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ABSTRACT

In the last decade Multiplayer Online Games experienced a
fast increase in popularity, helped by the expansion of broad-
band Internet access and the advances in graphic cards and
processing power. Game users require high performance,
availability and scalability in order to maximize their gam-
ing experience. Current commercial approaches meet this
requirements by confining users to isolated partitions provi-
sioned by powerfull server clusters. In this work, we present
a different approach to virtual world partition in which play-
ers are allowed to freely interact and move around the game
map. We use the Vector-Field Consistency model to reduce
the bandwidth requirements imposed both on the servers
and clients of the system. Our preliminary results show
that our system is able to handle a large number of user in
a more efficient manner than other types of architectures.

1. INTRODUCTION

In the last decade Multiplayer Online Games experienced a
fast increase in popularity, helped by the expansion of broad-
band Internet access and the advances in graphic cards and
processing power[16]. In few years, games evolved from one-
time play, small environments to Massively Multiplayer On-
line Games (MMOG) - worldwide networks with thousands
of interacting users and, ever more often, persistent game
state[4, 15, 7].

Supporting this new form of game playing is a challenging
task. First of all, high performance levels are required in or-
der to provide the highly interactive experience demanded
by players. Second, these games must scale to an increas-
ingly large number of users and game environment. Third, it
is fundamental to provide constant availability, so users can
play whenever they want with as few disruptions as possible.

To meet these requirements current commercial game com-
panies deploy powerful and expensive centralized servers (or
server clusters) provisioned with high bandwidth and com-
putational power. To reduce the scalability restrictions im-

posed by hardware limitations a game’s virtual world is ei-
ther duplicated or statically partitioned into several mini
worlds[13], assigning each duplicate/partition to a different,
independent server.

Although widely used, this approach presents several obvi-
ous drawbacks. First, with these strategies users are con-
fined to a single server at each moment and are unable to
interact with players in other servers. Partitioned schemes
do allow users to move to other partitions, but force them
to cross some form of artificial boundary (e.g., door, portal,
tunnel) specially designed for that purpose. Scalability is,
therefore, achieved at the expense of user interactivity.

This paper describes our work aiming at designing a scal-
able, efficient and highly available distributed infrastructure
to support MMOGs that does not rely on the static parti-
tioning schemes used by commercial games to achieve scal-
ability. Instead, we prescribe an architecture in which the
game is presented to its players as a single large virtual world
where players can freely interact, without further limitations
than those imposed by the logics of the game.

In the past years, several research/academic works have
proposed both peer-to-peer(P2P) [8, 3, 10] and distributed
client/server [2, 5, 1, 9, 6] alternatives to the commercial
approach. In P2P systems the game management is han-
dled by the players themselves who directly exchange update
messages with each other, offering computational power,
bandwidth and adaptability without the need for dedicated
servers. However, P2P approaches depend completely on
game users, whose resources are scarce when compared to
dedicated servers. As a result, bottlenecks can arise and,
therefore, P2P systems can not guarantee the demanded
performance levels.

In Client/server (C/S) solutions, on the other hand, mul-
tiple servers (dedicated to the task of game management)
cooperate in order to efficiently balance computational and
network load. Servers collaborate by replicating[9, 6] or
partitioning[2, 5, 1] the game state among each other. In
replicated systems, each server holds a complete copy of the
virtual world, but directly manages only a subset of the to-
tal number of players. Partitioned systems, on the other
hand, divide players by partitioning the virtual world into
disjoint regions, each assigned to a different server. In both
approaches, in spite of the logical division of players and
regions among servers, from the perspective of the player



there is a single virtual world, contrary to the commercial
approach.

Regardless of the architecture, these systems rely on In-
terest Management[12] techniques to improve performance.
IM minimizes bandwidth requirements by sending to clients
only updates to objects that are within the players area of
interest (AOI). An area of interest can be, for instance, the
area surrounding the player[2, 5]. Although these strate-
gies considerably reduce bandwidth, they follow an all-or-
nothing approach that fails to capture the user’s interest:
every update to objects within an AOIT is sent to the player
and none of the ones outside is. As a result, players may ex-
perience sudden visibility losses and end up seeing objects
abruptly appearing (disappearing) on (from) their area of
interest.

A different approach was proposed by the Vector-field Con-
sistency (VFC)[14] model. Instead of distinguishing only
between relevant and irrelevant updates, VFC defines de-
grees of relevancy in the form of consistency zones - concen-
tric areas defined around special objects (called pivots), to
which is assigned a radius and a consistency degree defin-
ing the importance of the updates to objects that are inside
that zone. VFC allows the definition of multiple consistency
zones, with different radius and consistency degrees that are
weakened as the distance to the pivot increases. With this,
it is able to eliminate the abrupt visibility loss characteristic
of other IM strategies by gracefully degrading the player’s
view. However, because it was designed for small wireless
mobile network games, VFC employs a centralized architec-
ture that greatly limits its scalability.

In this work we propose VFCLS, a distributed client/server
architecture that uses as its interest management scheme a
version of VFC modified to achieve improved scalability. In
our system, the virtual world is partitioned into different,
but not independent, regions handled by distinct servers.
Players can move around the virtual world, transparently
switching between regions of different servers and are able
to seamlessly interact with players located in other regions.
The server organization enforces VFC through a subscrip-
tion protocol that allows servers to apply VFC for players
located in other, contiguous or not, regions.

To evaluate our system we designed a simulation infrastruc-
ture that allows us to simulate different architectural set-
tings, Interest Management models and game clients. The
preliminary evaluation results show that our system per-
forms well when compared to other architectures and gives
us indications of possible future work to improve some as-
pects of VFCLS.

This paper is organized as follows. In section 2 we overview
the current state of the art in multiplayer game support-
ing architectures and interest management. In section 3 we
describe the Vector-field Consistency model in more detail.
Next, in section 4, we describe the architecture of our system
and in section 5 we present details about its implementation.
In section 6 we present the results of the evalution of our sys-
tem and then we finish with section 7 where we summarize
our work and introduce our ideas for future work.

2. RELATED WORK

In a massively multiplayer online game (MMOG), a large
number of players interact through an extensive virtual world,
shared over a wide area network. Players control an en-
tity (the avatar) that represents them in the game’s virtual
world. Avatars can move across the game map and interact
with each other according to the instructions given by the
human player through some input device (e.g., a keyboard or
a mouse). Players can also find several objects (e.g., health
items, food, weapons,...) and computer controlled charac-
ters (NPCs'). Each avatar has its own state that comprises
several properties like position, health, abilities and owned
items. Interactions with other avatars or objects may change
both its state and the others’.

2.1 Peer to Peer Game Support

P2P support for multiplayer games has been an active re-
search topic[8, 3, 10] in the past years. In these systems,
clients exchange state updates directly with each other, in-
stead of doing so through a server.

SimMud is a P2P game[10] that employs region based IM
by splitting the virtual world into fixed-size regions. Peers
inside a region are arranged in a multicast group and receive
updates only from objects within the same region. Each re-
gion has a coordinator superpeer that intermediates access
to shared objects (e.g., health items, potions) to avoid con-
flicts.

Colyseus is another example of a P2P game infrastructure[3].
Unlike SimMud, however, Colyseus is a fully decentralized
structured P2P system in which no peer plays a special role.
FEach peer acts both as a server and a client of the game,
performing the same tasks as the other.

P2P systems put the burden of managing the virtual world
and maintaining it consistent on peers that are executed on
the players’ machines. These machines are considerably lim-
ited in both bandwidth and computational power when com-
pared to the dedicated servers used on C/S games. As the
number of players of a game increases so does network traf-
fic and the amount of data each peer needs to process both
as a client (compute updates received, execute game logics,
graphic rendering) and a server (message routing, consis-
tency management). As a result, the performance of each
peer degrades with the expansion of the game and with it,
so does the overall performance of the network.

2.2 Partitioned vs Replicated Client/Server
Alternatively to the P2P approach, distributed client/server
(C/S) systems use multiple dedicated machines to mediate
the game played by client applications. In these systems, the
task of managing the game state and updating clients is a
responsibility of the servers and clients are left to simply play
the game. According to their approach to load balancing, a
distributed client/server multiplayer game can be classified
as partitioned or replicated.

In a replicated client/server system|[9, 6] (commonly referred
to as "mirrored server architecture”) each server holds a copy
of the complete game world, but is only responsible for a
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Figure 1: Different IM schemes.

subset of the players. The main goal of this strategy is to
reduce the response time of player updates, thus, increasing
interactivity. To achieve this goal clients are assigned to the
server that is geographically closer to the client. Despite
this real world allocation, players’ avatars can be located
anywhere in the virtual map, regardless of the server they
were assigned to.

Alternatively to the replicated approach, partitioned sys-
tems achieve load distribution by dividing the virtual world
into regions/partitions assigning each to a different server of
server network[2, 5, 1]. Although the virtual world is logi-
cally divided into partitions, these systems provide mecha-
nisms to make that division unnoticeable to the player, giv-
ing him the illusion of being in a large single virtual world.

2.3 Interest Management

IM is motivated by the observation that players are not
equally interested in all objects (other players, items,...).
Usually, they are more concerned about objects located closer
to them and as the proximity to objects decreases, so does
the player’s interest in them. This observation is typically
materialized by two main different strategies - region and
aura based Interest Management[11]:

e RegionsRegion based IM is the most straightforward
approach to interest management (Figure 1(a)). In
this approach the game world is partitioned in static,
contiguous consistency regions. Objects in the same
region receive updates from each other, but not from
objects in outer regions.

e Auras An aura is a consistency zone (usually con-
centric) defined around (and centered on) a player’s
avatar. When the auras of two avatars intersect they
can see each other. When an object (other than an
avatar) is within an avatars’s aura the player can see
it. These carachteristics are used to achieve a consid-
erable cut on the amount of data each player receives
from the server and, thus, on the maximum inbound
bandwidth required at each client.

Despite providing bandwidth reduction, current IM mecha-
nisms are too rigid - updates in an area of interest (region
or aura) are visible, all others are not. This inflexibility

can lead to some undesired game situations. Consider, for
instance, a player moving in an open scenario. Because con-
sistency outside the player’s area of interest (AOI) is not
maintained, if an object enters it, the player may see it ap-
pearing out of nowhere. A worst situation occurs when an
object leaves the AOI. In that case the object will still be
considered as being on the AOI because its updates are not
received unless it re-enters the area.

To solve these problems, games end up defining AOIs larger
that actually needed[9], resulting in a cut in performance
due to increased bandwidth and computation requirements.

Alternatively to the common IM strategies, Vector-Field
Consistency (VFC) [14] defines multiple consistency zones,
each with a different consistency degree (Figure 1(c)) that
weakens as the distance to the player increases. Each de-
gree defines the maximum divergence allowed between the
player’s view of an object and the object’s actual state. Un-
like the other IM schemes, consistency degrees are defined
based on three criteria: the time elapsed since the last time
the object was updated; the number of updates to an object
that were not sent to the player; and an application-specific
function that captures the difference between the state of
the object on the player’s view and its actual state. As
a result, a VFC AOI can cover a larger area while avoiding
bandwidth increase and is, thus, able to efficiently tackle the
shortcomings of auras and regions. However, VFC was de-
signed for mobile had-hoc networks as a centralized model,
executed by a single server, which is not suitable for large
scale networks.

3. VFC: LARGE SCALE

In our solution we propose a distributed Client/Server ar-
chitecture with state partition that provides a seamless view
of the virtual world to its users, allowing players to inter-
act with one another and move freely across the game map.
We use Vector-Field Consistency (VFC)[14] as our interest
management strategy to reduce the bandwidth requirements
imposed on both the users and the servers of the game. The
version of VFC applied by our system is an extension to
the original model, designed to improve its scalability and
suitability for large scale environments. For this reason, we
named our system as "Large Scale Vector-Field Consistency”
(VFCLS).
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Figure 2: VFCLS main concepts: Virtual world partition and Vector-Field Consistency.

Our approach to achieve scalability consists in partition-
ing the virtual world into dynamically sized rectangular re-
gions/partitions and assign each one to a different server of a
distributed server network. Clients (players) are assigned to
one of those servers based on the position of their avatars in
the game’s virtual world. Although the game map is divided
in disjoint regions handled by different servers, the user is
oblivious to that fact.

Servers in our infrastructure are organized in a peer to peer
network and are connected to the servers responsible for
their direct neighbor partitions. They may also need to
know and communicate with servers that are not their di-
rect neighbors. This is necessary because a player’s area
of interest (AOI) may be arbitrarily large and, thus, the
player can potentially interact with objects located at non-
neighboring partitions; to enforce VFC, the player’s server
needs information about those objects and, as a result, needs
to communicate with the servers responsible for the regions
where they are positioned.

To minimize the impact of the server synchronization re-
quired to perform inter-partition interaction we designed a
server subscription protocol that guarantees that each server
only knows about the non-neighbor servers it actually needs
to be aware of, i.e., those whose partition may be crossed by
one of its players’ AOI. This way, each server knows only a
subset of the complete server set - it requires having only a
partial view of the network, which favours scalability. Fur-
thermore, the protocol also ensures that an update from a
player is received only by the servers whose objects may be
affected by the update.

3.1 System Architecture
VFCLS comprises the following three main building blocks:

Server Network Manager. Manages the server’s view of
the server network (partial views) and handles server to
server communication - object subscription and state syn-
chronization. It is composed of two components, the "Sub-
scription Manager” and the "Server Communication Mod-
ule”.

Client Manager. The Client Manager administers client
data and enforces VFC through two components, the "Ses-
sion Manager” and the “Consistency Management Block”.

Object Pool Manager. Manages the server’s game objects
and encapsulates the stored data, performing every oper-
ation on it on behalf of the other components. The data
repository is divided in two pools - one for the server’s local
objects and the other for the subscribed objects - due to our
VFC enforcement protocol, which was extended in order to
support inter-partition interaction.

3.2 Consistency Model

VFCLS represents the virtual world as an N-dimensional
space populated with game objects (e.g., avatars, items,
NPCs). Each game client of VFCLS has a local view of
the virtual world, comprising relevant objects, that can have
bounded inconsistencies with relation to their primary repli-
cas, which are distributed between the servers. In each view,
the consistency of objects depends on their distance to a
pivot object (e.g., the player’s avatar).

Pivots are associated with consistency zones — concentric,
ring shaped areas defined around the pivot object — that de-
fine its AOIL. Each consistency zone has a consistency degree
that specifies the consistency requirements of the objects
located within that zone, regarding the pivot. As the dis-
tance to the pivot increases the consistency degrees become
weaker. As a result, an object located closer to the pivot is
required to be more often refreshed.

Consistency degrees are defined by 3-dimensional consis-
tency vectors (k) that bound the maximum divergence of
objects inside a consistency zone with relation to their pri-
mary replica. Each dimension corresponds to a scalar value
that bounds divergence regarding the following criteria:

e Time (0): Specifies the maximum time (in seconds)
an object can stay without being refreshed with its
primary replica’s latest value (staleness).

e Sequence (0): Specifies the maximum number of up-
dates to the primary replica that are allowed not to be



applied to the object (missing updates).

e Value (v): Specifies the maximum divergence between
the contents of the local copy of an object and its pri-

mary replica (divergence impact). Value is an application-

dependent criterion that defines the maximum per-
centage difference between an object and its primary
replica. Value is calculated by a function specially de-
fined by the application’s programmers or automati-
cally calculated for numerical data.

3.2.1 Inter-server Communication

As we said before, although our system partitions the virtual
world into regions it provides a seamless view to the players.
This means that players (through their avatars) are able to
interact with each other without any limitations other than
the ones imposed by the virtual world design and the VFC
specification. It also means that avatars can move around
the virtual world, switching between partitions (and, as a
result, servers) without the user being aware of it. This
approach contrasts with the limiting strategies tipically used
by commercial games.

Because the consistency zones of a pivot object may cross
partitions handled by a different server, servers may need to
share information with each other in order to enforce VFC.
To do so while minimizing server synchronization require-
ments we designed a subscription protocol in which servers
communicate only when strictly necessary, to ensure the cor-
rect application of VFC.

Inter-partition interaction occurs when two interacting play-
ers are located on different partitions/regions of the virtual
world. Given that each partition is managed by a differ-
ent server, supporting inter-partition interaction requires ex-
tra server synchronization mechanisms. We consider that
two players interact when one is whithin the other’s AOI,
whether they are actually (at the application level) interact-
ing or not. Because VFC allows game programmers to freely
define consistency zones, we understand that, in our sys-
tem, a player’s AOI can cross multiple partitions, including
non-neighbor ones. Thus, we provide full support for inter-
partition interaction that includes regions beyond a server’s
"neighborhood”.

Inter-partition interaction is achieved through a subscription
protocol arranged in cooperation by the Subscription Man-
ager and the Server Communication Module. The protocol
is divided in three parts, performed at independent times:

Server Subscription. When a server joins the network it
immediately identifies and connects to those servers whose
partition its objects’ AOI may cross. To do so it inspects
the objects located on its newly defined partition to find the
one with the largest AOI radius R. It then publishes to the
network the dimensions of the area partition outset defined
by adding R to each side of the partition. As a result of
this publication, every server whose region is crossed by the
partition outset informs the publishing server of its existence
and is added to its partial view.

Object Subscription. The main task of the Subscription
Manager consists in subscribing its own player objects (pivot
objects) to servers that may contain information required by
its players. It does so by continuously and periodically exe-
cuting an object subscription protocol that runs as follows:

1. The Subscription Manager starts by checking if any of
its player’s AOI crosses the partitions of the servers
on its partial view (defined in the previous step, i.e.,
when the server joins). When it checks that an object’s
AOI crosses the partition of another server it does not
perform the subscription immediately; instead it adds
the mapping ”server <+ player object” to a subscription
queue to be processed in the next step.

2. After all checking is done the Subscription Manager
uses the subscription queue of step 1 to publish the
list of objects to the servers determined in that step.
Publication is performed by directly sending, to each
server, the list of objects whose AOI crosses their parti-
tion and, thus, require information about objects only
known by it.

3. After the subscription process is finished, the map-
pings “object <> subscribed server” are stored in a sub-
scription table at the Subscription Manager. Later the
Server Communication Module will require informa-
tion from the table to perform the second part of the
server subscription protocol - server synchronization.

Server Synchronization. The second part of the protocol
consists in maintaining objects synchronized between the
servers according to the subscription results. Synchroniza-
tion is necessary because, as is explained in section 3.3,
servers apply VFC both to their owned (i.e., the objects
located on the server’s partition) and subscribed (i.e., the
objects located on other partitions, but that have subscribed
to the server) players. Hence, servers need to be informed of
the positions of the subscribed player’s avatar. Synchroniza-
tion is performed, optimistically, every time a player submits
an update. When an update is received the server consults
the Subscription Manager and retrieves from it the entry
of the subscription table corresponding to the object to up-
date. Then, it forwards the received update to the servers
on that list.

As a result of these steps (i) the servers become aware of
those players located in other partitions that may need in-
formation about their objects and (ii) each server knows to
which other server updates to a given object have to be for-
warded. Thus, each server has all the information it needs
in order to perform VFC enforcement and, as a result, allow
inter-partition interaction.

3.2.2  Player Transfer Protocol

In VFCLS we take advantage of the fact that the subscrip-
tion system (described in the previous section) needs infor-
mation from objects located on remote servers to transfer
a player’s data before the player actually moves to a new
partition. When a server S; sends a subscription message
directly to another server S; it piggybacks the player’s data



on that message. When S; receives the message it gets all
the information it needs about the player from the piggy-
backed data.

The actual transfer of a player from his current server S;
to the new server Sy occurs only when the player’s avatar
moves to that server’s partition. The transfer is triggered by
S; after it receives an update from the player that positions
its avatar on a neighboring region. After finding out (by ana-
lyzing the entry of the subscription table of the Subscription
Manager corresponding to the object) which server Sg is re-
sponsible for that region, S; issues the transfer request to
it. Because Sy has previously transferred the player’s data
it needs no additional information. As such, the transfer
request is, in fact, a simple transfer notification.

3.3 Distributed Vector-Field Consistency

In our previous discussion we described the susbscription
protocol required to enforce the VFC model. We now ex-
plain how the information gathered by (and available due to)
the subscription protocol is used to actually enforce the con-
sistency model. It is now appropriate to explain one main
difference between the original VFC model and our VFCLS
extension. The original design of VFC forces programmers
to define one zone Z,, that includes the whole virtual world
in the consistency management (unbounded VFC). We be-
lieve, however, that having players receive updates from ev-
ery object in the system is not suitable for large scale, wide
and highly populated virtual environment, as it may over-
load both the players and the servers of the system. As
such, in VFCLS we consider only consistency zones with fi-
nite (albeit arbitrary) radius, thus, removing the outer zone
.

Our Distributed VFC algorithm ensures that players receive
updates even from players located on different partitions by
having servers enforcing VFC for both their owned and sub-
scribed objects, although considering only their owned ob-
jects when checking which objects are within a pivot’s con-
sistency zones. Considering Figure 2(a), consistency for the
player p represented by the solid (black) circle would be en-
forced complementarily by the four servers: S; would be re-
sponsible for updating p with the information about the four
objects located in its partitions, Se would update it consider-
ing only its two owned objects, and so forth. Hence, servers
divide load between each other by enforcing consistency for
disjoint slices of players’ areas of interest, effectively dis-
tributing the responsibility of consistency enforcement for
each players.

Our distributed version of VFC enforces consistency through
the same two functions provided by the original VFC, update-
received and round-triggered. The general method is simi-
lar: throughout the execution of the game, servers maintain
the information necessary to enforce VFC to their players
by keeping track of their updates. Periodically, the server
issues a round in which it updates its players, according to
their VFC specifications.

3.3.1 Update Processing

To update clients according to their VFC specification, servers
have to monitor every modification to the objects on their
pools. For that purpose, every time a server receives an up-

date (as a result of a direct player update or synchronization
with another server) it transfers control to the "Consistency
Management Block”. Depending on the origin of the up-
date, the "Consistency Management Block” executes one of
the following actions:

e [f the update is received, from a player, then it con-
cerns an owned object. Hence, the server updates its in-
formation about each player’s (considering both owned
and subscribed) current state of consistency to reflect
the update received.

e [f the update is received from a server as a result of
server synchronization, then it concerns a subscribed
object corresponding to a player p owned by a different
server. As such, the information received is only nec-
essary to update the object’s position, so that, when
enforcing VFC to player p, our system can correctly
identify which objects are within his AOI.

3.3.2  Updating Clients

The process of updating clients is as follows:

1. First, the server identifies, for each owned player p,,
which objects owned by the server (i.e, those that are
located in the server’s partition) are within p,’s AOL
Then, for each object o previously identified, it checks
in which consistency zone of p,’s AOI object o is lo-
cated. Finally it verifies if o is in violation of the con-
sistency degree associated with that consistency zone.
If so, that object is queued and, after verifying the
remaining objects, the server sends it to the player p,.

2. After that, the server performs the exact same steps,
but now enforcing consistency to its subscribed play-
ers. Hence, the server identifies, for each subscribed
player ps, which objects owned by the server are within
ps’s AOL. Then, for each object o previously identified,
it checks in which consistency zone of ps’s AOI object
o is located. Finally it verifies if o is in violation of
the consistency degree associated with that consistency
zone. If so, that object is queued and, after verifying
the remaining objects, the server sends it to the player.

3. After verifying consistency for every player (owned and
subscribed), the server sends them the round message
piggybacked with the objects identified in the previous
steps.

As a result of the combined work between the subscription
protocol (performed by the ”Subscription Manager”) and the
consistency enforcement algorithm (executed by the ”Ses-
sion Manager” in conjunction with the "Consistency Man-
agement Block) we achieve a distributed VFC algorithm in
which the consistency of a single player is enforced not by a
single server but by the complementary work of a group of
servers. Having the load and the responsibility for enforcing
consistency divided between the nodes of the network im-
proves the flexibility of the system and fosters scalability.



4. IMPLEMENTATION

Our VFCLS prototype was developed in the Java program-
ming language. More specifically we developed the system
using Sun’s J2SE 6.0 development kit (JDK) and runtime
environment. VFCLS was developed using only the stan-
dard Java libraries provided by JDK. We used Java’s Remote
Method Invocation (RMI) architecture to support commu-
nication between the nodes of the system.

As far as VFCLS is concerned, the virtual world is a bounded
area populated with DataUnits. A DataUnit (DU) is an ob-
ject that representes a shared game entity (like an avatar or a
food object). Each DU carries a unique integer session iden-
tifier duld and the DU’s position in the virtual world. Users
are represented in the system by class UserAgent (UA). Like
DUs, UserAgent objects also have a unique integer session
identifier (uald), along with an also unique nickname and
the user’s remote interface. The server also stores a list
containing the mapping between UserAgents and its corre-
sponding DataUnits.

4.1 Subscription Protocol

The subscription protocol is performed, independently of the
rest of the servers’ operation, by a dedicated thread pool of
the Subscription Manager. The mechanism is straightfor-
ward: threads in the pool iterate over the list of the users
owned by the server and check, for each of them, if their
avatars’” AOIs cross any of the server’s known neighbor par-
titions. At each time, different threads are performing region
cross checking for diferent users.

As explained in the previous section, server synchronization
is optimistically performed after a player update is received
by a server. Optimistic synchronization is achieved by us-
ing a queued thread pool. The operation is simple: when a
server’s Session Manager receives an update it adds it to an
updateQueue managed by the aforementioned thread pool
(managed by the Server Communication Module) and im-
mediately replies to the client; sometime later one of the
threads of the pool extracts the queued update and sends it
to the servers that subscribed that object. The information
about which servers subscribed to the object is retrieved
from the Subscription Manager’s subscription table.

4.2 Distributed Vector-Field Consistency

Our distributed version of Vector-Field Consistency inher-
ited and extended many of the original data structures used
by VFC. The consistency requirements of a player is repre-
sented by class Phi. This class stores the player’s consistency
zones (in the form of an array of integers corresponding tho
the zones’ radius) and degrees (stored on a bidimensional
array). Phi also contains reference to the objects owned by
the player.

To maintaing information of the consistency state of each
client we use an Hashtable, indexed by clientld, that maps
the client in a list of objects of class AOIInfo. AOIInfo
is the class that represents the current state of an object
regarding a particular player’s view. It contains a reference
for the object it refers to, the number of missing updates
regarding the player’s view, the value of the last update of
the object and a boolean field that indicates if the object is
dirty.
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Figure 3: VFCLS integration with game applications

4.3 Game Programming Interface

Figure 3 shows the whole system perspective of a game de-
signed using VFCLS. As we can see, the system includes
not only the VFCLS server infrastructure (VFCLS Core)
described in the previous chapter, but also a client-side VF-
CLS application (VFCLS Client) and a VFCLS API that
provides the means for the game application (both the client
and the server) to interact with our system.

Game applications interact with VFCLS through set of func-
tions defined in VFCLS API. The API provides the following
four main functions:

Object Registration. For a game to use VFCLS it has to
register its objects for VFCLS to manage. At the client-side
the game client must register the players’ avatar on the VF-
CLS client before it is used. Likewise, at the server-side, the
game server application may pottentially (depending on the
game’s design) register objects corresponding to computer
controlled characters (NPCs).

Object Update. After registration, objects can also be up-
dated according to game logics. When an object is locally
updated by a client, the game client explicitly informs the
VFCLS Client via a UserUpdate API message. As a result,
the update is sent to the client’s designated server.

Update Notifications. Through the API, game clients (and
server applications) can be informed when a state update
message is received from a server. For this purpose, when
the application starts clients must register themselves as up-
date listeners using a RegisterStateUpdateListener function
provided by the VFCLS API.

Object Pool Querying. The API also provides functions
for applications to query the local object pool. This al-
lows, for example, game servers to perform validation and
anti-cheating periodically, instead of every time an update
is received.



Variation | Description

Aural Aura with radius of 40 units

Aura2 Aura with radius of 80 units

Aura3 Aura with radius of 120 units

VFC1 VFC with three zones with radius [40,
80, 120] and respective K vectors [3,0,0],
10,10, 0] and [50,10,500]

Table 1: Description of the different parameters
variations

S. EVALUATION

To evaluate our system we designed and implemented a
simulation infrastructure to simulate and compare different
types of architectures (namely Centralized and Replicated
C/S), as well as different Interest Management models, in
particular auras. To simulate clients we developed a simple
game in our simulation infrastructure. In this game, auto-
matic clients move their objects - small circles - in straight
lines along the game map, periodically changing the direc-
tion of their trajectory. For the purpose of evaluation we
consider that the size of the objects is 200 bytes. The tests
were performed on two machines equiped with Intel Core
2 Quad processors and 8.0 GB of main memory running on
Linux Ubuntu distribution. The two machines are connected
by a high speed Gigabit LAN.

5.1 Interest Management Evaluation

Table 1 describes the parameter variation used on the ex-
perimentation. By looking at the table we can see that the
radius of Aural, Aura2 and Aura3 are, respectively, 40, 80
and 120 and that VFC1 has three consistency zones with
radius also with radius 40, 80 and 120. Figure 4 illustrates
the differences between these configurations.

Figure 5 shows the bandwidth differences between Aural,
Aura2, Aura3 and VFC1 in a context with variable number
of players - 50, 100 and 500 players in a 1000x1000 virtual
world. The first thing we conclude is that, as expected,
the performance of auras decreases as the radius increases,
because the number of objects inside the AOI is higher. In
VFC, on the other hand, varying the radius of consistency
zones does not necessarily means that the bandwidth spent
will increase. Because VFC has other parameters that can
be configured it is possible to increase the range covered by
VFC zones while maintaining, or even reducing, bandwidth.
This way, it possible to enlarge player’s visibility with little
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Figure 5: Client side bandwidth requirements:
auras versus VFC.

or no impact on bandwidth, although at the cost of fidelity.

Observing figure 5 we can also see that VFC1 only performs
better than Aura3. To fully understand the meaning of these
results, however, we have to analyze them in light of figure
4. One of the things it lets us know is that Aural corre-
sponds to the inner zone of VFC1. Hence, it is only normal
that the resulting bandwidth of VFC1 is higher than the
one generated by Aural. It should be noted, however, that
VFC1 corresponds to an example VFC consistency vector
defined for our experiments. As we mentioned before, a dif-
ferent consistency vector could perform better than VC1 and
possibly yield bandwidth results similar to Aural.

Finally, the information in figure 5 shows that the resulting
bandwidth of Aura3 is higher than VFC1. More impor-
tantly, these results happen despite the fact that Aura3 and
VFC1 cover the same exact area of the virtual world. This
is possible due to the high flexibility VFC exhibits, which
allows it to be easily tuned with unlimited configuration pos-
sibilities.

5.2 Architectural Evaluation

To evaluate the architectural component of our system we
compared it (using our simulation infrastructure) with a
centralized (VFC’s original architecture) and a replicated
architecture. In our evaluation we varied both the num-
ber of clients and the number of servers for each of the two
distributed architectures (VFCLS and the replicated one).
Table 2 describes the settings used for evaluation. In our
evaluation we simulated clients with the following VFC spec-
ification: three consistency zones [120, 200, 500] and respec-
tive consistency vectors x = [(3,0,0), (10,5,100), (50,10,500)].
The virtual world consisted of a 5000 x 5000 map.

Name Description

Centralized Single server centralized architecture
Rep4s Replicated architecture with four servers.
Rep9s Replicated architecture with nine servers.
Partds Four servers VFCLS

Part9s Nine servers VFCLS

Table 2: Description of the evaluated architectures.

5.2.1 Performance
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for the different architectures: VFCLS and repli-
cated architecture highlight.

To measure performance we analyse the execution time of
function round-triggered of VFC. This way, we can also anal-
yse the impact of the performance of our system on the
game’s playability - the more often a system is able to up-
date its clients, the more interactive the game is.

The analysis of the figure lets us see that our VFCLS pro-
totype outperforms the replicated architecture considering
both the 500 player context and the 1000 players context.
Considering the 500 players setup VFCLS with four servers
only outperforms the equivalent four server replicated archi-
tecture, while the nine servers replicated system achieves
better results than Parts, but still worse than the nine
server VFCLS. The differences between the four architec-
tures, however, are not meaningfull, and either of them could
provide a good interactive experience to its 500 players.

It is by analyzing the 1000 players context that the perfor-
mance of VFCLS stands. The graphics show that both the
four and the nine server VFCLS setup outperform the two
replicated architectures, with each reducing by more than
half the execution times of their replicated equivalent (in
terms of number of servers). Moreover, both can still pro-
vide a highly interactive to its users, as the execution times
are low. It is also encouraging to see that the difference be-
tween the execution times of Part9s in the the 500 and 1000
player scenarios is not significative, which indicates that VF-
CLS has potential in what concerns scalability. To confirm
this, however, it would be necessary to perform more testing,
with a larger virtual world and a higher number of players
and server. However, due to the limitations of the available
hardware, those test were not possible to execute.

5.2.2 Server To Client Bandwidth

The results regarding bandwidth are shown in figure 7. At
first glance it looks like the performance of VFCLS regard-
ing bandwidth is poorer than the performance of the repli-
cated architecture: with 500 players Partjs is the setup that
requires more bandwidth; with 1000 players, the more band-
width demanding is Part9s. However, to fully understand
the information of figure 7 it is necessary to also analyze the
results of the previous performance analysis.

Because VFCLS (both the four and the nine servers config-
uration) achieves faster execution times of round-triggered
function, it is able to issue an higher number of rounds mes-
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Figure 7: Bandwidth requirements of the different
architectures.

sages pers second. As a result, it performs VFC enforce-
ment more often than the other (slower) architectures. For
instance, Rep4s can only perform consistency enforcement
about once per second in the 1000 players context, while
Part9s can do so almost five times (considering that rounds
are issued every 100 miliseconds, as was the case of our test-
ing). Therefore, VFCLS is able to send messages more often
to its players, which results in the higher bandwidth require-
ments. However, this is not a drawback of our system; in-
stead, it means that VFCLS can provide a highly interactive
experience that the replicated architecture cannot.

6. CONCLUSION

Massively multiplayer online games (MMOGs) are played by
thousands of world wide distributed users. To accommodate
these large environments, game infrastructures are required
to provide high availability, performance and scalability. In
this document we have discussed how current approaches
try to achieve these requirements. We focused on system
architectures and interest management techniques currently
employed because we consider these two aspects of a game’s
infrastructure to be fundamental to achieve user require-
ments.

In this work, we propose a distributed client/server architec-
ture to support MMOGs. Our solution partitions the vir-
tual world among several servers, allowing players to freely
and transparently move between regions/servers. We use
Vector-field Consistency (VFC) to reduce the bandwidth re-
quired both for servers and clients. Contrary to current in-
terest management strategies, VFC does not impose abrupt
changes on a player’s area of interest. Instead, it gracefully
degrades the player’s visibility similarly to the human sight.
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