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Abstract

This work describes a solution for cooperative storage of files. Since it is intended to store data

remotely in non-trusted nodes, it is necessary to take steps to protect the users privacy. It is shown how

to build a system, Cloudbox, capable of storing files in a distributed network, respecting the inherent

privacy issues. The Cloudbox system is also capable of supporting groups: sets of files whose access is

restricted to a set of users. The resulting system allows a user to store their data in the cloud, ensuring

that the contents of his files are safe. It takes into account the transitional nature of distributed networks

and presence of possible attackers. This dissertation quantifies the impact of several techniques used

on the performance of a possible implementation, taking into account various parameterizations.

Keywords: Peer-to-peer, Secure storage, Distributed, Community Cloud, Cooperative
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Resumo

Este trabalho descreve uma solução para armazenamento cooperativo de ficheiros. Dado que existe

intenção para armazenar dados remotamente em nós não confiáveis, torna-se necessário tomar medi-

das para proteger a privacidade dos utilizadores.

É demonstrado como construir um sistema, o Cloudbox, capaz de armazenar ficheiros de forma

distribuı́da, respeitando as questões de privacidade inerentes. O Cloudbox é também capaz de suportar

grupos: conjuntos de ficheiros cujo acesso é restrito a um conjunto de utilizadores.

O sistema resultante permite que um utilizador guarde os seus dados na nuvem, assegurando-se

de que o conteúdo dos seus ficheiros está seguro. Tem em conta a natureza transitória de uma rede

distribuı́da e da presença na rede de possı́veis atacantes. Esta dissertação quantifica o impacto das

várias técnicas utilizadas sobre o desempenho de uma possı́vel implementação, tendo em conta várias

parametrizações.

Palavras-Chave: Partilha P2P, Armazenamento seguro, Distribuı́do, Nuvem comunitária, Cooperativo
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Many years ago the great British explorer George Mallory,

who was to die on Mount Everest,

was asked why did he want to climb it.

He said, “Because it is there.”

Well, space is there.

— John F. Kennedy
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Chapter 1

Introduction

In recent years, public cloud storage has been popularized by providers that offer free services. The

commodity of having content synchronized across devices and safe from local hardware failure seems

to have been enough for users to overlook the privacy implications of using such a service.

The concept of Community Cloud, where a group of interested parties contribute with computational

resources towards a common system, from which they all benefit, is an alternative storage paradigm

that can yield the same benefits as the public cloud approach, and, furthermore, it can be extended to

solve its weaknesses.

The existing cloud storage systems either have weak security, require trusting confidential data to

third-parties or, are unable to efficiently deal with dynamic content, or have none to poor collaboration

functionalities. There are a lot of solutions available but none simultaneously solves the mentioned

problems.

The solution proposed in this thesis is designed for a distributed peer-to-peer environment with se-

cure storage even when handed to untrusted devices whilst providing efficient support to content modi-

fication and sharing among dynamic groups.

1.1 Motivation

The emergence of these cloud storage systems is explained by a need developed throughout the last

decade due to the appearance of new consumer devices, like camera phones, digital cameras and

other multimedia devices, that generate new forms of media. Each year new hardware versions of

such devices increase their quality resulting in an increase of disk space required to store their artifacts.

Storing this media online enables us to share them with others and gives us peace of mind knowing that

it is safe from local hardware failure.

Finding new ways to provide scalable storage systems is thus a critical problem if we intend to keep

the innovation rate of multimedia peripherals and sharing and backing up our personal creations online.
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1.2 Goals

The goal of this work is to develop a decentralized architecture for secure file storage. The solution

will have the ability to easily share files among groups, a feature that popularized cloud file storage.

Also, all files managed by the solution should be unintelligible as soon as they leave a users’ machine.

The distributed setting of the architecture will rely on a peer-to-peer topology in order to have built-in

replication as well as improve the system’s scalability.

1.3 Document Organization

This thesis is organized as follows:

• Chapter 2 - Related Work - Presents a study of the state of the art for Peer-to-peer (P2P) networks.

It also provides an overview on different optimization techniques useful to the final solution. In a

cryptography section, it explores secure storage solutions and key establishment protocols. Finally,

it compares existing storage systems and discusses their limitations.

• Chapter 3 - Solution - Describes a proposal of an architecture for the Cloudbox system. It ex-

plains the details for every algorithm necessary to have a group membership system featuring an

underlying secure storage.

• Chapter 4 - Implementation - Presents the implementation details of the Cloudbox system devel-

oped in order to obtain experimental data to support the conclusions of this work.

• Chapter 5 - Evaluation - Consists of an analytic evaluation of the metrics captured.

• Chapter 6 - Conclusions and Future Work - Elaborates some final comments about the work done

and the achieved results. Some thoughts about future work are also presented.
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Chapter 2

Related Work

This section describes the most relevant research work for the definition of the distributed secure stor-

age solution. First, section 2.1 features a survey of the most relevant peer-to-peer topologies. Next, on

section 2.2 are described typical optimization techniques used in distributed storage systems. On sec-

tion 2.3 are presented encryption methods and key management infrastructures. Finally, in section 2.4

are described and compared the capabilities and shortcomings of existing systems.

2.1 Peer-to-peer Topologies

Peer-to-peer architectures are an alternative to classic centralized architectures, where multiple clients

obtain a service by contacting a control server. In turn, peer-to-peer systems distinguish themselves from

that approach by transferring more responsibility to the clients. In a peer-to-peer system, every peer runs

the same client application and are equivalent in functionality. The peers communicate directly without

assistance of a central server but also without its control. Peers organize themselves in an overlay that

constitutes the system network.

These architectures result in systems where the peers are able to share resource like storage, CPU

cycles or bandwidth and feature characteristics such as self-organisation, fault-tolerance, scalability and

no central mediation that are desired for most distributed applications.

There are three key problems addressed by the proposed peer-to-peer systems [1]. They are not

common to all peer-to-peer based applications, but all are fundamental challenges for applications to be

built on top of peer-to-peer networks.

• Routing and location This challenge is common to all peer-to-peer systems: routing messages to

a given peer and translating its address, required for the direct communication. Attempts to solve

this problem efficiently have spawned systems that can be grouped in different classes according

to their level of centralization and network structure.

• Anonymity To protect the identity and physical location of individual peers, some peer-to-peer

systems may desire to use special overlays and routing techniques to make the participation in the

system anonymous.
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• Reputation Management Without a central point of management there must be found an alterna-

tive mean of classifying ,qualitatively or quantitatively, the reputation of a peer and who keeps that

information secure in the system.

Since the routing and location problem is common to all peer-to-peer systems it also determines its

classification. The organization of the peers in the network—the overlay—determines its classification.

As previously mentioned, the classification occurs according to two characteristics of the overlay: its

centralization level and structure [2].

Network Centralisation

Considering that peer-to-peer systems encompass all systems with direct communication between

peers, they can be classified in different level of centralisation:

• Hybrid Decentralised In such systems, even though the main communication is made strictly

between peers, there is a central server that is responsible for helping peers joining the overlay,

helping them finding other peers or storing metadata. From a complexity point of view, this is the

most efficient approach, however, such a system does not scale and has a single point of failure.

An example of such a system is the Napster sharing application. Users installed the client applica-

tion becoming peers in a network. They were able to share files among themselves. When a user

made a file available for sharing, its identifier would be registered in the central repository along

with the identification of the peer. The system was later shutdown by criminal authorities given that

the network was used to illegally share copyrighted material, precisely by taking down the central

repository.

• Decentralised This is the scenario of a fully distributed system, there is no central management

and peers have exactly the same responsibilities. These systems are required to solve the routing

and locating problem efficiently.

• Partially Centralised This approach is similar to the distributed as there is no central server,

however, some peers have more responsibilities than others in managing the system. It tries to

mitigate the problem of a single point of failure as there can be more than such a peer and in case

of failure they can be replicated by a standard peer.

Network Structure

According to the routing and location technique used, a peer-to-peer system may present either a struc-

tured network or an unstructured network.

• Unstructured A system with an unstructured overlay does not take advantages of the way the

overlay is constructed to find peers or content in the system. Instead, there are search mechanism

in place to perform the location. these mechanism can be simple, such as flooding the network
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until obtaining a reply, or more elaborated as random search paths using, for instance, a depth-first

algorithm.

• Structured Structured systems address the location problem in unstructured systems by forcing a

structure in the way the overlay is constructed and then take advantages of that fact to efficiently

locate peers.

Unstructured networks are more performant for systems that have to handle frequent connection

and disconnection of peers, given that they do not have the same overhead that structured network

systems have maintaining updated information of the overlay. Conversely, structured network provide

more performant routing and locating operations.

In table 2.1 the systems described in this report are classified according to the previous categoriza-

tions.

Centralisation
Hybrid Partial None

N
et

w
or

k Unstructured BitTorrent
Napster KaZaa Gnutella

Structured

Chord
CAN
Tapestry
Pastry
Viceroy

Table 2.1: Classification of the systems mentioned in this report

Structured Systems

When building a distributed system, some peer-to-peer topologies allow to build a fully decentralised

architecture. Scalability is an obvious advantage of this systems, but there are different configurations

of the peers, the topology, and each one has different advantages and disadvantages, that balance per-

formance, anonymity and fault-tolerance.

Chord As a structured peer-to-peer system, Chord [3] focus on constructing and maintaining an

overlay. It was designed to efficiently perform the lookup operation: given a key, it maps the key onto

a peer. A consistent hashing function is used to assign a set of keys to each peer, in a way that the

number of keys is evenly balanced between peers, with each peer storing roughly the same number of

keys.

The previously mentioned consistent hashing function, assigns each peer and key a m-bit identifier

using an hash function. The peer identifier is the result of hashing the peer’s IP address and a key

identifier is the result of hashing the data item—usually its name. m should be large enough so that the

probability of two peers or keys being assigned the same identifier is not significant. The identifiers are

ordered in an identifier circle of modulo 2m.

The successor of a peer p—successor(p)—is defined as the first peer clockwise from p, given that

the identifier circle allows to represent the peers in the system in a circular arrangement.
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A given key, say k, will be assigned to the first peer whose identifier is equal or follows k in the

identifier space. The consistent hash algorithm is designed to be compatible with the transient nature

of the peers: to maintaining the mapping when a peer p joins the system, some of the keys currently

assigned to its successor are reassigned to p. For the converse, when a peer leaves the system, all its

keys are reassigned to its successor.

To accelerate the lookup operation, each Chord peer maintains a routing table, called a finger ta-

ble, that maps the identifier to the IP address of the consecutive power of two successor peers—

successor(p+ 2i−1), where p is the identifier of the current peer and i the ith finger of p. This additional

information allows the lookup operation to resolve a query with O(log n) messages.

The finger table is only meant to speed up the lookup operation, for that reason, if a peer joins or

leaves the system and a lookup query is issued before the finger tables are updated, Chord ensures

the correctness of the lookup algorithm by forcing an update of the finger tables when a peer joins and

this guarantees that the address of the correct peer is found, although slower. However, refreshing the

finger tables of all peers in the system when a peer joins can become inefficient for a large number of

peers, for that reason, Chord features an alternative stabilisation protocol [4]: each peer p, periodically

contacts its successor and asks for its predecessor; if the reply is not p, then p’s finger table is outdated

and is updated to set successor(p) the received reply. With this protocol, if a lookup query occurs during

the stabilisation protocol, there are three possible results for the query:

• If none of the peers involved in the lookup is affected by the joining of the peer, the lookup returns

the correct result in O(log n) messages.

• If a peer, in the affected region that is used for the lookup, has the up-to-date successor but

outdated fingers, the lookup will also yield successfully, although slower.

• If a peer, in the affected region that is used for the lookup, has an incorrect successor or still has

not finished migrating all keys to the new peer, the lookup will fail.

In case of intermittent failures or network partitioning, the overlay may reconfigure and partition itself.

If the ring-like overlay is ever partitioned into multiple rings, the stabilisation protocol will be unable to

heal the overlay into a single ring.

In a nutshell, Chord goals are: load balancing, by consistent hashing; decentralisation, as there is no

central repository; scalability, by guaranteeing the efficiency of the lookup operation; and flexible nam-

ing, by using a hash function to generate the identifiers.

CAN CAN—Content Addressable Network [5]—was developed parallel to Chord and other structured

systems like Tapestry and Pastry, so it aims to solve the same goals: scalability, efficiency in locating

peers, dynamic and balanced.

CAN organises the overlay by assigning each peer a zone. the overlay itself is represented as a d-

dimensional Cartesian coordinate space, where each zone corresponds to a segment of the coordinate

space. Each zone is identified by the boundaries of d points. As such, with a key, say k, being mapped
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to a point p in the coordinate space, the lookup function will assign k to the peer whose zone contains

the point p.

Each peer maintains a routing table of all its neighbours in the coordinate space. Two peers are

considered neighbours if they share a (d− 1)-dimensional hyper-plane. The rationale behind the lookup

operation is to forward the query message through a path that approximates to that of a straight line in

the d-dimensional space. Every time a peer receives a lookup request, it forwards it to the neighbour

closest to the peer storing the key. The peers require to keep a routing table of size O(d) for the location

of its neighbours. Seeking the straightest path, from the source peer to the destination peer is achieved

by at most O(dN1/d) messages.

When a peer joins the network, it chooses a random point p within the coordinate space and performs

the lookup for p. The peer with the zone containing p will partition its zone in two halves and assign

one to the new peer, which should then announce itself so that the remaining neighbours can update

their routing tables. When a peer gracefully leaves the network, it chooses a neighbour to take the

responsibility of its zone. The neighbour will to merge its zone and the newly assigned zone into a larger

unified zone; if it fails due to the zone not being valid, it will then be responsible for maintaining the two

separate zones.

CAN also has a stabilisation protocol that is periodically run in background. The object is to find

zones that can be merged into larger valid zones and reassigned. For that, each peer exchanges with

its neighbours its zone coordinates, its list of neighbours and their zone coordinates in order to detect

possible zone merges or silent disconnections.

Tapestry Tapestry [6], like the previously described systems, aims at producing a self-organising

network topology with efficient routing. Tapestry routing algorithm is designed to take network locality in

account. Contrary to the previous structured systems, it does not travel outside the local area unless its

necessary to do so.

The Tapestry overlay is based on a Plaxton Mesh [7], a distributed data structure that allows peers

to locate objects and route messages to them in an arbitrarily-sized overlay network. Each peer keeps a

map of its neighbours where every entry is a pointer to the closest peer in the network whose identifier

matches the identifier on the neighbour map. An identifier is l-digits long and every digit corresponds to

a level—a unit of distance in the overlay.

The lookup operation is made by resolving a level of the identifier at each peer and redirecting for the

next level, starting from right-to-left.

The Plaxton Mesh was originally designed for a static network, so Tapestry enhances it to support

the transient nature of a peer-to-peer network. Apart from the neighbours map, each peer also keeps

a back-pointer to every peer where it is referenced as a neighbour. When a peer joins or leaves the

overlay these back-pointers are used to regenerate the neighbours maps.

Pastry Pastry [8] shares the same goal as Tapestry: to provide efficient routing with a notion of

network locality.
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Pastry routing is a tree-based algorithm [4]. Each peer p chooses randomly an identifier indicating

its position in the identifier circle. It also keeps a leaf set—L—comprised of the |L|/2 set of closest and

identifiers smaller than p, and a set with the |L|/2 peers that are closest and with identifiers larger than

p.

The lookup operation checks the L leaf set for the target peer using the given key. If it is present then

is a matter of jumping to the mapped peer, otherwise, it checks a routing table for a known peer that has

a longer shared identifier prefix with the sought key.

The join operation for a Pastry overlay is designed so that the new peer is able to build its leaf set

and routing table as he is looking for the nearest peer to the identifier it chose. When a peer leaves the

system, only the leaf sets are immediately updated, the routing tables are only corrected later, as they

are not required for the correctness of the lookup operation. This approach allows a Pastry system to

find the correct peer in O(log n).

Viceroy Viceroy [9] is an alternative peer-to-peer system that was designed for maximum perfor-

mance at scale. It was designed so that the cost of the lookup operation is evenly distributed among

the participating peers; for the join and leave operations to change as little state in the least number of

peers as possible; and for the lookup operation itself to require the least amount of messages.

The overlay is organised as a double-linked ring where each peer has a link to its successor, its

predecessor and five additional long-range links to other distant peers. The overlay is also structured in

logP levels, where P is the total number of peers, given that each peer selects a random level at the join

operation. The long-range links are used to jump to a different level and skip ahead and backwards in

the ring. With this overlay the lookup routing id achieved with O(log n) hops. The join ans leave events

generate at most O(log n) messages and require O(1) peers to change state.

Unstructured Systems

The following topologies present different search mechanisms to compensate the fact that they do not

impose rules to the structure of the network. In order to guarantee performant solutions some ap-

proaches sacrifice the level of decentralisation.

Gnutella Gnutella [10] is a fully decentralised peer-to-peer system, though it also has been extended

to support hybrid and fully centralised approaches as well.

On the decentralised version, there is no network organisation, when a peer join the network it

announces itself and waits for its neighbours to reply with their address and shared objects. It is up to

the new peer to choose to which replying neighbours to connect. After that, the peer will periodically

ping its neighbours to obtain their neighbours and expand its map of the network.

For the lookup operation, a peer broadcasts a request for the object that it is trying to find. The re-

quest is tagged with a maximum range that the message should propagate, similar to the Time-To-Live

field in the IP protocol. When a result is found the response is back-propagated: it is sent the opposite
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path through every peer it took to get to the destination peer. To prevent flooding the network with con-

secutive requests and loops in the lookup operation, each peer maintains a cache with the response of

all recent requests, which is the reason every message has a unique random identifier, as there is no

guarantee a peer will not receive a the same message more than one time, given that the overlay is not

structured.

KaZaa KaZaa [1] is an example of a partially centralised system, as it introduces the notion of super-

peers to facilitate the lookup operation. Super-peers are peers that usually have better resources than

the remaining peers—higher bandwidth and more processing power—that are elected to participate in

the routing and locating protocol.

For the lookup operation, a peer sends a query to a super-peer, which then broadcasts the request

to the remaining super-peers. When a peer desires to start sharing an object it must announce it to a

super-peer. The super-peer will store a mapping of peer-object of only those that were communicated.

Super-peers are essentially proxies for the communication in order to reduce the required bandwidth.

Some messages, like the one a peers uses to find a super-peer will still use a brute-force approach of

flooding. As a result, KaZaa benefits from the best of both approaches: fast routing and location without

a single point of failure; and low overhead given that the network is unstructured for most peers, only

super-peers will pay in performance for the keeping state of the network.

BitTorrent Similarly to Napster, the BitTorrent [11] is an hybrid system that uses a centralised server

to solve the location problem.

The system was designed for file-sharing, and while the discovery of peers that stores given file is

efficient, it has poor scalability and is vulnerable to attacks, surveillance and censorship given the single

point of failure.

FreeNet FreeNet [1] is a fully decentralised loosely structured system. It does not classify as a

structured nor unstructured network, because it can only produce an estimate of where the content

will be located. It is designed to provide the sharing peer anonymity that is not possible in the other

structured networks.

Each stored object is represented by a key—a hash of the object’s identifier (it also uses other

mechanism depending on the level of security required). To insert a key, the routing algorithm finds at

each peer the peer with similar stored keys. This results in peers storing a set of objects with similar

keys.

For the lookup, it uses a chained propagation approach: every peer makes a decision of where ti

route the request next using a depth-first algorithm that backtracks when reaches a dead end or finds the

result. While the responses are backtracking the peers involved in the chain update their routing tables

to include new peers and objects or clean the ones that are no longer available. A successful response,

instead of containing the location of the peer like in the previously discussed systems, it returns the

data itself, protecting the identity of the publisher. While the data is being chained back to the peer that
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initiated the lookup it is cached in every peer along the way, in a Least Recently Used—LRU—fashion

cache.

The fact that the requests are chained and the requesting peer does not know the identity of who

is sharing the content hides the underlying topology of the network. It does however allow a malicious

peer to perform a man-in-the-middle attack by corrupting cached object—this problem is common to all

structured networks. To prevent this attack, the Mnemosyne [12] system extends the FreeNet overlay to

use steganographic storage of the object, preventing them from being corrupted.

Discussion

Having seen various peer-to-peer solutions, it is interesting to see how they compare against each other

and what better fits the objectives of the solution proposed in this report.

Routing performance Routing state Peer join/leave
Chord O(logN) logN log 2N

CAN O(dN1/d) 2d 2d
Tapestry O(logN) logN logN
Pastry O(logN) logN logN
Viceroy O(logN) O(N) O(logN)
FreeNet Guaranteed Constant Constant
Unstructured Not Guaranteed Constant Constant

Table 2.2: Comparisson of the main operations in the described systems

In terms if complexity, the systems are very similar, the only major difference being between struc-

tured and unstructured systems, as seen in table 2.2. Since the systems with a structured topology offer

greater performance on the retrieval of objects using scalable routing and search algorithms, they are

more appropriate for the intended solution, as it is expected that the lookup operation will be a frequent

one. As previously discussed, the main advantage of choosing a structured is the effect of three join an

leave operations, however they are an acceptable compromise, as the converse, a non scalable search

algorithm in a unstructured overlay, is not an acceptable trade-off, given scalability being a key attribute

of the desired solution. Furthermore, some unstructured systems do not even guarantee that a lookup

query is successful.

Considering just the structured network approach, choosing one becomes harder, as complexity is

no longer a criteria, since they all perform so similarly. The decision must then be based in the unique

features each topology offers. Chord offers a simple and efficient overlay; CAN is the one with worst

scalability of the bunch; Tapestry, Pastry and Viceroy all are inspired by Chord and CAN but introduce

the concept of network locality that is useful for a application of global scale, without an impact on

performance. Of those three Pastry exhibits the simplest routing algorithm.

The conclusion that a structured overlay with a notion of network location is appropriate for file stor-

age is supported by systems like Mnemosyne and OceanStore, that use Pastry and Tapestry respec-

tively, as the foundation of their work.
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2.2 Optimisations

Geo-replication

Geo-replication refers to the scalability model realized through the replication of data across several

geographic locations, which aims at improving availability, while also reducing network latency by making

content available closer to the clients.

As well as any distributed system, a geo-replicated system’s design is influenced by the CAP theo-

rem [13], according to which is impossible to offer simultaneously consistency, availability, and partition-

tolerance. The advantage of increased availability is paid in the increase of complexity to maintain a

certain level of consistency. Replication can be implemented using different techniques: active replica-

tion, passive replication, quorums and chain replication.

Apart from availability advantages, geo-replication is also a better scaling model than a vertical one.

The infrastructure costs of such a system can be lower [14].

Data Deduplication

Data deduplication [15] is a technique for automatically eliminating coarse-grained and unrelated dupli-

cate data. It is intended to eliminate both intrafile and interfile duplication over large datasets, even if

the files are changed at different times or even in a distributed setting. It aims to reduce the occupied

memory—primary or secondary—by identifying duplicated chunks of data. Data deduplication yields

saving in data storage by reducing the amount of used space, but also favourable impacts network

bandwidth in a distributed architecture.

Since deduplication relies on the notion of identical data it might seam that it is incompatible with

secure storage, due to the fact that ciphers attempt to make the data appear as random. Three different

approaches [16] can be taken:

• Deduplication can be applied directly to cyphered chunks. Though, much less space would be

saved since different ciphers produce different ciphertext strings.

• As an improvement to the problem of the previous approach, the same key could be used to

content that is identified as identical. However, this introduces an additional key sharing problem.

• The third approach is to generate encryption keys in a consistent manner from the chunk data,

in a way that identical chunks will always encrypt to the same ciphertext. This approach is called

convergent encryption[17] and it has the disadvantage of revealing if two ciphertext strings decrypt

to the same plaintext value.

Erasure Coding

Erasure coding is a redundancy scheme and alternative technique to raw replication [18]. It achieves

redundancy by dividing the input in m fragments and then transforms these into a greater number of
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fragments (say n) [19]. The n fragments are the base mapping to reconstruct the input object, while

the m fragments contains redundant data from two or more n fragments. The transformation applied to

obtain the n fragments controls the redundancy factor obtained: kc = n/m.

Coding introduces complexity, by requiring a complex system design to spread and retrieve the frag-

ments, and by the encoding/decoding algorithms. It can also have a negative impact on latency when

compared to other replication techniques, since fragments are fetched from several different locations,

as opposed to a single (and possible the closest) location. Still, it provides better availability than full

replication [20].

Delta Encoding

Delta encoding—also known as delta compressio [21]—is a technique that can be used for efficiently

transfer files over slow communication links where the receiving party already has a similar file.

In systems where both communicating parties share the same file and one wishes to synchronise

a modification to the other, instead of sending the entire file, it is more efficient, especially for multiple

receiving parties, for the sender to generate a “patch” a priory, i.e., calculate the differences between

the original file and the updated version and send that difference. It is up to the receivers to then

reconstruct the new file by applying the patch to the original file. The process of generation of the patch

and reconstructing the file imply that both the sender and receiver agree on the same delta encoding

algorithm.

Delta encoding is also used by version control systems to achieve efficient storage. In order to main-

tain all versions of a file available, version control systems store a baseline version of a file and record

the consecutive modification to the file as deltas. To retrieve a file at any given version, these systems

recover the base file and apply all the deltas up to the desired version.

There are different classes of delta encoding algorithms, each of which uses a different string match-

ing technique to compute the delta itself. They are the insert/delete and the copy/insert classes [22].

• The insert/delete class of algorithms uses a string matching technique that finds the longest com-

mon sub sequence between the two files and then considers the missing parts of the sequence as

a delete instruction and the new parts as insert instructions.

• The copy/insert class of algorithms uses a string matching technique to record the range of match-

ing regions—unmodified regions, common to both files—and computes the offsets where the in-

serts belong. A copy instruction consists of a matching region, that corresponds to a common

region and records the starting and ending positions of that region. An insert instruction contains

the new text and the offset relative to a matching region where they must be inserted.

For example, consider two files, fold with content: “my file”; and fnew with content “your file”. On one

hand, the insert/delete approach, with this example would generate a patch with 6 instructions total: 2

delete instructions—one for m and another y—and 4 insert instructions. The copy/insert approach, on
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the other hand, would generate for this example a total of only two instructions, an insert instruction—

insert your and a copy instruction—copy file.

From the previous example, it is observable that the insert/delete class gives an insert the same

significance as it does to a delete instruction. This makes it more verbose than the copy/insert class

algorithms which usually produce less instructions per modification, resulting in smaller patches. For this

reason the insert/delete approach is typically less appropriate for storage, network or other automated

purposes, although being more appropriate for text-based files and human-readable formats than binary

files.

2.3 Cryptography

Secure Storage

The challenges assumed by secure storage go beyond encrypting data. Secure storage of data [23] is

established on three concepts: confidentiality, integrity and availability.

• Confidentiality Keeping data confidential means that users can access it only if they are autho-

rised for such an operation. Confidentiality can be achieved by storing the data encrypted or by

having an authorisation scheme that controls the permissions for reading data.

• Integrity Keeping the integrity of stored data requires to ensure that no unauthorised user can

modify the data. This is usually achieved by storing the data with a MAC—Message authentication

code—or by digitally signing the data.

• Availability Availability is the concept of keeping data ready for users’ requests when needed.

This concept was already discussed in the previous section.

Besides these goals there are often relevant decisions to explore in a secure storage system: how

are the keys stored; what encryption mechanism is used; are they bound to a particular size of keys; how

is metadata stored; and also are there any protocols to ensure data deletion. These factors influence

the security evaluation of secure storage system.

Secure storage system can be implemented with specific hardware or using software-based ap-

proaches [24]. The software-based approaches, although cannot achieve the performance of dedicated

hardware are interesting as they are much more flexible. Software-based secure storage implementa-

tions can be classified according to the level where the cryptographic engine executes: application level,

file system level, or block level.

Block-level Block-level secure storage systems operate at the lowest level, below the file system

layer, encrypting at the granularity of a disk block, hence its name. They are completely decoupled from

the file system and, for that reason, are able to secure the file system metadata: filenames, file sizes,

directory structures, and user permissions. Such systems present better performance when compared

with file system solutions but are unable to provide the same flexibility as other secure storage solutions

given that they encrypt entire partitions at once.
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File system level At the file system level there are multiple ways to implement secure storage:

disk-based, network loopback, or a stackable approach.

In a disk-based secure storage the cryptographic module is an extension to the file system. A disk-

based approach as access to all of the file system metadata: files, directories and block-location. It can

use that information to provide fine-grained authorisation schemes, for example, at a level of a key per

file, as opposed to the block-level approach that required a key to encrypt an entire partition. As far as

performance is concerned, all the encryption and decryption operations are performed in kernel-space.

This approach, as other file system-based solutions, does not offer confidentiality for the metadata.

Network loopback-based systems leverage the Network File System available in some file system

implementations. The Network File System is a module that redirects local file systems to a remote

server used to create distributed file systems. Cryptographic file system solutions use this mechanism to

redirect the file system primitives, from kernel-space, to a daemon, running in user-space, that consists

of a Network File System server and an encryption engine. Implementations using this approach achieve

a certain level of decoupling from the underlying file system—they are required to support a network

loopback protocol and implement an interface for every file system. However, such implementations

cannot control the representation of the files on disk, and have to deal with possible vulnerabilities of the

network protocol.

Stackable storage systems try to combine the advantages of both previous approaches. They consist

of a virtualized file system working on top of the native file system that intercepts the operations and

processes them in an encryption engine in the kernel-space. This approach achieves the decoupling of

network loopback implementations whilst not paying the overhead of transitioning between kernel and

user-space.

Application level When secure storage is implemented at application level, as a component of an

application, the choice of cipher algorithm is open for the developer, as is the decision of what to encrypt.

However, there are a few drawbacks: the storage the keys must be dealt by the developer; the metadata

of the encrypted files is not protected; and, the process of encrypting and decrypting might temporarily

reveal the data in temporary files that are possibly visible to attackers.

In application level systems another influential decision to the confidentiality of the system is the way

the encryption is employed. On a distributed secure storage system, where there is a need for the data

to leave the physical machines of the user, two approaches can be taken:

• Server-side encryption In this scheme, the data is only encrypted at the remote location. A

secure channel is established between the user machine and the remote storage provider before

data is uploaded. That way, a malicious third-party cannot eavesdrop on the transfer. However,

the entity responsible for the remote storage has access to all the data. Measures like using an

encrypted file systems reduce the risk but the data will still be visible to the remote third-party and

out of control of the user.

• Client-side encryption This approach is inherently more secure as all data is encrypted locally

on the user machine before it is uploaded. Whether it is done using symmetric or asymmetric
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encryption, no one other than the client is able to view the plain text content of the data, since the

key is keep exclusively on the client.

Keys For secure storage systems the cipher algorithm is an important component that confers the

confidentiality to the system. The encryption engines are usual modular so that the systems can be

tailored by changing the used cipher and key size, that affect significantly the performance of the system,

depending on the data that is being stored. For file storage the most appropriate ciphers are symmetric

block cipher [25]. When deciding between asymmetric and symmetric, symmetric ciphers are a better

choice as they have a lower computation cost. The reason to use a block as the operating mode is that

it is very flexible considering the size of the input. Block ciphers allow us to encrypt the input as a block

of the same size as the size of the key or, with help from an initialization vector, transform the cipher into

a self-synchronising stream cipher, that generates a continuous key stream that can be used to encrypt

inputs of arbitrary length.

The most popular ciphers for a file encryption system are the DES, Blowfish, and AES cipher [24].

Key Establishment Protocols

Key establishment protocols refer to the technique used to establish a shared secret between two or

more parties. Key establishment protocols can be classified in two categories [26]: key distribution and

key agreement protocols.

• Key Distribution This approach implies a centralised or hierarchical architecture where one of the

involved parties creates a secret key and then securely distributed it to the remaining parties.

• Key Agreement The algorithms in this category allow the individual parties to negotiate a secret

key collaboratively, even over insecure public networks.

A key distribution approach has several disadvantages. The fact of being a centralised architecture

makes it a single point of failure and a performance bottleneck. It is also very attractive for an attacker

given that all the system’s secrets are kept in one location. It is also very difficult to achieve perfect

forward secrecy and resistance to known-key attacks (these are detailed further ahead in this section)

with such protocols.

For a key agreement protocol to be effective there are a number of required properties that guarantee

its security:

• Key Authentication Authentication of the parties involved in the exchanges guarantees that no

main-in-the-middle attacks—communication interception followed by impersonation—are possible.

The authentication can be partial if only a party is authenticated, or mutual if all parties identity is

verified by all the other.

This problem is usually solved by the parties joining the system with authentication keys or by

providing a public-key infrastructure with certificate authorities that distribute public-key certificates.
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Step Alice Bob
1 p,g

2 A = random()
a = gB mod p

B = random()
b = gA mod p

3 Send a Send b
4 K = gBA mod p ≡ bA mod p K = gAB mod p ≡ aB mod p
5 Send Ek(data)

Table 2.3: Technologies employed by the described solutions

• Perfect Forward Secrecy Forward secrecy, also called perfect forward secrecy [27], is a property

that establishes stronger confidentiality of a key-agreement protocol. An authenticated key ex-

change protocol featuring forward secrecy guarantees that if a long-term secret is disclosed, then

all previously generated session keys from that secret will not be compromised.

Partial forward secrecy refers to when only a participant on the key exchange protocol verifies

these properties. If all participants verify them then the algorithm has forward secrecy.

• Resistance to Known-key Attacks A protocol is resistant to a known-key attack if it guarantees

that in case a session key is disclosed, it cannot be used to compromise other sessions, that use

different session keys, or long-term secrets.

• Key Confirmation and Key Integrity Key confirmation refers to a later step of the exchange

algorithm, where the parties validate that they all possess the same generated key.

Key integrity refers to the fact that a malicious party cannot influence the generation of the key.

Even if it intercepts the communication of the exchange protocol it should not be able to derive any

information that facilitates an attack.

2-Party Key Agreement Protocols The Diffie-Hellman protocol [27] is a key agreement where the

two parties contribute to the generation of the key. In it, each party selects a random secret number,

A and B, and calculates a = gA mod p and b = gB mod p, respectively, given p and g are large prime

numbers generated and publicly shared by one of the parties a priori. Each party can then derive the

key by computing K = bA mod p or K = aB mod p to establish encrypted communication as seen in

table 2.3.

The security of the Diffie-Hellman protocol is supported by the Decisional Diffie-Hellman Problem,

which consists in determining whether gc = gab, given ga, gb, and a random c, that is computationally

hard for very large prime numbers.

The first proposed version of the Diffie-Hellman protocol was vulnerable to man-in-the-middle attacks

as it provides no authentication mechanism. Proposed solution for this problem include the Authenti-

cated Diffie-Hellman protocol, which uses a public-key infrastructure to verify the identity of the parties.

There are other alternative approaches, know as password-authenticated agreement protocols, that use

a initially shared secret to achieve the authentication. An example is the Diffie-Hellman Encrypted Key

Exchange protocol [28], which in the transfer step—step 3 of table 2.3—is modified so that the transmis-

sion of a and b are encrypted by this shared secret. These solutions have some disadvantages: they are
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not contributing—each party does not contribute equally to the generation of the key; they rely on a third

party; or, in the case of Encrypted Key Exchange protocol, does not provide perfect forward secrecy.

The original authors of the Diffie-Hellman protocol extended it to support authentication while main-

taining its characteristics: contributing and perfect forward secrecy. The protocol is also called Station-

To-Station [27], and assumes that the two parties each possess an asymmetric key pair and a public key

certificate. The step of the original Diffie-Hellman in which the parties exchange the calculated exponent

values is extended to include each party signature and public key certificate. Thus, even if a malicious

party is able to intercept the messages, it cannot forge the messages as it cannot forge the signatures.

Group Key Agreement Protocols An interesting characteristic of the Diffie-Hellman protocol is that

besides featuring all the desired properties for a key agreement protocol, it is also extendable to n-party

negotiation protocols. The Group Diffie-Hellman family consists of three protocols [29]: GDH.1, GDH.2

and GDH.3. They share the same idea, but GDH.2 focus on minimising the number of messages sent

during the protocol and GDH.3 tries to minimise the computation costs.

The idea behind these algorithms consists of having two stages: In the first stage the individual

contribution of each party is collected, in a chained formation, where each party sends its contribution to

the next, and the final one broadcasts the computed keyring material. These protocols, like the original

Diffie-Hellman protocol do not support authentication, but they can be extended to authenticate the

involved parties, as described in the SA-GDH.2 protocol [26].

However, all previous algorithms consider a group as a static entity, that means that are unable to

cope with members joining or leaving a group. A possible solution could be to simply delete all infor-

mation and start the protocol from scratch for the new members. Such an approach is computationally

expensive an unscalable for environments where groups are subjected to frequent modifications. An-

other, more efficient solution, is to resume the information from the establish group. The A-GDH.2-MA

protocol [26] achieves just that. It is an authenticated member addition version of GDH.2. The members

cache the partial key from the initial run of the protocol, and for every modification of the group, they

incrementally update the key.

The STR protocol [30] for group key agreement is an interesting solution as it was designed for groups

with dynamic membership. Instead of the previous protocols that communicated in a chained approach,

the STR is built on hierarchic tree data structure, which means that the required number of messages in

the protocol is constant, and not bound to the size of the group. It also expands the notion of groups by

introducing subgroups that can be partitioned and merged. The disadvantage of this protocol is that it

has fairly high computational cost, which is bound to the number of members in the group.

2.4 Existing Storage Systems

Dropbox is the most popular cloud storage service. It distinguishes itself from its competitors by offering

easy to use sharing features.
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Dropbox

The Dropbox architecture is built on top of Amazon AWS1. Its service is powered by two different

components[31]. On the one hand, control servers are responsible for managing files meta-data, Appli-

cation Programming Interface (API) requests, and the web interface. On the other hand, data storage

instances, relying directly on Amazon S32, receive and serve request for files upload and download.

Data upload and download is over the HTTPS protocol. Dropbox, Inc claims that all user content is en-

crypted server-side using AES algorithm with 256 bits keys [32]. However, the authentication mechanism

is a simple username and password which if broken allows full access to the unencrypted files.

Every file in the Dropbox folder in split into 4MB chunks. Each of these is assigned an identifier

obtained by SHA256 hash. It is not known if any technique of deduplication is applied at this stage.

Dropbox allows to view previous versions of each file. This feature results of an optimisation used

to transfer the file chunks, by using delta encoding when updating existing chunks, since the Dropbox

client only uploads and downloads the differences made to the file between the current version and the

latest version.

Other solutions

There are a number of commercial cloud services competing with Dropbox offering client-side encryption

and peer-to-peer storage. The most proeminent are BitTorrent Sync, Cubby, and SpaceMonkey.

Cubby [33] offers client-side encrypted storage on a cloud architecture. A symmetric key is used

to cipher the content. This generated on Cubby’s servers when an account is created and kept on a

database ciphered by an asymmetric key which in turn is ciphered by a transformation of the user’s

password. When a user installs the software client the folders and the asymmetric key are downloaded.

BitTorrent Sync [34] leverages the technology of their existing peer-to-peer torrent client BitTorrent for

the transfer of the files and allows for client-side encrypted storage. Despite its foundation on BitTorrent,

instead of disseminating the files through the peer-to-peer network, it will only store files on trusted

devices—the users—which must be explicitly added. The Sync infrastructure consists of a peer-to-peer

tracker which maps folders—each shared folder is identified by a unique hash which does not depend

on the content—to users.

SpaceMonkey approach is similar to BitTorrent Sync, but instead of relying on an open peer-to-peer

network, they sell dedicated hardware—a network-enabled HDD—where the files are stored. Similarly

to Cubby, since they offer a web interface for their service, they must keep the content ciphering key on

their server. Their solution also does not employ any deduplication technique [35].

There are countless more services for online storage, but they do not differ in the technologies used

from those already mentioned. Table 2.4 briefly compares the key technologies that these services are

known to use. We say that a key is lent if the secret key is kept by the provider of the service, even if

ciphered, and is, at some point, transferred from or to the client machine.

1Amazon Web Services
2Simple Storage Service

20



Paradigm Encryption Encryption algorithm Key size Lends key
BitTorrent Sync P2P Client-side AES 128 bits No
Cubby Cloud + P2P Client-side AES 256 bits Yes
Dropbox Cloud Server-side AES 256 bits Yes
SpaceMonkey P2P Client-side AES N/A Yes

Table 2.4: Technologies employed by the described solutions
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Chapter 3

Solution

The systems presented in the previous section have problems that prevent them from being true secure

storage services. The following list addresses those problems and proposes how they can be solved in

the scope of this project.

• Cloud-based infrastructure Most storage providers presented previously rely on cloud infrastruc-

ture to build their services. A better approach is to use a peer-to-peer network to host the service.

On the one hand, not only will the infrastructure scale by itself as the number of users grows, as it

is also much more cost-effective to maintain for the service provider. On the other hand, nodes join

and leave the network in an uncontrolled way, and for that reason, other techniques like replication

are required to prevent data loss.

• Server-side encryption Services that use server-side encryption can not be labelled as secure.

Privacy is an important requirement of a system that claims to be secure. Giving the entity respon-

sible for the service plain-text access to the user files can not be considered a secure practice.

Thus, the only way to assure that the user content is private is by making sure it is never compre-

hensible in an unauthorised device. For that reason, client-side encryption must be used.

• No perfect forward secrecy The solutions offering client-side encryption require a user to create

an account online and then install a client. During the account creating process a key to cipher the

files’ content is generated. When the user installs the client, that key is transferred from the cloud

servers to the user local device. This violates the principle of forward secrecy by potentially expos-

ing a long-term secret, the most important of all in those systems. To prevent these secrets from

being exposed, the solution must avoid the transfer of keys, mostly the long-term ones, recurring

to key agreement protocols for generation of shared keys.

• No data-deduplication As concluded in section 2.4, systems using client-side encryption do not

use data-deduplication techniques among different users files. It is an inherit limitation of these

systems since once a file is handed to the system it is already ciphered, so, even if two files have

the same content, as they were encrypted with different keys, from the point of view of the system

they will be different files. It is possible to apply deduplication techniques across a single user files,
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even if it is not as effective. Applying deduplication to the files of the all users would yield much

more duplicates, hence, saving much more space.

The solution presented next aims at having a system that provides a durable secure storage. The

properties above are the main objectives of the system and therefore have driven the main decisions of

the architecture.

3.1 Proposed Solution

Like previously mentioned, it is intended for the solution to feature: encrypted and replicated storage,

and the ability to create and manage groups that share files among them. It will allow a user to backup

his files and share them with others. There are two use cases for the solution: first, a single user using

the system for backup and multiple device synchronisation; second, a group of users sharing a set of

files between them, and with the ability to add and remove users from the group, having access to the

files only those who belong to the group at a given moment. The solution can be described as three

layers where each one sets the foundation for the operations defined in the layer above. These layers

are File operations, Group operations and Orchestration. Starting from the bottom one, this section

exhibits the algorithms and decisions used in each layer.

3.1.1 File-level Operations

Considering in the first place the use case of a single user files synchronization, there are already

requirements to shape the basic operations concerning files. These are the create file, update file and

delete file operations. They map directly to the actions applied by a user to the files in the file system and

thus, can be interpreted as events that require handling in order to sustain state consistency between

the solution’s representation and the file system. There is another fundamental operation, though a

higher-level one, the consolidate operation.

Before detailing the intent of each of these operations it is necessary to explain the concepts and

techniques incorporated in them.

Epoch

Given the delta encoding system, as described in Section 2.2, the solution will be able to achieve efficient

updates. Once a file is added to a shared folder a copy will be created as the first version of the file.

Consecutive updates to the original file cause the system to calculate the difference and record it as the

following version. In order for a user to retrieve a file at its latest version, the system needs to fetch the

N versions of the original file. This approach is better than uploading the entire file when it is updated

due to the small overhead, but also because it is easier to restrict access to only certain versions of a

given file, an important concept for the later discussed group membership concept.

A sequence of versions, from version 1 to version N of a file is dubbed as an epoch. Nevertheless,

this does not mean that a file has a single epoch. Any file can have many epochs. A given file can start
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Figure 3.1: File versioning evolution

a new epoch at any moment, meaning that all it’s current versions will be merged into a new version 1.

From now on, the process of reseting the versions and a file contents will be referred as consolidating.

The existence of this operation is explained by the fact that over time the cost of fetching all versions

to obtain a file will overcome the cost of consolidating the file and starting over. Figure 3.1 illustrates a

simplified example of the lifecycle of a file versioning.

Criptography

In order to securely store every file, let’s assume the existence of a file key mapped to a file for a given

epoch. This key will serve two purposes:

On the one hand, it will be used to cipher the content of each partial version that is physically stored,

for the duration of a single epoch. Besides being a mechanism that allows for key rotation, it will also be

crucial to enforce membership restrictions.

On the other hand, a file key can be used to generate secure identifiers for storing the files. From

the Related Work section we conclude that a structured peer-to-peer topology is better suited for the

requirements, as we can efficiently discover the node storing a file from a given file identifier. However,

this approach poses itself a problem: if the file identifier can be used to discover all the locations where

a file is stored, an attacker could use this information to try to attack the system. For that reason, to

guarantee the anonymity of the content stored, the file identifier is itself ciphered with the owner’s key,

in a way that only users that know the file key will know its location. The proposed file identifier for file

version vi is hash({filename+ vi}KF
) where KF is the file key.

Operations

Having established the previous concepts, it is now possible to formalize the core file operations: cre-

ate, update and delete. The auxiliary operations V ersionIdentifier and KeyIdentifier are used to

obtain the file versions and their keys identifiers respectively. The V ersionIdentifier corresponds to

hash({filename+vi}KF
); the KeyIdentifier is defined later in this chapter. The PutToDHT (key, value)

operation corresponds to propagating a given value identified by a determined key in the underlying P2P

overlay.

Create The create operation inside the system is very similar to its counterpart in the actual file system:

simply consider the whole file as the first version.
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Algorithm 1 Add file operation

1: procedure ADDFILE(FN )
2: KF ← GenerateKey
3: PutToDHT(KeyIdentifier(KF ), KF )
4: CreateVersion(FN , KF )
5: procedure CREATEVERSION(content, KF )
6: cipheredContent← Cipher(content, KF )
7: PutToDHT(VersionIdentifier(KF ), cipheredContent)

Update The update operation involves the most concepts and it is thus the most complicated one.

Besides having to create a new version as the AddFile operation, in addition, it has to calculate the

differences between the updated file and the current version.

Algorithm 2 Update file operation

1: procedure UPDATEFILE(FN )
2: oldContent← Decipher(FN−1, KF )
3: newVersionContent← Diff(oldContent, FN )
4: CreateVersion(newVersionContent, KF )

In this operation, the complete content of the file in the previous version can be maintained either as

a whole or recreated at any time from the aggregation of all versions, incurring in the overhead of deci-

phering and merging them. It is a memory/storage versus CPU/time tradeoff that can be implemented

according to the expected frequency of updates of the tracked files.

Delete The delete operation causes a file to no longer be tracked by the system. It causes the file to

be deleted (i.e. disapear) from the node where the event is triggered. Not propagating the delete event

immediately to other nodes reduces greatly the complexity of the metadata and communication protocol.

The consistency of the folder is eventually restored after the occurrence of a folder-level consolidate

operation (whose trigger will be explained in the group operations). Propagating the event immediately

would not prevent any participant with previous access from retrieving the keys and versions of the

deleted file, as they are stored in the underlying P2P network from where they are never explicitly

deleted.

Consolidate Finally, the consolidate operation, at file level, is a combination of the create and update

operations. As previously mentioned, its purpose is to set a new epoch for a file, which implies the

generation of a new key. In the scope of file operations, the consolidate operation is useful, as an

optimization technique that can be used to prevent the infinite growth of a file versions. It can be defined

as presented in algorithm 3.

Figure 3.2 shows the lifecycle of a file versions and keys given the occurrence of a consolidate

operation.

26



Algorithm 3 Consolidate file operation

1: procedure CONSOLIDATE(F , KF )
2: versions← ListVersions(F )
3: decipheredContent← {}
4: for version in versions
5: versionDecipheredContent← Decipher(version, KF )
6: decipheredContent← Merge(decipheredContent, versionDecipheredContent)
7: KF+1 ← GenerateKey
8: PutToDHT(KeyIdentifier(KF+1), KF+1)
9: CreateVersion(decipheredContent, KF+1)

Figure 3.2: File versioning evolution with file keys

3.1.2 Group-level Operations

Having established the basic operations to manipulate files, it is now possible to describe the operations

to manage groups. A group can be described as a set of files who are shared between any number

of users. The main objective of the group operations is to control the members access to those files,

which results in two core operations: the add/join and remove/leave operations. Once again, these are

supported by an epoch concept and some cryptography rules.

Epoch

In the context of a group, an epoch is again defined by a key, in this case a group key. The change of key

and therefore epoch, is determined by a change in the group members: adding or removing a member

to a group terminates the current epoch and starts a new one.

Criptography

The existence of a group key per epoch—KG—which is shared by all members, is what enables the

groups’ privacy.

Unlike file keys, group keys are not meant to be used to cipher file contents, but rather, to cipher

metadata concerning a group and its files. Given the distributed nature of the underlaying network

and non existence of a central repository, the metadata is stored in the system as regular files. In

order for them to be private, their identity is derived from the group’s key: FileMetadataIdentifier =

hash({filename+ v0}KG
); GroupMetadataIdentifier = hash({groupname}KG

).
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Operations

Having separate keys, KG and KF , allows to reduce the burden of re-ciphering the files when there are

changes to the group membership. There are two possible modes of operation according to the policy

selected for group history. The first mode of operation leaks the history of a file to members that join the

group later, however, it only stores each version once, as fig. 3.3 shows. The second mode, showcased

in fig. 3.4, hides the history of a file for new members at the cost of consolidating the file—merging all

versions and re-ciphering with a new key—when a new member joins the group, which means the total

size of a file in the system is a function of the file size times the number of member additions to the

group. Given that the first mode does not perform consolidation, for a file with many modifications, the

fetch operation gets slower for new members as they have to fetch all previous versions to reconstruct

the file.

The auxiliary operation FileMetadata and GroupMetadata are used translate a files or groups

names and obtain its metadata files. The KeyIdentifier operation can be defined as hash({filename+

key}KG
).

Figure 3.3: File versioning evolution with history

Figure 3.4: File versioning evolution without history

Add User/Join Group Independently of the key exchange/negotiation protocol, the process of extend-

ing a groups’ membership to include a new member, always requires action from both parties, whether

they already belong or are the one joining. Algorithm 4 and algorithm 5 detail the add operations. In

the mode that preserves history, no action needs to be taken other than distribute the current group key

to the new member. This way the members joins the group without an epoch change, and is allowed

access to all the versions of the current epoch. When we do not want to expose any previous group

history, we consolidate all the files in the group. From the new member perspective he is joining a new
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group, as the consolidate operation reseted all files history.

Algorithm 4 Add user to group operation preserving history

1: procedure ADDUSER(G)
2: Distribute(KG)

Algorithm 5 Add user to group operation without preserving history

1: procedure ADDUSER(G)
2: KGN+1

← GenerateKey
3: files← ListFiles(GroupMetadata(G), KGN

)
4: for file in files
5: KFN+1

← GenerateKey
6: PutToDHT(KeyIdentifier(KFN+1

), KFN+1
)

7: Consolidate(file, KFN+1
)

8: cipheredFileMetadata← Cipher(FileMetadata(file), KGN+1
)

9: PutToDHT(FileMetadataIdentifier(KGN+1
), cipheredFileMetadata)

10: cipheredGroupMetadata← Cipher(GroupMetadata(G), KGN+1
)

11: PutToDHT(GroupMetadataIdentifier(KGN+1
), cipheredGroupMetadata)

Remove User/Leave Group The rationale behind the remove operation is similar to the one for the

delete file operation: since there is not made any explicit effort for it to be deleted, a removed member

is allowed to keep access to the current state of the group, but from its perspective there will be no new

versions.

The remove operation is equivalent whether operating in a history preserving mode or not. Since a

member is leaving there is no need to rewrite history, because all members in the groups already had

access to the current versions. Instead, generating a new group key and reciphering the metadata is

sufficient so that the evicted member can’t detect that new versions are available, and generating new

file keys so that new versions are ciphered with a different key not available to the member that left, in a

way that he will not be able to access the file versions by guessing their identifiers.

Algorithm 6 Remove user from group operation

1: procedure REMOVEUSER(G)
2: Generate KGN+1

3: Generate KFN+1

4: files← ListFiles(GroupMetadata(G), KGN
)

5: for file in files
6: cipheredFileMetadata← Cipher(FileMetadata(file), KGN+1

)
7: PutToDHT(FileMetadataIdentifier(KGN+1

), cipheredFileMetadata)
8: cipheredGroupMetadata← Cipher(GroupMetadata(G), KGN+1

)
9: PutToDHT(GroupMetadataIdentifier(KGN+1

), cipheredGroupMetadata)

3.1.3 Orchestration

The solution will be a single client running on every user machine. This client is composed of different

components that can be grouped in three categories: Network, cryptography, and storage, as shown is

fig. 3.5.
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Figure 3.5: Client architecture components

Group Management and Policy Enforcement This component defines the high-level algorithms re-

sponsible for managing the essential functionalities of the solution, like handling group events, counting

epochs, recognizing user actions, including the previously described algorithms in this section. Essen-

tially, it orchestrate the remaining components in order to offer the sum of the expected functionalities of

the solution. It is also comprised of a policy engine that allows to enforce on validate certain conditions

concerning running operations of the solution. Such conditions can be used to limit storage capacity for

a given user, the replication factor, or even whether or not to use secure storage at all.

A policy is defined by the operation it is applied to, by whether or not the operation should be ex-

ecuted, by a precondition, and by a postcondition. This is intended to be a flexible way of injecting

new behavior, rather than using a configuration based system with flags and parameters that require all

behavior to be defined beforehand, the policy system allows the definition of functions that modify and

extends the solution original behavior without having to change their core components.

Figure 3.6: Policies and their application

A policy also includes a certificate. This certificate can be used to guarantee that the author of the

policy is trusted by the system, and to prevent attackers from creating policies that would disable storage

space restrictions or disabling the encryption operation of other users.

Since policies are applied to operations, no action is taken after applying one that is conflicting with

the current state. Considering a storage space limit policy, it would not affect the system once applied,

but by extending the add file operation, it would prevent new files from being created while more space

is used than the new limit.
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HTTP Server Every client will have a network server which will be the foundation of all communication,

whether it be for the peer-to-peer protocol or for the application itself that will work over a public API.

Peer-to-peer Overlay Manager This component will contain the logic responsible for joining a node to

the existing overlay and update the data structures required to maintain the overlay. Note that the P2P

implementation is completely orthogonal to the solution.

Other aspects of the solution will also be implemented at this level. Optimisation techniques like

erasure-conding and replication, that are only advantageous in a distributed setting, are therefore a

problem that this component has to deal with.

Considering, first of all erasure-coding, which in the scenario of retrieving a file version, allows for

the parallelisation of the download, given that all chunks that compose the version are transferred si-

multaneously and results in a performance capped by the transfer time of the slowest chunk. Having

erasure-coding working, only at the P2P Manager level, not only simplifies the storing logic of shadow

files but it would also be redundant since there is no advantage in physically storing the shadow files as

chunks. To support this mechanism, both file identifiers and metadata need to be extended: File iden-

tifiers are easy to extend by appending the chunk number at the end, similar to the versions schema,

like −ci given that i ∈ [1, C] and C is the number of total chunks in which a file is divided; File metadata,

besides the keys for each version, also needs to include the number of chunks into which each chunk

will be divided.

Replication is another technique that given the context of the solution is only beneficial according

to the network layer presence. Replication can be easily achieved by the same technique described

earlier, of modifying the file identifiers to include the number of the replica. That is, given a replication

factor of R = 3, we can simply extend the identifier by adding −ri, given i ∈ [0, R − 1], and storing

the multiple replicas in the overlay. This decision also takes into consideration the capability of some

overlays to supply replication natively, in which case, it would be able to provide a better dispersion

than that guaranteed by the transformation of the file identifier. Considering the transient nature of

the network, it is necessary to assure that an healthy amount of replicas are still available. The same

mechanism responsible for verifying the latest version of a file must monitor the number of available

replicas. It should not take immediate action if less than desired replicas are available, as nodes are

allowed to leave the network, starting from the assumption that is likely that they return. Redistribution

of replicas should be taken after a period of time of low replica availability or no replication scenario, in

which only the current node would have the data.

Key Manager This module will manage the lifecycle of the keys, the creation of new keys and the

revocation of old keys. It will also be responsible for mapping those keys to to the respective files,

individuals or groups.

In order to map the keys to their respective entities, it is necessary to define the structure of the

metadata that supports that information. As previously hinted there are several levels of metadata:

information concerning files, groups, and users. Given the hierarchical nature of these concepts, also
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the metadata structure can follow the same organization.

Figure 3.7: Metadata structure

Figure 3.7 shows the structure of the metadata: At the root level the metafile .folder stores the keys

for each group, policies and options. For each group there is a shadow folder .cloudbox/ that contains

both the metadata for the group, in the .group file, and all the files for the partial versions of the group

files. The group metafile is the one storing the mapping for file keys and versions.

There are several reasons to use this hierarchic metadata structure: First of all, it obeys to a sepa-

ration of concern principle that results in disclosing the minimum information required, given that groups

don’t have access to other groups meta information. Secondly, it simplifies the complexity of the meta-

data itself, as having it mixed together, would require more information to disambiguate the identity being

referred, that eventually would have a greater cost in storage space used. Last of all, this separation is

necessary, since the metadata needs to be in the underlying P2P network and otherwise it would not be

possible to share group metadata separately.

There is no way for a file belonging to a group to be shared in another group. In order for a file to

be shared with different groups, even if the members of one group are a subset of another, it must be

individually added to every one of those groups. From the point of view of the system, the same file in

different groups is a different file.

Secure Storage This component is depicted as separate from the file system because, even though

it is implemented on top of the native file system, it will be an encrypted storage ciphered by the client

application.

File System Adapter A component that will connect to the operating system and register the native

file system events so that it can detect creation and modification of files.

Storage Manager This component is the one that has the ability to calculate the file modification deltas

and reconstruct the file from the various chunks the file is split in.

In case of concurrent edits by different members, a first-come-first-served policy applies. The first

to publish the file version identifier is able to keep the changes. The second one will abort and fail the

update operation. Conflict management is out of scope for this solution, as it can be implemented on

top of it, but it is guaranteed a consistent update operation.
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Chapter 4

Implementation

This chapter presents the relevant details about the implementation of the Cloudbox system. The ap-

plication itself can be described as two different modules: a client daemon, that encapsulates all the

functionality described in chapter 3; and a User Interface (UI) that enables the end-users experience.

For testing purposes, the implementation features a mocked direct peer communication protocol, as

opposed to a full featured P2P overlay.

4.1 Client

The client daemon is responsible for monitoring the file system for changes and synchronizing remote

changes. It is written in Scala, a language that mixes object-oriented with functional programming.

Since Scala is a JVM language and is interoperable with Java, it is very easy to use the operating

system abstractions defined by the Java API, as well as the existing cryptography libraries. Scala is

meant to develop highly concurrent and distributed applications — hence the name, Scalable Language

—, which is a nice fit for the requirements of Cloudbox.

The initialization process of the client makes a good use of Scala concurrency mechanism, as three

parallel execution contexts are launched: an HTTP server, a file system monitor and a performance

observer, that introspects the remaining modules for evaluation purposes.

Also during the initialization, the client creates a Cloudbox folder in the user home folder, including a

default group to which only the current user belongs, ready to start tracking files. Having a default group,

comes at a cost of just the generation of its key. Rather than paying this performance cost when the

user actually takes the action to create a group, doing it beforehand also simplifies the structure of the

.cloudbox shadow folder for files that would not otherwise belong to any group.

After this initial sequential execution the client is fully event-driven and is listening to the file system,

the network and user input.

The decision to have a folder that automatically detects the changes applied to to the file system,

rather than a mechanism, like a Command Line Interface (CLI), that would require the user to explicit

indicate which files should be tracked, is based on which would be most user-friendly, given that both
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require complex implementations. Even though that the first option is slightly more complex, given

that it potentially introduces a code portability issue, the usability use case greatly out weights any

disadvantage.

4.1.1 Metadata

In early versions of the Cloudbox prototype, given the multitude of executing threads, the metadata would

sometimes get corrupted, due to the concurrent writes operations being made. Before implementing a

simplistic lock system to regulate concurrent access to the metadata, investigating other alternatives

revealed that using SQLite would be a better approach. SQLite is a transactional SQL engine that

stores a consolidated state of the data model into a single file. Defining a data model for the metadata

allowed for complete abstraction of the metadata implementation that besides solving the concurrency

problems made it much easier to use.

Using an Object-relational mapping (ORM) library, makes it possible to access the metadata as a

native Scala collection, instead of having to write SQL for reading from and writing to the metadata. It

also allows to modify the structure of objects themselves. An interesting modification worth mentioning,

is the addition of a special converter, that by annotating certain fields those can be stored ciphered in

the metadata itself rather than in plaintext. All the client generated keys are stored this way. Each client

is bundled with a unique symmetric key that is only used to be able to cipher those fields.

4.1.2 File System Monitor

Another relevant implementation detail is the choice for the file system monitoring. Since its version 7,

that the Java language natively supports attaching to files and be notified of changes to them. Abiding by

the concept of File System Adapter defined in chapter 3, the implementation, as fig. 4.1 shows, consists

of a Publish-Subscribe (PubSub) system. In this system, the Java API emits events every time that a file

is created, modified or deleted in the Cloudbox folder. The FileSystemNotifier class that corresponds

to the channel in the PubSub schema, dispatches the events to subscribers that are registered. The

FileRules class is registered upon the client initialization.

Figure 4.1: FileSystemAdapter Publish-Subscribe

The ReverseF ileRules class also implements the IF ileSystemAdapter contract, in order to provide

the same functionality when the events are generated from the network rather than from the file system.

The operation implemented are the same, just slightly different, given that the input data and workflow

state is different depending where the event is generated.

34



4.1.3 Networking

In place of the full featured P2P network, there is instead a direct communication protocol. This protocol

is used as stub to provide an easier testing environment. Its interface is, nonetheless, very similar that of

a complete P2P implementation and thus integration a full-fledged implementation should be relatively

simple. The protocol is divided in two moments:

• Bootstrap mode An initial moment, when a joining node still is not connected to the network.

In this case, the protocol dictates a bootstrap operation: The joining node searched for a well-

known seed node, in order to obtain a manifest containing the identifier of the peers already in the

network. If the seed node is not present, the protocol is aborted. Having found the seed node and

obtained the address of the remaining connected nodes, the protocol switches to its operational

mode.

• Operational mode The operational mode is responsible for maintaining the network structure up

to date. In a repetitive interval, of ten seconds, each node pings every other node in its know node

list. If any one fails to reply to its heartbeat it is removed from the other nodes list. The node

remains in this mode for the rest of its execution.

After having the network set up and being constantly maintained, the stub DHT put and get operations

are easy to implement: the put operation is a broadcast to all nodes currently in the network; the get

operation simply fetches from the local cache of the node, given that all nodes contain all the data.

As a result, in this case, we obtain a replication factor of N , being N the number of nodes, which is

pretty inefficient from a storage space perspective. But this is just a stub implementation and it is not its

objective to be efficient.

For this implementation, the keys exchange protocol is offline, and so, the join operation requires an

invitation that includes the group key.

4.1.4 Updating Files

The mechanism for updating files is a parallel execution that, from time to time, tries to fetch for every

file the next version to the one that is locally available.

Fetching the new versions is a recursive function:

• If it fails it updates an internal counter of failed updates.

• When it succeeds, it continues fetching updates until there are no more versions to be fetched,

and then it fails.

The time that each file is updated depends on the number of previously failed updates and the time

of the last modification of the file.

TSM(file) = CurrentT ime− TimeOfLastModification(file) (4.1)
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TimeToNextUpdate(file) = min(
max(2minutes, TSM(file)) + TSM(file) ∗#FailedRetries

2
, 6hours)

(4.2)

From eq. (4.2), all files are at best updated once per minute, but then, depending on their age they

are checked for updates less often. In the worst case scenario it would take a file six hours to detect

updates.

4.1.5 Standards

Some functionalities, as the diff algorithm, encryption algorithms or key generation were not reimple-

mented, but instead used available libraries, as there are already available handfuls of highly performant

and tested libraries for these matters. Nevertheless, it is important to specify the algorithms that they

use and configuration parameters that might be meaningful for the performance of the solution and its

evaluation.

• The diff algorithm used is the Meyers algorithm [36], which belong to the insert/delete class, as

explained in section 2.2.

• The group keys default settings generate a RSA asymmetric key pair of 1024 bits.

• File keys are 128 bits symmetric keys used in the AES encryption algorithm.

• The default chunk size in which file versions are split is 4MB.

4.2 User Interface

The UI module is an HTML and JavaScript application that in addition to being a way to visualize the

internal state of Cloudbox, also triggers, via user command, core group operations like creating a group,

or fetching the latest version of a group files.

Figure 4.2 shows the detail view of a group files. It essentially corresponds to the usual file system

listing with the addition of being able to view the decomposition in versions.

Still, this is not the ultimate purpose of the UI, which is to allow for group operation: fig. 4.3 shows

the possible operation for a given group: Create a new group; join an existing one; or leave the current

one.

4.2.1 Sharing a group

The way to invite a new user to a group, is by clicking the “Share group” button of a group, as we see

in fig. 4.2. Behind the scenes, this causes the consolidation of the group — if operating in a non history

preserving mode — and generates an invite. An invite is composed of the group name and the group

current key, which is all the necessary information the new member requires to setup his local copy. The
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Figure 4.2: Group detail view

Figure 4.3: Group list view

invite is serialized as a Base64 string, in order to be shared with the joining member. The joining member

uses the invite information to fetch the group metadata, which is in turn used to fetch file metadata, file

keys and file contents.
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Chapter 5

Evaluation

This chapter describes the detailed evaluation of our implementation of the Cloudbox system.

Section 5.1 aims at demonstrating the viability of the Cloudbox system as a secure storage platform.

The metrics evaluated metrics are meant to be relevant to the overall performance and scalability of the

system.

All the tests were ran on a 2,4 GHz Intel Core i5 with 2GB 1600 MHz of RAM; using the Java(TM) SE

Runtime Environment (build 1.8.0 11-b12), Java HotSpot(TM) 64-Bit Server VM (build 25.11-b03, mixed

mode) and Scala code runner version 2.11.7.

5.1 Operations Overhead

The data for this section is the result of micro-benchmarking the systems operations and collecting

execution metrics, such as CPU, time and space. The protocol to execute this tests is described in

appendix A.

Figure 5.1: AddFile time overhead
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Figure 5.1 is the result of the experimental data gather to analyze the impact of adding a group of

files to the Cloudbox system. It condenses information from nine test cases, designed to evaluate the

performance of the AddFile operation under two variables: file size and file key size. Each test case

consists of adding 10 files, simultaneously, to the Cloudbox system, under different operating conditions:

encryption turned off, file keys with 128, 192 and 256 bits. The key size 192 is omitted in this graph as it

revealed to show little difference from the 128 bits key.

Starting with the 1KB file group, we observe that the amount of data is insufficient to have an impact

in the time taken by the ciphering operations, with all sets clocking in at about approximately 70ms, the

same time as not having to cipher.

Going over the numbers of the 1MB file group, we observe that the file size starts to make a differ-

ence. For the 128 bits keys there is roughly a 37% increase and 47% increase with 256 bits keys.

Finally, the data from the test cases with large files—10MB—reveals a much more noticeable impact

of the cipher operations, presenting a slowdown of 90% and 92% for 128 bits and 256 bits, respectively.

The unexpected result is how close both ciphers with different key sizes fare. Doubling the key size takes

little effect on the overall operation time. If we correlate this information with fig. 5.2, we understand that

Cloudbox is able to maintain the ciphering time, regardless of the key size, at the cost of CPU usage.

The test case for 256 bits key was able to perform in roughly the same average time, due to a more

intense CPU activity.

Figure 5.2: AddFile CPU utilization

The results of the test cases for the UpdateFile operation, are presented in two perspectives: one

assuming the files are binary or multimedia files and another assuming that they are text based files.

These test cases result of initial groups of files of 1KB, 1MB and 10MB, subjected to 10 updates of 1KB.

Considering first the binary files, in fig. 5.3a, for small sizes the implementation is able to handle the

updates properly. Still, Increasing the file sizes causes great difficulties for Cloudbox to generate new

versions. The time complexity is exponential. It is even unable to continue after the third version of the

10MB group due to insufficient memory, having that last one taken 10 seconds to generate. The problem
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(a) Binary files (b) Text files

Figure 5.3: UpdateFile time overhead

is the composition of the diff algorithm with the ciphering. For binary files, the diff algorithm is unable

to generate the version efficiently, considering that the whole file was changed, in such a way that each

version can double the size of the previous one. With versions getting exponentially large the cipher

algorithm struggles to cipher the versions and thus its bad performance.

Considering text based files, of fig. 5.3b, the results are very different. Since the diff algorithm is

able to generate efficient version files and the size of partial versions to be ciphered is reduced, the time

overhead is constant with the evolution of the files.

Figure 5.4: Consolidate time overhead

The consolidate operation consists in consolidation of the groups of files generated by the previous

test cases: groups of files with 1KB, 1MB and 10MB with 10 updates each of 1KB. Figure 5.4 shows the

time overhead of the consolidate operation. Similarly to the add operation, for groups of small files the

overhead is low. As expected it grows with the size of the files, about 49% and 75% for 1MB and 10MB

files. The consolidate operation is the first to surpass the one second threshold, after which the delay

is noticeable to humans, but still, we must consider that the operation is being applied to all files in the
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(a) Binary files (b) Text files

Figure 5.5: Storage space used - 1KB file

(a) Binary files (b) Text files

Figure 5.6: Storage space used - 1MB and 10MB files

group and its occurrence is very punctual in the lifecycle of a group.

5.2 Storage and Metadata

A critical measure to evaluate the Cloudbox system is its storage space requirements. The following

results were extracted from the previous described file update experiment. The same groups of files—

1KB, 1MB and 10MB—, and with set of binary and text based files.

Figure 5.5a and fig. 5.5b display the evolution of space used for a file of 1KB, through 10 updates. At

its initial version a 1KB uses about 6KB of space on the local system. Subsequent version updates of

1KB add roughly 3KB to the used space total. The expansion is, obviously caused by the stored cipher-

text. Like previously mentioned, the diff algorithm used is unable to produce efficient differences of the

binary changes and fig. 5.5a shows the exponential growth in used space. Figure 5.6a and fig. 5.6b

display the same results, separated for the sake of the charts scale. Here the versions updates were

also of 1KB. We can grasp the efficiency of using file versioning, as updates to large files have almost

no impact in the amount of space used.

The last result of the metadata evaluation shows how it evolves. Figure 5.7 demonstrates that
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changes to any file are innocuous to the metadata size. Since metadata is only affected by the number

of files or, to a lesser degree, by group changes, it was expected that changes to the files would not

affect it.

Figure 5.7: Metadata size over file evolution

Both fig. 5.8a and fig. 5.8b confirm just that, the factor by which metadata grows with the number of

files tracked by the system, and with the number of groups present in the system. The growth is linear

in both cases. The second case has a faster growth rate due to the larger amount of data that it has to

track. Nonetheless, in any case, the size of the metadata is not bound to the size of file, and starts with

a small overhead that grows linearly and is negligible considering the actual space used to store files.

(a) Metadata by number of files (b) Metadata by number of groups

Figure 5.8: Metadata storage space usage
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Chapter 6

Conclusion

Cloud services will play a very important role in the technological future. Its ubiquity is very exciting and

is evermore enabling greater productivity and usability for its users. Still, cooperative cloud services are

scarce, not that they are worse in any way, but simply because by being a more complex approach and

harder to control, rather than the traditional centralized system, they dissuade cloud services providers.

In this thesis, we proposed a solution that combines pre-existing techniques to create a secure

storage solution with the ability to share directories with other users. Our solution shows that security

does not need to be a tradeoff for collaboration, as existing systems lead to believe. Both are attainable,

even in a scenario where the network infrastructure is not trustworthy.

6.1 Concluding Remarks

This report presented a study of the state-of-the-art of peer-to-peer topologies and cryptography. The

analysis of these topics allowed us to critically analyze the existing systems and identify aspects that

can be improved in order to provide a better level of security: centralized infrastructure; server-side

encryption and no forward secrecy.

Once identified the shortcomings, we proposed a solution that considers the files and the groups

themselves in epochs, in order to achieve efficient group membership, and using versioning to efficiently

support file ciphering operations.

In our evaluation, the results showed marginal overhead on the critical operations, good scalability

when dealing with text-based files, and all of that in sub-second time for almost all scenarios.

6.2 Future Work

There is much work that can be done to improve our solution. By conducting research and further

experiments on specific topics of the solution we can get great optimizations. We can also find ways to

make the solution easier to use by adding new functionalities. Here are some examples:
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• Ahead of time consolidate Consolidating ahead of time can save a lot of time and network traffic

depending on when it is executed. However, when to consolidate is a decision that would require

large usage datasets analysis, in order to be sure of the appropriate moment. For that reason, we

think that finding that sweet spot is worth a research of its own.

• Adaptative diff algorithm From our evaluation, we have observed that the diff algorithm used

in the implementation results in subpar performance for binary files. It would be nice to have

a mechanism that would scan the files when they are added to a group and detect the most

appropriate diff algorithm to apply to each file, and store that information in the metadata. This

way, all kind of files would have efficient versioning.

• Conflict resolution Solving concurrent updates was always out of the scope of this work, but it

is a very interesting, and well studied, problem to be addressed. Specially considering that when

a conflict occurs, both updates are the calculated differences from the same source file. There

are already many version control systems that can solve this problem without the need for human

intervention. It would be interesting to see how their techniques can be applied and integrated in

Cloudbox.
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Appendix A

Micro-Benchmarmink Test Protocol

To run the benchmark for the Cloudbox system follow these steps:

1. Consult the CloudboxTests class for the desired test case name

2. Export an environment variable named CLOUDBOX TEST with the value being the desired test

case name

3. Make sure that the system is starting in a clean state by running the script ./script/clean.sh

4. Run the application with sbt run

5. After the tests finished message is presented press Ctrl +D to obtain the metrics captured.
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