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Abstract

Many of today’s applications deployed in cloud computing environments make use of key-

value storage such as BigTable, Cassandra, and many other no-SQL approaches to over-

come scalability limits of relational databases. Relevant open-source solutions include Apache

HBase. Several works such as Percolator notify applications whenever data is updated by oth-

ers (e.g., in the context of updating Google’s web index).

For increased performance and scalability, such storage is partitioned across machines and

data centers, and each node’s data is replicated for availability therefore. Furthermore, frag-

ments of the key-value store should be geo-cached as close as possible to the edge of the net-

work location for increased performance and to reduce the load on mega data centers.

This work aims at extending HBase with client-centric caching and replication policies in

regards to a consistency model based on data divergence bounds and user-defined application

semantics, which we define as Quality-of-Data (QoD). Thus, data stored at HBase-QoD will be

kept in the master of a data center with possibly several cached replicas on the slaves region

servers.

Overall, the data may have different consistency guarantees and synchronization require-

ments that will be applicable to inter-replication with other master servers or clusters. This

reduces the number of messages and bandwidth needed by master servers to notify applica-

tions of data changes and replica updates, while still being able to fulfill those data-defined

semantics according to a vector-field consistency named HBase-QoD.





Resumo

Muitas das aplicações actualmente disponibilizadas em ambientes de computação em nuvem

fazem uso de sistemas de armazenamento associativo chave-valor, tais como o BigTable, Cas-

sandra, e muitos outros baseados em abordagens no-SQL para contornar as limitações de es-

calabilidade das bases de dados relacionais.

Para melhorar o desempenho e a escalabilidade, os sistemas de armazenamento são parti-

cionados por vários servidores, e centros de dados, com os dados de cada servidor replicados

para assegurar disponibilidade. Além disso, parcelas do repositório chave-valor devem ser

mantidas geo-cached tão perto quanto possı́vel da periferia da rede, para maior desempenho e

para reduzir a carga nos mega centros de dados.

Este trabalho tem como objectivo estender o HBase com polı́ticas de caching e de replicação

centradas no cliente, com um modelo de consistência baseado em limitação da divergência dos

dados e na semântica das aplicações, que definimos como Quality-of-Data (QoD). Assim, os

dados armazenados no HBase-QoD serão mantidos na réplica principal de um centro de dados

com possivelmente várias replicas secundárias denominadas region servers.

Globalmente, os dados podem obedecer a diferentes garantias de consistência e requisi-

tos de sincronização, que serão aplicados na replicação entre centros de dados. Isto reduz

o número de mensagens e largura de banda necessárias às réplicas para notificar aplicações

de modificações nos dados ou actualizações. Isto, enquanto sendo capaz de fazer cumprir a

semânctica definida pelas aplicações de acordo com um modelo vectorial de consistência de-

nominado HBase-QoD.
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1Introduction
”Your system can fail no matter how well you thought you tested it... what users

will not tolerate is losing their data”. – 1

1.1 Overview

The idea of Geo-replication and consistency in distributed systems is not a new concept (Fer-

reira et al. 1998) (Kubiatowicz et al. 2000). Since we have applications with data distributed

across geographically distant locations, it is necessary to improve how applications and users

access that information to it is served in a fast and appropriate fashion. In general, there are

two components in Geo-replication, at the first lower-level tier is the hardware components

and in a higher layer is the software, in which we actually focus the thesis here presented.

Nowadays there are not still fully robust tools that are able to simulate and test real world

scenarios for issues such as replication, fault-tolerance and consistency in distributed systems.

There have been some improvements in that field, and today the Yahoo Cloud Service Bench-

marking (Cooper et al. 2010) is a well-known platform benchmark to test different kinds of

distributed data stores and their performance against different types of workloads.

There is a wide variety and at the same time similar type of consistency models that have

been proposed so far in distributed systems, whether they are in the form of strong, eventual

or weak properties, regarding the consistency enforcement for data replication. Each of them

claims to be suitable for different types of applications, providing also different data semantics.

Although, something they have in common is their trade-offs between one of the three vari-

ables defined in one of the most currently well-known paradigm of distributed systems, the

CAP theorem (Bre 2002). In some cases, depending of what an application tolerates or caters

best for, is more important to have a very consistent systems, highly-available, or very tolerant

1Lehene C. HStack, http://hstack.org/why-were-using-hbase-part-2
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to partitions in the networks, but as it is stated by Brewer, not the three of them at once would

be possible.

For achieving low-latency one can split the operations in two or more categories in order

of importance, therefore having some of them replicated with stronger consistency guarantees

or faster with just eventual consistency (Li et al. 2012). This is a good approach for some

applications, and this thesis is also inspired in that approach because it creates a more flexible

scenario, which allows systems to adapt to the needs over time and data if required.

1.2 Problem Statement

It is well know that the definition of Replication involves several basic aspects. Firstly, replica-

tion not only copies data from one location, but also synchronizes a set of replicas so that the

modifications are also reflected to the rest.

If in a system synchronization there is a the burden for latency, then it is because perfor-

mance may matter above consistency. In (Lloyd et al. 2011), it is presented the idea of Causal

Consistency with a set of properties called ALPS,2 so in theory one does not need to sacrifice

consistency significantly for performance. Although there may be conflicts, one can resolve

those, in a higher level of abstraction with approaches such as latest writer wins, as it is also

noted.

On the other hand, systems as PNUTS from Yahoo (Cooper et al. 2008) introduced a novel

approach for consistency on a per-record basis, therefore providing low latency during heavy

replication operations for large web scale applications. It is realized how eventual consistency

is not enough in the case of social and sharing networks, as having stale replicas can be a

problem concerning users’ privacy because of data consistency misbehavior.

Therefore, consistency is a major case of study and source of several issues in geo-located

and distributed systems, particularly high-performing cloud data stores. Those systems require

flexible, adaptable and a more dynamic way of enforcing data consistency. Based on that, it is

important to provide smart semantics that best serve applications, avoiding overloading both

network and distributed systems during large periods of disconnection or partitions in the

2Availability, low Latency, Partition-tolerance, and high-scalability
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network. There is well-known and previous work in that regard (Kraska et al. 2009) (Chihoub

et al. 2013), which has also partially inspired the work now presented.

1.3 Extended motivation and Roadmap

In Cloud Computing replication of data in distributed systems is becoming a major challenge

with large amounts of information that require consistency and high availability as well as

resilience to failures. Nowadays there are several solutions to the problem, none of them appli-

cable in all cases, as they are determined by the type of system built and its final goals. As the

CAP theorem states (Bre 2002), one can not ensure the three properties of a distributed system

all at once, therefore having to choose two out of three for each application between consis-

tency, availability and tolerate or not partitions in the network. Several relaxed consistency

models have also been devised in that area regarding innovative and flexible models of con-

sistency, requiring redesign of application data types (Marc Shapiro & Carlos Baquero 2011) or

via middle-ware intercepting and reflecting APIs (Veiga & Esteves 2012).

In this thesis work we explore what are the main trends and scenarios of non-relational

cloud-based tabular data stores. The main reason is to understand how to make those systems

scalable, when and why is availability of data always necessary, and how its level of consis-

tency can determine the application outcomes. For that, we first dive into the fundamentals

of several well-known existing consistency models in the area of distributed systems while

taking particular attention to the concept of eventual and strong consistency. For that, later, a

quality-of-data framework or model is defined, which is mainly characterized by the levels of

consistency one can provide in replica nodes to end users and therefore differentiate between

updates that are going to be replicated. That is taking into account, whether is during off-peak

or high-load network usage scenarios.

Given this is our main focus of attention, and that many models exist in the area, we look

into retrospective to those first, and realize as we will explain that while they have been blended

and tuned in different forms, none of them actually reinvents the wheel in technical terms.

Following up, a special interest resides into leveraging the model for catering of several users

and applications, that can benefit from our approach in the concept of saving bandwidth and

reducing latency, during periods of higher activity between data centers or disconnections.
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First, we are enhancing the eventual consistency model for inter-site replication in HBase

by using an adaptive consistency model that can provide different levels of consistency de-

pending of the Service Level Objective or Agreement required. The idea can be somehow sim-

ilar to the ”pluggable replication framework” proposed within the HBase community (Purtell

2011), so our work has a two-fold purpose. First, present this thesis work and secondly con-

tributing to the open source community of HBase by presenting our proposal, with its integra-

tion into the core architecture of the system, therefore avoiding another middle-ware layer on

top of it. That also simplifies its usage to programmers and HBase developers or administra-

tors.

This in order to achieve giving a better understanding of what other replication guarantees

can such a system offer, its value to users, and how a flexible consistency model can be applied

to the core of a NoSQL distributed data store. This is valuable to users and applications that

require differentiating between data semantics for replication.

The research is mainly targeting the replication mechanisms HBase currently does not pro-

vide, by assessing how one can extend those already in place and provided within its codebase.

It is very interesting to see how there are several discussions opened in this same direction on

their community, some of them actually proposing selective replication of updates to peer clus-

ters.

So at the client level one user would be able to see something or not, depending of the

cluster it has access to or requesting reads from. That is far more efficient in terms of resource

consumption and bandwidth usage in geo-located data centers and there is a rising interest in

the topic for that very same reason, cost savings.

1.4 Research Proposal

Distributed HBase deployments have one or more master nodes (HMaster), which coordinate

the entire cluster, and many slave nodes (RegionServer), which handle the actual data storage.

Therefore a write-ahead log (WAL) is used for data retention in replication for high availability.

Currently the architecture of Apache HBase is designed to provide eventual consistency, up-

dates are replicated asynchronously between data centers. Thus, we can not predict accurately

enough or decide when replication takes place or ensure a given level of quality of data for
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delivery to a remote replica.

The main goal of this work is to incorporate a more flexible, fine-grained and adaptive

consistency model at the HBase core architecture level. That can be a feature part of HBase

to have bandwidth savings on inter-site datacenter replication, to help avoiding peak transfer

loads on time of high update rate, while still enforcing some quality-of-data to users regarding

recency (or number of pending updates and value divergence between replicas) so enhancing

the eventual consistency guarantees.

HBase is a relevant example of a large scale cloud data store. This work takes a closer look

at its architecture and introduces levels of consistency with a quality of data module (HBase-

QoD). The proposal is having the required flexibility for serving data to clients, while keeping

control of geo-replicated and distributed databases. This can optimize usage of resources while

still providing an enhanced experience to the end user. Application behavior is more efficient

but involves a slightly different shift into the consistency paradigm as seen in (Cooper et al.

2008). This is realized by modifying existing eventual consistency mechanisms of HBase with

an innovative approach, which allows handling replication of updates on-demand and on a

per-request or user basis.

1.5 Contributions

The contribution here presented is an accurate understanding of what real advantages can

be achieved using that model, which is evaluated later in the section with the same name.

From the architectural point of view, the model can be complemented with the corresponding

replication guarantees on top of it that can be among others, causal or causal++, but none

of them offers bounds on staleness of data as we aim to. This is valuable to business users

for knowing and learning about how to best serve requests while making datacenters more

cost and energy-efficient optimizing existing resources. Therefore, finally, it will be realized

how the advantages of using flexible mechanisms, when it comes to replication at global scale,

can overcome those that impose strict guarantees of data consistency for highly-synchronized

applications.

Latency can be reduced by imposing some constraints (time bounds or others regarding

number of pending updates and value divergence) on the replication mechanisms of HBase
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providing a two-fold advantage: i) ensure that a best-effort scenario does not overload a net-

work with thousands of updates that might be too small (can be batched too if desired) and also

and more importantly, ii) updates can be prioritized so that systems are still able to achieve an

agreed quality of service with the user in resource constrained environments.

The main contributions of the thesis are based in the analysis of the existing generic geo-

replication mechanisms in the area of distributed systems with a special focus for those into

HBase. Besides, a model that provides tunable consistency it is introduced and applied to the

cloud data store with the following improvements:

• Replication mechanisms that control flow of updates during replication.

• Quality of Data engine plugs into HBase so enhancing eventual consistency adding con-

sistency guarantees based on data-semantics.

• Results obtained are evaluated for gains in performance and/or bandwidth savings by

using the HBase-QoD implementation.

1.6 Publications

The work presented in this thesis is partially described in the following peer-reviewed publi-

cations:

• Álvaro Garcı́a Recuero, Sérgio Esteves and Luı́s Veiga. Quality-of-Data for Consistency

Levels in Geo-replicated Cloud Data Stores. In IEEE CloudCom 2013, Bristol, UK, Dec.

2013, IEEE (6-page short paper).

• Álvaro Garcı́a Recuero, Luı́s Veiga. Quality-of-Data Consistency Levels in HBase for Geo-

Replication. In 11th Usenix Conference on File and Storage Technologies, (FAST 2013),

San Jose, CA, USA, Feb. 2013, Usenix (2-page Work-in-Progress report and Poster).

1.7 Structure of the thesis

The remaining of this thesis is organized in a number chapters. In Chapter 2, following, we

study and analyze the relevant related work in the literature on the thesis’ topics. In Chap-

ter 3, we describe the main insights of our proposed solution, highlighting relevant aspects



regarding architecture, algorithms, protocols and data structures. Chapter 4 describe the most

important and specific lower-level details of the solution implementation and deployment. In

Chapter 5, we evaluate the performance of our solution resorting to two benchmarks found in

the literature. Chapter 6 closes this document with some conclusions and future work. At the

beginning of each major chapter we outline its structure, and after describing it, we summarize

the contents and topics presented.
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2Related Work

No sensible decision can be made any longer without taking into account not

only the world as it is, but the world as it will be. – Isaac Asimov, writer and scientist

(1919 - 1992)

The database market is currently divided in three major segments. DataWarehouses (used

for business intelligence), OLTP systems and lastly another set of systems which are currently

the most innovative and fast-evolving in that market. In this thesis work, the focus is therefore

on the third type, so called NoSQL systems for instance.

NoSQL databases are the evolution of traditional Relational Database Management Sys-

tems (RDBMSs 1), they are the current underlying technology that empowers many of the dis-

tributed applications we find in nowadays so called Web 2.0. These applications can accept

certain data staleness as long as correctness is ensured at the application logic level. For ex-

ample, might be not necessary to have a user status on Facebook immediately replicated to all

friends. Therein the reason to replace the usual SQL model with a new one that is to be able to

provide a higher degree of flexibility and massive scalability to applications (on demand, user

or data semantics defined).

Next is a set of desired key properties one is usually seeking to have in such systems:

• Simplicity means not to implement more than it is necessary (replace strict consistency

for in-memory replicas)

• High Throughput, as it is very usual to achieve better than with traditional RDBMSs.

Hypertable 2 for instance follows Google Big Table(Chang et al. 2006) approach and it is

able to store large amounts of information. Also MapReduce with BigTable to process Big

Data.

1Webopedia, http://www.webopedia.com/TERM/R/RDBMS.html
2Hypertable, http://hypertable.org/
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• Horizontal Scaling, so one is able to handle large volumes of data by scaling on com-

modity hardware it is necessary and actually cheaper than former approaches. That is,

scale out. Some of them, like MongoDB 3, even have the ability to support automatically

sharding. In terms of costs these databases are more effective alternatives to systems from

large corporations such as Oracle.

• Reliability versus Performance: Usually databases of this type store data in memory more

often than traditional RDBMSs but lately there has been a tendency, specially with HDFS,

to support better persistent storage. This is a great asset to NoSQL data stores, and it is

rather a growing disadvantage to systems as MySQL.

• Low cost of administration overhead. Mainly, the cost of changing schema and the need

to restart databases and applications when those are extended. One the most fundamen-

tal reasons for companies to adopt NoSQL systems is that low-overhead on the infras-

tructure set up and administration, even if the learning curve could be relatively higher

at first.

2.1 Types of Storage

The most important and interesting conceptual difference between NoSQL systems is the data

model the implement, so it is necessary to know what are the key differences and advantages

or disadvantages among them.

All of them implement a de-normalized data model so it is important to understand that,

as it is the key to be able to perform better in distributed environments. The term data store

applies to a large ”set of files” distributed physically across multiple machines.

2.1.1 Key-Value Stores

Redis for example implements this sort of model. Using data structures such as Map or Dictio-

naries, which are both similar, the data is addressed by unique key when a query is performed.

Usually in this type of model, data is kept in memory as much as it is required and the proof is

that some implementations such as Memcached 4 have been oriented and are used as a caching

3MongoDB, www.mongodb.org
4Memcached, www.memcached.com
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layer in web applications in order to save requests to the main database system.

2.1.2 Document Stores

That is case with MongoDB and CouchDB 5. They are, in contrast to key value stores, imple-

mented using values as relevant to the system for individual queries.

2.1.3 Column-Family Stores (or extensible record stores)

One important aspect of this type of data stores is the column-family paradigm, so data can be

organized and efficiently partitioned among several replica locations. HBase is an example of

this type of data store (most of them are inspired in the first idea that came from BigTable)

2.1.4 Graph Databases

We are much interested in the details of this type of data stores model, although we just point

it here to make sure it is classified as such. Even though, the main idea that it brings with it, is

the management of large amounts of linked data.

2.2 Design Issues

2.2.1 Organization

2.2.1.1 Distribution

With distribution we mean partitioning of data across database clusters. That is the way non-

relational databases are implemented, to allow their size to scale horizontally and fulfill mod-

ern applications requirements in terms of performance but also capacity. Even though, would

be best if partitioning was not used in order to achieve better read latency, but instead replica-

tion can be a good approach to resolve that issue. Regarding partitioning, we can distinguish

between two main types as shown in Table 2.1, range-based and by using hashing:

5CouchDB, www.couchdb.com
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Range-based partitioning: First of all, one can distribute data based on ranges of keys.

This first approach is used by systems such as HBase 6, Mongodb, hHypertable. Range queries

are managed very efficiently as most of the keys are in the neighboring keys are usually stored

in the same node and table. Although it lacks on availability as there is a single point of failure

in the routing server that directs the rest of nodes to the key ranges defined.

Consistent hashing: Secondly, one can use consistent hashing for achieving distributing

through hash keys. There is not single point of failure and queries are resolved faster by query-

ing the right set of addresses in the cluster. The main issue with this approach is having to

query ranges of addresses, as this introduced an extra overhead in the network that can lead

to poor performance and problems of overloading the network due to the random placement

of keys across the cluster key-space. Examples of this approach as for instance (Lakshman &

Malik 2010) and Dynamo (DeCandia et al. 2007).

Key-Value Store Name Range Based Consistent Hashing
Voldemort - yes
Redis - yes
Membase - yes

Document Store
Riak - yes
MongoDB yes -
CouchDB - yes

Column Family Store
Cassandra - yes
HBase yes -
HyperTable yes -

Table 2.1: Partitioning models

2.2.1.2 Indexing

Indexes provide high performance read operations for frequently used queries. Regarding

NoSQL databases, they are usually sorted by unique key. Most of them do not provide sec-

ondary indexes. Although and even though, recently for instance document stores such as

MongoDB supports them, that is not the norm among distributed data stores.

6HBase, http://hbase.apache.org/
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2.2.1.3 Querying languages

The data model should be tightly coupled to the sort of queries a database will need to support

in a regular basis. Key-value stores offer weaker semantics to support those, as usually they

are intended mainly for put, get operations. Some Document stores can deal richer queries on

values, secondary indexes and nested operations. Some possibilities to make this interaction

more user friendly is using JSON syntax for querying the data store. As with column-stores,

only row keys and indexed values can be used for where-style clauses. Therefore, there is no

common language available for those.

2.2.2 Semantics and Enforcement

Regarding data semantics, there are several aspects one might have to consider when choosing

among distributed data stores. For instance types of Consistency( 2.2.2.1) and Concurrency

Control( 2.2.2.2) methods are the most common and relevant in this matter. Therefore we show

here an overview of those and the options that are available within each of them.

2.2.2.1 Consistency

Having a distributed data store implies the management of data somehow so serving the latest

and most up to data write operations to clients that demand them. That is a problem in itself,

to have global clocks that synchronize within few milliseconds might not be enough for some

operations. Therefore, there are several existing models in the spectrum of consistency that

have been developed and used over the years in distributed systems.

Sequential Consistency: Meaning that all clients or processes in the system observe the

same result from a set of inter-leaving events (reads or writes) and in the same global order.

Linerizability applied on top of that, also ensures that if an event A occurs before another one

B, then A is read also before B according to their time-stamp.

Causal Consistency: In theory, writes which are related between each other, must be seen

in the same order in every client or process of the system. That is, if an event A causes directly

or indirectly another B, then both of them are causally related.
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FIFO Consistency: The necessary condition to fulfill this model is that the writes that are

input by a single process, are seen by all other processes in the order in which they were issued,

but writes from different processes may be seen in a different order by different processes. In

other words, writes are concurrent and observed by the other clients or processes consistently.

Eventual vs Stronger Consistency models: We can realize that in Geo-distributed sys-

tems there has been and there is still a growing number of cases where data semantics are

frequently reviewed in order to provide operations with faster (eventual) or slower (stronger)

performance without compromising consistency (Li et al. 2012). Also in those where causal

serialization and therefore commutative updates are provided based on the semantics of

data (Marc Shapiro & Carlos Baquero 2011). Strong consistency relies on linearizability but

does not work well for systems where we need to achieve low latency across widespread lo-

cations. So that could be a reason for most system to actually use eventual consistency, but

is actually two-fold, firstly avoiding expensive synchronous operations across wide area net-

works while still keeping consistency of data possible implemented some extra guarantees on

top for the ordering of events (Causality) And secondly the former, as we mentioned regarding

keeping latency under a minimum desired threshold. We can see a list of the existing systems

in the Table 2.2 below.

Key-Value Store Name Eventual Stronger
Voldemort yes yes
Redis yes -
Membase - yes

Document Store
Riak yes yes
MongoDB yes yes
CouchDB yes -

Column Family Store
Cassandra yes yes
HBase - yes
HyperTable - yes

Table 2.2: Consistency models
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2.2.2.2 Concurrency Control

There are evident problems for concurrency control in distributed systems. To address these is-

sues, systems use different approaches such as Locks, Multi-version concurrency control, ACID

properties, or in the worst case scenario none of them. In some cases, it is also necessary to en-

sure serializability while performance is not compromised. Therefore, it is necessary to simplify

the management of write-write conflicts while the system is still able to perform fast enough.

For that, systems as Walter (Sovran et al. 2011) implement parallel snapshot isolation, which

in their case is quite efficient in terms of implementation (they use preferred sites and counting

sets). It is clear the need for these sort of approaches since web applications are becoming big-

ger and demanding more capacity. Due to that, more than just a data centre or site is required

in order to be able to satisfy demanded capacity, locality and fault tolerance.

MVCC: Multi-version concurrency control aims at simplifying the stricter model of con-

sistency to provide a better performance. There are no locks but instead ordered versions of

data allow resolution of conflicting writes and also higher concurrent read operations are pos-

sible. The complexity of the system increases, like in in HBase, where it is helpful to have

multi-versioning but that adds more storage requirements in space as requests need to be pro-

cessed in parallel. We can appreciate the different types of concurrency across existing data

stores in Table 2.3.

Key-Value Store Name Locks Optimistic MVCC
Voldemort - yes -
Redis - yes -
Membase - yes -

Document Store
Riak - - yes
MongoDB - - -
CouchDB - - yes

Column Family Store
Cassandra - - -
HBase yes - -
HyperTable - - yes

Table 2.3: Concurrency models

Locks: With locks we mean reserving several sets of data for exclusive access during op-

erations in a data store. A more flexible approach is optimistic locking, where just the latest
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changes are checked for conflicts and if so, there is a rollback which allows the state of the

database to be available earlier on. It is important to note that optimistic locking is supported

by some data stores like Voldemort (Sumbaly et al. 2012), Redis and Membase, while others

are preferable in order to achieve a different level of concurrency control.

ACID properties: ACID (Atomicity, Consistency, Isolation, Durability) properties are

typical of Relational Database Management Systems (RDBMSs) in order to provide better dura-

bility. Some NoSQL systems such as CouchDB implement these properties with a combination

of MVCC and flush-commit of new changes to the end of data files so that new operations are

completely executed or rolled-back.

Transactions: Regarding distributed file-systems, have been discussed how transactional

approaches can be a drawback to performance versus correctness (Liskov & Rodrigues 2004)

Due to those constraints, there are typical problems one must take into consideration when de-

signing, developing and operating distributed databases. Firstly, distributed file systems used

to provide weak semantics with a lack for synchronization and therefore were susceptible to

deadlock. For that, were devised fully transactional file systems that can deal with that, even

though, there are still problems with the latter approach. For instance, extra processing might

be required for concurrency control or roll-back when committing transactions. In that previ-

ous work from Liskov and R. Rodrigues the aim is to present a future system that will embody

both simple mechanisms to make transactions much faster while still keeping correctness, but

with a level of staleness on data that is synchronized. For that approach, exploiting a cache

is fundamental and reads are not fully up to date with the existing information in the whole

system, but that is a consequence authors are able to assume.

serializability+

snapshot+
isola0on+

eventual+
consistency+

parallel+
snapshot+
isola0on+(PSI)+

Figure 2.1: Transactional Storage for geo-replicated systems from (Sovran et al. 2011)
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2.2.3 Dependability

2.2.3.1 Replication

The main concerns regarding replication are at the storage layer, and there are several possible

scenarios, which require each a different approach (e.g single or multi master) In the multi-

master scaling is fundamental, having advantages as well as trade-offs. A good extra property

to support large distributed implementations are transactions, therefore making application

programming simpler without having to care about concurrency and failures, which should

be dealt with at the storage layer level on each site. The meaning of replication is to enhance

systems reliability by having multiple copies of data at several different locations, if possible in

geographically distant locations. Also, having data locality improves response times when ac-

cessing local copies of data so benefits the overall system performance implementation. There

are several points to note in the following then:

• Scalability: Replication is, among other things, a technique for scaling. Copying data

over several locations can improve access times to local clients. A client accessing certain

information can be redirected to the closest replica node available in the network of data

centers. That reduces latency overhead and delays locally, although it poses a problem on

the network communications required to update all other replicas once an update occurs.

• Ensuring Availability and Fault-Tolerance: If a replica fails there is another one which

can take respond to the request and therefore avoid a single point of failure in the storage

system. That creates a more robust and resilient infrastructure overall.

• Load Balancing: There are several strategies for that, but the most usual is having replicas

located in a nearby or same data center in order to provide distribution of the incoming

number of requests to the system. That approach ensures high-load peaks of requests do

not overflow the systems, which is important to keep the system performing well and

avoiding to slow down the processing of requests in response to clients.

2.3 Typical distributed data stores in use

A full list of the types of data stores described is presented in the following sections.
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2.3.1 Key-Value Stores

2.3.1.1 Voldemort

Open-source follow up of Dynamo, Voldemort (Sumbaly et al. 2012) 7 is being used for instance

at LinkedIn for providing high-scalability. The system is built for efficient but simple queries,

so there is no need or support for joins (implemented at the application level). Constraints

on foreign keys are also unsupported and not possible. Obviously, no triggers or views can

be set up as in traditional relational database systems. These are the trade-offs that allow the

system to have better performance in terms of queries, distribution of data storage, separation

of concerns between logic and data model. This is as we say, in contrast to RDBMs more

practical and efficient for distributed systems with need for simple APIs and object oriented

paradigms in applications.

One interesting aspect of Voldemort is the concept of stores, which are namespaces of key-

value pairs stored with unique key and each of them associate to only one value. Values can be

still lists, maps or scalars. In one thing it resembles Amazon Dymano, as it is highly available

during write operations, can tolerate concurrency during updates and causality of versions is

implemented though vector clocks.

2.3.1.2 Dynamo

Amazon designed Dynamo, which can also use an eventual approach but in their implemen-

tation they focused more in another type of algorithms for providing direct routing with zero

hops to the destination unlike Chord (Stoica et al. 2001). It provides a tunable R+W >N con-

sistency model. The application programmer using Dynamo specifies the amount of replicas

that one needs up to date on a read (R) or write (W). As long as R+W is greater than N, the

total number of replicas, it should provide consistency to the user (assuming correctly merged

writes). That means for a typical replication factor of N=3, the programmer can specify highly

available writes and slower but consistent reads (3+1>3), a more balanced approach (2+2¿3),

or assuming a read-heavy workload (1+3>3). Increasing N increases the replication factor,

meaning better durability. Choosing R+W less or equal to N allows for eventual consistency.

7Project Voldemort, http://project-voldemort.com/
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Although one can argue Dynamo fails to fulfil the needs of datacenters based applications.

Most services only store and retrieve data by primary key so complex querying is not required.

Consistent hashing is used for partitioning and replication. Consistency is achieved through

versions of objects. Being a decentralized system, nodes can be added or removed without any

extra overhead. Usually that sort of system is best for applications that need a data store that

tolerates writes and there are no concurrent writes failures. Replication is used per node, so a

coordinator node is called one upon data falls within its on range and therefore assigns copies

of the source data to as many other hosts as specified by N itself.

2.3.2 Redis

Redis 8 uses a master slave approach based on asynchronous replication, that is, eventually con-

sistent. That is the preferred approach in order to keep master and slave replicas non-blocking

at all times during synchronization. The key-value store also provides with partial synchro-

nization, so avoiding to re-submit all previous information in case of periods of disconnection

between servers. As in other solutions, the actual time-stamp for when a write occurs, is not

guaranteed to be consistent among replicas. Although some limits can be set some a set of data

is within some certain consistency constraints. This is an attempt to simplify data consistency

guarantees but possibly not enough in large deployments that need of scalability.

2.3.3 MemBase (namely CouchDB)

This key-store is a eventually persisted architecture. As in HBase, updates are first inserted into

a cache like memory buffer and then later flushed to disk for persistence. About partitioning,

each key is hashed which gives out the result of where that key should be placed. Updates

belong to a partition and the system keeps a mapping of the active nodes and their partitions

so they can be accessed directly without for instance relying on a load-balancer and therefore

reducing latency.

8http://redis.io/topics/replication
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2.3.4 Document Stores

2.3.4.1 MongoDB

MongoDB is one of the most popular document stores. It is schema-free and supports Map-

Reduce operations too. The system also provides indexes on collections. The consistency model

is eventual and uses asynchronous replication for that. Regarding atomicity, provides atomic

updates on fields by tracking changes on those and updating the whole document only if that

is a known-value.

2.3.4.2 CouchDB

CouchDB on the other hand uses MVCC for atomicity on documents. Consistency is not guar-

anteed, each client might be having a different view of the database itself. There is no replica-

tion between replica nodes, so therefore a MVCC system to control version conflicts. It is up to

the application level to handle the notifications from CouchDB for updates seen since last fetch

operation.

2.3.5 Column-Stores

2.3.5.1 HBase

In previously devised systems at Google, BigTable (Chang et al. 2006) for example mainly aims

to be a highly available and scalable key-value store without compromising performance. It is

then with built for lexicographically sorted data and each family has the same types. It also

uses several other technologies, Chubby as a locking service, Google File Systems to store logs

and data files, and SSTables for BigTable data (also implemented in HBase). In Figure 2.2 we

can see an architecture design of the system developed at Google and compare it to Hbase.

Hbase is an open-source distributed, versioned, column-store designed after

BigTable (Chang et al. 2006), which is also a distributed, persistent and multi-dimensional

sorted map. HBase uses Zookeeper (Hunt et al. 2010) to provide high availability and it is

written in Java to managed large amounts of sparse data. The cloud data store is nowadays

being used as the messaging layer at companies such as Facebook (Muthukkaruppan 2010). It
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Figure 2.2: The main HBase architecture from (George 2012)

has good write latency but some durability concerns (as it does not commit updates directly

to disk) and not so good results in the case of reads as seen in (Cooper et al. 2010). The

underlying file system is HDFS, analogous to GFS from Google with BigTable. In master

to master replicated scenarios there are only eventual guarantees to the consistency of data,

although data integrity is somehow ensured with a minimum provided set of replicas in HDFS

memory of 3, claimed to be enough for the purpose.

Although that works well in most cases, more complex applications which require stronger

consistency guarantees can be difficult to manage with BigTable so due to those constraints,

Google developed later on in 2012 an evolution of BigTable that provided external consistency

with atomic clocks and so on, Spanner (Corbett et al. 2012). That can make applications still

benefit from high-availability while ensuring synchrony among distant replicas and more im-

portantly, atomic schema changes. Data locality is also an important feature so partitioning of

data across multiple sites is used on both BigTable and Spanner, specifically in the later to con-

trol read latency. Regarding write latency, Spanner supports that type of control by knowing

how far are replicas from each other or in other words, very similarly to what had been already

proposed as part of other existing middleware frameworks for HBase such as VFC3 (Veiga &

Esteves 2012).

Inside the same data center strong consistency is provided which means one can read its

writes independently of what replica node is reading from. Although and as pointed out in sev-

eral technical reports from Facebook (Aiyer et al. 2012), there is still work to do in the area of

cross data center replication, which is the main aim here in the thesis work here presented and

which we explain in the next chapters of the document. In master to master replicated scenar-
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ios eventual guarantees to the consistency of data are provided in HBase through mechanims

based on a custom protocol with RPC calls. Therefore replicas can contain stale data in the

order of seconds to minutes until the full set of updates is received.

2.3.5.2 Spanner

There has also been some recent research that addresses these shortcomings in geo-replicated

data center scenarios like (Corbett et al. 2012). HBase does not use that Paxos either for syn-

chronization of replicas. On the other hand, the performance of the data store for random

writes and replication between remote sites is very fast and provides advantages in that area.

Spanner does use Paxos for strong guarantees of replicas and that seems to work well enough,

although is not really implemented with HBase it is possible to take that approach. Therefore

one need to trade data availability for consistency between replicas in the presence of parti-

tions. That is achieved through asynchronous communications rather than serializability, in

order to minimize the cost of latency in wide-area scenarios with clusters running Hadoop as

the storage layer of Hbase. Hadoop is good for many reasons, and frees the higher layer from

other tasks and one can even implement transactions if desired on top of it.

2.3.5.3 PNUTS

On the other hand, systems as PNUTS (Cooper et al. 2008), yet another cloud database systems

a.k.a NoSQL, Yahoo introduced a novel approach for consistency on per-record basis. Therefore

being able to provided low latency during heavy replication operations for large web scale

applications. They, as in our work provide a finer grain guarantees for certain data, so in

other words, new updates are not always seem right away by the clients (which is the case

anyway in HBase), but only if strictly necessary. Keeping that in mind, that is not always

appropriate to keep the application available and performing both at once. They realize that

eventual consistency is not enough in the case of social and sharing networks, as stale replicas

can result in undesired cases of users having the opportunity to see or use data they were not

supposed to access or so, and therefore a privacy issue as well as data consistency concerns on

end users. Also, the main trade-off with PNUTS is the limited or not support for transactions.
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2.3.5.4 Megastore

MegaStore is also an invention developed at Google. The main idea is to provide ACID proper-

ties across geo-located data centers with scattered data-sets and a Paxos scheme for replication.

With inter data center replication Megastore can achieve fault tolerance while still providing

strong consistency properties. It also scales, by partitioning data-sets into entity groups Multi-

site operations result in poor performance with Megastore, that is its main drawback. The

model and language is different from those data stores such as BigTable (Chang et al. 2006) but

also from Relational Database Management Systems.

2.3.5.5 Azure

There are other look alike systems such as Azure (Calder et al. 2011) from Microsoft, which

provides strong consistency on the other hand. This system tries to give priority to consistency

even in the event of partitions in the network. Durability is ensured with two or more copies

of the data. The systems is scalable and provides a global name-space.

Regarding its architecture, Storage Stamps are used to expand out global data center capac-

ity. The Geo-Location service does the balancing and fail-over across different stamps across

different data centers. Within a Storage Stamp, there is a Stream Layer which is append-only

distributed file system which replicates data across domains. Replica recovery is possible. The

Partition Layer understand what is a data structure is (blobs, queues..) and it is possible to

manage the consistency of the items in the Stream Layer (persistence). Basically, the partition

layer sends asynchronously the items for geo-replication. There is also a commit log similarly

to the WAL in HBase, which is useful for recovery in case it is necessary.

2.3.5.6 Cassandra

Cassandra is a well known key value store system developed at Facebook for scaling of their

back-end storage architecture while achieving high performance and wide applicability (Lak-

shman & Malik 2010). Replication is support across multiple data centres, providing quite low

latency for reads and specially writes. The key point of Cassandra is its ability to define several

types of consistency, which can be configured by the user before runtime. Cassandra works

similarly to HBase, using a write ahead log for durability and a Memtable to store volatile
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data. Atomicity is ensure at the row-level, which is none or nothing. As we we will see later

in our implementation of HBase QoD, Cassandra uses a tunable data consistency model which

also works for distributed environments.

Scalability: To scale Cassandra follows a similar approach to Chord (Stoica et al. 2001), where

the load is partitioned among the neighboring nodes to avoid the load goes on some of the

existing nodes only.

Fault-Tolerance: Cassandra uses replication Quorums for ensuring data is fault tolerant. In

the replication model, either all nodes respond for the write to be successful or none of them

does. Read-repair occurs when obsolete data must be updated in a per request basis. That is

data that will need to be up to date for an eventual ”Insert”, ”Update” or similar operation on

the database.

2.3.6 Relevant distributed and replicated deployments

There is extensive work in this area of geo-replicated data stores. For instance, in proposals

of systems such as D-Tunes (P N et al. 2013) there is a clear relationship between having a

self-tuning and adaptive data model that allows adjusting geo-distributed data store needs

automatically, depending of a set of previously gathered statistics, to meet strict application

SLAs while still achieving optimal data store performance for all, consistency, latency and high-

availability.

There is an evident need for having tailored replication mechanisms that target applica-

tions that require custom levels of consistency, that has been described among others in (Kraska

et al. 2009), where for instance a buffer is used to keep lists of pending updates for that purpose.

It is also worth to mention what other techniques have or are being used for a similar purpose,

such as for instance Snapshot Isolation or ALPS properties in systems like COPS (Lloyd et al.

2011) which present novel ideas on the subject regarding consistency. Or in the well-known

conit consistency model from Duke University (Haifeng Yu ; Dept. of Comput. Sci. 2001), a sys-

tem built with these same premises is also presented, but focused on generality rather than

practicality. The thesis work refers more specifically to the later, as it is more rewarding to

users that need to integrate a fully functional system with a replication framework that opti-

mizes Geo-Replication.
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Actually there is an opened issue reported on the HBase community (Purtell 2011). In

distributed clusters, Facebook is also using HBase to manage the messaging of the platform

across data centers. That is in despite of Cassandra (Muthukkaruppan 2010), previously de-

vised internally at their own company. That may be well be because of the simplicity of the

consistency model as well as the ability of HBase to handle both a short set of volatile data and

an ever-growing data set that rarely gets accessed more than once. In practice, their architec-

ture comprises a Key for each element is the userID as RowKey, word as Colum and messageID

as Version and finally the value like offset of word in message (Data is sorted as: userId, word,

messageID). That implicitly means that searching for the top messageIDs of an specific user

and word is easily supported, and therefore queries can run faster in the backend.

2.3.6.1 Google Cloud Data Store

Google Cloud Datastore has been recently released. That is a system that is subject to explo-

ration yet so we will cover limited aspects of it here. The API enables users to use a a fully

managed, schema-less database on the cloud for storing their non-relational data.

There are a few key points such as ACID properties of transactions or High-Availability,

Google outlines in their main website (Google 2013). More interestingly also provides a dif-

ferentiated approach to consistency. Strong consistency for certain reads and eventual for the

rest of the queries. The reason for giving stronger consistency to some queries over others

with just eventual is allowing the database performance to optimize on the overhead of strong

consistency between groups of non-related items. To the contrary, with related entities, such

as [Person:GreatGrandpa, Person: Grandpa, Person:Dad, Person:Me] it is by default possible

with ancestor queries to use stronger consistency. Transactions are also implemented between

entity groups to ensure data consistency in cases of concurrent updates to the database. As they

note, to conserve memory a query should, whenever possible, specify a limit on the number of

results returned, that is why.

To us, this concept is also interesting as it seems to make use of the right tools depending

of what type of data is being used in order to maintain as much consistency as possible at a

low-cost.



2.3.6.2 MapReduce Framework

In the MapReduce framework (Dean & Ghemawat 2004), replication is used for tolerating fail-

ures and also performance wise. The framework was first introduced by Google and used and

underlying file system called Google File System (GFS) (Ghemawat et al. 2003). Here files are

organized into chunks which are replicated to other nodes for fault-tolerance. The processing

of map tasks involves the task scheduler and it is performed leveraging data locality informa-

tion kept in the metadata storage, for instance first asking for the chunks required to complete

tasks at the current node, in another in the same location (data center) or else outside in a

completely different location, in that order of priority. That also ensures fault-tolerance and

improves task average time completion by using more nodes with the relevant data available

in order to speed up the process by contributing to the overall computation in parallel with the

rest.

Summary

In this Chapter, we presented the relevant related work found in the literature for the topics ad-

dressed in the thesis. We offer a systematic analysis of current state-of-the art in cloud storage,

accounting for the main driving forces and design issues behind it. Moreover, we complete

this analysis with comparative tables and a final description on influential systems and their

deployment.



3Architecture
“The greatest pleasure in life is doing what people say you cannot do.” – Walter

Bagehot (British political Analyst, Economist and Editor, one of the most influential journalists of

the mid-Victorian period.1826-1877)

This chapter explains the design goals, main architecture, and the protocols we present

as solution to the problem of distributed data stores regarding consistency versus availability,

also introduced in earlier chapters. Rather than just considering a fixed consistency model, we

aim at providing finer-grained levels of consistency during data replication, and taking as an

example social networks such as Facebook 1, we showcase how one might not need so strict

consistency depending on what updates are replicated. For that, will be explored how bounded

data semantics help to achieve that goal.

First of all, we take a general overview of the system design in Section 3.1. Following

sections in the chapter reflect the architecture of the system in terms of network as well software

components. Each of the steps in the design process has been carefully justified in order to

integrate well in the original system architecture, and in particular those decisions related to

asynchronous replication using Remote Procedure Call 2 mechanisms that are the base of the

architectural changes introduced with a custom HBase-QoD module.

In order to achieve that, it is necessary to take into account a set of requirements that help at

addressing the challenges and fulfilling our goals, that are described in Section 3.2. Section 3.3

presents the network architecture where HBase-Qod operates. In Section 3.4, we describe the

consistency model proposed for HBase-QoD, including operation grouping, and its enforce-

ment. The chapter closes with the software architecture of the extensions proposed to HBase.

1http://www.facebook.com
2RPC, http://en.wikipedia.org/wiki/Remote procedure call
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3.1 System Architecture Overview

We start by showing the logic behind the main architectural design decisions and showcase

scenarios as in a ”thousand feet view” of the system, which provides an overview of the system

first of all such as in Figure 3.1. Following, we delve into the proposed changes in order to

verify the feasibility of the implementation as well as what scenarios are best suited to our

definition of consistency.

Site A Site B

Inter-Cluster 
Replication

User A 

User N

QoD N...QoD 2 updates replicated

Updates Replicated
in HBase

User D

QoD-1. σ=3 for column family c0. 
We increase value of σ up to 3 and replicate 

all items from c0 at that point.

key: user1221, columnId: c0, ...

QoD-1

key: user1221, columnId: c0 σ=1
σ=2
σ=3
σ=0

key: user1221, columnId: c0, ...
key: user1221, columnId: c0, ...

key: user1221, columnId: c0
key: user9231, columnId: c2, val:1

key: user8911, columnId: c2 θ =1

QoD-2. θ=1 for column family c2.
In this case θ is a time constant, so each 
second it replicates all items from c2 .

θ =1
θ =1
θ =0

key: user9231, columnId: c2, val:0

key: user9231, columnId: c2, val:1
key: user8911, columnId: c2, ...

key: user1221, columnId: c0 
key: user1221, columnId: c0 
key: user1221, columnId: c1 

Figure 3.1: HBase QoD high-level

In order to introduce a new HBase-QoD module architecture, the first step is to study in

details the existing system to get familiar with it and identify the best locations for new code

added. Therefore, taking into account the original architecture inner-workings of the data store

at the logical level will ensure correctness and validity of the new architecture here presented

as well as prototype described in next chapter.
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1. First identifying the source and destination of updates.

2. Secondly, defining a QoD vector-model based on the schema design of HBase so we can

reach our goals.

3. Finally integrating both parts into the same system, and providing a mechanism to switch

on and off the module at run time into HBase.

HBase is written in Java and its replication mechanisms are related to a Write Ahead Log

(WAL) that also ensures durability of updates and disaster recovery. Replication must be en-

abled for shipping updates between peer cluster locations in remote or nearby data centers.

The process of replication is carried out asynchronously so there is not additional overhead or

latency introduced in the the master server during that operation. Although, since the process

is not strongly consistent, in write heavy applications a slave can have stale data in the order

of more than just a few seconds according to the eventual consistency approach.

Therefore, until the last update first commits to the local disk, it cannot be seen replicated

in a remote location. To keep control of staleness, we plug a QoD module called HBase-QoD

which provides and takes advantage of a filtered and sorted by priority queue of items later

scheduled for replication accordingly. Thereafter, when the method completes, updates are

shipped in an ordered fashion by defining and enforcing bounds on data as key decision prop-

erties for their delivery to a remote cluster location. For write intensive applications that can

be both beneficial in terms of peaks of bandwidth usage and also reduced staleness of data.

Given that HBase provides eventual consistency mechanisms through Remote Procedure

Calls in order to replicate items, that data store is chosen as system use case to firstly introduce

the proposed architecture here. Also, we can enhance the current multi-row atomic model,

using an approach that can also relate column families between updates in order to provide

the same atomicity at the column-level.

The physical structure of column families is outlined in Table 3.1, where we have a view

of its data model. That is potentially useful for distinguishing updates between cluster up-

date owners and users or applications that need those updates from another cluster for the

fact of being consistently up to date in regards to their own local data center ongoing update

operations.
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Row Key Timestamp Column Value

com.gsd.inesc-id.www
T1 anchor:inesc-id.gsd.com value1
T1 anchor:domain2.com value2
T2 anchor:domain3.com value3

Table 3.1: This table shows the physical structure of HBase data model

Replication occurs in two different manners into HBase. Intra-cluster and Inter-Cluster.

We target the later, so firstly, we set up a standalone Zookeeper 3 on each server running, and

therefore separate clusters with a master server each. This is useful for enabling and testing

HBase-QoD performance.

Secondly, a cluster with a distributed Zookeeper ensemble on each of the nodes is config-

ured, and we will aim to also test intra-cluster scenarios for HBase-QoD even though that is not

our main goal. This benchmark use case can be also useful to us for testing weak consistency

features presented into YCSB++4.

3.2 From eventual consistency to QoD consistency

This section explains the motivation of the steps taken in regards to the design decisions

adopted in order to present an enhanced architecture that also follows best practices in regards

to code readability and re-usability for the system of choice. In the following sections of the

chapter we justify the ’how’ and ’why’ of the choices we have made during the development

process later once we have a well-rounded architecture of the intended replication module for

HBase.

With eventual consistency enforcement in place, updates and insertions are propagated

asynchronously between clusters so Zookeeper is used on each of them for storing their posi-

tions in log files that hold pointers to the next log entry to be shipped when replicated from/to

other HBase cluster. To ensure cyclic replication (master to master) and prevent from copying

same data back to the source, a sink location with remote procedure calls invoked is already

3http://zookeeper.apache.org/
4http://www.pdl.cmu.edu/ycsb++/
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into place with HBase, so we use the current features provided by HBase in that regard. There-

fore if we can control the edits to be shipped, we can also decide what is replicated, when or in

other words, how soon or often.

Design Goals are as follows:

1. Separation of concerns between replication data semantics. Applied to HBase can pro-

vide different levels of consistency among updates.

2. Replication can be still asynchronous but with higher degree of consistency guarantees,

based on a vector-field consistency model that allows defining constraints and limits ap-

plied to updates that have as target different client application data.

3. Partitioning allowed with eventual consistency allowing to reconcile changes au-

tonomously, while grouping of operations enforces maintaining atomically replicated up-

dates so avoiding the first in case of long periods of disconnection to the network (it is

already possible to define a retry timeout in HBase in case of partitioning so we do not

need to focus on that but rather on the grouping part)

3.2.1 Challenges addressed in HBase-QoD

How long does it take for edits to be propagated to a slave cluster? This is one of the main

questions that can strike Cloud Architects when it comes to distributed NoSQL architectures.

As noted in the HBase forums, there is a increasing interest in knowing how and when data

is propagated to slave clusters. For instance to separate clients facing HBase clusters and the

ones used to to run benchmarks and analysis that involves heavy Map Reduce tasks that are

very scan intensive.

Buffering in HBase: As noted by Jean-Daniel Cryans, replication acts as soon as the buffer

itself is full or it reaches the end of the file (EOF). The end of a file is determined by when a file

is reopened because there is no way to tail a file into HDFS without closing a previous reader,

therefore reopening the file and seeking to a certain position it is required. As a consequence,

replication is not able to keep filling the buffer for minutes before sending because it quickly

gets to the end of the file anyway. The HBase replication stream is almost always in the range

of sub-seconds lag. Only if it reaches the end of a file and it does not read anything new, then

that will be waiting for new updates to arrive.
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In the case of ReplicationSource, that tails the WAL and sends the WALEdit to the Replica-

tionSink via RPC. In other words, the code applies the edits to the slave cluster via a remote

call to the method in the RPC sink (calling a method named ReplicateLogEntries remotely).

In order to control that, HBase-QoD modifies the internals of buffering WALs at the source

that will be sent to a sink location.

Configurations: There is a set of configurations in HBase to control how updates are repli-

cated. That is contained in XML file called hbase-site.xml.

1. replication.source.size.capacity, default is 64MB but recently so that is possibly too big.

2. replication.source.nb.capacity, default is 25k. The buffer is flushed when either size or

capacity is reached but what really important is the size.

3. replication.source.maxretriesmultiplier, default is 10, so it retries up to 10 times with

pauses that are currentIteration times.

4. replication.source.sleepforretries. By default it sleeps 1 sec, 2, 3, 4... 9, 10, 10, 10, 10 until

it’s able to replicate (default is 1)

Although useful, currently those mechanisms do not allow differentiation between data

priority when it comes to flushing updates to slave cluster. Therein HBase-QoD described next

is devised to see how it can help in that regard.

3.3 Network Architecture and Protocols

At the Replication Level, the network architecture is as shown in Figure 3.2. Which reflects the

main components at each site by exposing them into adjacent layers which interact with each

other. The flow is both, upwards and downwards the stack in each of the Master servers of

HBase in the distributed cluster set up at INESC-ID.

We extend HBase, adding updates due to be replicated in a priority queue according to

their own QoD in each case. Thereafter once the specified QoD threshold is reached another

thread from HBase in the form of Remote Procedure Call collects and ships all of them at once.
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Master Cluster

FilterEntriesToReplicate

HBase-QoD

REGION SERVERS

Master Cluster

FilterEntriesToReplicate

HBase-QoD

REGION SERVERS

Master Cluster

FilterEntriesToReplicate

HBase-QoD

REGION SERVERS

Logging replicated items

Logging replicated items

Logging replicated items

Idle receiving updates

Idle receiving updates

Idle receiving updates

Figure 3.2: Replication Flow of updates

In Figure 3.3 we observe the QoD module plugging into HBase, intercepting the incoming

updates from the upper layers and passing them down and the resulting outcome to the Write

Ahead Logs for later replication.

HBase implements remote procedure calls for the replication of items between servers or

clusters. These mechanisms have been proven a useful paradigm for providing communication

across computer networks for several reasons (Birrell & Nelson 1984). An RPC mechanism is

mainly responsible for providing control of data transfers between a source and a destination

location. In the case of HBase, these are called ReplicationSource.java and ReplicationSink.java

respectively. To understand in depth that topic, it has been discussed in as much depth as pos-

sible with Apache Foundation contributors for the HBase community. That is helpful to clarify

and understand better how the system operates before introducing the changes proposed with

our HBase-QoD.
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Figure 3.3: HBase QoD operation

3.4 QoD Consistency Enforcement

Consistency enforcement in HBase-QoD is inspired in three-dimensional vector constraint

model based on (Veiga et al. 2010), and adapted to HBase in order to drive shipping updates

for replication, or retaining them for later shipment as mentioned. For that to be possible, we

have used a set of customized data structures, which hold the values of the database rows we

desire to check according to some specific field we might be interested in (e.g column family)

for replication.

The QoD paradigm implemented allows for entries to be evaluated prior to replication

based on one or several of the three parameters in a three-dimensional vector K (θ, σ, ν), corre-

sponding to Time, Sequence, Value respectively in our case. Secondly, we take care of updates

that collide with previous ones (same keys but different values). They can also be checked for

number of pending updates or value difference from previously replicated updates, and then

shipped or kept on the data structure accordingly. The time constraint can be always validated
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every X seconds, and the other two constraints are validated through Algorithm. 1, whenever

updates arrive. For the work presented here we use Sequence (σ) as the main vector-field

bound (HBaseQoD.enforce(containerId)).

The original HBase architecture has built-in properties derived from the underlying HDFS

layer. As part of it, the WALEdit data structure is used to store data temporarily before being

replicated, useful to copy data between several HBase locations. The QoD algorithm (shown

in Algorithm. 1) uses that data structure, although we extend it to contain more meaningful

information that help us in the management of the outgoing updates marked for replication.

Algorithm 1 QoD high-level algorithm for filtering updates

Require: containerId
Ensure: maxBound 6= 0 and controlBound 6= 0

1: while enforceQoD(containerId) do
2: if getMaxK(containerId) = 0 then
3: return true
4: else {getactualK(containerId)}
5: actualK(σ)← actualK(σ) + 1
6: if actualK(σ) ≥ containerMaxK(σ) then
7: actualK(σ)← 0
8: return true
9: else

10: return false
11: end if
12: end if
13: end while

To compare and track the QoD fields, that act as constraints to replicate updates, against

these stored entries, we defined data containers which are useful to keep track of the current

value of the vector-field selected to bound replication to, and secondly the maximum value it

will be allowed to reach before updates are flushed to the slave cluster and then reset again.

That is as what we call the QoD percentage of updates replicated (according to the selected

vector-field bound, e.g σ). The process is partly automated, of by now, we just define it at

run-time (or by the developer later) by adding a parameter into the system console to define a

vector-field specific bound.



36 CHAPTER 3. ARCHITECTURE

3.4.1 Caching updates

The problem with controlling the flow of updates for shipping through replication is indeed

what to do with them until one is able to handle them appropriately. Therefore it is devised

a Unified Caching layer into HBase-QoD, which serves as a helper to keep track of items and

their priority for replication. When an update is received and the QoD bound is reached, the

Cache is either emptied and updates are shipped or it is starting to be filled again. That allows

to differentiate between Critical and Non-Critical updates.

3.4.2 Operation Grouping

At the application level, it may be useful for HBase clients to enforce the same consistency

level on groups of operations despite affected data containers having different HBase-QoD

bounds associated. In other words, there may be specific situations where write operations

need to be grouped so that they can be all handled at the same consistency level and propagated

atomically to slave clusters.

For example, publication of user statuses in social networks is usually handled at eventual

consistency, but if they refer to new friends being added (e.g., an update to the data container

holding the friends of a user), they should they should be handled at a stronger consistency

level to ensure they are atomically visible along with the list of friends of the user in respect to

the semantics we describe here.

In order to not violate HBase-QoD bounds and maintain consistency guarantees, all data

containers of operations being grouped must be propagated either immediately after the block

execution, or when any of the HBase-QoD bounds associated to the operations has been

reached. When a block is triggered for replication, all respective HBase-QoD bounds are natu-

rally reset.

To enable this behavior we propose extending the HBase client libraries to provide atomi-

cally consistent blocks. Namely, adding two new methods to HTable class in order to delimit

the consistency blocks: startConsistentBlock and endConsistentBlock. Each block, through the

method startConsistentBlock, can be parameterized with one of the two options: i) IMMEDI-

ATE, which enforces stronger consistency for the whole block of operations within it; and ii)

ANY, which replicates a whole block as soon as any HBase-QoD vector field bound, associated
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with an operation inside the block is reached.

Next, in Listing 3.1 we provide an illustrative simple example of a social network where

three containers with different consistency levels are modified. Note that we are not aiming at

full transactional support, as it would be possible to change the same data containers modified

by a set of grouped operations, at the same time, from other operations individually.

Listing 3.1: Operation grouping

htable.startConsistentBlock(ConsistencyType.IMMEDIATE)

Put put1 = new Put(Bytes.toBytes("row1"));

put1.add(Bytes.toBytes("SocialNetTable"),Bytes.toBytes("status"),

Bytes.toBytes("friend 12345 added"));

Put put2 = new Put(Bytes.toBytes("row2"));

put2.add(Bytes.toBytes("SocialNetTable"), Bytes.toBytes("friends"),

Bytes.toBytes("12345"));

Put put3 = new Put(Bytes.toBytes("row3"));

put3.add(Bytes.toBytes("SocialNetTable"), Bytes.toBytes("wall"),

Bytes.toBytes("12345 is now a friend"));

htable.put(put1);

htable.put(put2);

htable.put(put3);

htable.endConsistentBlock();

3.4.3 Prototypical Example

One of the key factors for having operations grouping working together with HBase-QoD is

the depicted in Figure 3.4. We can see that the operations that are grouped need to commu-

nicate over the network less often to other clusters, while arriving earlier in some cases than

updates shipping as if several individual operations from location Cluster A were performed.

This is due to the ability of HBase-QoD to deliver demanded updates in a consistent timely-

fashion rather than on a per request arrival basis, which means possibly delaying the replica-
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Time (in secs)
Cluster 1
Master

Cluster 2
Slave

Cluster 3
Slave

Replication scope

QoD consistency with operations grouping
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a
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Figure 3.4: Resulting scenario of grouping operations in a time-lined based diagram using
HBase-QoD versus a regular HBase deployment at Cluster B

tion process by a fraction of the amount of communication that can be saved instead using the

mentioned technique.

Another experiment that has been conclusive in terms of grouping of operations is the

comparison between different HBase-QoD levels, in the case of values for vector field K (-, σ,

-). Setting the operation grouping for a small number of updates still shows that a timestamp

in the receiving server is the same for every item in the group. The following set of operations

is ed in Figures 3.5 and 3.6. The same principle can be applied and has been demonstrated to

work in the same fashion for different sets of containers.

In the following Figure 3.6, we observe how the time-stamps for each of the items replicated

in a group of operations are the same actually (1377617765557) at the receiving side (Cluster 3

is at server ginja-a1). That is, ensuring they arrive at the same time, once can actually verify

the correctness of the solution. Pin-pointing the internal HBase mechanisms we print the time-

stamps at the Source and Sink locations by using default built-in reporting mechanisms of the

data store. We do not ”reinvent the wheel” in that regard. All work is done by leveraging that,

and this could be also added to the lists of statistics that is kept into HBase server for tracking

the age of updates sent and/or receive. Previously to that, at the sending side, each update is

grouped until they are due for replication as a block. Therefore, they only propagate all at once,

as showed with the time-stamp below printed for each update 3.5.
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SEQ: 1, MAX SEQ: 0
Item:

 ->usertable::user0::c0::field0::3%3&& #!96*<#<<#9,=.will be be replicated.

KeyValue (table: usertable, row: user1, c. family: c0, qualifier: field0, value: " 48/*9 46+625/' 0>1)
SEQ: 1, MAX SEQ: 0
Item:

 ->usertable::user1::c0::field0::" 48/*9 46+625/' 0>1will be be replicated.

KeyValue (table: usertable, row: user2, c. family: c0, qualifier: field0, value: 470*><,44+%9+3=? 51")
SEQ: 1, MAX SEQ: 0
Item:

 ->usertable::user2::c0::field0::470*><,44+%9+3=? 51"will be be replicated.

KeyValue (table: usertable, row: user3, c. family: c0, qualifier: field0, value: '+8 41<2<%:09-(,16<6)
SEQ: 1, MAX SEQ: 0
Item:

 ->usertable::user3::c0::field0::'+8 41<2<%:09-(,16<6will be be replicated.

KeyValue (table: usertable, row: user4, c. family: c0, qualifier: field0, value: 7"589*8,;-#;>%!6$*12)
SEQ: 1, MAX SEQ: 0
Item:

 ->usertable::user4::c0::field0::7"589*8,;-#;>%!6$*12will be be replicated.

Leaving filtering method, filtered edits size: 1
CACHE CONTENTS:

*** Latest update sent at timestamp : 1377617765457 ***

Figure 3.5: Sending from ginja-a2 to ginja-a1

*** Latest item for container: usertable:user0:c0 
received at  : 1377617765557 ***

*** Latest item for container: usertable:user1:c0 
received at  : 1377617765557 ***

*** Latest item for container: usertable:user2:c0 
received at  : 1377617765557 ***

*** Latest item for container: usertable:user3:c0 
received at  : 1377617765557 ***

*** Latest item for container: usertable:user4:c0 
received at  : 1377617765557 ***

Figure 3.6: Receiving from ginja-a2 in ginja-a1



The grouping of operations is efficient in terms of ensuring certain data arrives at the same

given time to a destination cluster or remote peer we want to enforce it to due to any sort of

Service Level Agreement or objectives. That is a new feature in itself into HBase.

3.5 Software Architecture

In the following Figure 3.7 it is depicted the main class diagrams for the architecture solution.

Highlighted diagrams in green are classes we have introduced into the system or modified in

the case of partially highlighted. The main components are the HBaseQoD and the function

filterEntriesToReplicate where resides the main Algorithm 1 for the consistency enforcement of

data semantics we see in 3.4.

Regarding operation grouping, the same logic applies to batches of operations which

are grouped based on data dependencies or container-id most restrictive vector field (e.g se-

quence).

Summary

This Chapter described the core aspects of our HBase-QoD proposal, addressing its architec-

ture, regarding system, network and software components. We also described the relevant

aspects that make consistency enforcement more flexible and aware of user/developer seman-

tics, driven by QoD consistency vectors, followed by the operation/update grouping semantics

also provided.
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Figure 3.7: HBase-QoD class diagram
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4Implementation

”Keep it simple, stupid” K-I-S-S, is an acronym as a design principle noted by

the U.S. Navy in 1960. The KISS principle states that most systems work best if

they are kept simple rather than made complex; therefore simplicity should be a

key goal in design and unnecessary complexity should be avoided. – Kelly Johnson,

aircraft engineer (1910 - 1990)

This chapter deals with all the topics related to the implementation of the solution that was

proposed in Chapter 3. Important points are reviewed and will explained in more detail such as

the the working tools, the HBase-QoD module and the process follow to develop and introduce

the necessary changes made into the original HBase implementation before this action took

place. The chapter is organized as follows. Firstly we give an overview of the itinerary followed

in 4.1. In Section 4.2 the integration process for HBase-QoD is described and 4.2.1 showcases

the inner-workings and main extensions introduced, namely modifications to existing classes

in HBase and addition of new ones to the code base of the system. The end of the chapter

summarizes the chapter and some of the most important points made.

4.1 Overall implementation approach

In distributed scenarios, Facebook is currently using HBase to manage very large number of

messages across data centers for their users, and not Cassandra (Muthukkaruppan 2010) That

is because of the simplicity of consistency model, as well as the ability of HBase to handle both

a short set of volatile data and an ever-growing amount, that rarely gets accessed more than

once. More specifically, in their architecture reports, a Key for each element is the userID as

RowKey, word as Column and messageID as Version and finally the value like offset of word

in message (Data is sorted as userId, word, messageID ). That implicitly means that searching for

the top messageIDs of an specific user and word is easily supported, and therefore queries run
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faster in the backend.

With eventual consistency, updates and insertions are propagated asynchronously between

clusters so Zookeeper is used for storing their positions in log files that hold the next log en-

try to be shipped in Hbase. To ensure cyclic replication (master to master) and prevent from

copying same data back to the source, a sink location with remote procedure calls invoked is

already into place with HBase. Therefore if we can control the edits to be shipped, we can also

decide what is replicated, when or in other words how often. Keeping that in mind, we lever-

age the internal mechanisms of VFC3 to tune HBase consistency, without requiring intrusion to

the data schema and avoiding middle-ware overhead.

For filtering purposes, with our new proposal and implementation, we will enable ad-

ministrators of the clusters to create quality-of-data policies that can analyze fetched data by

inspecting some given bounds or semantics, and then receiving them on the master server at

the other end of the replication chain if a match occurs. The term ”Tunable” or ”Enhanced”

eventual consistency is sparingly used across the text to describe the model presented on inter-

site replication scenarios of HBase. The goal is providing an adaptive consistency model and

based on Service Level Objectives agreed or defined previously by users or clients. The idea

can be somehow similar to the ”pluggable replication framework” proposed within the HBase

community we reference in this text.

4.2 Integrating a HBase-QoD module

The initial approach follows built-in properties of HBase in regards to HDFS. We use the

WALEdit data structure of Hbase rather than reinventing the wheel. A WALEdit structure con-

tains information about the incoming updates to the tables in the system and it is later saved in

the form of HLog entry in a write ahead log that needs to be be committed to persistent storage

later, HDFS.

To achieve that, it is necessary to modify HBase inner workings by creating, populating

and sorting a custom priority queue of items to be replicated. At a later stage, those items will

be picked up by a thread which triggers replication one at time or by grouping them into a

single operation. In order to do that, we devised a first experiment with a vector-field data

structure as described below in Listing 4.1.
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Listing 4.1: K.java

package org.apache.hadoop.hbase.replication.regionserver;

public class K implements Comparable<K> {

private long time;

private int sequence;

private double value;

public K(long time, int sequence, double value) {

this.time = time;

this.sequence = sequence;

this.value = value;

}

public long getTime() {

return time;

}

public void setTime(long time) {

this.time = time;

}

public int getSequence() {

return sequence;

}

public void setSequence(int sequence) {

this.sequence = sequence;

}

public double getValue() {

return value;

}

public void setValue(double value) {



46 CHAPTER 4. IMPLEMENTATION

this.value = value;

}

public void incSequence() {

this.sequence++;

}

public void reset() {

this.sequence = 0;

this.value = -1;

this.time = -1;

}

@Override

public int compareTo(K o) {

if (o.sequence > 0 && sequence > o.sequence)

return 1;

return 0;

}

@Override

public String toString() {

return "K(" + time + ", " + sequence + ", " + value + ")";

}

}

Regarding grouping of operations, we aim at finding a suitable way to enforce related up-

dates in a single and timely replicated batch. This is possible, keeping in mind that individual

updates using regular eventual consistency used in HBase can still arrive earlier, although not

together and therefore causing bandwidth consumption more often. into ReplicationSource.java

we have the following listing showing the main modifications in Listing 4.2

Listing 4.2: ReplicationSource.java

Entry[] filteredUpdates =

filterEntriesToReplicate(Arrays.copyOf(entriesArray,currentNbEntries));
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//Print contents in cache

System.out.println(cache.toString());

if(filteredUpdates.length > 0) {

try {

// Propagate changes now according to QoD constraints in

filteredUpdates.

long now = System.currentTimeMillis();

System.out.println("*** Latest update sent at timestamp :

" + now + " ***\n");

rrs.replicateLogEntries(Arrays.copyOf(filteredUpdates,

filteredUpdates.length));

//getRS().replicateLogEntries(Arrays.copyOf(filteredUpdates,

filteredUpdates.length));

} catch (IOException e)

{

System.out.println("IOEXception caught while

replicating: " + e.getStackTrace());

}

}

We focus the implementation efforts into the correctness of the list of items in memory

(extending the original structure reflected for the updates to be shipped), which we can apply

to our HBase-QoD model therefore directly in order to enforce desired consistency constraints.

We do that by defining our bounded model over data which is indexed and queried by key

(containerId), and can be enforced through time constraints (T), sequence (number of pending

updates) and value ( percentage of changes). For the prototype just sequence. In other words

HBaseQoD.enforce(containerId).

Every new update is checked for HBase-QoD and shipped for replication, or buffered as

usual in HBase for replication, with the difference that using the vector-field model one can
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immediately replicate updates at the moment of reaching a defined given bound condition

into the HBase-QoD. The HBase-QoD allows for entries to be evaluated by one or several of

the three parameters as seen in vector field consistency K (time, sequence value) (Santos et al.

2007) Any new updates over previous ones (same data) can be also checked for number of

pending updates or value difference from previously replicated update, and then shipped or

kept on the data structure accordingly.

4.2.1 Extensions to HBase internal mechanisms

The section focuses on details on the reasoning behind the internal changes to the HBase mech-

anisms proposed to include into the system in order to rule updates selectively during replica-

tion.

Filtering: ReplicationSource.java is a key part of HBase for shipping updates to a remote loca-

tion, and it has been unveiled to be the central point for replication logic. After researching

the system in depth, this is the location in fact where we modify the logic of the shipment

of edits in order to control replication. For that purpose we design a custom data structure

outside, a new class into HBase which is reusing existing classes WALEdits (from HBase), Con-

currentHashMap (a Java library) that supports data storage and handling of updates in order to

identify them accordingly. Later, we apply each HBase-QoD bound to the container (e.g. table-

name:columnFamily) , and the actual value of the vector is constantly checked for the condition

that meets its upper limit so triggers replication. That is, once it matches or surpasses the given

bound in a given container-id. As soon as we have some incoming input from clients, the

processing of updates feeding HBase-QoD starts.

Cache: By modifying the inner-workings of HBase, it is possible to create and populate a

custom sorted priority queue for updates that arrive. First being checked and evaluated, later

replicated. Therefore, saving items in temporal queues such as described in (Kraska et al. 2009)

can be a feasible approach to resolving merges of updates that are due to be shipped for repli-

cation only later, but which also has disadvantages that are related to their need for acquir-

ing locks on those queues beforehand. To the contrary, the mechanism here described using

HBase-QoD do not require such locks to ensure correctness but can still provide with the latest

consistent updates to remote clients when necessary. These mechanisms are identified as the

Unified Cache in the HBase-QoD diagram in Figure 3.3.



Vector constraints: In order to provide bounded consistency guarantees with QoD, we add it

to the inner workings of HBase. There are existing command line tools as CopyTable in HBase

where one can manually define what is going to be replayed to the log and this is useful for

cases where new replicas need to be put up to date or in disaster recovery too. In particular,

next chapter focuses on those implementation efforts in regard to organizing a list of items in

memory (extending the original structure reflected for the updates to be shipped), where we

can apply our QoD principles and directly enforce constraints. We do that by defining our

bounded divergence model over data which is indexed and queried by key (container-id), and

can be enforced through time constraints (T), sequence (number of pending updates) and value

(percentage of changes).

Summary

In this Chapter, we highlighted the most relevant implementation details, regarding the inte-

gration of the QoD consistency model as a module, into the inner workings of a fully oper-

ational HBase deployment. We also offer detail on the extensions of the more relevant inner

HBase mechanisms, filtering, cache and consistency constrains upholding.
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5Evaluation
”Everything that can be counted does not necessarily count; everything that

counts cannot necessarily be counted”– Albert Einstein

5.1 Overview

In this section we introduce the results obtained from the performance of the HBase-QoD

framework. There are several ways of testing distributed systems, usually against each other,

or compared to benchmark, or even to a centralized system. In this work, we compare mainly

the performance between the original version of HBase (or also called No-QoD in some parts of

the graphs) and our proposal, HBase-QoD, by resorting to widely adopted benchmarks found

in the literature.

Typically, performance in HBase improves as the number of servers increases due to more

memory available (Carstoiu et al. 2010). In spite of that, scaling up HBase in cluster scenarios

it is not always that trivial. Therefore, having alternatives for providing different levels of con-

sistency to users, regarding data quality in cloud environments, may translate into substantial

traffic savings. The associated cost saving to potential service providers or even customers, are

a very relevant matter, as seen in (Chihoub et al. 2013) for consistency-cost efficiency. Thus,

it can be convenient to evaluate how selective replication (with a HBase-QoD in this case) can

support that statement in distributed deployments with HBase.

5.2 Experimental Testbed

During evaluation of the HBase-QoD prototype a test-bed with several HBase cluster has been

deployed at INESC-ID and IST in Lisbon, some of them with an HBase-QoD enabled engine for

quality of data between replicas, and others running a regular implementation of HBase 0.94.8.
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All tests were conducted using 6 machines with an Intel Core i7-2600K CPU at 3.40GHz,

11926MB of available RAM memory, and HDD 7200RPM SATA 6Gb/s 32MB cache, connected

by 1 Gigabit LAN and we also simulate a Wide Area Network 1 by using a network tool called

netem (Hemminger 2005) which can modify network latency between a distant set of locations.

We also explore how HBase-QoD affects bounds on data staleness, keeping it related to

an upper limit (monitoring elapsed time, sequence of updates or just number of outstanding

updates), by using the appropriate HBase-QoD configuration.

5.3 Performance benchmarking suite

In this section, we show the result of the experiments performed using with the Yahoo Cloud

Service Benchmark (Cooper et al. 2010). This is a tool developed initially at Yahoo and later ex-

tended by some research fellows at Carnegie Mellon (Patil et al. 2011) which aims at providing

different metrics about distributed system scenarios. For instance:

1. RunTime in milliseconds.

2. Throughput in operations per second.

3. Number of Read, Update, Insert operations executed.

4. Minimum, Maximum and Average latency.

5. 95th and and 99th Percentile Latency.

One of the most relevant performance metrics is throughput, and for us the aggregated

average latency during insertions or transactions in the data store. Although, that does not

fully show the real bandwidth usage we aim to represent. Therefore, and for the measurement

of network bandwidth consumption and lag of replicated updates, an additional benchmark

scripting module was developed by the author, as an additional assessment tool. Use of UNIX

built-in tools such as tcpdump 2 is extensively integrated into the script. Output data is repre-

sented with well-known tools such gnuplot 3.

1WAN, http://en.wikipedia.org/wiki/Wide area network
2http://www.tcpdump.org/
3http://www.gnuplot.info/



5.3. PERFORMANCE BENCHMARKING SUITE 53

5.3.1 Workloads from YCSB

First of all and for taking measurements, the CoreWorkload package of YCSB is used. A num-

ber of read/write workloads have been tested with the implementation of HBase-QoD and

original HBase (no QoD bound). In addition, another custom workload with 100% of writes

(workload A-modified) is used in order to stress the database more intensively with writes.

That is a more realistic and related testing scenario, as in the case of social networks (composed

of mainly changes) , offering a continuous stream of updates so that simulations can be per-

formed for the occasion. Later on, another two workloads with zipfian distribution are also

tested using a more read focused percentage of operations (workload B). We perform these in

order to realize what is the impact and differences between them and previous ones.

1. YCSB workload A (R/W - 50/50)

Read/update ratio: 50/50

• Default data size: 1 KB records (10 fields, 100 bytes each, plus key)

• Request distribution: zipfian

• No HBase-QoD enforced.

• HBase-QoD fulfillment of σ=0.5% of total updates to be replicated.

• HBase-QoD fulfillment of σ=2% of total updates to be replicated.

On the other hand, with HBase-QoD integrated into HBase, it is possible to have control

over traffic of updates, which will go from being unbounded to up to a certain threshold,

and subject to adjustments accordingly if there are needs for saving in resource utiliza-

tion. We observe that a higher QoD (more updates are stored in Cache) exhibits less

frequent network communication during the replication process, although peaks reach

maximum values (on Bytes) as they need to send more data together. A lower QoD re-

duces peak-bandwidth usage but instead sends updates more frequently (this could be

the case with wall posts in a social network).

Figure 5.1 shows the results of three different sets of quality-of-data for workload A. Dur-

ing the execution of the workload A, in Figure 5.1, the highest peaks in replication traffic

are observed without any type of HBase-QoD, i.e. just using plain HBase. This is due to

the nature of eventual consistency itself, and the internal buffering mechanisms in HBase.
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Bandwidth Usage
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Figure 5.1: Bandwidth usage for Workload A using 5M records using HBase-QoD bounds of
0.5 and 2% for σ of K.
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Naturally, without HBase-QoD updates are being replicated such as in best-effort 4 sce-

narios, where there is an unbounded limit on the number of updates shipped at a time

and usually no data-semantics on which ones first or later. Therefore, the module here

presented can adapt these limitations in cases of high traffic-loads, choosing first what

matters more also.

2. YCSB workload A modified (R/W - 0/100)

• Read/update ratio: 0/100

• Default data size: 1 KB records (10 fields, 100 bytes each, plus key)

• Request distribution: uniform

• No HBase-QoD enforced.

• HBase-QoD fulfillment of σ=0.5% of total updates to be replicated.

• HBase-QoD fulfillment of σ=2% of total updates to be replicated.

In Figure 5.2 we can see how a write intensive workload performs using a HBase-QoD

deployment. Results obtained are outlined in the mentioned graph (please note the scale

of the Y axis has been modified on each of the plots in order to make it convenient for

showing the relevant difference in size more clearly). For smaller QoD (0.5%), we see

lower peaks in bandwidth usage, as well as in the following measurement used (2.0%).

Finally HBase with no modifications shows a much larger number of Bytes when it comes

to maximum bandwidth consumption.

Note we are not measuring, or find relevant in any of these scenarios, to realize any

kind of claims based on average bandwidth usage. The principal source of motivation of

the work is to offer more flexible consistency semantics to users/developers, while also

providing a way of controlling the usage of the resources in a data center; this resulting

from ensuring a uniform distribution of replication of updates across time. Also being

able to trade strong consistency for grouping of operations that are treated atomically for

shipment to a destination cluster location at a given point in time, or when the bounds

on data-semantics are reached.

4Best-Effort delivery, http://en.wikipedia.org/wiki/Best-effort delivery
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Bandwidth Usage
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Figure 5.2: Bandwidth usage for Workload A-Modified using 5M records using HBase-QoD
bounds of 0.5 and 2% for σ of K.
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Figure 5.3: Bandwidth usage for Workload B using 500K operations in a total of 500K records
using different HBase-QoD bounds for σ in K.

3. YCSB - Workload B:

• Read/update ratio: 95/5.

• Default data size: 1 KB records (10 fields, 100 bytes each, plus key).

• Request distribution: zipfian.

• No HBase-QoD enforced.

• HBase-QoD fulfillment: σ=10% of total updates to be replicated.

• HBase-QoD fulfillment: σ=20% of total updates to be replicated.

Figure 5.3 shows the overall replication overhead with and without HBase-QoD, for a

Read intensive workload. The graph is significantly different from previous workloads

here presented in terms of updates being replicated. That is due to the small fraction of

writes in the workload, when compared to the percentage of items to which bounds on
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replication are being applied, using each of the QoD. If the QoD σ value was too high,

then the activity on the network would decrease for longer periods, replicating of updates

rather later but in larger and higher bandwidth batches than with a lower QoD. Therefore,

as a solution, increasing the amount of updates will result in more network traffic, but for

this particular workload, it is still the case that a very limited amount of writes are going

through the bounded HBase-QoD module.

4. YCSB - Workload F:

• Read/update ratio: 50/50.

• Default data size: 1 KB records (10 fields, 100 bytes each, plus key).

• Request distribution: zipfian.

• No HBase-QoD enforced.

• HBase-QoD fulfillment: σ=20% of total updates to be replicated.

• HBase-QoD fulfillment: σ=40% of total updates to be replicated.

• HBase-QoD fulfillment: σ=60% of total updates to be replicated.

In the case of Figure 5.4, lower QoD values for σ slightly affect the height of the peaks of

network communication during replication. This is due to the same reason as noted before: a

bound on data staleness also puts a limit on the number of updates sent at the same time over

the network. In the case of σ=60%, the replication overhead is kept acceptable and constant in

respect to the previous graph with σ=40%. This is as well due to the number of updates issued

during the workload, meaning that there is an upper limit reached in this type of scenarios,

without the need, or advantage, to batch more updates per second, unless the number of oper-

ations is much larger for this particular workload. Later on, we see how the graph with QoD of

σ=0% (No-QoD in other words) has higher bandwidth consumption per second as expected.

5.4 Assessing data ”freshness”

5.4.1 Data arrival measured on sets of updates received

In order to assess data freshness, as observed by clients, a client is writing to a master clus-

ter and another reading from the slave are set up. The writing client inserts 10 blocks of 100
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Figure 5.4: Bandwidth usage for Workload F using 500K operations in a total of 500K records
using different HBase-QoD bounds for σ in K.
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updates interleaved between critical and non-critical into two different data containers with

different QoD bounds. Therefore, it can be observed when and which type of update arrives at

the destination by checking their delivery timestamp. That is also based on the data semantics

offered by HBase-QoD.

In Figure 5.5, we show how the latency varies by referring to the update timestamps.

Higher QoDs approximate critical updates (in red) more to the beginning of the Timeline, while

non-critical (green) keep being moved towards the right (later reading). We have therefore

a better data freshness metric, in terms of critical updates, by prioritizing them through our

HBase-QoD. Critical updates move closer to the left side of the X axis with an increasing σ

bound in K vector, so that is actually giving them higher priority during the replication pro-

cess.

5.4.2 Data arrival measured in a per update basis

In this setup there is a client writing to a master HBase server using HBase-QoD ,which writes

1000 updates randomly mixed between critical and non-critical. We are introducing a delay

of 40ms in the network in order to realize that wide are network assumption: the delay is set

between master and slave cluster communication. For best readability, we are just showing a

subset of the updates sent over time, from client 1 to the master cluster, and later read by client

2 from the replica at the slave cluster.

In Figure 5.6 it is represented the arrival of non-critical updates with QoD applied onto

two different data containers, in each with a different QoD applied. It is important to note

there are two types of updates for each QoD so one needs to take into account that not all the

rest of updates not represented in this graph will exhibit the same behavior, but approximately

non-critical should arrive later on or near the baseline of No-QoD while critical ones are rather

earlier.

Regarding maximum delay given the type of update, non-critical updates have higher

timestamps then the others and therefore arrive later as verified in graph 5.6, so in the case

of critical actually they do get read earlier in comparison to the baseline No-QoD (Figure 5.7)

in most of the occasions.

In Figure 5.7, the graph highlights how more critical updates arriving earlier in a per up-
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date basis over time. The more stringent is the QoD bound, the earlier critical updates are

received, made available to, and read by another client from the slave cluster. The more la-

tency or network overhead there is, the higher this difference appears to be.

5.5 Overall Performance and Resource Utilization

In Figure 5.8, for a very small QoD of K using σ, we observe that there is a lowest limit where

latency can not be reduced any further. Previous figures measuring bandwidth indicate the

same tendency. Please note updates that need to be applied prior to replication (QoD percent-

age), are so in relation to the total number of operations in the workload (a very small value

means a more stringent QoD, the lowest possible value for that is of approximately of 0.00%

and that would be just the strictest bound possible used on QoD).

We can see the peaks during replication, and therefore measure usage of bandwidth in

the network over time, which decreases with the increase of the QoD bound; in the order of

magnitude of 1MB per second, as we experimentally verify from the graphs obtained. That

is due to the batching of updates in our consistency model, so items are not replicated until

any or a set of the constraints time, sequence or value is met. Basically, overall we can see

less communication between clusters at replication time with increasing QoD, which is a good

measurement of how one can optimize bandwidth. During that time then, we take advantage

of our caching mechanisms inside HBase-QoD while sending all the information demanded

in a timely fashion once recent data becomes being considered necessary to the application

(depending on the QoD).

We also confirm that HBase-QoD does not hurt performance, as we observe from the

throughput achieved for the several levels of HBase-QoD chosen during the evaluation of the

throughput with the benchmark for our modified version with HBase-QoD enabled, in Fig-

ure 5.9. The differences in throughput are irrelevant and mostly due to noise in the network,

that is the conclusion after obtaining similar results to that one in several rounds of tests, with

the same input workload on the data store.

Additionally, we also conducted an experiment to monitor the comparative CPU usage

load, in a HBase system using HBase-QoD. This is shown in Figure 5.10, and dstat presents.

CPU consumption and performance remains roughly equivalent, and therefore stable in the



cluster machines.

Finally there is an ”overhead”, if it can be called like that, regarding the wide-spread

of replication activity over time if information is kept into memory (caching mechanism of

HBase-QoD) for too long before actually replicating occurs. But that is expected and accept-

able, namely taking into consideration the results obtained and traded for reduced maximum

peak-values in network bandwidth.

Summary

In this chapter, we described the evaluation of the presented HBase-QoD framework, regard-

ing its performance, semantics, and resource utilization. This was carried out by comparative

assessment between the original version of HBase (No-QoD) and HBase-QoD, making use of

widely adopted benchmarks found in the literature. The HBase-QoD prototype was evalu-

ated with a test-bed of HBase clusters at INESC-ID and IST in Lisbon, some of them with an

HBase-QoD enabled engine for quality of data between replicas, and others running a regular

implementation of HBase 0.94.8. Globally, the results reinforce the purpose of HBase-QoD and

are in line with what was expected, across a variety of YCSB-derived workloads, regarding

overall bandwidth utilization and its peak usage, update latency (and application semantics),

as well as CPU utilization.



5.5. OVERALL PERFORMANCE AND RESOURCE UTILIZATION 63

Timeline of updates

 0
 50

 100
 150
 200

t1=2125 t2=3929 t3=5958 t4=7763 t5=9587 t6=11397

Re
qu

es
ts

Timeline (ms) => 

1 - No QoD

A B C D E F

 0
 50

 100
 150
 200

t1=2201 t2=2240 t3=5835 t4=5890 t5=9529 t6=9622

Re
qu

es
ts

Timeline (ms) => 

2 - QoD = K(m)=10%

B A D C F E

 0
 50

 100
 150
 200

t1=2210 t2=6011 t3=6052 t4=6057 t5=9703 t6=13297

Re
qu

es
ts

Timeline (ms) => 

3 - QoD = K(m)=20%

B D A C F G

Figure 5.5: Freshness of updates with several HBase-QoD bounds
Critical updates (in red) Non-Critical (in green)



64 CHAPTER 5. EVALUATION

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  100  200  300  400  500  600  700  800  900  1000

Ti
m

es
ta

m
p 

(m
s)

Update ID

No QoD
QoD K(m)=10%
QoD K(m)=30%

Figure 5.6: Difference in arrival times with and without QoD for non-critical updates



5.5. OVERALL PERFORMANCE AND RESOURCE UTILIZATION 65

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  100  200  300  400  500

Ti
m

es
ta

m
p 

(m
s)

Update

No QoD
QoD K(m)=10%
QoD K(m)=30%

Figure 5.7: Difference in arrival time with and without QoD bounds for critical updates



66 CHAPTER 5. EVALUATION

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  10  20  30  40  50  60  70  80

Ba
nd

w
id

th
 (B

ps
)

Time (seconds)

No QoD
With very small QoD

Figure 5.8: Bandwidth usage and replication frequency for a typical workload with and very
small HBase-QoD constraint for K(σ)

 0

 50000

 100000

 150000

 200000

 250000

No QoD K(m)=2% K(m)=4% K(m)=6% K(m)=8%

Th
ro

ug
hp

ut
 (o

ps
/se

c)

QoD => K(e, m, i)

Figure 5.9: Throughput for several HBase-QoD configurations



5.5. OVERALL PERFORMANCE AND RESOURCE UTILIZATION 67

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90  100

CP
U

 u
til

iz
at

io
n 

(%
)

Time (seconds)

QoD = K (e, 2%, i)
QoD = K (e, 6%, i)
QoD = K (e, 8%, i)

No QoD

Figure 5.10: CPU usage over time with HBase-QoD enabled



68 CHAPTER 5. EVALUATION



6Conclusion
”The last mile is always the most difficult, and (looking backwards) the best” –

Miguel Mira Da Silva, professor at IST

6.1 Concluding remarks

To sum up the thesis briefly, Chapter 1 and 2 introduced the main ideas, topics and driving

forces behind the thesis. Later, Chapter 3 and 4 dig into the main components of the proposed

system and how they were designed, implemented and deployed. Finally, Chapter 5 offered

evaluation measuring the resulting performance from the HBase-QoD paradigm introduced.

This chapter closes the thesis with some conclusions regarding the work presented, and some

lines of possible future work.

We started with an introductory chapter presenting the work domain of cloud tabular stor-

age, the current shortcomings found in HBase, and the contribution proposed. Then, we have

reviewed the most well-known and state of the art in replication for distributed systems, out-

lined the advantages and disadvantages of each of them.

Following that, we performed a deeper introspection into the mechanisms of the selected

cloud data store in questions for this work, HBase, where we identify its weaknesses (includ-

ing currently missing features) and introduce HBase-QoD in order to achieve bandwidth, and

therefore cost, savings during replication, as shown in Chapter 5.

Finally, we believe in the re-usability of the solution developed, and the possibility to ex-

tend and adapt the framework to other cloud data stores, so a wider choice of consistency

guarantees can be provided on top of our implementation, if further required by applications.

This work is therefore useful and applicable, as a more flexible consistency model, to cloud

data stores in cases where bandwidth is precious and cost savings mandatory.

Applied to the core of HBase for inter-datacenter scenarios, it provides users and applica-



tions with just the quality-of-data requested. On the other hand, administrators and developers

can easily tune the bounds and the framework, in order to perform replication in a more fine-

grained and timely fashion.

The same principle applies to cyclic multi-master scenarios, where each master acts as

master and slave all at once. Although we did not test that or configure it in our slaves as

we did find it critical, in order to provide a feasible proof of concept for the proposal.

To wrap up, have found this thesis to be a source of hard work and enthusiasm, as well

as a valid motivation to interact more closely with the people from the HBase development

community, with its material and results suitable to be submitted and accepted to international

conferences, as well as a drive to engage in contacts and discussions with other research insti-

tutes.

6.2 Future Work

The work here concluded has covered several concepts and concerns in the area of Geo-

Replication. Firstly, in the future, the evaluation could be extended, with a good experiment

that would be to deploy and execute HBase-QoD on Amazon EC2, with various setups, as well

as using EC2 for larger stress testing and benchmarking.

Following up, and in terms of cost savings and performance, it would be interesting to

apply these same concepts and ideas, and dig deeper into innovative and rising areas of Big

Data research such as Green Computing. This, naturally including working metrics based on

relevant environmental aspects, such as the impact of CPU intensive replication tasks have into

carbon footprint and power-efficiency for large geographically distributed cloud data centers.

A great addition to this thesis would also be the development of a performance model and

data analysis framework for different cloud scenarios, by using HBase-QoD in a next genera-

tion, in order to support measurement consistency in relation to response times, fairness and

power-consumption.

Besides that, elasticity is nowadays a key metric on cloud deployments, therefore, intro-

ducing the concept of auto-scaling for sets of replicas would be also advantageous in a further

effort to evaluate a trade-off between replication and server side CPU cycles.
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