that is closer to the object’s position and so forth until the peer responsible

for the object is found.

Self organization is achieved by redistributing object responsibility whenever a node leaves or a new

one joins the network. When a new node wishes to join the CAN it chooses a random position P and

issues a lookup to find the node responsible for that position. After finding that peer its zone is split in

two with one half assigned to the new peer and the other to the old one.

If a node leaves it simply handles its region to one of its neighbors. CAN is also very resilient; when

a node fails the others are able to detect the failure and recover from it.

A wide range of applications can be built on top of a CAN. The most striking example is a file sharing

system. In a CAN based file sharing system the files to be shared would be mapped onto points and

new the would be users assigned zones of the virtual space by splitting some pre-existing zone. To find a

given file the system would only have to apply CAN’s lookup protocol. Hence, every aspect of the system
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is handled by the clients themselves. In a client-server system, on the other hand, files would be stored

on dedicated servers and clients would simply send requests to a server which would then process the

request and send a response back to the client.

2.2.4 Discussion

P2P Multiplayer Games

P2P support for multiplayer games has been an active research topic [19, 7, 25]. In these systems, clients

exchange state updates directly with each other, instead of doing so through a server. In comparison

to client/server, P2P networks are more able to scale up and down with the number of users. In a C/S

architecture servers have limited bandwidth and capacity. In P2P, the overall system bandwidth and

processing power comes and goes with the peers themselves.

P2P systems are also specially tolerant to failures. If a player leaves or crashes, only its state is lost;

all other players remain active. If, however, the leaving node is a superpeer, the system must readapt,

possibly at the expense of some overhead and interaction loss.

P2P raises some challenges not present or not common in client/server architectures, mainly data

persistence and security. In C/S, servers are responsible for storing the complete state of the virtual

world plus the players account information. Data is available as long as the server itself is. Furthermore,

servers are trustworthy entities, thus, having server intermediating interaction is considered a guarantee

of veracity.

As for completely decentralized P2P games, data persistence and availability is dependent on the

availability of the user, which is not guaranteed. Moreover, because there is no central authoritative

entity these systems are more vulnerable to security issues like cheating [21].

To solve or minimize the persistence and availability limitations of P2P game infrastructures, some

works have proposed a hybrid P2P-Client/Server solution [41]. In these systems state management and

update propagation is still handled by peers through direct connection, but servers are involved in the

process to ensure security and persistent state.

With or without servers to help on specific tasks, in P2P systems, the burden of managing the virtual

world and maintaining it consistent is put on peers that are executed on the players’ machines. These

machines are considerably limited in both bandwidth and computational power when compared to the

dedicated servers used on C/S games. As the number of players of a game increases so does network

traffic and the amount of data each peer needs to process both as a client (compute updates received,

execute game logics, graphic rendering) and a server (message routing, consistency management). As a

result, the performance of each peer degrades with the expansion of the game and with it, so does the

overall performance of the network.

Another problem of supporting games with P2P networks is the aforementioned churn. In multiplayer

games the overall number of users is large and their participation is highly dynamic - players are constantly

entering and leaving the game. This characteristic makes it very difficult for a structured P2P network

to be able to maintain the structure it needs to correctly handle the game.

These limitations are further aggravated in the face of player flocking/hot spots. If many players are

involved in a group interaction, bandwidth and computation at the peers may become too high. As more
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peers enter the group, more resources are required at each peer. Because, as we mentioned, peers have

limited resources hot spots may incapacitate the system. Because of all these reasons, we believe that a

multiserver client/server solution is still more suitable for large scale multiplayer games.

Partitioned vs Replicated Client/Server

In general, replication provides better availability than state partition, because it grants access to the

complete data set even when some nodes are unavailable - if a server crashes or a network partition

occurs, there are still other replicas containing the required application state. In an MMOG this means

that the virtual world is available as long as there is at least one server.

A server crash on a partitioned system, on the other hand, leaves the data for which that server

was responsible inaccessible. This problem can be reduced, however, by storing read-only backups of

partitions on other nodes (this is, in fact, a simple form of replication). This way, if a server crashes,

another one can take its place.

Regarding scalability and performance, the difference between replicated and partitioned systems is

highly dependent on the characteristics of the application. State replication exploits the fact that most

distributed applications are read intensive. In this case the need for server synchronization is usually

small which results in lower response times and an increase in performance.

However, as we explained earlier, MMOGs are write intensive applications. State updates are issued

by many clients and at a high rate. As result coordination is frequently necessary. If a pessimistic

approach is chosen, response times increase and performance lowers. If optimistic schemes are used users

may see stale data. In the event of conflicting updates (e.g., two players grab the same health item),

users may even see some action being rolled back due to conflict resolution, which has a great negative

impact on playability.

Besides this tradeoff between consistency and performance, this strategy also suffers from low scal-

ability. Because servers keep a complete copy of the virtual world, each has to maintain every object

that inhabits it. Since in MMOGs both the size of the environment and the number of users is large,

processing and storage at each server may become a bottleneck. Moreover, as the size of the system

grows, the number of servers involved in state synchronization increases, resulting in high inter-server

communication. As a result, the necessary bandwidth and computational resources may be prohibitively

high.

In addition to these drawbacks, the premise that this scheme provides lower latency is somewhat

misleading. Although the latency between a client and its designated server is, in fact, minimized, action

latency - the time it takes for an action to be perceived by other players - is likely to be larger, as it may

need an extra hop between servers.

Considering this analysis, we believe that state partition seems more appropriate than state replication

regarding scalability. Because each server only has a region of the entire virtual world most updates

only need to be propagated to clients whose avatars are located in that zone. Even when inter-server

communication is necessary (e.g., when two players on the border of two regions interact) it is cheaper

because it involves a smaller number of servers.

Another expected advantage of the partitioned approach is its lower conflict probability. Because in

replicated systems each server manages objects that can be scattered across the whole virtual world and
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interact with objects located on any other server. This way, any update to an object of a given server

can result in conflicts whose resolution requires synchronization involving every server of the network.

On a partitioned system, on the other hand, each server has sole authority over a different region of the

virtual world. This way, most updates affect only objects located on the same server that received them

and, thus, conflicts are detected and resolved locally by it. Even if an update that affects objects located

on different regions results in a conflict, its resolution have a minor impact as it only involves a small

amount of server - the ones responsible for those regions.

Partitioned systems have another important advantage regarding scalability. In replicated systems,

adding a new user affects every server of the network. With a partitioned virtual world a server manages

only a subset of the users and adding a new user affects only one or a few servers.

In spite of its advantages, virtual world partitioning raises some intricate challenges not present on

replicated systems. The first one is player handoff, i.e, the movement (and consequent transfer) of a

player between regions. When a player moves to another region he is, in fact, switching to another server.

It may happen that the receiving server does not have any representation of the player’s state. In that

case, a state transfer between server is required which may lead to delays.

Another complicated scenario occurs when a region of the game becomes more popular than others.

When this situation (known as player flocking) happens, the server responsible for that zone (hot spot)

of the virtual world can get overloaded. To overcome this problem either more resources are added to

provision that zone or a dynamic repartition of the state is applied [13, 26].

Figure 2.7: Distributed System Architectures.

2.3 Replicated Data Consistency

Data replication consists in placing and maintaining multiple copies (replicas) of a set of logical objects

on different locations called sites. A logical object can be a file, a database record or a Java object and

each has a set of physical instances called replicas. Each replica is stored at a single, distinct site and

held by a Replica Manager(RM) to which clients can submit read and write operations (other operations

can easily be derived from these) [15]. Replication is an important technique that allows applications to

improve performance and availability.
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Performance Because there are several locations from which clients can access data, they may choose

the nearest one, thus improving response times due to the reduced latencies achieved. By replicating data

at the user’s computer (caching) clients can avoid accessing the network. Furthermore, with multiple

distributed access points to the data, different clients can simultaneously access different copies of the

same logical object. This increases the degree of concurrency of the system, enabling it to respond to an

higher overall number of users.

Availability The increase in availability results from the possibility of accessing data even when some

of the replicas are not available. If a node fails, clients can still access data by sending requests to one of

the remaining available replicas.

Despite the potential advantages, replication brings along the problematic issue of replica consistency.

Because several copies are available for concurrent access, clients may simultaneously try to update

different replicas of the same logical data item. Therefore, there must be a mechanism for synchronizing

replicas; otherwise, inconsistencies will arise. Without synchronization a client updating a data item at

a replica could see his update being rolled back if he later accessed a different replica.

Replica synchronization is achieved by employing a replication protocol. A replication protocol defines

what and under which circumstances operations are allowed and how replicas communicate in order to

synchronize. These protocols can be classified according to the way updates are propagated to the

remaining replicas and to where (at which replica) a logical object can be updated [18]. Regarding the

latter, they can either be single or multi master. In a single master system, each object has a master

node. Every update to an object can only be issued to its master, while the remaining replicas are used

for read only operations. Therefore, there is no real update concurrency and every replica receive updates

in the same order: the order defined by the master replica.

Multi master (or group) systems, on the other hand, allow real concurrency by admitting updates to

be issued to any replica. This means that conflicts may arise and the system must have a mechanism to

detect and resolve them, possibly by rolling back some operation performed at a given replica.

As for the way updates are propagated, a replication protocol can be classified as pessimistic or

optimistic. We discuss these two alternative in the following sections.

2.3.1 Pessimistic Replication

Pessimistic protocols try to provide the user the illusion of having a single copy of the data, by ensuring

that operations always leave the system in a consistent state [34]. To enforce strong consistency, when

a client submits an operation, the replicas execute a synchronous coordination and agreement protocol

before sending a response back to the client [42].

Maintaining replicas strictly consistent can be achieved in many ways. Primary Copy [2] defines one

replica as the primary copy. Updates to a logic object are handled by the the primary and are propagated

to the remaining secondary replicas as part of a single transaction, while reads require acquiring locks.

In voting systems [27] operations are issued to all replicas and are allowed only if a quorum number of

replicas accept it.
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Figure 2.8: Pessimistic replication: servers respond to client requests only after executing a synchroniza-
tion protocol.

Although pessimistic protocols provide high consistency, they require extensive synchronization, forc-

ing clients to wait for coordination between replicas. In a large scale network, where latency is high,

response time increases considerably, resulting in strong cuts in performance. Scalability is also an issue,

since as the system grows so does the number of nodes involved in the complex synchronization process.

2.3.2 Optimistic Replication

In optimistic replication, contrary to its pessimistic counterpart, server synchronization occurs only after

responding to the client [34]. When an operation is submitted to a replica it is applied to the local copy

and a response is sent to the client based solely on the current local information the replica manager

holds. Only then the update is propagated, asynchronously, to the remaining replicas, but not neces-

sarily immediately. Therefore, the content of replicas can diverge for some time. Furthermore, because

concurrent updates are allowed, conflicts may arise that must be detected and resolved.

The key advantage of optimistic replication is that it does not require a priori synchronization. This

represents a substantial gain in availability, since it allows operations to be handled even in the presence

of unavailable nodes. It also increases operation concurrency and reduces response time, thus, improving

performance. These advantages, however, come at the expense of replica consistency.

Bounded Divergence

The simplest form of optimistic replication ensures eventual consistency (EC). Informally, EC means that

if clients stop submitting operations, all replicas will, eventually, reach a consistent state. This means

that there is no guarantee about when the system converges. It also means that the current state is not

exact and may be rolled back (due to conflicts) to an indefinite moment in the past.

Bounded divergence protocols, on the other hand, let replicas’ content to diverge but limit the maxi-

mum amount of deviation possible. Instead of allowing content to diverge indefinitely, they define under
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Figure 2.9: Optimistic replication: synchronization is performed after responding to the request of the
client.

which conditions replicas are required to converge and how to enforce that convergence. This way, the

amount of inconsistencies is limited and there is some certainty about the real state of the system.

There are various different techniques for limiting inconsistencies. The simplest form is to bound the

amount of time a replica can be inconsistent (Real time guarantees) [1]. Another approach to control

divergence limits the number of updates that can be applied to a replica without synchronization [22].

TACT is a more sophisticated protocol that bounds inconsistencies in three dimension, Numerical

Error, Order Error and Staleness [43]. Staleness corresponds to the Real time guarantees technique

previously mentioned. Order Error limits the number of updates that can be applied to a local error

before synchronization. Numerical Error bounds the number of updates that can be applied to all replicas

without being propagated to a given replica.

Interest Management (IM) is another form of bounded divergence [29]. Broadly speaking, IM consists

in propagating an update only if it is considered relevant to the receiver. With interest management,

applications can greatly reduce bandwidth by avoiding network access unless if strictly necessary. This

results in a potential increase in performance and scalability. However, because message filtering is re-

quired to verify its relevance, the improvement is limited due to the additional computation. Nevertheless,

applications that use IM are willing to pay the price for the increase in computational requirements, as

CPU speed grows faster than bandwidth.

2.4 Replication in MMOGs

In the previous section we introduced and detailed some important concepts about replication and con-

sistency management. In this section we will discuss these two topics in the context of multiplayer online

games.

In MMOGs, maintaining the player’s view consistent is crucial. If a player performs an action, other
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players expect to receive the corresponding update under strict time constraints. Enforcing this real

time like consistency is extremely hard, even more in large scale environment with thousands of users

continuously interacting.

In multiplayer online games, the virtual world and its object are replicated, at least, on the computer

of the user. It can also be replicated on several servers if a distributed client/server with state replication

is used. This way, when an object performs an action the corresponding update must be propagated to

the remaining replicas in order to achieve consistency.

As seen before, consistency can be achieved through pessimistic or optimistic strategies. For multi-

player games, pessimistic replication is not an option. If it was to be used, a player intending to move

would have to wait for replicas to coordinate. In MMOGs there are numerous replicas spread across a

large scale unreliable, high latency network. Obviously, this would prevent games from achieving the real

time performance requirements.

Fortunately, MMOGs user and developers are willing to trade some consistency for performance and,

therefore, opt for optimistic replication. Eventual consistency, however, is also not an option, because

games require updates to be propagated on a timely manner. Allowing the value of a replica to remain

boundlessly stale would break down game logics, resulting in user dissatisfaction. For instance, a player

could not see the avatar of another player moving towards him if the corresponding replica was allowed

to be out of date unlimitedly. For these reasons, MMOGs provide time constrained weak consistency, by

updating replicas periodically. Update periodicity is typically of few dozens of milliseconds.

2.4.1 Interest Management

When analyzing replication in MMOG another important issue is the bandwidth required to propagate

a virtual world to clients. A naive implementation that periodically forwards each update to every client

would require a prohibitive amount of bandwidth, both for senders and receivers. To reduce these high

bandwidth requirements without damaging the players’ view of the virtual world, games use relaxed

consistency models that try to identify and send to a player only those updates that he is interested in.

In multiplayer games, the specification and enforcement of these consistency models is called Interest

Management.

IM is motivated by the observation that players are not equally interested in all objects (e.g., other

players, items). Usually, they are more concerned about objects located nearer them and as the proximity

to objects decreases, so does the player’s interest in them. This observation is typically materialized by

two main different strategies: region and aura based Interest Management [28]:

Region

In region based IM the game world is partitioned in static, contiguous consistency regions. Objects in

the same region receive updates from each other, but not from objects in outer regions (in practice,

updates from objects in adjacent regions may also be visible). Region based is the most straightforward

approach. Because regions are static, its easier to compute membership. However, its performance is

highly dependent on the size of regions. If regions are too big, players end up receiving too many irrelevant

messages; if they are too small its the other way around - relevant interactions may be lost. Defining the
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Figure 2.10: Avatars scattered across a virtual world with region based IM.

right size is not trivial and an optimal choice is typically not possible. Furthermore, it does not accurately

capture players interest.

Figure 2.11: Example of avatars and their respective auras.

Aura

An aura is a consistency zone (usually concentric) defined around (and centered on ) a player’s avatar.

When the auras of two avatars intersect they can see each other. When an object (other than an

avatar) is within the aura of his avatar, the player can see it. These characteristics are used to achieve a

considerable cut on the amount of data each player receives from the server and, thus, on the maximum

inbound bandwidth required at each client.

Auras are also an important help to the scalability of the game, because as the overall number of

players in the game grows, the amount of objects inside each players aura is expected to grow at slower

pace. In comparison to region based AOI, auras allow more accurate message filtering and are more

closely related to a players perception ability in the context of the game. On the other hand they require

more complex computation to check which objects are on a given player aura .

24



Analysis

All these interest management strategies follow an optimistic replication approach. Objects within a

player’s area of interest are, optimistically, up to date, while the ones outside that area are simply

ignored. Strong consistency on the inside is achieved by periodically (few milliseconds [7]) updating

replicas, instead of simply forwarding updates as received. Thus, this scheme can be seen as optimistic

replication with real time bounds.

Despite providing bandwidth reduction, current IM mechanisms are too rigid - updates in an area of

interest (region or aura) are visible, all others are not. This inflexibility can lead to some undesired game

situations. Consider, for instance, a player moving in an open scenario. Because consistency outside the

player’s area of interest (AOI) is not maintained, if an object enters it, the player may see it appearing

out of nowhere. A worst situation occurs when an object leaves the AOI. In that case the object will still

be considered as being on the AOI because its updates are not received unless it re-enters the area.

To solve these problems, games end up defining AOIs larger that actually needed [24], resulting in a

cut in performance due to increased bandwidth and computation requirements.

Vector-Field consistency

Vector-Field consistency (VFC) [35] is a consistency model that adds greater flexibility to games elim-

inating, at the same time, the previous problems. VFC is an aura based scheme that introduces two

main novelties to interest management. First, it introduces the notion of multiple auras, each called a

consistency zone. A consistency zone is an aura to which is assigned a consistency degree. The further an

aura reaches, the weaker its consistency degree is. Figure 2.12 shows an example of an avatar surrounded

by its consistency zones.

Figure 2.12: Consistency zones defined around a pivot.

The second innovation of VFC is the definition of consistency degrees. While in the other existent

IM schemes, consistency degrees are based simply on a time metric (periodic updates), VFC introduces

a multi criterion consistency model similar to TACT. Besides time delay, it also considers the number of

lost updates (sequence) and an application specific function that captures the difference between replicas

(value).

VFC permits a finer grained, more effective, albeit more complex, interest management. Furthermore

it relies on the notion of pivots - special objects to which consistency zones are assigned. Pivots allow
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even greater flexibility, as they can simulate more than one IM strategies and extend them with the multi

zone and multi metrics of VFC. For instance, if the pivot is the player’s avatar (as shown in Figure 2.12)

VFC simulates a simple aura based scheme. By defining more pivots, other than the player’s avatar,

different schemes can be reproduced.

2.5 Commercial & Academic Systems

2.5.1 Commercial MMOGs

The standard approach in commercial games is to use several geographically dispersed servers to handle

game state and intermediate user interaction. Having multiple servers means that there must be a way

to divide the work among them. Currently, two main techniques are used, sharding and geographic

decomposition (GD) [40]. In both cases, users must explicitly choose in which server they wish to play,

or to start playing.

Because commercial games are proprietary there is little or no information about game design. In

particular, information regarding interest management is virtually null and so, we will not address that

topic in the discussion of commercial games that follows.

Sharding

Generically, sharding consists in assigning independent virtual worlds to different servers. Typically, there

are several distinct small virtual worlds (maps) and multiple copies of them can be handled by different

servers [8, 20].

When sharding is employed, users connect to one of several available servers, usually based on the

distance to the server, to minimize message latency. Because each server hosts a different copy of the

virtual world users can only interact with players located in the same shard. Hence, shards are basically

several distinct centralized games that happen to have the same name.

This simple sharding strategy is employed by World of Warcraft (WOW). WOW employs a shard-

based client/server architecture in which multiple servers (or server clusters) are deployed, each hosting

an independent copy (realm) of the same virtual world. Realms are spread across the world and players

manually connect to one of the available. Users are encouraged to connect to the closest server to achieve

better connection times. Other successful MMOGs like and Ultima Online [16] also follow this strategy.

An alternative sharding strategy is used by First Person Shooter (FPS) games like Quake [20]. In

these games, different servers can host copies of several different virtual worlds (maps). Like in simple

sharding, each map copy is isolated from the remaining copies.

An example of this situation is illustrated in Figure 2.13, where the game is managed by three servers.

Servers one and two hold two independent copies of the same game map; players on server one interact

only with other players of that server, and the same goes for players on servers two and three. Hence,

each server essentially hosts an independent game that can share (although it does not have to) the same

map with other servers.
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Figure 2.13: Sharding example: server one and two manage two independent copies of the same virtual
world while server three is responsible for a different map.

Geographic decomposition

In this approach the virtual world is partitioned into several distinct and independent regions (e.g., island,

countries, continents), each handled by a different server. Users connect to the server that is responsible

for the region they wish to play in. Like in sharding, they can only interact with other players connected

to the same server (and, hence, are in the same region). However, they can move to another partition,

by crossing some artificial boundary especially designed for that purpose.

Geographic decomposition is applied in popular games like Everquest [37]. In Everquest the virtual

world is divided into more than 4000 connected zones. Moving to another zones (“zoning”) can take

between several seconds and few minutes. Everquest is managed by a server farm (cluster) of more 1500

servers with each zone handled by a cluster of up to 30 servers, depending on prediction results [23].

Figure 2.14 an example of Geographic Decomposition in which we can see three servers each managing

a different, independent zone of the virtual world. Players can move from zone one to zone two (and

vice-versa) and from zone one to zone three (and vice-versa) through some form of portal (represented

by the dotted lines linking those zones), but when located in one zone can only interact with players of

the same zone.

Discussion

Both sharding and geographic decomposition are straightforward and easy to implement. Because servers

hold independent instances of a game, they are basically centralized applications. In fact, with sharding,

games are programmed as centralized applications that can be independently deployed on several ma-

chines. Even in geographic decomposition each region is almost completely independent. Communication

between servers exists, but is rare and simple and happens only when a player crosses some of the few

and strategically placed region boundaries.

The main problem with these strategies is that they achieve scalability at the expense of player

interactivity. In both approaches, clients are isolated on a single server. Although they allow the overall

number of users to grow with little or no impact on performance, they place a static limit on the number

of users that can interact simultaneously.
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Figure 2.14: Geographic decomposition example: three servers managing different independent zones
connected to each other via portals.

Geographic decomposition does allow players to move to other regions so they can interact with

the players located on it. However, after moving to another region they will still be isolated on it.

Furthermore, crossing a barrier is not transparent to the user. He has to wait until its state is transferred

to the new server and is usually presented with a “loading menu”. In sharding, this problem is even

worse. Users can play in other maps, but they have to manually choose a server to play. Moreover, in

both cases, if the server is overcrowded, user will be denied entrance.

Another major problem with GD is the burden on the programmers of the game. GD forces pro-

grammers to design the game world with partitioning in mind, instead of doing so solely based on the

game semantics. Furthermore, it requires programmers to predict the resources (e.g.,number of servers,

CPUs, memory) necessary to provision each region. Failing to predict resource usage results either in

idle resources and wasted money or in poor performance.

2.5.2 Academic works

P2P Games

SimMud is a partially centralized P2P game [25]. It employs region based IM by splitting the virtual

world into fixed-size regions. Peers inside a region are arranged in a multicast group and receive updates

only from objects within the same region. Each region has a coordinator superpeer that intermediates

access to shared objects (e.g., health items, potions) to avoid conflicts.

Although this early attempt was seminal to the development of P2P solutions it presents some draw-

backs. The most obvious is that as the system grows the coordinator becomes a bottleneck, which is

worsened by the fact that the coordinator is not a machine with dedicated bandwidth and computational

power. Furthermore, as was explained earlier, region based IM does not truly capture players interest.

Colyseus is another example of a P2P game infrastructure [7]. Unlike SimMud, however, Colyseus is

a fully decentralized structured P2P system in which no peer plays a special role. Each peer acts both

as a server and a client of the game, performing the same tasks as the other.
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Because in fully decentralized systems there is no central repository of the data, the peers of the

Colyseus systems have to work on their own to find the objects they are or may be interested in. To do

so the system uses a publish/subscribe strategy in which peers periodically publish their position to the

network.

Also periodically, peers send subscribe messages to the network containing the description of their area

of interest. To avoid flooding publications and subscriptions are routed to a rendezvous node based on

the positions contained in those messages. When a publications matches a subscription, the rendezvous

node informs the subscribing node who then replicates the subscribed object at his local data pool. From

then on the subscribing node and the node that holds the subscribed object communicate directly. To

minimize the latency of peer discovery - which can lead to lost interactions and missed objects - peers

prefetch data that they predict will be, eventually, necessary.

The operation of Colyseus is greatly dependent on rendezvous points. However, which and how

nodes are chosen to be rendezvous points and how publication and subscription messages are routed

to those nodes is not specified. Furthermore, rendezvous nodes have a similar, albeit simples, task as

coordinators, performing extra computation regarding the publish-subscribe system and, as such, are

sources for possible bottlenecks. However, because rendezvous point definition and organization is not

clear, it is not possible to fully understand the impact of this on the network.

Although the system is able to maintain each peer’s subscription related outgoing bandwidth, results

show that the overall traffic of the network is even larger than the overall traffic of client server networks.

This means that each peer has to route and process increasingly larger amounts of data, which gradually

degrades the performance of the network and, thus, its scalability.

Besides rendezvous points, another aspect of the system that is clearly defined is area of interest

management. In Colyseus, subscription messages carry a description of the peer’s area of interest which

is based on prediction. However, what is an are of interest and how it is defined and managed is not

explained.

Replicated game servers

Some academic works have proposed using replication as a means to share load between servers of a

distributed game application. In this scheme (commonly referred to as “mirrored server architecture”)

each server holds a copy of the complete game world, but is only responsible for a subset of the players.

The main goal of this strategy is to reduce the response time of player updates, thus, increasing

interactivity. To achieve this goal, clients are assigned to the server that is geographically closer to the

client. Despite this real world allocation, players avatars can be located anywhere in the virtual map,

regardless of their servers.

As explained earlier in this document, the main issue regarding replicated systems is server syn-

chronization. In literature it is possible to find several proposed solutions to this challenge, with either

pessimistic or optimistic solutions.

As previously discussed, pessimistic synchronization is not suitable for fast paced large scale games.

To make it further clear we show, as an example, lockstep synchronization [17], arguably the simplest

approach to conservative synchronization. In lockstep, each server waits until every participant has
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received the exact same information and only then executes its computation (like checking if a player is

allowed to move to a given position) and moves on to the next round, repeating these steps in a loop.

While it completely prevents inconsistencies, lockstep is obviously not fit for highly interactive games;

if applied in a typical action game it would force each player to wait for all the others to submit their

updates and only then (after his server computes its clients’ updates) would he receive a response from

the server.

Highly interactive multiplayer games’ users, however, demand lower response times from servers, which

typically is achieved through optimistic synchronization - servers apply updates when received and syn-

chronize later in the background, detecting and resolving inconsistencies. Trailing state synchronization

(TSS) [14] is an example of the optimistic take on server synchronization.

In TSS each server has a leading state storing the current game state and one or more trailing states

each with an associated time delay relative to the time of the leading state. How these are used to detect

and resolve conflicts is easier to understand by means of an example. Consider a server with a leading

state and a trailing state with 100ms of delay. At time 225ms the server receives from another server i an

update originally submitted to i at time 200ms (with the 25ms difference being caused by the optimistic

synchronization delay). It applies the update immediately to its leading state, but only applies it to the

trailing state at time 300ms (the time at which the update was originally submitted - 200ms - plus the

100ms of delay). When it does so it detects that the update does not exist at time 200ms on the leading

state and, thus, a conflict was detected and the leading state is rolled back to the last know inconsistency

free state (stored somewhere on the trailing state) and every action is re-executed.

Although it reduces the time taken by a server to respond to a client, TSS resolves conflicts by rolling

back the state of the game. While this may not be problematic in games with fewer objects and players,

as games grow, so does the conflict rate and, as a result, the frequency of rollbacks. Furthermore, TSS

considers every out of order event as a conflict which may not always be the true.

Seamless zoned virtual worlds

Several research works have proposed distributed C/S architectures where the virtual world is parti-

tioned into different zones/regions, each assigned to a different server. Unlike the similar geographic

decomposition approach, this strategy aims at providing a virtual world where the player is unaware of

the underlying state partition (hence, the name “seamless zoned virtual worlds”). Instead, players can

transparently move across several regions.

Assiotis et al [4] proposed one such architecture. Their work addresses border interaction - interaction

between players located near the border of different partitions -, player handoff and state repartition to

overcome hot spots. They also use aura based interest management, although not much is said about

this feature.

To maintain consistency when border interaction occurs, their solution uses a lock based synchroniza-

tion mechanism. When a server receives an update for an action that may affect more than one region

it acquires locks for those regions and, possibly, individual locks for the objects located on each of those

regions. Every other action performed on any of the locked region or by any of the locked objects is

forced to wait on a queue until the locks are released.

Player handoff is also handled using locks. When an avatar moves towards the border its server locks
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the avatar and the destination region and proceeds to transfer the user to the server responsible for that

region; while a player is being transferred, the locks are acquired and, thus, updates on that region also

have to wait on a queue.

To reduce the load on a server whose region became a hot spot, when a server gets too busy its regions

is split in two. One of the resulting halves is assigned to the server that originated the split while the

other is transferred to another existing server or to a new one. Repartitioning also uses locks to prevent

access to data that may be inconsistent due to the split process.

Although this work addresses the most important issues related to non static partitioning schemes, its

lock strategy is neither efficient nor scalable and has the obvious disadvantage of preventing interaction

while a region/object is locked. Even if locks are acquired for a small amount of time there will still be

delays that the user can perceive. Furthermore, while partitioning reduces server load it increases border

interaction which, in this case, is particularly negative because it increases lock related delays.

Cai et al [10] proposed a different approach to dynamic partitioned schemes that does not require

locks. In their work the virtual world is statically partitioned in equally sized regions, each assigned to

a different server. To allow border interaction, each server has an update and a subscription region. A

server’s update region is the one he is assigned to and the objects on that region are managed exclusively

by that server. Its subscription region is the area surrounding its border, and thus, comprises a small

part of its neighbors partition. When an object is on a subscribed region, its updates are propagated to

the server/servers that subscribed to it.

This work also addresses player handoff. When a server receives a position update from a client, it

checks the position of the player’s avatar. If he has moved out of the servers region, the server starts a

state transfer with the server responsible for the region where the avatar moved to. After that, the client

is notified about the switch, so he starts communicating with the new server.

Although this solution does not require locks its approach to player transfer is rather limiting. Issuing

state transfers only when the position of a player’s avatar switches to a different region leads to delays

that are directly proportional to the size of the data that needs to be transferred and make partitioning

not completely transparent for the user.

Furthermore, their approach to partitioning is static - regions are defined beforehand and remain

unchanged throughout the execution of the game. This makes the system not only vulnerable to hot

spots, but also incapable of supporting the progressive growth of the system and the addition of new

content.

2.6 Summary

In this Chapter we discussed the most important research topics related to our work. We started by

providing some background on multiplayer online games, mentioning its goals, the requirements imposed

by game players and the unique challenges these types of games present due to their networked and

interactive nature. Next, we generically discussed the topic of system architectures in distributed systems,

focusing on peer to peer and client/server architectures. This subject is of major importance in multiplayer

games, as the organization of nodes in a distributed system greatly (and in different ways) affects its
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scalability, performance and availability properties. At the end of that discussion we analyzed the merits

and demerits of the application of each of the discussed architectures on the context of multiplayer games.

After the discussion about the architectural aspects of games we provided a generic overview on the

topic of data replication and consistency management after which we inserted a section discussing the

important area of interest management. We finalized the Chapter with a presentation and discussion of

concrete examples of multiplayer game infrastructures, covering both commercial and academic systems.

Table 2.1 summarizes the systems discussed in this section, regarding the main topics covered by this

work: Interest Management and System Architectures.

System Architecture
Load Balancing/ Interest

Notes
Node Organization Management

Mobihoc
Centralized

Single Server VFC
Wireless

Client/Server Mobile Games

Cai et al.
Distributed

Partitioned Aura
Client/Server

Assiotis et al.
Distributed

Partitioned Aura
Client/Server

RING
Distributed

Replicated
Line-of-Sight

Client/Server Visibility

TSS
Distributed

Replicated Undefined
Synchronization

Client/Server Only
SimMud P2P Partially Centralized Regions
Colyseus P2P Purely Decentralized Any
World of Locally Distributed

Sharding Unknwon
Commercial

Warcraft Server Cluster Game

EverQuest
Locally Distributed Geographic

Unknwon
Commercial

Server Cluster Decomposition Game

Table 2.1: Summary Table.

32



Chapter 3

Architecture

In this Chapter we describe in detail the architecture of our system. We start with an overview on the

overall system architecture and its main characteristics. Then we describe the Vector-Field Consistency

model in detail, highlighting our modifications to the original design. We then proceed to explain the

details of our architecture, describing its most important components and how they interact to perform the

main features of our system. Finally, we present our distributed version of the Vector-Field Consistency

model.

3.1 System Overview

In our solution we propose a distributed Client/Server architecture with state partition that provides a

seamless view of the virtual world to its users, allowing players to interact with one another and move

freely across the game map. We use Vector-Field Consistency (VFC) [35] as our interest management

strategy to reduce the bandwidth requirements imposed on both the users and the servers of the game.

The version of VFC applied by our system is an extension to the original model, designed to improve

its scalability and suitability for large scale environments. For this reason, we named our system as

“Vector-Field Consistency Large Scale” (VFCLS).

Our approach to achieve scalability consists in partitioning the virtual world into dynamically sized

rectangular regions/partitions1 and assign each one to a different server of a distributed server network.

Clients (players) are assigned to one of those servers (the client’s “designated server”) based on the

position of their avatars in the game’s virtual world. Although the game map is divided in disjoint

regions handled by different servers, the user is oblivious to that fact. From his perspective there is a

single large shared virtual world he can freely wander and explore and where he is able to interact with

several other players and different game objects. Our system allows players to move to different partitions

and interact with players located on regions managed by other servers regardless of the underlying virtual

world partition/organization, unlike the static partition approach employed by commercial games. His

only limitations are the ones imposed by the logics of the game and the consistency model defined by the

programmers (which is, itself, related to the logics of the game).

Figure 3.1(a) presents an example of a game scenario illustrating both the partitions of a game’s

1Hereafter we refer to regions and partitions interchangeably
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(a) Partitions and objects’ VFC consistency zones
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(b) Highlighted VFC

Figure 3.1: VFCLS main concepts: Virtual world partition and Vector-Field Consistency.

virtual world and a small number of avatar surrounded by their VFC consistency zones. For simplicity

the image represents regions/partitions with the same size; however, in a real game context different

regions may have dimensions/areas different from the ones represented in the image and from each other.

The number and radius of the avatars’ consistency zones can also differ from the ones represented in the

image.

Servers in our infrastructure are organized in a peer to peer network similar to a Content Addressable

Network (CAN) [32] (see Section 2.2.3 for more information). Like peers in a CAN, each server is

connected to the servers responsible for their direct neighbor partitions. Unlike CAN, however, servers

may also need to know and communicate with servers that are not their direct neighbors. This is necessary

due to the fact that a player’s area of interest (AOI) (defined by a game programmer using VFC) may

be arbitrarily large and, thus, the player can potentially interact with objects located at non-neighboring

partitions; to enforce VFC, the player’s server needs information about those objects and, as a result,

needs to communicate with the servers responsible for the regions where they are positioned.

To minimize the impact of the server synchronization required to perform inter-partition interaction

we designed a server subscription protocol that guarantees that each server only knows about the non-

neighbor servers it actually needs to be aware of, i.e., those whose partition may be crossed by one of its

players’ AOI. This way, each server knows only a subset of the complete server set - it requires having

only a partial view of the network, which favors scalability. Furthermore, the protocol also ensures that

an update from a player is received only by the servers whose objects may be affected by the update.

This approach to server organization allows the system to adapt to its own growth and servers to be

added to the network with a limited impact on the overall organization. Only servers near the region

where new servers are added are affected by it. This way, our system is able to gracefully scale as the

system grows - it allows servers to be added, with minimal impact, to the network with the purpose of

helping overloaded servers or simply to improve the overall performance of the system. Furthermore, due

to the partitioning approach, a server only has to be aware of and manage a subset of the total number

of objects and users of a game, as opposed to what happens in pure replicated systems where each server

must be aware of all the objects of the game and apply interest management considering all of them.

Another advantage of partitioned systems is that each server has sole authority for its region and,

therefore, can check and prevent conflicts for the objects located on it. Inter-server conflicts only arise as
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a result of the interaction between objects located on two different regions, which is expected to be less

frequent than interaction between players located on the same region.

In our previous analysis of P2P systems (see Section 2.2.4) we stated that they have some properties

that limit their scalability when applied to online games. Now, it is worth mentioning why those problems

do not arise in the context of our system. We identified two main constraints to scalability in P2P online

games: peers’ limited resources and churn.

Regarding resources, in our system each server is an entity exclusively dedicated to perform server

tasks. This is unlike peers on a traditional P2P game who have to perform both server tasks, client tasks

and whose computer may be running other non game related programs. Obviously, even dedicated ma-

chines have resource limitations; however, the fact that they are dedicated and special purpose machines

means not only that those resources are likely to be more powerful than the average user’s computer, but

also (and more importantly) that its resource are better used. Furthermore, if a server gets overloaded,

he can shed some of its load to a lightly loaded server or even be replaced by a new, more powerful one.

As for churn, because the P2P server network in our system is composed of dedicated machines it

is a highly stable system. Modifications to the infrastructure occur only when a server crashes or is

added/removed/replaced, all of which are much less frequent and more stable operations than players

entering and leaving the game. Moreover, the number of servers is much smaller than the number of

players, which further reduces the probability of a change in the server network.

3.2 The Vector-Field Consistency model

Vector-Field Consistency is a consistency (and Interest Management) model initially designed to manage

consistency of replicated data in wireless multiplayer games running on resource-constrained machines.

Its goal, as it happens with the other IM models, is to reduce bandwidth requirements (both at the client

and the server side). However, unlike the other IM schemes, VFC allows the specification of multiple

consistency zones defined around pivot objects (e.g, the player’s avatar), each with different consistency

requirements that decrease as the distance to the pivot increases. In the following sections we describe

the Vector-Field Consistency model in detail.

3.2.1 Consistency Zones & Consistency Vectors

VFC represents the virtual world as an N-dimensional space populated with game objects (e.g., players’

avatars, food objects, computer controlled entities (NPCs)). Each client node (e.g., a player’s game

client) of VFC has a local view of this virtual world that can have bounded inconsistencies with relation

to their primary replica, which is located at the node (or nodes) that is (are) in charge of enforcing VFC.

In each view, the consistency of objects depends on their distance to a pivot object. A pivot can be, for

example, a player’s avatar or a radar, while objects would be other players’ avatars.

Pivots are associated with consistency zones - concentric, ring shaped areas defined around the pivot

- that define its AOI. Each consistency zone has a consistency degree that specifies the consistency

requirements of the objects located within that zone, regarding the pivot. As the distance to the pivot

increases the consistency degrees become weaker. This way, a pivot generates a discrete “consistency

field”, analogous to the continuous gravitational and electric fields. As a result of this model, an object
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located closer to the pivot is required to be more often refreshed. Although in the definition of the

model consistency zones are ring shaped areas, they are implemented as concentric squares to improve

the performance of the computationally expensive operation of determining if an object is within a radial

surface.

Figure 3.1(b) illustrates an example of a pivot and its corresponding consistency zones z1, z2 and z3.

In VFC consistency zones Zi are defined as follows: if i = 1, then Z1 is the inner circle of the surrounding

the pivot (in Figure 3.1(b) it corresponds to zone Z1); if 1 < i < n, then Zi is the area enclosed between

Zi and Zi−1 (zone Z2 in Figure 3.1(b)); if i = n, then Zi is the zone beyond the last circumference that

surrounds the pivot (in the case of the Figure 3.1(b) it corresponds to Z3).

Consistency degrees are by 3-dimensional consistency vectors (�) that bound the maximum divergence

between the objects inside a consistency zone in a given view regarding the value of their primary replica.

Each dimension corresponds to a scalar value defining the maximum divergence of objects regarding the

following metrics:

∙ Time (�): Specifies the maximum time (in seconds) an object can stay without being refreshed

with its primary replica’s latest value. With this metric VFC guarantees that an object within a

consistency zone specified by vector � is, at most, �� seconds in an inconsistent state. Informally,

it captures this metric “freshness/staleness” of an object;

∙ Sequence (�): Specifies the maximum number of updates to the primary replica that are allowed to

not be applied to the object (missing updates). With this metric VFC guarantees that an object

within a consistency zone specified by vector � is, at most, �� updates behind the primary replica;

∙ Value (�): Specifies the maximum divergence between the contents of the local copy of an object and

its primary replica. Value is an application-dependent metric that defines the maximum percentage

difference of an object to its replica (divergence impact). Value is calculated by a function specially

defined by the application’s programmers. VFC guarantees that an object within a consistency

zone specified by vector � is, at most, �� percent divergent from its primary replica.

VFC guarantees that an object is updated whenever at least one of the previous criteria is about

to be violated. Consider a consistency vector � = [0.25, 6, 20]. An object within the consistency zone

corresponding to � is guaranteed to be, at most, 0.25 seconds outdated or 6 updates behind the primary

replica or with contents diverging 20% from the object’s latest value.

VFC Generalization

So far we discussed VFC considering that each node has a single view and a single pivot. However, VFC is

a multi-pivot and multi-view model - it allows both multiple pivots per view and multiple views per node.

Considering a “capture-the-flag” First Person Shooter game, with the multi-pivot feature it is possible to

have both the flag and the player’s avatar as pivots. This way, the player would receive updates regarding

his nearby opponents and the surroundings of the flag. In a multi-pivot setup, an object’s consistency

zone is assigned with relation to its closest pivot.

The multi-view feature allows different sets of objects to be characterized with different consistency

requirements regarding the same pivot. Considering a team game with a player’s avatar as his pivot,
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objects representing the player’s teammates can have different requirements than objects representing

the player’s opponents.

Despite this generalization, in our system we use VFC as a single-pivot and single-view model. Hence,

when discussing the VFC consistency model, hereafter we refer to the terms pivot, view and client

interchangeably.

3.2.2 Consistency Enforcement

The VFC model is enforced by a two part algorithm, with each part performed at independent times.

The first part consist in keeping track of the updates to the objects of the system and maintaining the

information required to enforce clients’ consistency. It is executed by function update-received every time

a client issues an update to an object. The second part of the algorithm consists in periodically updating

clients according to their VFC settings. This requires deciding which updates are to be propagated to

each client, a task executed by function round-triggered.

To enforce the VFC model the following data structures are required:

∙ Dirty Objects Table (D): Table that stores, for each client, information about which objects have

been modified since the last time they were updated to that client;

∙ Consistency Vector Table (K): Given an object o and a client c, K returns the consistency vector

corresponding to the consistency zone of c’s AOI where o is located, regarding c;

∙ Current Consistency Vector State (S): S keeps per client information about the state of every object

of the system regarding each client’s consistency requirements (specified by VFC). It stores the last

time each object was sent to the client (as a part of VFC enforcement), the number of missing

updates to it (i.e, the number of updates since the last time the object was refreshed at the client)

and the Value of the object at the time of the last time it was sent to the client.

update-received The update-received function is executed whenever the server receives an update to

an object o. The operation is simple: when the update is received the number of missing updates to o is

increased by one for every client of the system (i.e, for each client c, S[c,o] = S[c,o] + 1); then update-

received checks (considering object o), for every client c, if the resulting number of lost updates or the

total time since the last update or the difference between the object’s value since the last update exceeds

the maximum divergence allowed for any of those criteria in that view; if so, the object is considered

dirty and D[c, o] is updated accordingly.

round-triggered VFC updates the local view of its clients by (periodically) sending them round mes-

sages piggybacked with the due updates. To do so it first invokes function round-triggered, which returns

the updates to be sent to each client, based on the data gathered and processed in update-received. The

algorithm that identifies which objects are to be sent is straightforward: for each pivot identify those

objects that are within the pivot ’s AOI; then, for each object identified, check in which consistency zone

of the pivot ’s AOI that object is located; finally, verify (using the information gathered and stored during

the execution of update-received) if the object violates the consistency degree associated with the con-

sistency zone it is located in; if so, the object has to be sent. After updating client c with information
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Figure 3.2: VFCLS architecture: Components and interactions.

about object o, the server updates S[c, o] accordingly, i.e, sets the last time o was sent to c as the current

time, sets the number of missing updates to o back to zero and stores o’s value.

3.3 System Architecture

Figure 3.2 presents shows the core components of the VFCLS architecture and their interactions. VFCLS

comprises three main building blocks:

Server Network Manager Manages the server’s view of the server network (partial views) and handles

server to server communication - object subscription and state synchronization. It is composed of two

components, the “Subscription Manager” and the “Server Communication Module”. The Subscription

Manager is in charge of the execution of the subscription protocol. The Server Communication Module

is the server’s interface with the other servers of the network. It is responsible for coordinating and

executing every communication between a server and the other servers of the network.

Client Manager The Client Manager administers client data and enforces VFC through two com-

ponents, the “Session Manager” and the “Consistency Management Block”. The latter is responsible

for creating and maintaining the data structures necessary for the enforcement of the VFC model, as

well as for verifying and retrieving the updates that have to be send to the clients. The “Session Man-

ager” administers client connections, stores and manages client data and directly communicates with

clients - receives their updates and sends state updates according to the information retrieved from the

“Consistency Management Block”.

Object Pool Manager Manages the server’s game objects and encapsulates the stored data, perform-

ing every operation on it on behalf of the other components. The data repository is divided in two pools

- one for the server’s local objects and the other for the subscribed objects - due to our VFC enforcement
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Figure 3.3: Example of a partitioned virtual world.

protocol, which was extended in order to support inter-partition interaction. Both the Server Network

Manager and the Client Manager (through their internal component) use the information managed by

the Object Pool Manager in order to perform their respective tasks.

3.3.1 Server Organization

As we mentioned earlier in this Chapter, servers are organized in a content addressable P2P network.

Each server has a partial view of the network - it is only aware of a subset of the complete server set

- constructed and maintained by the “Subscription Manager”. This partial view always contains the

server’s direct neighbors and may also contain a number of other servers it needs to be connected to in

order to support inter-partition interaction and player transfer.

State Partition

Figure 3.3 shows an example of a possible virtual world partition in our system2. In the image we can see

that the virtual world is divided into straight rectangular partitions and that different partitions may have

different dimensions. We chose this shape for our partitions because it is computationally inexpensive to

maintain and operate and simpler to reason about.

Despite the logic partitioning of the virtual world, our system gives the user the illusion of being in

a single large virtual world. We allow players (through their avatars) to move around the virtual world

seamlessly and to interact with players located on other partitions. For example, considering Figure

3.3(b), the player represented is allowed to move from partition 7 to partitions 4 and 6 (and from there

to any other) as if there was no division. Furthermore, the player could be interacting with any player

located on partitions 7 (his own partition), 4, 6 and 2. In Section 3.3.2 we discuss how our system

supports these features.

2For simplicity, in our discussion we consider only 2-dimensional virtual worlds; the results and conclusions
drawn considering these dimensions can be easily mapped to 3-dimensional virtual worlds.
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Server entrance

The organization of servers in the network is assembled while servers join the system. In our system,

contrary to what happens in other P2P infrastructures (like CAN), a server entrance is expected to be

relatively uncommon; typically a server joins the network on setup — i.e, before the game is open to

users — or with the goal of reducing load on an overloaded server. Therefore, the system provides two

different join strategies, one for which of the previous cases:

Setup-time server join Setup time occurs before the game is officially launched. In this phase the

game consists only of the virtual world, immutable world objects and, in some cases, NPCs (Non-player

characters). At this point in time game companies are likely to want to have great flexibility to set

the initial game environment. For that purpose, we provide a manual server join that allows game

programmers to manually define the dimensions of each partition of the virtual world as well as define

each server’s set of neighbors and known servers, so that each server directly informs them of his entrance

as opposed to having to find them. This feature allows game companies to set the game environment

based on the load predictions they usually make. It should be noted, however, that setup-time server join

does not need to be manual. If game developers do not want to spend time manually setting up the game

environment they can simply use the automatic run-time server join protocol, which will be described in

the next paragraphs.

Run-time server join Unlike its manual complement, run-time server join is, as its name indicates,

meant to occur while the game is already in execution. The most common reason to add a new server to

a game is to reduce the load on a pre-existing machine. If this is the case, the node that joins the network

has to know the address of the server that is in need of help and directly sends it the join request. The

two servers then split the partition between each other and inform their resulting neighbors about the

new configuration. Optionally the joining server may carry information about the desired dimensions of

the partitions that should result from the split.

Because the game is in execution when a server joins the network it is necessary to take some precau-

tions in order to minimize the occurrence of losses and prevent other problems during the joining process.

For this purpose, when a server Si joins the network it remains in synchronization with the server Sj with

which it has split its partition until the system is again stable (i.e, until every server that should have Si

in its partial view has it and every player whose avatar is located on Si’s partition has been transferred to

it). To do so, it first copies from Sj the objects located on Si’s new partition. Then it informs the servers

on its newly created partial view that it is now in charge of the new partition. As a result, the other

servers update their partial view with Si and are now ready to include it in server synchronization (and

vice-versa). Only then the server informs its clients that it is their new designated server by piggybacking

that information in the state update messages of the next VFC enforcement execution. After receiving

the transfer acknowledge from every client, Si notifies Sj that synchronization is no longer required and

effectively becomes the partition’s new server.

A new server can also be added to the network to replace an existing one. In this case, instead of a

partition split the servers perform a partition migration, from the old server to the entering one. After

the migration process the new server has a complete copy of the replaced server’s state, including virtual

world representation, game objects and client and server data.
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(a) Representation at the servers. (b) A player’s view.

Figure 3.4: Multiple region inter-partition interaction.

3.3.2 Inter-server Communication

As we said before, although our system partitions the virtual world into regions it provides a seamless

view to the players. This means that players (through their avatars) are able to interact with each

other without any limitations other than the ones imposed by the virtual world design and the VFC

specification. It also means that avatars can move around the virtual world, switching between partitions

(and, as a result, servers) without the user being aware of it. As we have stressed before in this document,

this approach contrasts with the limiting strategies typically used by commercial games.

Figure 3.4 shows an example of a simple virtual world (a) as represented by servers and (b) as perceived

by a player (solid circle). Because the consistency zones of a pivot object may cross partitions handled

by a different server, servers may need to share information with each other in order to enforce VFC.

To do so while still minimizing server synchronization requirements we designed a subscription protocol

in which servers communicate only when strictly necessary, to ensure the correct enforcement of VFC.

In this section we describe the subscription protocol and explain how VFCLS supports player transfer

through a protocol that is dependent on the subscription mechanism.

Subscription Protocol

Inter-partition interaction occurs when two interacting players are located on different partitions/regions

of the virtual world. Given that each partition is managed by a different server, supporting inter-

partition interaction requires extra server synchronization mechanisms. In Figure 3.4 we can see a player

(represented by the solid black circle) interacting with several other players located on his and other

partitions. We consider that two players interact when one is within the other’s AOI, whether they are

actually (at the application level) interacting or not.

Other works that propose seamless partitioned virtual worlds have addressed this topic, but in a

very simplistic manner [4, 10, 5]. First, in those systems inter-partition interaction only occurs between

neighbor servers and near the border of the partitions (hence the name “border interaction”). It is not

clear, however, if the authors assume that players’ AOIs are defined in such a way that only this kind

41



of interaction is allowed or if the design of the system imposes that only players in contiguous partitions

can interact.

Our system, on the other hand, makes no such assumptions nor limits inter-partition interaction to

neighbor servers. Instead, because VFC allows game programmers to freely define consistency zones, in

our system, a player’s AOI can cross multiple partitions, including non-neighbor ones (as is represented

in Figure 3.4). Thus, we provide full support for inter-partition interaction that includes regions beyond

a server’s “neighborhood”.

Inter-partition interaction is achieved through a subscription protocol arranged in cooperation by the

Subscription Manager and the Server Communication Module. The protocol is divided in three parts,

performed at independent times:

Server Subscription When we explained the entry protocol of a server we, purposely, neglected to

explain a step of major importance for the operation of the subscription protocol. When a server joins

the network it immediately identifies and connects to those servers whose partition its objects’ AOI may

cross. To do so, it inspects the objects located on its newly defined partition to find the one with the

largest AOI radius R. It then publishes to the network the dimensions of the area partition outset defined

by adding R to each side of the partition. As a result of this publication, every server whose region is

crossed by the partition outset informs the publishing server of its existence and is added to its partial

view.

Object Subscription The main task of the Subscription Manager consists in subscribing its own

player objects (pivot objects) to servers that may contain information required by its players. It does so

by continuously and periodically executing an object subscription protocol that runs as follows:

1. The Subscription Manager starts by checking if any of its players’ AOI crosses the partitions of the

servers on its partial view (defined in the previous step, i.e., when the server joins). When it checks

that an object’s AOI crosses the partition of another server it does not perform the subscription

immediately; instead it adds the mapping “server ↔ player object” to a subscription queue to be

processed in the next step.

To allow programmers to define different types of objects with different consistency requirements

and AOI radius it is necessary to check, for every player, if the radius of the AOI of its avatar is

larger than the largest AOI radius known by the server. If it finds one such object O it has to

update its partial view with the server that are crossed by the new partition outset. To do so the

server again publishes the outset, this time piggybacked with a subscription request for O. As a

result, the servers whose partition is crossed by the outset subscribe to object O and are added to

the server’s partial view.

2. Then, the Subscription Manager uses the subscription queue of step 1 to publish the list of objects

to the servers determined in that step. Publication is performed by directly sending, to each server,

the list of objects whose AOI crosses its partition and, thus, require information about objects only

known by it.

3. After the subscription process is finished, the mappings “object ↔ subscribed server” are stored

in a subscription table at the Subscription Manager. Later the Server Communication Module will
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require information from this table to perform the second part of the server subscription protocol

- server synchronization.

Server Synchronization The second part of the protocol consists in maintaining objects synchronized

between the servers according to the subscription results. Synchronization is necessary because, as

explained in section 3.4, servers apply VFC both to their owned (i.e., the objects located on the server’s

partition) and subscribed players (i.e., those located on other partitions, but that have subscribed to the

server). Hence, servers need to be informed of the positions of the subscribed player’s avatar.

Synchronization is performed, optimistically, every time a player submits an update. When an update

is received (and after the server responds to it) the Server Communication Module consults the Subscrip-

tion Manager and retrieves from it the entry of the subscription table corresponding to the object to

update. Then, it forwards the received update to the servers on that list.

As a result of these steps (i) the servers become aware of those players located in other partitions that

may need information about their objects and (ii) each server knows to which other server updates to a

given object have to be forwarded. Thus, each server has all the information it needs in order to perform

VFC enforcement and, as a result, allow inter-partition interaction. Another consequence of the protocol

is that each server has its object pool divided in owned objects and subscribed objects.

Player Transfer Protocol

Providing a seamless view of the virtual world to players requires our system to allow a player’s avatar

to transparently move between partitions. When an avatar moves to another partition its designated

server becomes the one responsible for that region. Thus, the new server needs to receive the player’s

data from his previous designated server. If the object transfer is triggered only when the player’s avatar

switches to the new partition the delay caused by transferring its data to the new server may be noticed

by the user. One possible solution to prevent this from happening consists in having servers transferring a

player’s data before that information is actually needed. With this simple technique - called data prefetch

- when an object moves to another server’s partition, the latter already has the object’s data and, thus,

the transfer consists in a simple notification message.

In VFCLS we take advantage of the fact that the subscription system (described in the previous

section) needs information from objects located on remote servers to achieve similar results as data

prefetch by executing player transfer when a server receives an object publication message. When a

server Si sends a subscription message directly to another server Sj it piggybacks the player’s data on

that message. When Sj receives the message it gets all the information it needs about the player from the

piggybacked data (hence, there is no real data prefetch - the server receives all the information without

requesting it). This way, the actual player transfer involves small amounts of data and is unnoticeable to

the user.

The actual transfer of a player from his current designated server Si to his new designated server

Sd occurs only when the player’s avatar moves to that server’s partition. The transfer is triggered by

Si after it receives an update from the player that positions its avatar on a neighboring region. After

finding out (by analyzing the entry of the subscription table of the Subscription Manager corresponding

to the object) which server Sd is responsible for that region, Si issues the transfer request to it. Because

Sd has previously transferred the player’s data it needs no additional information. As such, the transfer
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request is, in fact, a simple one-way, asynchronous transfer notification. As soon as the transfer request

is completed, Sd notifies the transferred player’s client that it is its new designated server. From then

on, the client communicates exclusively with server Sd.

After the transfer terminates the two servers involved, Si and Sd, perform a subscription inversion

- Si, the previous designated server, becomes a subscriber of the object, while Sd, a former subscriber,

becomes its new designated server. Because both servers have all the required information about the

player, the inversion is automatically and independently executed by each server, without any message

exchange between the two.

3.3.3 Client - Server Communication

In VFCLS clients are connected to a single server at each moment. When they join the network they are

assigned to a given server and remain connected to that server throughout the execution of the game,

until their avatar moves to a position located on a partition managed by a different server, in which case

the player is transferred to the new server. The management and execution of the interactions between

a server and its clients is performed by the server’s Session Manager.

Four types of messages can be exchanged between a player and its designated server. Two of them,

player updates and player joins, are issued by the client; the remaining two, state updates and player

transfers, are triggered by the server. Player updates and state updates are the most frequently exchanged

messages. Player updates are issued by a client whenever the player inputs an action command - like a

move or a shoot. State updates are sent, periodically, by each server to their clients as a part of the VFC

enforcement protocol. Player join requests are sent from a player that wishes to enter the game. Server

transfers are sent from a designated server to a game client to inform it that its avatar has moved to a

partition handled by a different server.

In the following section we describe the two player issued messages. Player transfers have already

been covered in Section 3.3.2 and state updates are addressed later in Section 3.4.

Player Join

When a player wishes to join the network he first is required to find which server will be his designated

server. One simple way to do this would be to have a know public server storing information about all

the servers of the network and their corresponding regions. The player would send the request to that

server and retrieve automatically the address of his designated server. For our system, however, we opted

for a decentralized approach that consists in routing the join protocol through the server network until

the desired server is found. The joining player sends the request to any of the servers of the network

which runs a distributed lookup protocol, orchestrated by the Server Network Manager, and returns the

desired server’s address. This way, players can join the game using any known server, e.g., one where a

fellow player is already connected to. Furthermore, with this approach, players have multiple entrypoints

through which they can enter the game, as long as the addresses of the servers are public (e.g., available

in Internet forums).

The server lookup protocol is similar to the lookup protocol of CAN. First, the client sends a lookup

request to the server containing the player’s initial position. On receiving this message the server checks

if the position sent lies within the limits of its own region. If so the protocol terminates and the server
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returns its own address directly to the client. Otherwise, the protocol continues as follows. The Server

Network Manager starts by checking which of the servers on its partial view is closer to the player’s

desired position. Then, the Server Communication Module forwards the lookup request to that server.

These previous steps are repeated by each of the servers that receive the forwarded lookup until the

right server is found. After receiving the address of its designated server the player sends it a join message

with its data and as a response receives the necessary data from the server. After that he can start playing

the game, send his updates and receive state updates from the server.

The reader may notice that the lookup and the join requests could be merged into a single message,

by applying the lookup protocol and sending along with it all the necessary information for the server to

register the joining user. However, we decided to separate this process in two distinct operations to reduce

the bandwidth expenses on the participants of the lookup protocol. This way, the messages exchanged

between those servers are very small, containing only the players position. Only the server that really

needs to receive the players data actually receives it.

Player Updates

In VFCLS, a server accepts player updates only to objects it owns. Updates to a subscribed object,

on the other hand, are executed as a result of synchronization with that object’s designated server.

Player updates are sent from the client application to the game server according to the logics of the

application. When the server receives, through the Session Manager, an update message from a player

it invokes the Consistency Management Block. The CMB, in turn, executes a function (update-received

necessary for the enforcement of the VFC model. The server may also have to forward it - via the Server

Communication Module - to other servers according to the subscription information retrieved from the

Subscription Manager, as described in Section 3.3.2. After receiving the response from the server the

client is again ready to receive inputs from the player and to, again, send them to the server.

To reduce response times and, thus, improve performance, updates are forwarded optimistically - the

server first responds to the player and only some time later it forwards the update to other servers. As a

result of optimistic synchronization conflicts may occur. Currently our system does not have an explicit

mechanism to detect and prevent conflicts. However, it guarantees that conflicts are, eventually, resolved

(as a result of VFC enforcement) by overwriting the conflicting object with a correct version. In the

future, however, we intend to address this issue and incorporate some conflict management mechanism

in VFCLS.

Instead of sending the updates to a single server it would be possible to make the client send the

updates directly to all the servers interested in them. This way the delay introduced by the extra step of

optimistically forwarding updates could be reduced and, with it, the probability of conflicts. However we

decided not to do so because it would yield much higher response times and make the client much more

CPU and network demanding, both of which are the complete opposite of our goals.

3.4 Distributed Vector-Field Consistency

In our previous discussion we described the subscription protocol required to enforce the VFC model.

We now explain how the information gathered by (and available due to) the subscription protocol is used
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Figure 3.5: Owned and subscribed objects.

to actually enforce the consistency model.

It is now appropriate to explain one main difference between the original VFC model and our VFCLS

extension. The original design of VFC forces programmers to define one zone Zn that includes the whole

virtual world in the consistency management (unbounded VFC). We believe, however, that having players

receive updates from every object in the system is not suitable for large scale, wide and highly populated

virtual environment, as it may overload both the players and the servers of the system. As such, in

VFCLS we consider only consistency zones with finite (albeit arbitrary) radius, thus, removing the outer

zone Zn.

We mentioned before that, as a result of the subscription protocol, each server has a set of owned

objects O and a set of subscribed objects S. Considering Figure 3.5 the player represented by the solid

(black) circle is owned by server S4 and is subscribed to servers S1, S2 and S3 because his area of interest

crosses their partitions. It is easy to see that, had we considered any other object owned by server

S4, it would also be subscribed to the other three servers (assuming that its AOI is equal to the one

represented), as is represented by Figure 3.5.

The Distributed VFC algorithm ensures that a player receives updates from every game object that is

within its AOI, even those located at different partitions. This is achieved by having each server updating

both its owned and subscribed players with the information about the objects located on its partition.

This means that each server enforces VFC only for the slice of a player’s AOI that crosses its partitions.

As a result, the responsibility of enforcing VFC for a given player is divided between the servers whose

partitions are intersected by the player’s AOI.

Considering again Figure 3.5, consistency for the player p represented by the solid (black) circle

would be enforced complementarily by the four servers: S1 would be responsible for updating p with

the information about the four objects located in its partitions, S2 would update it considering only its

two owned objects, and so forth. Hence, servers divide load between each other by enforcing consistency

for disjoint slices of players’ areas of interest, effectively distributing the responsibility of consistency

enforcement for each of the players.

Our distributed version of VFC enforces consistency through the same two functions provided by

46



the original VFC, update-received and round-triggered. The general method is similar: throughout the

execution of the game, servers maintain the information necessary to enforce VFC to their players by

keeping track of their updates. Periodically, the server issues a round in which it updates its players,

according to their VFC specifications.

3.4.1 Update Processing

To update clients according to their VFC specification, servers have to monitor every modification to

the objects on their pools. For that purpose, every time a server receives an update (as a result of

a direct player update or synchronization with another server) it transfers control to the “Consistency

Management Block”. Depending on the origin of the update, the “Consistency Management Block”

executes one of the following actions:

∙ If the update is received, directly, from a player, then it concerns an owned object. Hence, because

in VCFLS each server enforces VFC considering only its owned objects, the server updates its in-

formation about each player’s (considering both owned and subscribed) current state of consistency

to reflect the update received. This is done, like originally in VFC, by function update-received and

the operation is the same (see Section 3.2 for more information).

∙ If the update is received from a server as a result of server synchronization, then it concerns a

subscribed object corresponding to a player p owned by a different server. As such, the information

received is only necessary to update the object’s position, so that, when enforcing VFC to player

p, our system can correctly identify which objects are within his AOI.

3.4.2 Updating Clients

The process of updating clients is almost equal to the way it is done in the original design of VFC. Servers

update clients by periodically sending them round messages piggybacked with each client’s updates. The

only difference in this case is that clients can be both owned or subscribed and the servers, when checking

consistency for those clients, only consider their owned objects. The revised algorithm is as follows:

1. First, the server identifies, for each owned player po, which objects owned by the server (i.e, those

that are located in the server’s partition) are within po’s AOI. Then, for each object o previously

identified, it checks in which consistency zone of po’s AOI object o is located. Finally, it verifies if

o is in violation of the consistency degree associated with that consistency zone. If so, that object

is queued and, after verifying the remaining objects, the server sends it to the player po.

2. Then, the server performs the exact same steps, but now enforcing consistency to its subscribed

players. Hence, the server identifies, for each subscribed player ps, which objects owned by the server

are within ps’s AOI. Then, for each object o previously identified, it checks in which consistency

zone of ps’s AOI object o is located. Finally, it verifies if o is in violation of the consistency degree

associated with that consistency zone. If so, that object is queued and, after verifying the remaining

objects, the server sends it to the player.

3. After verifying consistency for every player (owned and subscribed), the server sends them the

round message piggybacked with the objects identified in the previous steps.

47



As we can see, steps 1 and 2 differ only in the fact that 1 verifies consistency for the server’s owned

players, while step 2 does the same but for the server’s subscribed objects. The reason for this separation

lies in the fact that the information about the consistency state of owned and subscribed objects is stored

in different data structures, just like the information about the position of those objects is (one is stored

in the local objects pool and the other in the subscribed objects pool).

As a result of the combined work between the subscription protocol (performed by the “Subscription

Manager”) and the consistency enforcement algorithm (executed by the “Session Manager” in conjunc-

tion with the “Consistency Management Block”) we achieve a distributed VFC algorithm in which the

consistency of a single player is enforced not by a single server but by the complementary work of a group

of servers. Having the load and the responsibility for enforcing consistency divided between the nodes of

the network improves the flexibility of the system and fosters scalability.

3.5 Summary

In this section we described in detail the architecture of our system. We started with a general overview

on the system and its most relevant aspects. Then, we described the original design of the Vector-Field

Consistency model that is used, with extension, by our VFCLS to apply interest management. We

then described our object subscription system, necessary to allow interaction between player’s located in

different partitions and transfer of players between partitions. We finished the Chapter by describing our

modified distributed Vector-Field Consistency algorithm.
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Chapter 4

Implementation

This Chapter present some details about the implementation of our system. We start by providing

information about our development environment. We describe the main data structures of our system,

both the completely new and the ones adapted from the previous implementation of VFC. We also

present details about the algorithms and protocols used by VFCLS, as well as describing the simulation

infrastructure designed to evaluate our VFC prototype.

4.1 Development Environment

Our VFCLS prototype was developed in the Java programming language. More specifically we developed

the system using Sun’s J2SE 6.0 development kit (JDK) and runtime environment. VFCLS was developed

using only the standard Java libraries provided by JDK.

We used Java’s Remote Method Invocation (RMI) architecture to support communication between

the nodes of the system. As a result, every message exchanged between the nodes of the system are

implemented as methods of a remote interface. Later in this Chapter we present the remote interfaces

designed for our prototype.

4.2 Algorithms and Supporting Data Structures

In this section we overview the main algorithms and protocols of VFCLS, as well as its mains supporting

data structures.

4.2.1 Object and User Representation

VFCLS incorporates two fundamental data structures based on the original VFC implementation: DataU-

nits and UserAgents. In our work they were subject to extension, necessary to support the distributed

nature of VFCLS. We highlight those modifications where appropriate.
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As far as VFCLS is concerned, the virtual world is a bounded area populated with DataUnits. A

DataUnit (DU) is an object that represents a shared game entity (like an avatar or a food object). Each

DU carries a unique integer session identifier duId and the DU’s position in the virtual world. To create

a personalized game object, with other variables, a programmer using VFCLS is required to write a

DU subclass containing the extra data fields. This feature makes VFCLS completely independent of the

application that runs on top of it. Not only can it support different games, but also has a great potential

to support different types of applications, in the future.

Users are represented in the system by class UserAgent (UA). Like DUs, UserAgent objects also have

a unique integer session identifier (uaId), along with an also unique nickname and the user’s remote

interface. The server also stores a list containing the mapping between UserAgents and its corresponding

DataUnits. As we mentioned earlier, to simplify our implementation we considered that each user is

associated with a single object/DataUnit corresponding to the player’s avatar. In the future we intend

to give full support to the multiple objects per user feature. Nonetheless, this can be partially achieved

by having composite DUs that serve as containers for other DUs.

4.2.2 Object Pool

The object pool is implemented by class DataPool. Although this class was inherited from the original

implementation of VFC it was subject to an almost complete re-write. In the inherited implementation

the DataPool was internally implemented as a fixed size array of DataUnit. Adding objects to the pool

could only be performed at Setup: players would join the network, registering their objects on the single

server, and wait for the server to notify them that the game had begun. After receiving every player

registration, the server would create the DataUnit array with its fixed size corresponding to the number

of registered objects. DataUnits were placed on the array index corresponding to their id - not only

the array was fixed sized, but it was also immutable. This way, accessing any object of the array could

be achieved in constant time. However, it required players to join the game at the same time and the

server to know every player in the game. While the latter characteristic is desirable in a single server

architecture, it is not suitable for our partitioned virtual world approach in which a server may not know

every object of the game and new objects may be added or removed due to player joins, transfers and

subscriptions. To support these and other operations we implemented the object pool internally as an

hashtable encapsulated by the class DataPool.

4.2.3 Subscription Protocol

We now present the implementation details of our Subscription Protocol.

Server Representation

In VFCLS servers are represented by class VFCLSServer. VFCLSServer objects have a unique string

identifier corresponding to its network address (ip address and port) and the server’s RMI interface. Each

VFCLSServer instance also has a Region associated with it, representing the partition of the corresponding

server. Class Region holds the partition’s boundary values and center, besides providing the region cross

checking methods used by the subscription system. VFCLSServer class is used by each server to represent

the servers on its partial view. The partial view, in turn, is represented by a simple list of VFCLSServers.
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Subscription Protocol

The subscription protocol is performed, independently of the rest of the servers’ operation, by a dedicated

thread pool of the Subscription Manager. The mechanism is straightforward: threads in the pool iterate

over the list of the users owned by the server and check, for each of them, if their avatars’ AOIs cross any

of the server’s known neighbor partitions. At each time, different threads are performing region cross

checking for different users.

We implemented the publication of partition outset messages by flooding the message to the network,

i.e, propagating the message through every known server. Publication messages are identified by a pair

(serverId, messageId) to guarantee that no server receives the same publication message twice. A server

that receives a publication stops to propagate it when (1) it has already received it or (2) its partition is

not crossed by the published partition outset. We opted for flooding because it is a simple and easy to

implement and, more importantly, because these publication messages are expected to be very rare.

The subscription protocol uses two auxiliary data structures: a temporary queue holding the mapping

“server ↔ subscribing data unit” to send to the other servers after region cross checking terminates; a

permanent subscritpion table (implemented as an hashtable) storing the mapping “data unit↔ subscribed

server”, to be used later in server synchronization.

As we explained in the previous Chapter, server synchronization is optimistically performed after a

player update is received by a server. Optimistic synchronization is achieved by using a queued thread

pool. The operation is simple: when a server’s Session Manager receives an update it adds it to an up-

dateQueue managed by the aforementioned thread pool (managed by the Server Communication Module)

and immediately replies to the client; sometime later one of the threads of the pool extracts the queued

update and sends it to the servers that subscribed that object. The information about which servers

subscribed to the object is retrieved from the Subscription Manager’s subscription table.

4.2.4 Distributed Vector-Field Consistency

Our distributed version of Vector-Field Consistency inherits and extends many of the original data struc-

tures used by VFC.

Auxiliary Data Structures

The consistency requirements of a player is represented by class Phi. This class stores the player’s

consistency zones (in the form of an array of integers corresponding tho the zones’ radius) and degrees

(stored on a bidimensional array). Phi also contains references to the objects owned by the player.

TO maintain information about the consistency state of each client we use an Hashtable, indexed by

clientId, that maps the client in a list of objects of class AOIInfo. AOIInfo is the class that represents

the current state of an object regarding a particular player’s view. It contains a reference for the object

it refers to, the number of missing updates regarding the player’s view, the value of the last update of

the object and a boolean field that indicates if the object is dirty.

In VFCLS owned objects and subscribed objects are stored in different hashtables.
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updatesReceived

The updatesReceived method is called, as it name indicates, whenever an update is received by the server.

It is a small method that implements the update-received function of VFC. Its operation is simple: for

each player’s view, update the AOIInfo entry that corresponds to the object in question by incrementing

the number of missing updates and setting the object as dirty.

computeUpdatesToDisseminate

The method computeUpdatesToDisseminate implements the function triggered-update of VFC: for each

client located on the owned and subscribed player hashtables and for every object that is on the server’s

local objects pool check if that object is dirty (by inspecting the object’s AOIInfo). If it is dirty then

check if it should be sent to the player, i.e., if it is in violation of the consistency requirements of the

player. If the objects has to be sent to the client, its AOIInfo is reset - the number of missing updates is

set to zero and the value of the object is set to the current value.

4.2.5 Remote Interfaces

As we mentioned before, the nodes of our system communicate through remote method invocation.m The

following remote interfaces were defined:

∙ IVFCLSClient: Client interface for incoming messages. Receives state update and server transfer

(issued when a player is transferred to a new designated server) messages from VFCLS servers.

State updates transfer an array of DataUnit objects to the player while a server transfer message

sends the remote interface of the new designated server.

∙ IVFCLSServer: Server interface for client issued messages. Receives server lookups, player joins

and player updates. Server lookup messages are issued when a player that wants to join the

network wishes to find its designated server and trigger the lookup protocol described in the previous

Chapter. Thus, the server lookup message carries only the position where the player’s avatar

initiates the game. Server joins are issued (after the server lookup) to the player’s designated server

and contain the player’s remote interface as well as information about its objects and consistency

(VFC) requirements. Player updates messages simply transfer to the server the DataUnits locally

updated by the client.

∙ IVFCLSServerToServer: Interface for messages sent from other servers of the VFCLS server net-

work. Includes join requests, player transfers, object subscription messages and updates from

subscribed objects.

4.3 Game Programming Interface

Figure 4.1 shows the whole system perspective of a game designed using VFCLS. As we can see, the system

includes not only the VFCLS server infrastructure (VFCLS Core) described in the previous Chapter, but

also a client-side VFCLS application (VFCLS Client) and a VFCLS API that provides the means for the

game application (both the client and the server) to interact with our system.
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Figure 4.1: VFCLS integration with game applications.

Game applications interact with VFCLS through set of functions defined in VFCLS API. The API

provides the following four main functions:

Object Registration For a game to use VFCLS it has to register its objects for VFCLS to manage.

At the client-side the game client must register the players’ avatar on the VFCLS client before it is

used. Likewise, at the server-side, the game server application may potentially (depending on the game’s

design) register objects corresponding to computer controlled characters (NPCs). To support objects

controlled by the game server application the “Client Manager” of VFCLS Core has a “Server Objects

Manager” (not shown due to space constraints). This component is similar to the “Session Manager” in

that it intermediates every communication with the server application, just as if it was a remote client

- it receives the updates from the server application, handles object registration messages for NPCs and

enforces VFC to those objects.

As we mentioned before, VFCLS represent objects as instances of class DataUnit. As a result, for

an object to be registered it also has to be a DataUnit; this way, programmers must create their games’

objects (at least those that are to be shared in the virtual world through VFLS) as instances of DataUnit

class or any personalized DataUnit subclass designed by the client.

Object Update After registration, objects can also be updated according to game logics. When an

object is locally updated by a client, the game client explicitly informs the VFCLS Client via a UserUpdate

API message. As a result, the update is sent to the client’s designated server. If the update concerns a

server controlled NPC, then it is the server application that informs (via a ServerUpdate API message)

the “Server Objects Manager”.

Update Notifications Through the API, game clients (and server applications) can be informed when

a state update message is received from a server. For this purpose, when the application starts, clients

must register themselves as update listeners using a RegisterStateUpdateListener function provided by
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the VFCLS API. This notification can then be used for various purposes by the application running on

top of VFCLS: clients can perform graphics rendering to show the updated version of the virtual world

to their player; the server application can use the newly received information to decide which should be

the next action of an NPC.

VFCLS also provides player update notifications to the server application. Just like state update

notification, the game server needs to register itself as a player update listener through an API function

(in this case RegisterPlayerUpdateListener). This allows game servers to perform application specific

operations, like checking the validity of the received update or even incorporating anti-cheating mecha-

nisms.

Object Pool Querying The API also provides functions for applications to query the local object

pool. This allows, for example, game servers to perform validation and anti-cheating periodically, instead

of every time an update is received.

4.4 Simulation Infrastructure

To evaluate our VFCLS prototype we designed a simulation infrastructure that is able to simulate different

types of interest management schemes and system architectures (server-side simulation) as well as different

types of game clients (client-side simulation). The simulation is driven by class SimulationDriver which,

as the name suggests, drives the simulation, i.e, reads configuration files, loads the classes necessary for

the simulation and performs simulation steps in sequence.

Interest Management Simulation

Our simulation infrastructure is able to simulate different types of Interest Management models. To

implement an IM algorithm it is only necessary to write a class that implements abstract class ACMB

(from “Consistency Management Block”) and, as a result, implements the methods updateReceived and

computeUpdatesToDisseminate. Naturally, other methods and auxiliary data structures can be defined,

but only to be used internally by the two previous methods (unless the programmer is also simulating a

personalized architecture, in which case he can write both the IM and the architecture and define their

interaction at will.

The IM to simulate and its parameters are defined in a configuration file. The configuration file path is

passed as a command line argument to the SimulationDriver. The file must have (among other arbitrary

parameters) a IMClass entry with the fully qualified name of the class that implements the IM model,

so that the SimulationDriver can load it, using Java reflection. The file is then passed to the constructor

of the CMB class.

Architecture Simulation

The simulation system also allows the simulation of different Client/Server architectures. To simulate

an architecture our simulation infrastructure requires that the programmers define a class that overrides

abstract class AServer. This class’ constructor receives as arguments a class implementing the IM model
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and the path of the configuration file containing the information necessary to setup the architecture. The

implemented Server class also has to implement the method startSimulation which, as its name indicates,

starts the simulation of the server architecture. For the simulation to work it is also necessary to provide

an implementation for the remote interface IVFCLSServer, so that clients can communicate with the

server.

Client Simulation

Our system also provides support for client-side simulation. Our approach to client simulation consists

in simulating multiple threaded clients in a single process. Client simulation is oriented by a (client-side)

SimulationDriver that receives as command line argument a configuration file (compliant with the Java

Properties model) containing (among other possible parameters specific of the client simulation approach)

the name of the class that implements the clients to simulate and the number of clients to simulate. The

SimulationDriver supports multiple configuration files as arguments and, thus, can simulate more than

one type of clients per simulation.

The class defining the client behavior must override class AClient whose constructor receives the

configuration file passed as command line argument to the simulator. It must also override the abstract

method startSimulation. To enable the simulation it is also necessary to provide an implementation of

the IVFCLSClient interface.

4.5 Summary

In this section we presented the most important implementation details of our system. Among other

things, we explained some of VFCLS’s data structures, provided more information about the implemen-

tation of specific algorithms and described the architecture of our simulation infrastructure.
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Chapter 5

Evaluation

In this section we present the experimental results of our evaluation of VFCLS. To evaluate our system

we used our simulation infrastructure to simulate and compare different types of architectures (namely

Centralized and Replicated C/S), as well as different Interest Management models, in particular auras.

To simulate clients we developed a simple game in our simulation infrastructure. In this game,

automatic clients move their objects - small circles - in straight lines along the game map, periodically

changing the direction of their trajectory. For the purpose of evaluation we consider that the size of each

object is 200 bytes.

Our experiments were conducted varying different factors like the total number of players, the density

of players, and the number and configuration of servers. The tests were performed on two machines

equipped with Intel Core 2 Quad processors and 8.0 GB of main memory running on Linux Ubuntu

distribution. The two machines are connected by a high speed Gigabit LAN.

In the following sections we present and analyze the experimental results obtained with the described

simulation environment. We start with the results and analysis related to VFC and its comparison with

auras. After that we present and discuss the results related to the architectural component of the work.

Variation Description
Aura1 Aura with radius of 40 units
Aura2 Aura with radius of 80 units
Aura3 Aura with radius of 120 units
VFC1 VFC with two zones with radius [40, ∞] and respective K vectors

[3,0,0] and [50,10,500]
VFC2 VFC with three zones with radius [40, 80, 120] and respective K

vectors [3,0,0], [10,10, 0] and [50,10,500]
VFC3 VFC with two zones with radius [120,∞] and respective K vectors

[3,0,0] and [50,10,500]

Table 5.1: Description of the different parameters variations.
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5.1 Interest management evaluation

The first set of tests we describe analyze the performance of VFC and compares it to auras and an

alternative where no interest management is applied, regarding incoming client side bandwidth and

efficiency. We compared these alternatives on several experiments varying the number of players, the size

of the game map and also the parameters of VFC and the radius of auras.

Table 5.1 describes the parameter variation used on the experimentation. It should be noted that

VFC2 is the only VFC configuration that does not have an outer zone Zn.

Figure 5.1 shows the results of bandwidth variation, at the client side, for each of the three AOI

schemes, when applied to a 1000 x 1000 with variable number of players (50, 100, 50).
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Figure 5.1: Client-side bandwidth requirements.

In this first graphic we can perceive the real importance of interest management. By analyzing the

bar corresponding to NoAOI and comparing it to the remaining bars it is easy to see that without

interest management bandwidth requirements grow fast with the number of objects (in our experiments

we consider only objects corresponding to player’s avatars and, thus, the number of objects matches the

number of players). It is easy to conclude that without applying interest management it is not possible

to scale games to large environments.

The importance of IM is even greater considering that games are growing not only in number of users,

but also in complexity and realism. As a result, modern games tend to have more and more NPCs1 and

the size of game objects - both player controlled and NPCs - is increasing to accompany the growing

realism.

In comparison to the NoAOI alternative every IM configuration yields considerably better results, even

those corresponding to VFC with unbounded outer zones (VFC1 and VFC3). However, it is also clear

that these two configuration perform considerably worse than auras and the bounded VFC configuration.

This evidence is confirmed by Figure 5.2, which shows the same results as Figure 5.1, but without

1Recall that NPC stands for “Non player characters”
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Figure 5.2: Client-side bandwidth requirements: results without the NoAOI configuration.

the “NoAOI” configuration. By observing the graphic it is clear that although VFC1 and VFC3 perform

better than the NoAOI alternative the bandwidth required is still too high and, more importantly,

increases too much as the system grows in number of players, specially when compared to the remaining

bounded configurations.

Figure 5.3 presents results analogous to those of Figure 5.1, but considering two cases, one with 500

and the other with 1000 players, with a larger map of 5000 x 5000. Once more we can identify the impact

of not using any interest management scheme on bandwidth. And, as before, we can see that unbounded

VFC configuration still results in high bandwidth and, more importantly, are not very scalable, because

they grow fast with the number of users.
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Figure 5.3: Client-side bandwidth requirements with 500 and 1000 players scattered across a 5000x5000
map.
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By observing Figure 5.3 it is also possible to verify that, for the bounded configurations, the difference

between the resulting bandwidth with 500 and 1000 players is virtually null. These results stem from the

fact that, unlike unbounded schemes, in aura based strategies the number of players inside an AOI is not

dependent on the total number of players in the game, but rather on player density, which depends both

on the total number of players and on the size of the virtual world. Because of this it is even possible

that in environments with more users the necessary bandwidth is lower than that of a game with less

users but with a smaller virtual world. It is possible to see that by observing the bars corresponding to

500 players in Figure 5.1 and comparing it with the bars corresponding to 1000 players in Figure 5.3; the

bandwidth of the former is much larger than that of the latter.

Figure 5.4 further shows the impact of player density by varying the size of the virtual world while

maintaining the same number of 500 players. In it we can see that increasing the size of the virtual world

results in lower client-side bandwidth usage for auras and VFC, while if no IM is applied the size of the

map has no influence.

It is also interesting to note that the bandwidth reduction of VFC1 and VFC3 between the 1000x1000

map and the 5000x5000 is similar to the reduction of the other IM schemes for the same map variation.

This fact indicates that the mentioned bandwidth reduction of VFC1 and VFC3 is caused by the decrease

in the number of players located on the inner zones of those configurations.
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Figure 5.4: Client-side bandwidth requirements: influence of player density.

Bounded VFC vs Auras

The previous section showed that aura based bounded IM schemes scale better than unbounded ones.

Now we will compare and analyze two different types of bounded IM schemes, auras and bounded VFC.

We continue to use the configurations defined on Table 5.1 but we now focus solely on auras (Aura1,

Aura2 and Aura3) and VFC2.

By looking at Table 5.1 we can see that the radius of Aura1, Aura2 and Aura3 are, respectively, 40, 80

and 120 and that VFC2 has three consistency zones with radius also with radius 40, 80 and 120. Figure

5.5 illustrates the differences between these configurations.
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Figure 5.5: AOI size and variations.

Figure 5.6 shows the bandwidth differences between Aura1, Aura2, Aura3 and VFC2 in a context

with variable number of players like that of Figure 5.1 - 50, 100 and 500 players in a 1000x1000 virtual

world. The first thing we conclude is that, as expected, the performance of auras decreases as the radius

increases, because the number of objects inside the AOI is higher. It happened on this experience as

it would happened in every other that varies the radius of auras, depending only on the distribution of

players - if the radius (and, therefore, the visibility of the player) increases, so does bandwidth, because

the radius is the only parameter auras can vary.

In VFC, on the other hand, varying the radius of consistency zones does not necessarily means that

the bandwidth will increase. Because VFC has other parameters that can be configured it is possible to

increase the range covered by VFC zones while maintaining, or even reducing, bandwidth. This way, it

possible to enlarge player’s visibility with little or no impact on bandwidth, although at the potential

cost of fidelity (but in a way that does not disrupt the playing experience).

Observing figure 5.6 we can also see that VFC2 only performs better than Aura3. To fully understand

the meaning of these results, however, we have to analyze them in light of Figure 5.5. One of the things

it lets us know is that Aura1 corresponds to the inner zone of VFC2. Hence, it is only normal that the

resulting bandwidth of VFC2 is higher than the one generated by Aura1. It should be noted, however, that

VFC2 corresponds to an example VFC consistency vector defined for our experiments. As we mentioned

before, a different consistency vector, one that would relax even more the consistency requirements, could

perform better than VC2 and possibly yield bandwidth results similar to Aura1.

When comparing Aura2 - which corresponds to the middle zone of VFC2 - with VFC2 it is clear that

the bandwidth required by the former is closer to that of the latter than Aura1 was. Again, it is with

no surprise that we verify these results and, once more, it is important to understand that a different

configuration of VFC2 could produce opposite results.

Finally, the information in Figure 5.6 shows, as we mentioned before, that the resulting bandwidth

of Aura3 is higher than VFC2. More importantly, these results happen despite the fact that Aura3 and

VFC2 cover the same exact area of the virtual world. This is possible due to the high flexibility VFC

exhibits, which allows it to be easily tuned with unlimited configuration possibilities.

Table 5.1 contains some examples of different VFC configurations that have the same or similar
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Figure 5.6: Client side bandwidth requirements: auras versus VFC.

bandwidth performance as Aura3 for 100 players in a 1000x1000 map. These results are even more

enlightening knowing that the bandwidth required when using an aura with radius of 200 is about 5760

bytes. These results make the flexibility of VFC evident. We presented a few configurations just to

exemplify, but there are many other possibilities. Furthermore, besides this parametrization malleability,

another strength of VFC is that it can emulate other IM schemes obtaining the same or even better

results.

5.2 Architectural evaluation

To evaluate the architectural component of our system we compared it (using our simulation infrastruc-

ture) with a centralized (VFC’s original architecture) and a replicated architecture. In our evaluation we

varied both the number of clients and the number of servers for each of the two distributed architectures

(VFCLS and the replicated one). Table 5.3 describes the settings used for evaluation. Hereafter we refer

to the different architectures by the names defined in the table. In our evaluation we simulated clients

with the following VFC specification: three consistency zones [120, 200, 500] and respective consistency

vectors � = [(3,0,0), (10,5,100), (50,10,500)]. The virtual world consisted of a 5000 x 5000 map.

Table 5.2: Different VFC configurations that yield the same bandwidth as Aura3.
Zones Kvec Bandwidth (Bytes/sec)

1 [40, 250] {[3,0,0], [50,10,500]} 2150
2 [40, 150, 350] {[3,0,0], [50,10,500], [80,20,500]} 2800
3 [80, 200] {[3,0,0], [50,10,500]} 2315
4 [80, 150, 250] {[3,0,0], [50,10,500], [80,20,500]} 2640
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Figure 5.7: Execution times of function round-trigger for the different architectures.

5.2.1 Performance

We start by presenting the results regarding the performance of our system. To measure performance we

analyze the execution time of function round-triggered of VFC. This way, we can also analyze the impact

of the performance of our system on the game’s playability - the more often a system is able to update

its clients, the more interactive the game is.

Figure 5.7 shows the results of this evaluation setting considering 500 and 1000 players. The most

important (and only) thing that we can conclude by the observation of the Figure is the infeasibility

of single server architectures for large scale environments and the necessity of employing distributed

alternatives. It is possible to see that for a larger environment of 1000 players the single server cannot

guarantees the desired levels of interactivity and is only able to update clients every 7 seconds. This,

obviously, results in a poor gaming experience.

To analyze the differences between the two distributed architectures (our VFCLS system and the

simulated replicated system) we must take a look at Figure 5.8 that shows the same results as Figure 5.7

but without including the results of the centralized implementation.

The analysis of the Figure lets us see that our VFCLS prototype outperforms the replicated architec-

ture considering both the 500 player context and the 1000 players context. Considering the 500 players

setup, VFCLS with four servers only outperforms the equivalent four server replicated architecture, while

Name Description
Centralized Single server centralized architecture
Rep4s Replicated architecture with four servers.
Rep9s Replicated architecture with nine servers.
Part4s Four servers VFCLS
Part9s Nine servers VFCLS

Table 5.3: Description of the evaluated architectures.
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Figure 5.8: Execution times of function round-trigger for the different architectures: VFCLS and repli-
cated architecture highlight.

the nine servers replicated system achieves better results than Part4s, but still worse than the nine server

VFCLS. The differences between the four architectures, however, are not meaningful, and either of them

could provide a good interactive experience to its 500 players.

It is by analyzing the 1000 players context that the performance of VFCLS stands. The graphics show

that both the four and the nine server VFCLS setup outperform the two replicated architectures, with

each reducing by more than half the execution times of their replicated equivalent (in terms of number

of servers). Moreover, both can still provide a highly interactive to its users, as the execution times are

low. It is also encouraging to see that the difference between the execution times of Part9s in the the 500

and 1000 player scenarios is not meaningful, which indicates that VFCLS has potential in what concerns

scalability. To confirm this, however, it would be necessary to perform more stress testing, with a larger

virtual world and a higher number of players and servers. However, due to the limitations of the available

hardware, those tests were not possible to execute.

5.2.2 Server To Client Bandwidth

In this section we analyze the bandwidth required for a server to enforce VFC to its clients. The results

regarding bandwidth are shown in Figure 5.9. At first glance it looks like the performance of VFCLS

regarding bandwidth is poorer than the performance of the replicated architecture: with 500 players

Part4s is the setup that requires more bandwidth; with 1000 players, the more bandwidth demanding

is Part9s. However, to fully understand the information of Figure 5.9 it is necessary to also analyze the

results of the previous performance analysis.

Because VFCLS (both the four and the nine servers configuration) achieves faster execution times of

round-triggered function, it is able to issue an higher number of rounds messages per second. As a result,

it performs VFC enforcement more often than the other (slower) architectures. For instance, Rep4s can

only perform consistency enforcement about once per second in the 1000 players context, while Part9s

can do so almost five times (considering that rounds are issued every 100 milliseconds, as was the case of
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Figure 5.9: Per-server bandwidth requirements of the different architectures.

our testing). Therefore, VFCLS is able to send messages more often to its players, which results in the

higher bandwidth requirements. However, this is not a drawback of our system; instead, it means that

VFCLS can provide a highly interactive experience that the replicated architecture cannot.

5.2.3 Inter-server Communication

Tables 5.5 and 5.4 show the average number of message exchanged between servers in a game context with

100 players. Table 5.4 shows the average number of player updates received by a server, along with the

average number of server synchronization messages received and the average number of servers involved

in the process, with the exception of the server that triggers synchronization for replicated architectures.

Table 5.5 shows the messages exchanged between VFCLS server: object subscription, player transfer,

server synchronization and the average number (NServers) involved in it, along with the average number

of player update messages received by a server. The results were obtained during a five minute simulation.

Replicated Player updates Server Synchronization Number of Synchronizing Servers
4 Server 95357 285747 3
9 Server 26036 230967 8

Table 5.4: Server communication in replicated architectures.

By looking at the tables it is possible to see that VFCLS, due to its partitioning approach and the

subscription protocol, limits the propagation of player update messages between servers. Furthermore,

it is possible to see that the network overhead caused by transfer and subscription messages is not very

high.
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VFCLS Player Updates Server Synchro-
nization

Number of Syn-
chronizing Servers

Subscriptions Transfers

4 Server 93277 104671 1.12 213 115
9 Server 25235 37373 1.27 301 167

Table 5.5: Server communication in VFCLS.

5.3 Summary

In this Section we presented the results of the evaluation of our system. We first analyzed the VFC

model by comparing it to a similar Interest Management model and then presented some results about

the evaluation of the architectural component of our work.

In this work we performed only a preliminary study of our architecture, leaving some important

aspects neglected. First, we tested the system using a limited AOI radius that could only cross a server’s

neighbor partitions. To fully investigate the performance of our system it necessary to design other test

cases that consider larger AOIs and larger number of users. Furthermore, in this work we have not tested

the behavior of our system under hotspots. It certain, however, that the results of such a test case would

not be satisfactory, because our system does not, currently, perform state repartition to respond to load

peaks at the servers.
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Chapter 6

Conclusion

Massively multiplayer online games (MMOGs) are played by thousands of world wide distributed users.

To accommodate these large environments, game infrastructures are required to provide high availabil-

ity, performance and scalability. In this document we have discussed how current approaches, both

commercial and academic, try to achieve these requirements. We focused on system architectures and

interest management techniques currently employed because we consider these two aspects of a game’s

infrastructure to be fundamental to fulfill user requirements.

In this work we proposed VFCLS, a distributed client/server architecture to support MMOGs. Our

solution dynamically partitions the virtual world among several servers, allowing players to freely interact

with each other, regardless of the partition they are located in. Our system also allows players to move

between partitions (and, hence, servers) transparently. We use Vector-field Consistency (VFC) to reduce

the bandwidth required both for servers and clients. Contrary to current interest management strategies,

VFC does not impose abrupt changes on a player’s area of interest. Instead, it gracefully degrades the

player’s view as the its distance to objects increases, similarly to human vision.

Servers in our architecture are arranged in a peer to peer network in which each server only has

a partial view of the complete server network. We designed a subscription system that reduces server

communication by ensuring that a server only knows and interacts with other servers when it is strictly

necessary to allow interaction between players located on different partitions.

To test our system we developed a flexible simulation infrastructure that can simulate different ar-

chitectural settings and interest management models as well as different types of game clients. We used

this infrastructure to test VFCLS and compare it to other solutions, both regarding system architectures

and interest management. Our results show that VFC can match and even outperform other interest

management schemes while improving a game’s playability at the same time. Preliminary evaluation of

the architectural component of VFCLS also show that our system is a feasible distributed multiplayer

game infrastructure.

6.1 Future Work

In this work we have established the grounds for wide variety of future works, including extensions and

improvements to the current design and implementation. In this subsection we enumerate some of the
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ideas for future work that arose during the dissertation:

∙ Currently, modifications to the dimensions of a server’s partition occur only as a result of a split

due to a new server joining. However, a fully dynamic and dependable system should be able

to reorganize its layout by dynamically repartitioning a partition as needed, among the existing

servers. This way the system is would be able to automatically (i.e., without requiring human

assistance) adapt to hotspots and sporadic server load peaks. As future work, we intend to design

an efficient state repartition algorithm that can monitor the load on server, identify when a server

is overload and automatically respond to it by dividing the overloaded server’s partition with one

or more of the existing servers of the network;

∙ In our design of VFCLS we have not addressed fault tolerance. As a result, if a server crashes its

data is lost and the players on its partition are unable to play. We intend to add fault tolerance

mechanisms to VFCLS so that if a server crashes another one can, automatically, take its place and

the remaining servers can update their partial view with the new disposition of the network;

∙ We also intend to study the feasibility of combining partitioning and replication to achieve the

best of both systems - improved performance due to reduced response times (replication) and high

scalability due to the effective division of players between partitions;

∙ As we mentioned before, another objective of ours is to endow VFCLS with an explicit conflict

management mechanism that can efficiently detect and resolve conflict;

∙ Due to time constraints we did not address willing server departure. In a system like ours, a server

may have to leave the system for a varied number of reasons (e.g., because it requires maintenance,

or because it is required to perform another task not related to the game). In the future, we intend

to allow servers to willingly leave the network and transfer its game state to another existing server

with a minimum impact to the network;

∙ Expand VFC/VFCLS to other application contexts, like cooperative editing;

∙ Study how the subscription protocol can use the objects’ consistency requirements to reduce the

frequency of server synchronization.
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