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Resumo

Ao longo dos últimos anos, aglomerados de computadores feitos de simples estações de trabalho têm-se

a�rmado como o padrão no que toca à computação de elevado desempenho, dado que a escalabilidade e

e�ciência de custo desta solução ultrapassa a maioria das soluções que recorrem a computadores dedicados.

Se as estações de trabalho num aglomerado puderem trabalhar de forma colectiva e fornecerem a ilusão

de que formam um único computador com mais recursos, então teremos o que é referido na literatura

como um Single System Image.

Neste trabalho, apresentamos o Caft, um �middleware� que se executa por cima do sistema Terra-

cotta e que tem a capacidade de correr uma aplicação Java com multiplas tarefas de forma transpar-

ente, distribuindo-as pelos nós do aglomerado e utilizando os recursos computacionais e de memória

disponíveis. São utilizadas instrumentações de �bytecode� para adicionar instrucções para correr a apli-

cação no aglomerado, bem como sincronização extra se necessário. O �middleware� suporta vários modos

de funcionamento, de modo a atingir um equilíbrio entre a transparência e a �exibilidade de uso.

O �middleware� foi testado com uma aplicação que calcula os números de Fibonacci, uma aplicação

geradora de imagens foto-realistas (Sun�ow) e uma aplicação que efectua a multiplicação de uma matriz

por um vector. Concluímos que a nossa solução é escalável, na medida que permite que uma aplicação com

múltiplas tarefas atinja tempos de execução menores adicionando mais nós ao aglomerado. Concluímos

também que é possível aproveitar os recursos de memória adicionais presentes no aglomerado.
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Abstract

In recent years, computer clusters made entirely of simple desktop computers are becoming the standard

for high-performance computing, as the scalability and cost-e�ciency of such solution surpasses most

high-end-mainframes. If the workstations in a cluster can work collectively and provide the illusion of

being a single workstation with more resources, then we would have what is referred in the literature as

a Single System Image.

In this work, we present Caft, a middleware that runs on top of the Terracotta system and has

the capacity to run simple multi-threaded Java applications in a transparent way, scheduling threads

across the several nodes in a Terracotta cluster and taking advantage of the computational and memory

resources available in the cluster. We use bytecode instrumentations to add clustering capabilities to the

multi-threaded Java application, as well as extra synchronization if needed. The middleware supports

several modes, in order achieve a balance between transparency and �exibility.

We tested the middleware with a Fibonacci computing application, an Open Source renderer (Sun�ow)

and an application that multiplies a matrix by a vector. We concluded that our middleware is scalable,

as it allows a multi-threaded application to achieve lower execution times by adding more nodes to a

Terracotta cluster. We also concluded that, with our approach, it is possible to take advantage of the

extra memory resources available in the cluster.
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Chapter 1

Introduction

The designation �Virtual Machine� has been around since the 60s, and it was originally used to describe a

software implementation that executes programs like the �real� hardware. In those days, hardware-level

virtual machines were popular [40], and several VMMs, like IBM's CP-40, were developed at that time.

This allowed IBM to run several single-user operating system instead of a multi-user operating system,

such as Unix. However, the VMM solution implied higher overheads and di�cult design decisions, such

as what should be handled by the VMM and what should be handled by the guest OS (e.g. swapping

memory to disk). In a system where both the VMM and the OS had mechanisms for page swapping we

could end up with con�icts or a suboptimal decision. As a result, multi-user OSs ended up being widely

adopted and the concept of �Virtual Machines� was abandoned in this context. Other virtualizations were

developed some years later, such as the P-code, which allowed the wide spread of the Pascal language.

In the late 1990s, with Sun's Java Virtual Machine becoming widely used, the need of a virtualization

layer between the programming language and a real machine became very clear, o�ering more portability,

less code size, and easier to implement debugging at runtime. Nowadays, the term �Virtual Machine�

designates a full taxonomy of di�erent virtualizations, which some authors such as Smith et all [45] try to

classify. Despite the variations, we can de�ne a virtual machine as a target architecture for a developer

or compilation system, that can have or not correspondence to an existing physical hardware.

In recent years, computer clusters made entirely of simple desktop computers are becoming the stan-

dard for high-performance computing, as the scalability and cost-e�ciency of such solution surpasses

most high-end-mainframes. If the workstations in a cluster can work collectively and provide the illusion

of being a single workstation with more resources, then we would have what is referred in the literature

as a Single System Image [12]. Much research has been done in the area of SSIs, providing sophisticated

systems that achieve a single view of resources such as process space (OpenSSI) or �lesystem (NFS).

One of the initially most promising techniques that has been widely used is Distributed Shared Memory

(DSM). By extending the traditional virtual memory architecture we can provide a distributed global

address space that allows a cluster composed of di�erent machines to be used as a shared memory system.

The �rst software-based DSMs systems such as TreadMarks [2] simply organized the memory into pages

of �xed sized that were split across the machines in the cluster, with a Release Consistency [23] algorithm

to provide proper synchronization. Unfortunately, programming in accordance with the consistency al-

gorithm proved to be a di�cult task and the performance was far from excellence. Modern DSM systems

such as Terracotta [48] follow an object-based approach and the memory is organized as an abstract

space for storing objects of di�erent sizes, o�ering a transparent location of objects to the applications.
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Those and many other systems are described in more detail in chapter 2, including the algorithms used

for guaranteeing consistency and minimizing communication among nodes.

Considering these facts, and the known popularity of programming languages designed for running

with a High Level Language VM such as Java or C#, it is worth studying the possibility of extending a

VM with clustering support in a SSI fashion. There are three major approaches for achieving this goal:

• Extend a programming language at source or bytecode level: allows a simple and straight-

forward implementation fully compatible with current VMs but it does not provide full transparency

to the programmer and existing applications need to be modi�ed or recompiled for using a speci�c

library. In either case, the application source might not be available.

• Design a cluster-aware VM: gives full transparency to the programmer but requires the appli-

cations to use a speci�c cluster-aware VM instead of any standard VM, sacri�cing the portability

of the system.

• Design a cluster infrastructure capable of running several standard VMs: gives the best

compromise between portability and transparency but it is the hardest one to develop, due to the

fact that its layered approach makes it di�cult to use the runtime information present at the JVM

level. Also, due to the mismatch between the memory models of Java and the underlying DSM

[53], non-trivial optimizing techniques need to be employed to enable e�cient object sharing among

distributed Java threads. Many implementations are incomplete and do not provide a full SSI, as

we will observe in chapter 2.

One of the essential mechanisms necessary for providing SSI systems is the scheduling of threads

for load balancing across the cluster. To the best of authors knowledge, some work has been done in

improving the scheduling of threads for page-based DSM systems in order to avoid Page-Thrashing and

improve the locality of memory accesses but no modern DSM system can provide the full transparency

desired for running already existent applications. The current most popular system that uses the concept

of a shared object space is Terracotta, a middleware that promises to deliver performance at any scale

for high popular frameworks like Hibernate and Ehcache. Terracotta is used in a high percentage of

the companies belonging to Forbes Global 2000, and being an Open Source project, also has very good

support from its community of users, with frequent bug reports and documentation updates. All this

characteristics make the Terracotta system a favourite to use as a basis for our work.

At present, Terracotta has no concept of global thread scheduler and the programmer of a multi-

threaded application needs to be concerned about manually launching multiple instances of the appli-

cations, and manual load-balancing. Also, a current Java program that launches several threads using

only the Java Thread class cannot take advantage of the Terracotta infrastructure. Considering these

limitations, we believe that if we had a middleware that could bridge both Terracotta and multi-threaded

Java applications, handling the scheduling of threads and using the existent shared object space to keep

data consistent, we could run already existing applications in a distributed environment with almost no

extra e�ort and obtain scalability. Also, developing an application from scratch would get easier, as the

programmer could develop the application just like if it were meant to be deployed on a single multi-core

machine. This belief holds the main motivation for developing Caft, a Cluster Abstraction for Terracotta,

that we will introduce in this document.

A global scheduler can also have thread migration support, as the load in the cluster changes overtime

and it becomes necessary to rebalance the load, as many authors defend that otherwise the communication
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overhead becomes a bottleneck in performance [49]. Also, in a heterogeneous cluster the processors di�er

in speed and the computational resources available also change during runtime, adding extra complexity

for the global scheduler to deal with [50]. Despite these di�culties, recent research in Virtual Machine

technology has allowed the concept of capsule to appear and entire systems can be migrated within a

cluster for user commodity and also for load-balancing. Recent studies by Chen el all. [17] have showed

that this approach can be just as e�cient as thread migration. Both concepts will also be approached in

chapter 2 of this document, and at least considered for future versions of the Caft middleware.

1.1 Objectives

In this work, we aim to develop a prototype of a Java-based SSI system with a global thread scheduler

that can provide e�cient load-balancing across an entire cluster of computers. The system should be

�exible enough to provide good transparency for running an existent application without much changes,

and still be powerful enough in order to allow the programmer to optimize it, depending of the application

itself. It is also worth studying the possibility of integrating such a system on top of a VMM supporting

Virtual Machine Migration or extending the system with thread migration mechanisms for improving the

load balancing.

With our middleware, it should be possible, for example, to run an application with four threads,

where a pair will run on a dual-core machine and another pair on another dual-core machine, and the

application should perform more work in less time, achieving speed-up. Also, if the threads are running in

separate machines, each with its local heap and memory capacity, it should be possible to take advantage

of the extra memory available in the cluster. These are the main requisites concerning performance and

scalability.

Concerning transparency, required source code changes for clustering the application should be kept

to the minimum. The scheduling of threads and synchronization should be done at bytecode level, using

con�guration �les or command line parameters that can be changed easily for extra �exibility. However,

we believe that this requirement should be relaxed in case the source code is indeed available and the

programmer desires to �ne tune the application. As such, the programmer should be able to enable

or disable some instrumentations, as well as have some mechanisms to choose the data structures that

should be shared and the ones that should not.

1.2 Contributions

Considering the objectives de�ned, we developed Caft as a middleware to be run on top of Terracotta.

It can be con�gured to either run as a master or as a worker. The former will load and run the desired

multi-threaded Java application, while the latter will wait for requests from the master to run threads.

The idea is to deploy one master and several workers and be able to obtain scalability by having more

CPUs and memory available for running threads and parallelizing the application more than it would be

possible with a single node.

For the scheduling of threads, we opted to implement a simple scheduler that keeps track of all the

workers available and assigns the next thread in a round-robin fashion. This allowed us to begin with a

simple implementation that can scale with multi-threaded Java applications that divide the workload in
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equal parts. In the future, a more advanced scheduling can be considered, and in chapter 2 we perform

a survey of scheduling algorithms and migration techniques to improve load-balancing.

Also, considering the performance versus transparency trade-of, as well as the availability of source

code, we developed Caft with three di�erent modes: Identity, Full SSI and Serialization. Identity mode

should be used if we have a multi-threaded Java application that is properly synchronized, or the pro-

grammer has access to the source code and can add synchronization with ease. Full SSI mode should be

used if we have a multi-threaded Java application that is not properly synchronized, or the programmer

has no access to the source code. In both modes, all �elds belonging to a Java Runnable target that is

passed to the Thread class will be shared. Serialization mode allows the programmer to specify the �elds

that need to be shared using Java annotations, allowing for a more �ne grained con�guration.

To summarize, we present the contributions of this work in the following list:

• Proposal of an architecture for round-robin scheduling over Terracotta (with the possibility to

improve in the future)

• Implementation of the proposed model, available as a prototype

• Implementation of di�erent modes, to add more �exibility

• Identi�cation of the limitations of Terracotta for applications with many data-sharing

• Evaluation of the proposed system

1.3 Document Roadmap

This document is organized as follows. Chapter 2 describes in detail the context of our work, including

some SSI systems that share our topics of interest. Chapter 3 describes the architecture of the middle-

ware developed, using Terracotta as an infrastructure for running multi-threaded applications. Chapter

4 describes the implementation of the middleware in further detail, focusing on the bytecode instrumen-

tations that it performs on the Java application. Chapter 5 describes the evaluation method to measure

solution adequacy and performance. Chapter 6 summarizes all work done, introduces some ideas for

future developments, and draws some conclusions.
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Chapter 2

Related work

In this chapter, we are going to focus on solutions developed in the academic world and in the industry

for providing a SSI view of a cluster, particularly for providing a global address space. In section 2.1 we

describe the Distributed Shared Memory (DSM) approach, as well as the consistency models that support

it and the adaptations necessary to make a common application work with a speci�c consistency model.

In section 2.2 we are going to examine systems that integrate a global address space with a software

platform that can make a regular application written in Java to become cluster-aware and run seamlessly

with minimal programmer intervention. To �nalize, in section 2.3 we are going to focus on scheduling

algorithms and migration techniques to improve load-balancing.

2.1 Distributed Shared Memory

Distributed Shared Memory Systems have been around for quite some time, and it was one of the �rst

solutions adopted for clustering [39]. By extending the traditional virtual memory architecture, the

distributed memory is hidden from the programmers and applications can be developed using the shared

memory paradigm instead of other traditional and more error-prone, albeit more performant, parallel

computing communication forms such as message-passing. Like in traditional shared memory systems,

there is a possibility that two or more processors are working in the same data at the same time, and

as soon as one of them updates a value the others are working in an out-of-date copy. To solve this

problem, there are a signi�cant number of possible data consistency models that were adopted by DSM

implementations [39], which will be described in section 2.1.1. In section 2.1.2 we are going to describe

several practical software DSM systems that were developed in the academic world. Finally, in section

2.1.3 we are going to focus on software transactional memory, an alternative and promising concurrency

control mechanism analogous to database transactions.

2.1.1 Consistency models

The very �rst consistency model was Sequential Consistency [32], which is the simplest and most restric-

tive consistency model. Roughly speaking, sequential consistency requires that all writes be immediately

visible to all processors accessing each memory page. This synchronization in every memory access is

expensive and in many cases it is stronger than necessary for a distributed application to run correctly.
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Therefore, a more relaxed model is needed to minimize the number of messages exchanged and the amount

of data in each message, as a high amount of tra�c in the network can have a serious impact on the

performance of the system.

Release Consistency (RC) [23] was one of the �rst and most important relaxed consistency models

developed for concurrent programming. This model has two synchronization operations: acquire and

release. The former is used by any processor before attempting to make a write to a given object

belonging to the global address space, while the latter is used after the writes are done. Therefore, in the

RC model, the writes made by a certain processor p1 only need to be seen by all the other processors in

the cluster after p1 releases the lock, so all writes from p1 could be queued and put in a single message

which is sent to all the nodes.

Lazy Release Consistency (LRC) [31] is an algorithm similar to RC, but instead of globally propagating

all changes at the time of a processor release, it postpones the propagation to the time of acquire,

guaranteeing that the acquiring processor will receive all changes that �precede� the acquire operation.

For example, consider a scenario where processor p1 acquires a lock over an object A, performing a few

writes and then releasing it. If a processor p2 attempts to acquire a lock over A, both the lock and the

writes will be propagated from p1 to p2 (and only to p2). Similarly, if another processor p3 tries to

acquire the lock over A it will receive from p2 all the writes done by p1 and p2 before the p3 acquire of

the lock. Therefore, for each acquire operation only one message needs to be sent, and naturally, only

the di�erences between each memory page need to be sent.

Entry Consistency (EC) [7] is another memory consistency model. It was �rst used in Midway, a

programming system for distributed shared memory multicomputers. The entry consistency model takes

advantage of the relationship between typical synchronization objects that de�ne critical sections, like

mutexes or barriers, and the data protected by those objects. Since a critical section de�nes a region

where the data may have been written by another processor, and a synchronization object controls a

processor's access to the data and code inside it, the view of the shared memory can become consistent

only when the processor enters that same critical section. Performance measurements were promising, as

the number of messages decreased a lot comparing to RC. However, comparing with LRC, the results were

about the same and the need to have an explicit association between every object and a synchronization

variable can be troublesome for the programmer.

Automatic Update Release Consistency (AURC) [26] is yet another release consistency model that

uses automatic update to propagate and merge shared memory modi�cations. Automatic update is a

communication mechanism implemented in the SHRIMP multicomputer that forwards local writes to

remote memory transparently, which is accomplished by having the network snoop all write tra�c on

the memory bus and checking if the page written has an automatic memory mapping, that is, if the

source process virtual address is mapped with a virtual address from a remote process. If such a mapping

exists, all writes to the source page will be automatically propagated to the destination page. Consecutive

written addresses are combined into a single packet, in order to reduce the network tra�c. This allows

for zero CPU overhead in synchronization, as the only thing a processor has to do is to store the write in

the memory address as he usually would. As a result, performance is substantially increased comparing

to the original LRC, but unfortunately AURC is dependent on specialized hardware support.

Scope Consistency (ScC) [27] was designed as an improvement to the EC model, o�ering most of the

advantages without the explicit binding between variables and synchronization objects. ScC introduces

a new concept called consistency scope to establish the relationship between data and synchronization

events implicitly from the synchronization already present in programs to implement release consistency.
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Table 2.1: Consistency models

Model
Time of Program Hardware

propagation modi�cations dependent

SC page write None No

RC lock-release
acquire/release

No
operations

LRC lock-acquire
acquire/release

No
operations

EC
critical section object/lock

No
entering association

AURC page-write None Yes

ScC
consistency scope None, if RC

No
entering consistent

A consistency scope consists of all critical sections protected by the same lock.

In conclusion, all consistency models can reduce communication and give some performance improve-

ments, but they are very dependent on the applications synchronization mechanisms and may not work

without some tinkering. In the next subsection, we are going to describe some systems that were devel-

oped in the academic world as proof of concepts to distributed shared memory and consistency models.

The table 2.1 summarizes the consistency models main proprieties.

2.1.2 Software Distributed Shared Memory Systems

Ivy [33] was one of the very �rst distributed shared memory system prototypes to be implemented and

proven to be more simple than the traditional message-passing interface. Read-only pages could reside

in more than one node but a page marked for writing could only reside in one node and the mapping-

manager would map the writes to the remote node, guaranteeing simple sequential consistency at all times.

The nodes were simple single processor machines, which means that no multithreading was considered.

Unfortunately, the large size of consistency unit makes the system prone to the false sharing problem.

The false sharing problem occurs when two or more unrelated objects are written concurrently on the

same page, causing the page to �ping-pong� back and forth between the processors.

Munin [14] is a second-generation distributed shared memory system. Compared to Ivy, it was also

used with simple single processor machines but it uses a release-consistent memory interface to reduce

the overhead, as seen in the previous section. Also, it supports multiple consistency protocols by having

the programmer annotate each shared variable to establish the protocol according to the expected access

pattern, and then allowing it to change at runtime. Despite the improvements, a more transparent model

to the programmer was still needed and Munin still uses a home-based protocol for handling memory

pages (e.g. a memory page belongs to a node and needs to be entirely fetched on a page fault).

TreadMarks [2] is another second-generation distributed shared memory system. It uses Lazy Release

Consistency to reduce the number of messages used in comparison to Munin and it also supports multiple-

writers by creating a twin copy of the virtual memory page and when the modi�cations need to be sent to

another processor the di�erences between the page and the twin copy are put in a separate data structure

to be sent and the twin is discarded. This way, the overall bandwidth is reduced comparing to the Munin
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Table 2.2: Software DSMs

System Consistency Model Multithreading support

Ivy SC No

Munin multiple No

TreadMarks LRC No

Brazos ScC Yes

home-based approach.

Brazos [46] is a third-generation distributed shared memory system, supporting multiple multi-core

processor nodes. Brazos uses a software-only implementation of Scope Consistency and a distributed

page management system similar to the one in TreadMarks. Comparing to previous generation DSMs,

Brazos is multi-threaded and can overlap the computation with the communication latencies associated

with many DSM systems. Also, it uses multicast instead of multiple point-to-point messages, reducing

the communication necessary and improving the performance.

In conclusion, despite the improvements that were made to adapt the DSM concept to new hardware,

all these prototypes imply a di�erent programming approach that is impractical, as most programmers

do not want to have that many worries to guarantee that the multi-threaded application that is perfectly

�ne on one computer works correctly with a given consistency model. This problem gets even worse if

the systems support multiple consistency models, and so a more transparent system is needed if we want

it to be used for general-purpose applications. The table 2.2 summarizes the Software DSMs studied:

2.1.3 Software Transactional Memory

So far, all systems and consistency models considered are based on a pessimistic lock-based approach

with the de�nition of critical sections to protect data. A new approach called Transactional Memory [25]

was developed to try to circumvent the three main issues with lock-based solutions:

• Priority inversion: can occur if a low-priority thread gets hold of a lock before a higher priority

thread. Because there is a mutual exclusion paradigm, the higher priority thread will have to wait

until the lock if free.

• Convoying: can occur if a thread holding a lock is preempted by the scheduler by some kind of

interrupt (e.g. a page fault) resulting in other threads inability to progress.

• Deadlock: can occur if two threads try to get hold of the same data sets and both wait for the

other to release it, being both unable to progress.

Besides these three main issues, the lock mechanism is conservative by nature and if there might be

a con�ict in a certain region, only one thread will be allowed in that section, even if at runtime the

probability of con�ict is not high. Therefore, a new concept of transaction was introduced in memory

operations, very similar to the transactions in relational databases. Instead of having locks, all threads are
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allowed to execute a critical region at the same time and after �nishing the operations a con�ict detection

algorithm is run. If there are no con�icts, the writes are made permanent into memory, otherwise the

atomic operation is rolled back and retried at a later time.

There are two main approaches in implementing STMs: transaction log and locks. The former is

implemented by having a transaction log local to each thread. All writes are done in the transaction log

and at the end they are written to the memory after checking that there is no con�ict, which means that

the rollback operation is trivial but the commit operation implies much larger overhead. The latter can

be further divided into two approaches: commit-time locking and encounter-time locking. The former

is implemented by locking all memory locations during commit and marking access time with a global

logical clock that is checked in every read/write and if the memory was accessed after the beginning of

the transaction the transaction is aborted. Again, this makes the rollback simple but the commit, which

should be the most common operation, expensive. The latter just gives exclusive access of the memory

positions to a thread and all other threads that try to access the same memory positions simply abort,

putting the largest overhead in the rollback operation, which in the STM paradigm should be the less

common operation.

Unfortunately, STM also has some disadvantages that makes it still unpractical for very large systems,

as the overheads from con�ict detection and commit cannot be avoided. Also, some operations cannot be

undone by nature (e.g I/O). Some authors have proposed new instructions for the IA-32 ISA to improve

performance [41], but no standard processor available in the market adopted them yet. Sun has recently

attempted to develop a multi-core processor capable of supporting hardware transactional memory [16],

which unfortunately was canceled in November 2009. We believe STM has a lot of potential in the

future once there is hardware support for transactions that amortizes the inherent overheads, as STM

programming is far less error prone.

2.2 Distributed Virtual Machines

In section 2.1, we saw how the DSM abstraction can provide an SSI view of a cluster and the main

concerns in implementing it. The next logical step is to study how we can combine this virtual memory

abstraction with a platform that can make a normal application written in a high-level language cluster-

aware without modifying the source code. Due to the popularity of Java programming language, not

only for commercial applications but also for research due to its open-source nature, most of the systems

presented in this section focus clustering of Java applications but similar approaches could be done for

other high-level languages, such as C#, etc.

The current techniques used for supporting distributed execution in a cluster can be divided in three

major categories. The �rst set can be classi�ed as Compiler-based DSMs and it consists of a combination

of a traditional compiler and a DSM system (see section 2.1). By compiling a normal application we can

insert special instructions or bytecodes that add clustering support without modifying the source itself.

The second set can be classi�ed as Cluster-aware Virtual Machines and it includes implementations

of Virtual Machines that provide clustering capabilities at middleware level. For instance, cJVM is a

cluster-aware Virtual Machine with a global object space. The last set can be classi�ed as Systems using

standard VMs. In this approach, the applications will run on standard VMs that run on top of a DSM

system. Some systems that rely on standard VMs also have static compilers similar to the Compiler-

based DSM approach, with the major di�erence being that they transform a Java bytecode application
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into a parallel Java bytecode application instead of native code. Other systems, like Terracotta, perform

bytecode enhancement at load-time.

2.2.1 Compiler-based DSMs

The need to combine both performance and cluster-aware capabilities have led some authors to develop

compilers that put special checks or instructions in the program at compile-time, adding cluster-aware

capabilities without modifying the source code. The application can then be run as any native application

would, in a virtual or real machine.

Jackal [52] incorporates a DSM system with a local and global GC that provides full transparency

relative to the location of threads and objects. Jackal compiler generates an access check for every use

of an object �eld or array element and the source is directly compiled to Intel x86 assembly instructions,

giving the maximum performance of execution possible without a JIT. Jackal has no support for thread

migration or load balancing.

Hyperion [4] also has a runtime that gives the illusion of a single memory space and it supports the

remote creation of threads, which provides a better load-balancing. To keep the objects synchronized, a

�master� copy is kept and updated in every write, resulting in a performance bottleneck.

In this approach, classes with native methods cannot be distributed as the already compiled code

is not portable. Also, the compilation to native code indicates that these systems will only work in a

homogeneous cluster, which is a severe limitation to our Single System Image ideal.

2.2.2 Cluster-aware Virtual Machines

Many Cluster-aware Virtual Machines were developed in an attempt to provide a Single System Image

view of a cluster, especially in Java as it is a very widely used platform for developing object-oriented

applications. Java/DSM [54] was one of the very �rst platforms for heterogeneous computing to be able

to handle both the hardware di�erences and the distributed nature of the system, as the alternative

of developing a distributed application with RMI required extra e�ort from the programmer. Despite

the better abstraction, Java/DSM did not explore Java semantics for performing optimizations and the

load-balancing was limited since it had no thread migration mechanisms. Also, every node needed to

have a copy of every shared object, which meant that all the extra memory added by having more nodes

in the cluster was just wasted.

cJVM [5] distributes the application's threads and objects over the cluster without modifying the

source code or the bytecodes. Java object access an memory semantics are exploited, allowing optimiza-

tion mechanisms such as caching of individual �elds and thread migration. In the original implementation,

there is no JIT support and it only works with an interpreter loop. To keep the objects synchronized, a

�master� copy is kept and updated in every write, resulting in a performance bottleneck compared to the

original Sun JVM.

Ka�emik [3] followed an approach where every object is allocated in the same virtual memory address

in every machine. The biggest advantage is that the address can be used as a unique reference that is

valid in every instance of every Ka�emik node. The virtual machines then work together, each containing
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a part of the global heap. Unfortunately, Ka�emik had no means of caching or replication which meant

that an array access for example could result in several remote memory accesses, reducing performance.

JESSICA2 [56] also provides a global object space (GOS) that gives the illusion of a single heap.

Each JVM heap space is divided into two sections, one that contributes to the global heap space and

stores master copies of objects and another for object caching for improving performance. An interesting

optimization also referred in the article is the possibility that a cached copy of an object can become

the �master� copy if accessed many times, which allows locality improvements at runtime by migration

of ownership of the objects. To support thread migration and be able to restore the Java thread stack

in a di�erent memory space, the stack is captured at bytecode boundary an translated into a platform-

independent text format to be restored by the target JVM. JESSICA2 also supports JIT compilation,

which is a major improvement relative to the previous systems.

In conclusion, the major advantage of this approach is not having to modify the applications, as all

clustering is done at the VM level. Despite the very promising systems described above, all of them

have a major disadvantage as they sacri�ce one of the most important features of Java: cross-platform

compatibility. Also, the already existing JVM facilities such as local garbage collection and JIT compiler

are di�cult to integrate in this type of systems. Therefore, these special cluster-aware VMs either invest

a considerable amount of e�ort reimplementing such features or they do not implement them at all. It

would be interesting if the clustering capabilities could be used with a combination of di�erent virtual

machines and in the ideal scenario we would use the standard and better supported Sun's Java Virtual

Machine. This approach will be described in the next chapter.

2.2.3 Systems using standard VMs

JavaParty [55] was one of the very �rst platforms to support the aggregation of several standard Java

Virtual Machines and allow the execution of a multi-threaded program in a clustered environment. Java-

Party [55] extends the Java language with a new �remote� keyword to indicate that a certain class and

its instances should be visible anywhere in the distributed environment, avoiding explicit socket or RMI

communication. This implementation does not ful�ll the ideal SSI since the programmer has to explicitly

point the classes to be clustered and needs to distinguish which invocations are remote and which ones

are local because the argument passing conventions are di�erent.

JavaSymphony [22] works under a new concept of Virtual Architectures that impose a virtual hierarchy

on a distributed system, allowing the programmer to explicitly control locality of data and load balancing.

Again, this is far from our ideal solution of having a SSI system as all objects need to be created, mapped

and freed explicitly, which defeats the important advantage of built-in garbage collection in the JVM.

The entire process can be quite cumbersome and since JavaSymphony does not provide assistance for

these steps, the semi-automatic distribution is likely to be error-prone.

Addistant [47] works by transforming the bytecode of the Java application at load time and the de-

velopers only have to specify the host where instances of each class are allocated. All the instances of

the same class are then allocated in the same node, giving poor load balancing �exibility. Moreover, the

population of the cluster (number of nodes) is static and must be known in advance. System classes

with native code cannot be migrated as there is no bytecode to instrument at load time. Also, ap-

plication classes that use system classes with native code generate dependencies that make the former

non-migratable.
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Figure 2.1: Terracotta architecture

J-Orchestra [51] also uses bytecode transformation to replace local method calls for remote method

calls and the object references are replaced by proxy references. J-Orchestra can partition a Java program

in such a way that any application object can be placed on any machine. Additionally, any object can be

migrated to a di�erent node at run-time to improve load-balancing and take advantage of a better locality.

J-Orchestra also o�ers some run-time optimizations such as the lazy creation of distributed objects

that do not su�er the overhead of registering until they need to be used. Despite these improvements,

the tools provided by J-Orchestra to determine class dependencies and to ensure the correct partition

requires non-trivial intervention from the user, still not achieving the SSI ideal. In addition, the bytecode

instrumentation technique has the same limitation as Addistant (objects that have or depend on native

code cannot be migrated).

JavaSplit [21] is yet another runtime for executing Java applications that uses bytecode instrumen-

tation for adding clustering support. JavaSplit supports the multi-threaded paradigm directly, without

introducing unconventional programming constructs. All the bootstrap classes are rewritten with JavaS-

plit and the �nal result is a distributed Java application that uses nothing besides its local standard

Java Virtual Machine (JVM). Each newly created thread is placed on one of the worker nodes using a

load-balancing function and thread migration is not supported.

Terracotta [48] is a recent JVM-level clustering product, used in a high percentage of the companies

belonging to Forbes Global 2000. Terracotta supports full transparency in a way similar to JavaSplit

except that it works within an aspect-oriented programming (AOP) framework. To take advantage of the

Terracotta clustering model, an instance of the Java Application needs to be launched in every node and

the central Terracotta Server also needs to be setup. The programmer has to con�gure his Java application

to decide which �elds in each class remain local and which ones are going to belong to the Distributed

12



Shared Objects space (DSO), as well as all locking and synchronization concerns. The Terracotta (TC)

libraries are loaded by each JVM running the application and are responsible for handling the bytecode

instrumentation at load-time for implementing the behavior speci�ed by the programmer. The Terracotta

Server implements the Virtual Memory Manager (VMM), which is responsible for holding the global heap

and propagating the di�erences to the JVM clients (objects are cached on disc before the server runs

out of memory). Also, the Terracotta Server can itself be clustered for improved scalability. Figure 2.1

illustrates the architecture described. The dashed squares represent a cluster node, either corresponding

to a real or virtual machine.

The main features of Terracotta make it an appropriate platform for clustering application servers like

Apache Tomcat or JBoss, but it lacks transparency for running multi-threaded applications non-cluster

aware. In chapter 3 we are going to propose a Terracotta extension that attempts to make the scheduling

of threads in a cluster transparent.

To summarize, the table on the next page illustrates the main features of all systems studied in this

section. In section 2.3 we are going to study the existing scheduling algorithms and thread migration

techniques in order to have a good theoretical background to choose the best approach for extending

Terracotta.
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2.3 Clustering and thread scheduling

One of the problems considering clustering in distributed systems and software DSMs in particular is the

scheduling of threads for maintaining a balanced system with a fair share load that minimizes communi-

cation and can make good enough decisions that give an acceptable performance in the long run. In this

section, we will discuss a few algorithms and techniques to attempt to reach an ideal scenario where no

nodes will be heavily loaded while other nodes are idle or only lightly loaded.

Load-distribution algorithms [43] can be classi�ed in the following categories: static, dynamic and

adaptive. Static algorithms are the most straight-forward approach, a new task is simply assigned to a

node known a priori via a round-robin policy. An heterogeneous cluster might have an adapted weighted

policy, assigning more tasks to the most powerful nodes and less tasks to the less powerful nodes, but

no information about the current state of the system is used. Both these approaches have been tested

in web clustering architectures [13]. Therefore, static algorithms can potentially make poor assignment

decisions. For example, a new thread might be initiated in a node A, which is heavily loaded, while the

local node B was idle, simply because node A was next in our �xed scheduling algorithm.

Dynamic algorithms attempt to improve the performance of their static counterparts by exploiting

system-state information in runtime before making the decision. Because they must collect, store, and

analyse state information they have more overheads and are harder to implement, but this extra overhead

is usually compensated. In our idle node example, a dynamic algorithm could check that the node B

where the new thread was initiated was idle and decide not to create the task at node A. The algorithm

could even consider the state of the receiving node, possibly only assigning the new thread if the node

was idle.

Adaptive algorithms are a special case of dynamic algorithms. Besides considering the system load,

the system state itself can change the scheduling policies. For example, if a given policy performs better

under a heavy-loaded system and another one performs better in a lightly-loaded system, an adaptive

algorithm can use the former after a certain threshold of CPU load and the latter when the system reaches

a lighter state, adapting itself to di�erent workloads or application suites.

Both dynamic and adaptive algorithms raise an important issue: what is a �heavily-loaded node� and

how can we de�ne a metric that will allow us to determine if node A will be a good option for executing

the next thread? Some authors like Kuntz [28] have de�ned the best metric as being the CPU queue

length, and no signi�cant performance was gained by using or combining other metrics such as the system

call rate and the CPU utilization. In addition to the queue length metric, many authors proposed that a

dynamic load-balancing system should have a priori knowledge of the resources needed by of the task in

order to choose the best node. Since the node is chosen before the task is executed, the resource usage of

a task must be predicted, either based on the past behavior of the task or by providing the load-balancing

system with a user estimation. Both approaches are error-prone and can have a very negative impact if

used with a wrong estimation.

Choi et all. [19] have proposed a novel metric to minimize the impact of inaccurate predictions. It

is known that overlapping CPU bound and I/O bound jobs results in better resource utilization, so the

number of tasks considered in the CPU queue length should consider its nature. For example, a node

with three CPU bound and two I/O bound should be considered as having �ve tasks in its queue but

only three e�ective tasks, since the CPU bound overlap with the I/O bound. However, there is still a

need to classify a task as �CPU bound� or �I/O bound�, which is not trivial to do, and the performance
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improvements proved to be marginal compared to the historical-based approach.

Considering this, we can now take a deeper look to some scheduling algorithms and de�ne what

major considerations should they have to be time and space e�cient. Two major requirements have been

identi�ed: good locality and low space [36]. The former means that threads that access the same memory

pages should be scheduled to the same processor, as long as it is not overloaded, minimizing the overhead

of page fetching, while the latter indicates that the memory requirements for the scheduling algorithm

should be kept small to scale with the number of threads or processors, as in a cluster both numbers tend

to grow overtime.

Work stealing schedulers [9] is a dynamic scheduling solution that provides a good compromise between

the above requirements. Each processor keeps its own queue and when it runs out of threads it steals

and runs a thread from another processor queue. This way, threads relatively close to each other in

the computation graph are often scheduled to the same processor, providing good locality. The space

required is at most S1P , where S1 is the minimum serial space required. This space bound can still be

improved, as we will see in the next paragraph.

Depth-�rst search schedulers [8] is another dynamic scheduling approach. It works by computing a

task graph as the computation goes by. A thread is broken into a new task by detecting certain breakpoints

that indicate a new series of actions that can be performed in parallel by another processor (e.g. a fork).

The tasks are then scheduled to a set of worker processors that hold two queues, one for receiving tasks

(Qin) and the other to put tasks created (Qout), while the remaining processors are responsible to take

tasks from the Qout queues and schedule it to the Qin queue of another processor. It was proven than the

asymptotic space bound for this algorithm is S1 + O(p.D) for nested parallel computations of depth D,

which is an improvement over the previous work-stealing approach. However, as the created tasks have

a relative high probability of being related with the previous computation, the locality is not as good.

DFDeques [36] is a dynamic scheduling approach that seeks the best of both worlds. Threads are as-

signed to multiple ready queues that are depth-�rst ordered, similarly to the depth-�rst search schedulers

seen in the previous paragraph. The ready queues are treated as LIFO stacks similar to the work-stealing

schedulers. When a processor runs out of threads to run, it can steal from a ready queue chosen ran-

domly from a set of high-priority queues. The asymptotic space bound is S1+O(K.p.D), with K being a

runtime parameter which speci�es the amount of memory a processor may allocate between consecutive

steals. As K is usually small, the space bound is about the same as in pure depth-�rst schedulers and at

the same time we can take advantage of thread locality as threads close to each other in the computation

graph will be scheduler to the same ready queue.

These algorithms have been widely studied and were used to introduce scheduling in many parallel

programming libraries and applications. Satin [37] is a Java-based grid computing programming library

that implements a work stealing approach by allowing a worker node to steal a method invocation

from another node. Athapascan-1 [15] is a C++ library for multi-threaded parallel programming that

implements a data-�ow graph where both computation and data grains are explicit, allowing a depth-

�rst scheduler algorithm to take advantage of the existing structure to schedule new threads. When

considering applying one of these algorithms to a DSM system for general-purpose computations there

are a few extra considerations that should be taken. We have to deal with heterogeneous nodes with

di�erent clocks and resources that may or may not be available at a certain time. This implies that

a system should be dynamic and support some kind of migration of tasks to rebalance the load [50].

Also, DSMs have a much higher communication requirements than message-passing and, unlike parallel

programming, we cannot predict easily the kind of applications that will run and what could be the
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best parallelism possible. In the subsection 2.3.1 we are going to cover implementation issues of thread

migration mechanisms and how much we can bene�t from them and in subsection 2.3.2 we are going to

cover another approach that takes advantage of system Virtual Machines to provide a more coarse-grained

but easier to implement migration mechanism.

2.3.1 Thread Migration

In the previous section we studied thread scheduling in distributed shared memory systems in the perspec-

tive of initial placement of tasks, and the metrics that can be used for measuring the least loaded node.

Besides the initial placement, transparent thread migration has long been used as a load-balancing mech-

anism to optimize resource usage in distributed environments [20]. Such systems typically use the raw

thread context (RTC) itself as the interface between two nodes. The RTC consists of the thread virtual

memory space, thread execution stack and hardware memory registers. This is the typical platform-

dependent format used to represent a thread context and cannot be migrated directly without a few

extra considerations. For example, the pointers or references used for data objects can be meaningless

in another machine or the thread might be executing a system call that does not have any meaning in

another node (e.g I/O calls). Some authors [29] have solved this issues by reserving all stacks in the

beginning of the execution and guaranteeing that all of them use the same virtual addresses, and at

the same time kernel threads are used to handle all system calls. This way, all threads are portable,

considering an homogeneous system, but the number of threads in each node has a �xed limit.

In the particular case of software DSMs there are a few extra considerations that should be taken into

account, as increased communication can exceed the bene�ts of better load-balancing. For example, the

original pages that were cached by a thread before migration may not be needed anymore by the source

node. In contrast, the destination node will de�nitely need those pages and the amount of communication

needed to keep consistency among the processors implies a considerable overhead. Therefore, threads for

migration need to be carefully chosen in such a way that the communication overhead does not exceed

the bene�t given by the better load-balancing.

One of the simplest solutions is to consider the number of shared pages between pairs of threads

and assume that more shared pages implies a bigger communication cost if one of the threads migrates.

However, not all data-sharing results in data consistency communication as two threads can simply read

the same pages without any of them changing any data. Therefore, data-sharing policies should also

consider the type of memory access.

In addition, an e�cient thread selection policy needs to consider global sharing (i.e. the communication

necessary with all processors). Although such a policy will result in a much more informed decision

the cost of computing the thread migration cost for each thread increases linearly with the number of

processors. Other solutions involve a partial sharing policy, which only considers communication cost

between the source and the destination node, without regard to global relations, increasing the risk of

making a wrong decision. Liang et al. [34] propose a novel thread selection policy called reduction inter-

node sharing cost (RISC) for page-based DSMs that support release-consistency, which combines the type

of memory access with a global sharing policy.

Concerning thread migration in Java systems, Java has a serialization mechanism that can capture

an object state and restore it in other node running another virtual machine. However, the Thread

class is not serializable and the standard JVM does not provide a mechanism to access a thread stack

directly. Therefore, most existing Java solutions rely on the bytecode-oriented thread context (BTC) as
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interface. The BTC is organized in a sequence of blocks called frames, each one associated with a Java

method being executed by that thread. Each frame contains the class name, the method signature, and

the activation record of the method. The activation record consists of a bytecode program counter (PC),

which points to the Java instruction currently being interpreted, a JVM operand stack pointer for the

stack that holds the partial results of the method execution, and the local variables of the associated

method, encoded in a JVM-independent format. Considering this, and the fact that we still have to

deal with threads executing native code in an RTC fashion due to system classes and JITs that compile

bytecode at runtime, the following basic approaches were found in the literature [44]:

• Static byte code instrumentation: thread migration support is added by pre-processing the

already compiled bytecode source and adding statements which backup the thread state in a special

backup object. When an application requires a snapshot of a thread state, it just has to use the

backup object produced by the code inserted by the pre-processor. The main advantage of this

approach is that this way the thread migration can be implemented as a simple extension that

manipulates bytecode, without the need to modify the JVM. Unfortunately, the fact that there

are more bytecode instructions in the code introduces signi�cant overhead and the thread state

restoration requires a partial re-execution of the application. Some implementations of this approach

for mobile agents such as AMO [42] also do not consider system classes or classes with native code

and cannot migrate code that uses re�ection.

• Extending the JVM and its interpreter: thread migration support is simply added as an

extension to a normal JVM interpreter, as done in systems such as JESSICA [35]. This is accom-

plished by having a global thread space that spans the entire cluster and a mechanism that can

separate the hardware-dependent contexts in native code and the hardware-independent contexts

at bytecode level. This way, a thread can migrate with relatively good granularity between each

bytecode instruction that is interpreted. However, modifying the JVM interpreter do deal with

thread migration adds to the overhead of the already slow interpreter. This approach has been

proven to have better performance than the previous static byte code instrumentation [10] but it

is still much slower than the creation of a normal thread, which gives the impression that support

for JITed code is needed.

• Using the JVM Debugger Interface (JVMDI): thread migration support is added by com-

piling Java applications with extra debugging information that allows access to the thread stack

as well as the introduction of thread migration points. Modern debugger interfaces also support

JIT compilers, as previous approaches only considered bytecode. However, JVMDI needs huge data

structures and incurs large overhead to include the extra general debugging features and the limited

optimizations that can be done in a debugging environment.

CEJVM [30] is a master-worker approach that relies on a master node that runs the Java application

and delegates threads to worker nodes. It uses the JVMDI to implement thread migration transparently

and compatible with any JVM that supports the debugger interface. Performance-wise, the master-

worker paradigm only works well with a speci�c niche of applications and it would be desirable that all

nodes be provided with thread migration capabilities in a point-to-point way.

Cho-Li et all [18] de�ne a new approach that consists of integrating the RTC to BTC conversion and

the implicit stack capturing and restoration directly inside the JIT. Stack capturing involves using the

JIT to instrument native codes and transform them back into the platform-independent bytecode format.

This way, the thread scheduler itself can perform on-stack scanning and to derive the BTC format instead
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of using a stand-alone process like in the JVMDI approach. For stack restoring, the authors introduce

a mechanism called Dynamic Register Patching that rebuilds the state of the hardware registers before

returning the control to the thread instanced in the new node.

Another issue that we need to address is at which code points should migration be considered as a

good option. The simplest approach is to allow migration in any bytecode boundary. However, with

all the JVMs running sophisticated JITs there is a high probability that the execution is running native

code at the time of migration and it may be very hard and ine�cient to simulate the native instructions

from the stopped point until the next bytecode boundary for migration. Cho-Li et all [18] de�ne two

basic points: the beginning of a Java method invocation and the beginning of a code block pointed by

a back edge in the computational graph. The former indicates a new operation that can most likely

be done in another node (very small methods that do not typically compensate will be inlined by the

compiler and not considered for migration), while the latter represents the beginning of a loop, which

is also a good option as it needs a more or less prolonged computation until it �nishes. Intra-bytecode

migration semantics would be very ambiguous and di�cult to implement, so we are not considering it in

this report. It is preferable, for example, to turn o� the JIT compiler before migration and only enable

it after scheduling on another node.

Finally, we have to deal with the type resolution of the operands. As operands in a thread context

are pushed in and popped out of the stack at runtime, their types cannot be determined in advance. The

simplest solution is to have a separate stack for operand types synchronized with the normal Java stack.

This doubles the time in accessing the operand stack, which can be more or less signi�cant depending on

the number of possible migration points that we are considering. Also, this approach can be optimized

as most types can be veri�ed statically by the Java bytecode veri�er [24]

2.3.2 Virtual Machine Migration

The need to provide a cluster to support multiple operating systems, applications, and heterogeneous

hardware has led to the development of Virtual Machine Monitors (VMM) or hypervisors that run right

on top of the hardware and schedule one or more operating systems across the physical CPUs. The live

migration mechanism is less granular than thread migration, as a system VM might have a large number

of threads running simultaneously and the migration of an entire system VM to another node requires

that the recipient node has indeed more resources to run the system VM. However, a recent performance

study made by Chen et all. [17] using a page-based DSM system shows that the virtual machine migration

approach can compete with thread migration and it has the advantage of providing a cleaner separation

between hardware and software, as well as facilitating fault-tolerance and load-balancing.

IBM have developed the z/VM solution [38], an hypervisor software capable of supporting several

thousands of Linux servers running on a single mainframe. z/VM supports full scheduling of user virtual

machines according to each user needs by monitoring resource usage and giving a user class from 0 to 3.

Higher class users get longer time-slices but lower classes tasks are given a higher priority if the mainframe

resources get constrained. Despite the good transparency and scheduling solution, the system only runs

on the mainframe zSeries IBM servers, which are not available to the majority of programmers.

Xen [6] is another hypervisor that runs on standard x86 machines, developed in the University of

Cambridge. Xen supports many popular operating systems such as Solaris, Linux and Windows. System

administrators can migrate Xen Virtual Machines between physical hosts across a LAN without loss of

availability
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2.4 Summary

In this chapter, we discussed the most important research topics related to our work. We started by

presenting an historical background of the Distributed Shared Memory (DSM) concept, along with the

consistency models required to make it work. We also gave examples of academic software DSMs and took

a closer look at STMs. We concluded that all these prototypes imply a di�erent programming approach

that is impractical and, although the concept is interesting, a more transparent approach is needed.

After this discussion of DSMs, we presented a survey on distributed Virtual Machines, divided into

three categories: Compiler-based DSMs, Cluster-aware Virtual Machines and Systems using standard

VMs. We concluded that the �rst type is limited to a speci�c architecture and require the cluster to be

homogeneous. The second type also sacri�ces cross-platform compatibility by requiring all nodes in a

cluster to run the same VM, cross-platform compatibility, and most do not implement already existing

JVM facilities. The third type is the one most likely to succeed, due to the Sun JVM being present in

the most common architectures and operating systems

To �nalize this chapter, we presented several thread scheduling algorithms, along with thread and

virtual machine migration techniques. The techniques for thread scheduling in distributed environments

covered here can be integrated with a system that already provides a shared object space, giving common

programmers the ability to run a regular multi-threaded application in a cluster seamlessly, without

worrying about load-balancing.
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Chapter 3

Architecture

This chapter describes the middleware Caft (Cluster Abstraction for Terracotta), developed during

this work to allow Terracotta to run simple Java multi-threaded applications with minimum changes or

concerns due to the di�erent environment. We will start by familiarizing the reader with the mechanisms

already o�ered by Terracotta that motivate it to be a very good choice for clustering application servers

such as Tomcat or JBoss. After this introduction, we will describe the high-level architecture of the

middleware, as well as all compromises assumed. To �nalize, we are going to present the packages and

classes that compose the middleware, along with a description of their functions and data structures used.

3.1 Terracotta

In this section, we are going to introduce the main concepts of the Terracotta platform. This should

give the reader a little background on how to con�gure Terracotta for clustering some application, which

is essential for understanding how our middleware works on top of Terracotta for providing greater

transparency for running simple multi-threaded Java applications, the primary use case that motivates

this work. The main concepts of Terracotta are presented in the list below:

• Clients and Servers: The Terracotta developers adopt the client/server terminology and call

the application JVMs that are clustered together Terracotta clients or Terracotta cluster nodes.

These clients run the same application code in each JVM and are clustered together by injecting

cluster-aware bytecode into the application Java code at runtime, as the classes are loaded by each

JVM. This bytecode injection mechanism is what makes Terracotta transparent to the application.

Part of the cluster-aware bytecode injected causes each JVM to make a TCP connection to Terra-

cotta server instances. In a cluster, a Terracotta server instance handles the storage and retrieval

of object data in the shared clustered virtual heap. The server instance can also store this heap

data on disk, making it persistent just as if it were part of a database. Terracotta server instances

exist as a cohesive array. This works by having one server as a master, holding the entire heap, and

another server as a passive mirror, acting in case the master stops responding. In the enterprise

version of Terracotta, it is also possible the split the global heap across several servers, each one

holding a part of the heap. To illustrate this �rst basic notion, we present an example of a typical

Terracotta cluster in Figure 3.1.
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Terracotta Server Array

Terracotta ClientTerracotta Client Terracotta Client

Figure 3.1: A typical Terracotta cluster, composed of Terracotta clients and servers

• Distributed Shared Objects (DSO): In a single JVM, objects in the heap are addressed through

references. The Terracotta clustered virtual heap objects are addressed in a similar way, through

references to clustered objects which we refer to as distributed shared objects or managed objects

in the Terracotta cluster. To the application, these objects are just like regular objects on the

heap of the local JVMs, the Terracotta clients. However, behind the scenes, Terracotta knows that

clustered objects need to be handled di�erently than regular objects.

When changes are made to a clustered object, Terracotta keeps track of those changes and sends

them to all Terracotta server instances. Server instances, in turn, make sure those changes are

visible to all the other JVMs in the cluster as necessary. This way, clustered objects are always

up-to-date whenever they are accessed, just as they are in a single JVM. Consistency is assured by

using the synchronization present in the Java application, which turns into Terracotta transaction

boundaries.

Not every object in the JVM is a clustered object, only those that the developer chooses to share.

This works by declaring a �eld to be root, which is going to be described in more detail in the

con�guration item.

• Con�guration: As Terracotta clusters JVMs transparently with no explicit API, control over

what gets clustered and which operations in the application are sensitive to clustering is performed

through the Terracotta con�guration. The con�guration can be speci�ed using an XML �le or using

code annotations, depending on the developers personal preference. The three main sections of the

Terracotta con�guration that must be speci�ed by the developer are: roots, locks, and classes to

instrument.

� Root: A root de�nes a �eld to be put in the global heap and shared across all JVMs, main-

taining object identity. A root is what forms the top of a clustered object graph and allows

Terracotta to distinguish which objects are shared and which are not.

� Locks: Access to shared roots need to be locked in Terracotta, in order to guarantee proper

data consistency. It is the only allowed way to access shared objects in Terracotta. There are

two types of locks:

∗ Auto locks: allow Terracotta to use already existing synchronization present in the

methods that access shared objects, whether it is an advanced data structure such as a

ReadWriteLock or just plain old synchronized keyword. If no synchronization is present,

Terracotta also o�ers an auto-synchronized mode, that behaves just as if the method had

the synchronized keyword.
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Figure 3.2: Terracotta architecture

∗ Named locks: allow the de�nition of a global lock across the cluster, making sure that

only one JVM executes the method at a current time. This lock type should only be used

as a last resort when there is no access to the source code and the autolock is not enough.

Compared to the autolock type, the latter uses the object instance as a lock identi�er, thus

providing signi�cantly more �ne-grained locking, lower lock contention, and thus higher

performance.

� Instrumented Classes: Classes that access shared roots, or are shared themselves in the

global heap, need to be instrumented at bytecode level to guarantee that Terracotta applies

modi�cations and adds proper locking. Each class instrumented adds a bit of overhead, even if

the instrumentation was not needed, so the developer should instrument only the classes that

are really necessary.

For better understanding, we present in Figure 3.2 a cluster with two Terracotta clients, each running

the application on top of Terracotta with a standard Java Virtual Machine. The Terracotta clients

propagate modi�cations in shared objects to a Terracotta Server, which can propagate to another Server

that serves as backup. In addition, shared objects can be made persistent.

By de�ning these concepts, and running the application in the Terracotta infrastructure, it is possible

to cluster data structures and allow for good scalability. However, the current version of Terracotta holds

the following limitations:

• Threads created never leave the home node. It is possible to adapt the Master/Worker paradigm

with a Terracotta add-on but it implies that the programmer needs to use a special distributed
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executor service, which has a di�erent interface than the Thread class and may imply a large

refactor at source code level.

• Adapting an existing application implies that the programmer needs to add synchronization where

needed, which in case of a large application can be troublesome. As the auto-synchronized o�ers

synchronization only at method calls, it might not be �ne grained enough and can lead to an

incorrect semantic in the application execution, resulting in deadlocks.

In the next section, we are going to introduce the high-level architecture of the middleware developed,

in order to minimize the limitations above.

3.2 Caft - a middleware that extends Terracotta

The Caft middleware has two major components: worker and master. The former runs a Thread

Service that provides the interface for instantiating new threads, as well as the operations provided by

the Java Thread Class (whose methods can be regarded as an implicit interface), while the latter runs

the main class of a runnable Jar containing a multi-threaded application, spawning threads in worker

machines as necessary. It is assumed that the Jar is available on both the master and the workers.

Both master and workers need to share the thread �elds whose identity must be preserved across

the cluster and its changes propagated. The master opens the Jar passed as argument, detects the class

de�ned as the main entry point and runs the main method using the Java re�ection API. The master uses

a custom Classloader, also present in the worker, that applies the instrumentations necessary to make the

Thread calls cluster aware, and/or adding synchronization. Bytecode instrumentations are made using

the ASM framework [11], allowing us to add methods and changing calls without much overhead. For

the master and worker communication, we use simple RMI calls supported by the Spring framework [1]

to ease development and con�guration.

To simplify the implementation, the coordinator component that decides which node gets to execute

the next thread is integrated as a singleton in both components. The data structures that compose the

state of the coordinator, such as which nodes are available and their loads, are maintained as roots in

Terracotta's Distributed Share Objects (DSO) space. This approach also avoids the need to have an

extra node that serves as a coordinator and the persistence of its state is guaranteed by the Terracotta

Server.

To better illustrate our design, we present the Terracotta architecture in Figure 3.3 with the Caft

middleware, running a worker in one of the Terracotta clients and a master in another. The middleware

runs on top of Terracotta, loading the application and performing bytecode instrumentations at load

time. If con�gured for running a worker, Caft will start an RMI service using the Spring framework,

keeping the Java application in its own class path to ensure everything works when it receives a Runnable

target to execute in it. If con�gured to run a master, it will simply run the application, just as already

described.

Considering that we need to have a trade-o� between transparency and performance, as less trans-

parency should allow for better customization and tuning, we developed Caft with three di�erent modes.

The mode to be used is passed as an argument to both master and workers, and they should not be

mixed. The modes supported are presented in the list below:
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Figure 3.3: Terracotta architecture running Caft

• Identity: Identity mode assumes that the application is properly synchronized using the Java

synchronized keyword or more advanced structures like ReentrantReadWriteLock, or at least, that

the user has access to the source code and can add synchronization with more or less work. All thread

�elds are shared in the Terracotta DSO to ensure that the writes are propagated and all methods are

annotated with the AutolockWrite Terracotta annotation, so that each synchronized block can be

converted into a Terracotta transaction. It should be noticed that without synchronization present

the AutolockWrite annotation does not have any extra side e�ect, meaning that concurrency should

not be a�ected.

• Full SSI (Single System Image): Full SSI mode assumes that the application lacks proper

synchronization for usage with Terracotta, or the source code is not available. Full SSI behaves just

like Identity mode but with extra instrumentations that add getters and setters to each �eld, with

proper synchronization, and it also synchronizes array writes. This adds an extra overhead that will

depend a lot on the kind of application. For example, an application that manipulates large arrays

using loops will have one transaction per write, resulting in many transactions and communication

with the Terracotta Server Array. It could be more e�cient to simply put a synchronized block

around the entire loop and generate only one transaction. However, one large transaction can also

take too much memory and imply a large overhead, so a compromise in the middle is usually the

best option.

• Serialization: Serialization mode allows the user to decide which �elds of the Runnable class

to be run in a Thread are meant to be clustered and have identity preserved, and the rest are

simply serialized and copied via RMI, allowing for local thread variables that do not really need

synchronization. This mode should be carefully used and is the least transparent of all, but it is
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Figure 3.4: Terracotta deployment scenario with Caft

the one with the biggest potential for increased performance as we shall see in chapter 5.

As an example, consider the following deployment scenario, illustrated by Figure 3.4, with two worker

machines that will receive Java Runnable targets and use them to create local threads, one master that

will run the application, and a Terracotta Server Array holding the DSO.

In this example, the master is running a multi-threaded application that launches two threads and

waits for them to �nish. The worker machines register themselves with the Coordinator in step one,

whose state is shared in the Terracotta Server Array in order to be accessible by the other machines.

The master checks the coordinator state in step two, which determines that Worker 1 is the less loaded

node (at this point, could be either of them as both never had any thread assigned). In step three, the

master sends the thread ID to that worker and makes the Runnable target available to it, either copying

it via RMI or putting it in the Terracotta DSO, depending on the mode used. The worker creates a

local instance of a Java Thread using the Runnable target, which is started also by a remote call of

the master in step four. The master will then attempt to create another thread, which after consulting

the Coordinator in step �ve it returns the node Worker 2 as being the most appropriate, as the master

already assigned a thread to Worker 1. A thread is created and started in Worker 2 in steps six and seven,

analogous to the �rst thread created in Worker 1. After this, the master joins both threads, illustrated

by steps eight and nine, making an RMI call to the workers which will execute a local join in the Java

Thread object corresponding to the thread. As we are using the DSO in Terracotta, the master will see

every relevant change in the objects passed as a Runnable target to both threads.

This concludes the section which describes Caft architecture and its high-level components. In the next

section, we are going to describe the code modules in which the middleware was decomposed, together

with its classes and data structures for better understanding.

3.3 Caft module decomposition and structure

This section describes in further detail the module decomposition and structure of the Caft middleware.

We are going to describe the packages and classes that implement the several modules of the middleware,

as well as relevant data structures that compose the middleware state.
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3.3.1 Package list

This subsection presents the packages that compose the middleware, dividing the implementation in sev-

eral modules for better understanding and organization. During development, we adopted the convention

that every package belonging to the middleware should be a subpackage of org.terracotta.caft. As

such, the org.terracotta.caft.common package holds classes that are used by both the master and

worker components. The package org.terracotta.caft.common.asm contains the bytecode class and

method transformations that are used in the middleware, for thread creation and implementing the sev-

eral modes described in the previous section. The org.terracotta.caft.coordinator package holds

the Coordinator class, a singleton present in both the master and worker components. Finally, the

org.terracotta.caft.master and org.terracotta.caft.worker packages hold the classes that com-

pose the master and worker components. The following list summarizes all packages of the middleware:

• org.terracotta.caft.common

� org.terracotta.caft.common.asm

∗ org.terracotta.caft.common.asm.caftroot

∗ org.terracotta.caft.common.asm.fullssi

∗ org.terracotta.caft.common.asm.thread

• org.terracotta.caft.coordinator

• org.terracotta.caft.master

• org.terracotta.caft.worker

� org.terracotta.caft.worker.service

3.3.2 Common package

The org.terracotta.caft.common package holds the classes shared by both the master and worker

components. This includes the stub ClusterThread class, as well as CaftClassLoader, the custom

Classloader used to apply the bytecode instrumentations at load time. The ClasspathHacker is used

to add the application jar to the classpath of both the master and worker, to ensure that every class is

visible when loading using RMI.

In the ClusterThread class, we share a map on the Terracotta DSO which is accessible by both the

master and the workers, named runnableTargets. The runnableTargets is a Java ConcurrentHashMap

using long thread IDs as keys and Runnable targets as values. This map is used by both Identity and

FullSSI modes for storing and sharing the thread context to be used on the worker nodes to create a new

thread.

To �nalize, diagram 3.5 illustrates the classes belonging to this package.

Asm package

The org.terracotta.caft.common.asm package holds all the ASM bytecode instrumentations that are

made by the middleware. For better organization and understanding, we split the instrumetantions into
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ClassLoader

NamedClassLoader

Opcodes

CaftClassLoader

- autoIns:  boolean

- CAFT_LOADER_NAME:  String = "org.terracotta... {readOnly}

- caftMode:  CaftMode

- classes:  ConcurrentHashMap<String, Class<?>> = new ConcurrentH... {readOnly}

- jarFile:  JarFile

- LOG:  Logger = LoggerFactory.g... {readOnly}

+ __tc_getClassLoaderName() : String

+ __tc_setClassLoaderName(String) : void

+ CaftClassLoader(JarFile, CaftMode, boolean)

+ findClass(String) : Class<?>

+ findResource(String) : URL

+ loadClass(String) : Class<?>

«enumeration»
CaftMode

 SERIALIZATION

 IDENTITY

 FULLSSI

ClasspathHacker

- parameters:  Class<?> ([]) = new Class[]{URL... {readOnly}

+ addFile(String) : void

+ addFile(File) : void

+ addURL(URL) : void

Thread

ClusterThread

- LOG:  Logger = LoggerFactory.g... {readOnly}

- runnableTargets:  ConcurrentHashMap<Long, Runnable> = new ConcurrentH...

- thread:  ThreadService

- threadInitNumber:  AtomicInteger = new AtomicInteger(0)

- threadSeqNumber:  AtomicLong = new AtomicLong(0)

- tid:  long

+ clusterGetPriority() : int

+ clusterIsAlive() : boolean

+ clusterJoin(long) : void

+ clusterJoin(long, int) : void

+ clusterJoin() : void

+ clusterResume() : void

+ clusterSetPriority(int) : void

+ clusterStop() : void

+ clusterStop(Throwable) : void

+ clusterSuspend() : void

+ ClusterThread()

+ ClusterThread(Runnable)

+ ClusterThread(ThreadGroup, Runnable)

+ ClusterThread(String)

+ ClusterThread(ThreadGroup, String)

+ ClusterThread(Runnable, String)

+ ClusterThread(ThreadGroup, Runnable, String)

+ ClusterThread(ThreadGroup, Runnable, String, long)

+ countStackFrames() : int

+ destroy() : void

+ getDefaultUncaughtExceptionHandler() : UncaughtExceptionHandler

+ getId() : long

+ getState() : State

+ getUncaughtExceptionHandler() : UncaughtExceptionHandler

- init(ThreadGroup, Runnable, String, long) : void

+ interrupt() : void

+ isInterrupted() : boolean

- nextThreadID() : long

- nextThreadNum() : int

+ setDefaultUncaughtExceptionHandler(UncaughtExceptionHandler) : void

+ setUncaughtExceptionHandler(UncaughtExceptionHandler) : void

+ start() : void

+ toString() : String

Figure 3.5: Common package class diagram

three subpackages: org.terracotta.caft.common.asm.caftroot, org.terracotta.caft.common.asm.fullssi

and org.terracotta.caft.common.asm.thread. The org.terracotta.caft.common.asm.caftroot

subpackage holds classes only relevant to Serialiaztion mode and the management of �elds annotated

with the CaftRoot annotation, while the org.terracotta.caft.common.asm.fullssi holds classes only

relevant to the Full SSI mode. The org.terracotta.caft.common.asm.thread package holds the in-

strumentations that implement all the indirections necessary to use the new ClusterThread class present

in the common package instead of the regular Java Thread class.

• Caftroot package:

The org.terracotta.caft.common.asm.caftroot package contains the CaftRootMap and the

CaftRootAdapter classes. The former holds the data structures and methods for implementing

the sharing of �elds annotated with the CaftRoot annotation, while the latter is an ASM method

instrumentation for replacing access to CaftRoot �elds with the static methods de�ned in the

CaftRootMap class. The UML diagram of this package is presented in Figure 3.6.

• Fullssi package:

The org.terracotta.caft.common.asm.fullssi package contains classes relevant to the Full SSI

mode of Caft. The package contains the following classes: FieldInfo, GetterAdder, SetterAdder,

StaticGetterAdder, StaticSetterAdder, StaticArraySetter and GetterSetterAdapter. The

FieldInfo class is a simple container that holds �eld information relevant to the other classes. The

GetterAdder and SetterAdder are ASM class adapters that add getters and setters for each non-

static �eld, while the StaticGetterAdder and StaticSetterAdder add getters and setters for each
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MethodAdapter

Opcodes

CaftRootAdapter

- LOG:  Logger = LoggerFactory.g... {readOnly}

- methodName:  String

+ CaftRootAdapter(MethodVisitor, String)

+ visitFieldInsn(int, String, String, String) : void

CaftRootMap

- clusteredFields:  ConcurrentHashMap<String, Object> = new ConcurrentH...

- fieldToKey:  ConcurrentHashMap<String, String> = new ConcurrentH...

+ getField(Object, String) : Object

+ getKey(String) : String

+ getStaticField(String) : Object

+ putField(Object, Object, String) : void

+ putKey(String, String) : void

+ putStaticField(Object, String) : void

Figure 3.6: Caftroot package class diagram

static �eld. It should be noticed that each getter or setter is properly synchronized and annotated

with Terracotta annotations for turning the synchronization into a Terracotta transaction. The

StaticArraySetter is a collection of static methods that put a value of a certain primitive or reference

type in a speci�c array position, wrapped in a synchronized block and annotated with the Terracotta

AutolockWrite annotation. Finally, the GetterSetterAdapter is an ASM method adapter that

replaces direct �eld access with the corresponding getter and setter calls, and also replaces array

writes with static method calls of the StaticArraySetter class. The UML diagram of this package

is presented in Figure 3.7.

FieldInfo

- fDesc:  String

- fName:  String

- fOwner:  String

- fSignature:  String

- hasMethod:  boolean

+ equals(Object) : boolean

+ FieldInfo(String, String, String, String)

+ hasMethod() : boolean

+ setHasMethod(boolean) : void

«property get»

+ getfDesc() : String

+ getfName() : String

+ getfOwner() : String

+ getfSignature() : String

«property set»

+ setfDesc(String) : void

+ setfName(String) : void

+ setfOwner(String) : void

+ setfSignature(String) : void

ClassAdapter

Opcodes

GetterAdder

- autoLockRead:  String = "Lorg/terracott... {readOnly}

- className:  String

- fields:  List<FieldInfo> = new ArrayList<F...

- isAutolockReadAnnotationPresent:  boolean = false

- isInterface:  boolean = false

- methodNameDesc:  Map<String, String> = new HashMap<Str...

- addAnnotationMethod(MethodVisitor, Boolean, String) : void

+ GetterAdder(ClassVisitor)

+ visit(int, int, String, String, String, String[]) : void

+ visitAnnotation(String, boolean) : AnnotationVisitor

+ visitEnd() : void

+ visitField(int, String, String, String, Object) : FieldVisitor

+ visitMethod(int, String, String, String, String[]) : MethodVisitor

MethodAdapter

Opcodes

GetterSetterAdapter

- LOG:  Logger = LoggerFactory.g... {readOnly}

- methodName:  String

- notSupportedClasses:  Set<String>

+ GetterSetterAdapter(MethodVisitor, String, Set<String>)

+ visitFieldInsn(int, String, String, String) : void

+ visitInsn(int) : void

ClassAdapter

Opcodes

SetterAdder

- autoLockWrite:  String = "Lorg/terracott... {readOnly}

- className:  String

- fields:  List<FieldInfo> = new ArrayList<F...

- isInterface:  boolean

- methodNameDesc:  Map<String, String> = new HashMap<Str...

- addAnnotationMethod(MethodVisitor, Boolean, String) : void

+ SetterAdder(ClassVisitor)

+ visit(int, int, String, String, String, String[]) : void

+ visitEnd() : void

+ visitField(int, String, String, String, Object) : FieldVisitor

+ visitMethod(int, String, String, String, String[]) : MethodVisitor

StaticArraySetter

{leaf}

+ setBooleanArray(boolean[], int, boolean) : void

+ setByteArray(byte[], int, byte) : void

+ setCharArray(char[], int, char) : void

+ setDoubleArray(double[], int, double) : void

+ setFloatArray(float[], int, float) : void

+ setIntArray(int[], int, int) : void

+ setLongArray(long[], int, long) : void

+ setRefArray(Object[], int, Object) : void

+ setShortArray(short[], int, short) : void

ClassAdapter

Opcodes

StaticGetterAdder

- autoLockRead:  String = "Lorg/terracott... {readOnly}

- className:  String

- isAutolockReadAnnotationPresent:  boolean = false

- isInterface:  boolean = false

- methodNameDesc:  Map<String, String> = new HashMap<Str...

- staticFields:  List<FieldInfo> = new ArrayList<F...

- addAnnotationMethod(MethodVisitor, Boolean, String) : void

+ StaticGetterAdder(ClassVisitor)

+ visit(int, int, String, String, String, String[]) : void

+ visitAnnotation(String, boolean) : AnnotationVisitor

+ visitEnd() : void

+ visitField(int, String, String, String, Object) : FieldVisitor

+ visitMethod(int, String, String, String, String[]) : MethodVisitor

ClassAdapter

Opcodes

StaticSetterAdder

- autoLockWrite:  String = "Lorg/terracott... {readOnly}

- className:  String

- isInterface:  boolean

- methodNameDesc:  Map<String, String> = new HashMap<Str...

- staticFields:  List<FieldInfo> = new ArrayList<F...

- addAnnotationMethod(MethodVisitor, Boolean, String) : void

+ StaticSetterAdder(ClassVisitor)

+ visit(int, int, String, String, String, String[]) : void

+ visitEnd() : void

+ visitField(int, String, String, String, Object) : FieldVisitor

+ visitMethod(int, String, String, String, String[]) : MethodVisitor

Figure 3.7: Fullssi package class diagram
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• Thread package:

The org.terracotta.caft.common.asm.thread package contains the AddClusterThreadAdapter

and the ThreadClassAdapter classes. The former is an ASM method instrumentation that re-

places the Java Thread class instantiation and method calls with instantiation and calls of the

ClusterThread class, in the common package. The latter is an ASM class adapter that applies the

AddClusterThreadAdapter instrumentation and adds Terracotta annotations for proper synchro-

nization, depending on the mode chosen. The UML diagram of this package is presented in Figure

3.8.

MethodAdapter

Opcodes

AddClusterThreadAdapter

- LOG:  Logger = LoggerFactory.g... {readOnly}

+ AddClusterThreadAdapter(MethodVisitor)

+ visitFieldInsn(int, String, String, String) : void

+ visitMethodInsn(int, String, String, String) : void

+ visitTypeInsn(int, String) : void

ClassAdapter

Opcodes

ThreadClassAdapter

- autoIns:  boolean

- autoLockWrite:  String = "Lorg/terracott... {readOnly}

- caftMode:  CaftMode

- className:  String

- honorTransient:  String = "Lorg/terracott... {readOnly}

- instrumentedClass:  String = "Lorg/terracott... {readOnly}

- isAutoLockWritePresent:  boolean = false

- isEnum:  boolean = false

- isHonorTransientPresent:  boolean = false

- isInstrumentedClassPresent:  boolean = false

- isInterface:  boolean = false

- isRootPresent:  boolean = false

- LOG:  Logger = LoggerFactory.g... {readOnly}

- notSupportedClasses:  Set<String> = new HashSet<Str... {readOnly}

- root:  String = "Lorg/terracott... {readOnly}

- addAnnotation(Boolean, String) : void

- addAnnotationField(FieldVisitor, Boolean, String) : void

- addAnnotationMethod(MethodVisitor, Boolean, String) : void

+ ThreadClassAdapter(ClassVisitor, CaftMode, boolean)

+ visit(int, int, String, String, String, String[]) : void

+ visitAnnotation(String, boolean) : AnnotationVisitor

+ visitField(int, String, String, String, Object) : FieldVisitor

+ visitMethod(int, String, String, String, String[]) : MethodVisitor

Figure 3.8: Thread package class diagram

3.3.3 Coordinator package

The org.terracotta.caft.coordinator package holds the Coordinator class, accessible by both the

master and the worker components. The coordinator shares several data structures in the Terracotta

DSO for keeping its state accessible to all nodes in the cluster. The data structures that compose the

coordinator state are as follows:

• tidNodes: The tidNodes is a Java ConcurrentHashMap using Long thread IDs as keys and Strings

corresponding the worker nodes address as values. This allows the coordinator to keep track of the

worker nodes where a thread with a certain id was instantiated.

• nodesLoad: The nodesLoad is Java ConcurrentHashMap using String worker nodes addresses as

keys and an Integer correspoding to the current number of threads in that node as value. This

allows the coordinator to keep track of the number of threads assigned to each node.

• loadNodes: The nodesLoad is Java ConcurrentHashMap using Integers corresponding the a num-

ber of threads as keys and a Set of Strings corresponding to nodes as values. This map acts as the

reversal of the previous map, allowing the coordinator to keep track of all the nodes that have a

certain number of threads already assigned.
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To �nalize, the diagram in Figure 3.9 illustrates the classes belonging to the Coordinator package,

using the Singleton pattern.

Coordinator

- loadNodes:  ConcurrentHashMap<Integer, Set<String>> = new ConcurrentH...

- LOG:  Logger = LoggerFactory.g... {readOnly}

- nodesLoad:  ConcurrentHashMap<String, Integer> = new ConcurrentH...

- tidNodes:  ConcurrentHashMap<Long, String> = new ConcurrentH...

- Coordinator()

+ getInstance() : Coordinator

+ getlessLoadedNode(long) : String

+ register(String) : void

+ unregister(String) : void

«static»
CoordinatorHolder

- INSTANCE:  Coordinator = new Coordinator() {readOnly}

-INSTANCE

Figure 3.9: Coordinator package class diagram

3.3.4 Master package

The master package contains the StartMaster class, which holds the main method that loads the appli-

cation jar and starts the application. We use the args4j framework to easily parse command line options

for running the middleware. The options available are presented in the following list:

• �mode: chooses the Caft mode in which the master will run: SERIALIZATION, IDENTITY or

FULLSSI

• �jar: chooses the .jar �le containing the Java application to be run on Caft. The .jar should be

executable.

• �autoIns: instructs the middleware to add Terracotta InstrumentedClass annotation to every

class loaded, instead of having to con�gure it using the .xml �le.

• �args: passes an arbitrary number of arguments, corresponding to the arguments to be passed

when executing the .jar main method chosen.

To �nalize, the UML diagram of this package is presented in Figure 3.10.

StartMaster

+ caftMode:  CaftMode

- LOG:  volatile Logger = LoggerFactory.g... {readOnly}

+ main(String[]) : void

- parseOptions(String[]) : Options

«static»
Options

~ args:  List<String>

- autoIns:  boolean

- caftMode:  CaftMode

~ jarFile:  String

Figure 3.10: Master package class diagram

3.3.5 Worker package

The org.terracotta.caft.worker package contains the StartWorker class, which holds the main

method that starts the RMI ThreadService and waits for requests from the master and the ThreadServiceImpl
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class that implements the ThreadService interface. The ThreadServiceImpl class holds a Java HashMap

named threadPool. The threadPool map uses long thread ids as keys and instances of the Java Thread

class as values. This is a local map present in every worker and is used for storing and retrieving the

concrete Thread instance for performing an operation requested by the master, such as to start a thread,

wait for it to terminate, and so on.

The ThreadServiceImpl class also holds a ConcurrentHashMap named runnableTargets, which is con-

sidered by Caft to be the same root as the runnableTargets present in the ClusterThread class in the

common package, allowing the sharing of Runnable objects in the Terracotta DSO. These same objects

will be the ones used for creating local Thread objects in each worker node.

To parse the command line options for the worker, we use the args4j framemork, similar to the master.

The options available are presented in the following list:

• �mode: chooses the Caft mode in which the worker will run: SERIALIZATION, IDENTITY or

FULLSSI

• �jar: chooses the .jar �le containing the Java application to be run on Caft. The .jar should be

executable.

• �hostname: hostname of the machine in which the worker will run and host the Thread Service.

• �port: port of the machine in which the worker will wait for connections from the master.

• �autoIns: instructs the middleware to add Terracotta InstrumentedClass annotation to every

class loaded, instead of having to con�gure it using the .xml �le.

To �nalize, the UML diagram of this package is presented in Figure 3.11.

Runnable

DsoClusterListener

StartWorker

- args:  String ([])

- cluster:  DsoCluster

- LOG:  Logger = LoggerFactory.g... {readOnly}

+ main(String[]) : void

+ nodeJoined(DsoClusterEvent) : void

+ nodeLeft(DsoClusterEvent) : void

+ operationsDisabled(DsoClusterEvent) : void

+ operationsEnabled(DsoClusterEvent) : void

- parseOptions(String[]) : Options

+ run() : void

+ StartWorker(String[])

«static»
Options

- autoIns:  boolean

- caftMode:  CaftMode

~ hostname:  String

~ jarFile:  String

~ port:  int

ThreadServiceImpl

- LOG:  Logger = LoggerFactory.g... {readOnly}

- runnableTargets:  ConcurrentHashMap<Long, Runnable> = new ConcurrentH...

- threadpool:  ConcurrentHashMap<Long, Thread> = new ConcurrentH...

+ checkAccess(Long) : void

+ countStackFrames(Long) : int

+ createThread(Long) : void

+ createThread(Long, Runnable) : void

+ getContextClassLoader(Long) : ClassLoader

+ getName(Long) : String

+ getPriority(Long) : int

+ getStackTrace(Long) : StackTraceElement[]

+ getState(Long) : State

+ getThreadGroup(Long) : ThreadGroup

+ getUncaughtExceptionHandler(Long) : UncaughtExceptionHandler

+ interrupt(Long) : void

+ isAlive(Long) : boolean

+ isDaemon(Long) : boolean

+ isInterrupted(Long) : boolean

+ join(Long) : void

+ join(Long, Long) : void

+ join(Long, Long, int) : void

+ resume(Long) : void

+ run(Long) : void

+ setContextClassLoader(Long, ClassLoader) : void

+ setDaemon(Long, boolean) : void

+ setName(Long, String) : void

+ setPriority(Long, int) : void

+ setUncaughtExceptionHandler(Long, UncaughtExceptionHandler) : void

+ start(Long) : void

+ stop(Long) : void

+ stop(Long, Throwable) : void

+ suspend(Long) : void

Figure 3.11: Worker package class diagram
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Service package

The org.terracotta.caft.worker.service package contains the ThreadService interface, implemented

by the ThreadServiceImpl class in the org.terracotta.caft.worker package. We also provide an equiv-

alent RemoteThreadService, in case we wanted to use another remoting technology that requires an

interface that extends Java Remote using the Spring framework. The UML diagram of this package is

presented in Figure 3.12.

«interface»
ThreadService

+ checkAccess(Long) : void

+ countStackFrames(Long) : int

+ createThread(Long) : void

+ createThread(Long, Runnable) : void

+ getContextClassLoader(Long) : ClassLoader

+ getName(Long) : String

+ getPriority(Long) : int

+ getStackTrace(Long) : StackTraceElement[]

+ getState(Long) : State

+ getThreadGroup(Long) : ThreadGroup

+ getUncaughtExceptionHandler(Long) : UncaughtExceptionHandler

+ interrupt(Long) : void

+ isAlive(Long) : boolean

+ isDaemon(Long) : boolean

+ isInterrupted(Long) : boolean

+ join(Long) : void

+ join(Long, Long) : void

+ join(Long, Long, int) : void

+ resume(Long) : void

+ run(Long) : void

+ setContextClassLoader(Long, ClassLoader) : void

+ setDaemon(Long, boolean) : void

+ setName(Long, String) : void

+ setPriority(Long, int) : void

+ setUncaughtExceptionHandler(Long, UncaughtExceptionHandler) : void

+ start(Long) : void

+ stop(Long) : void

+ stop(Long, Throwable) : void

+ suspend(Long) : void

Remote

«interface»
RemoteThreadService

+ checkAccess(Long) : void

+ countStackFrames(Long) : int

+ createThread(Long) : void

+ createThread(Long, Runnable) : void

+ getContextClassLoader(Long) : ClassLoader

+ getName(Long) : String

+ getPriority(Long) : int

+ getStackTrace(Long) : StackTraceElement[]

+ getState(Long) : State

+ getThreadGroup(Long) : ThreadGroup

+ getUncaughtExceptionHandler(Long) : UncaughtExceptionHandler

+ interrupt(Long) : void

+ isAlive(Long) : boolean

+ isDaemon(Long) : boolean

+ isInterrupted(Long) : boolean

+ join(Long) : void

+ join(Long, Long) : void

+ join(Long, Long, int) : void

+ resume(Long) : void

+ run(Long) : void

+ setContextClassLoader(Long, ClassLoader) : void

+ setDaemon(Long, boolean) : void

+ setName(Long, String) : void

+ setPriority(Long, int) : void

+ setUncaughtExceptionHandler(Long, UncaughtExceptionHandler) : void

+ start(Long) : void

+ stop(Long) : void

+ stop(Long, Throwable) : void

+ suspend(Long) : void

Figure 3.12: Worker service package class diagram

3.4 Summary

This chapter describes the global architecture of the Caft middleware, implemented during the course

of this work. We presented a high-level view of the Terracotta middleware, necessary to understand the

main concepts of Terracotta. We also described the high-level view of Caft middleware, along with an

example of what happens when a Thread is created in a master and how it will converge to a real thread

in a remote worker node. We then described the module structure and the several packages that compose

it, along with the classes in each one. In the next chapter, we are going to describe implementation

details and bytecode instrumentations in larger detail, ending the middleware description.
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Chapter 4

Implementation

This chapter describes the main bytecode instrumentations and compromises done in the implementation

of the Caft middleware. We will start by describing in detail the instrumentations implemented for

allowing a thread to be created and started in other nodes. We will then proceed to describe the

instrumentations that attempt to automatize the synchronization needed for an existing application,

used by the Full SSI mode of the middleware. Finally, we will focus on the instrumentations used by the

Serialization mode that o�ers a more �ne grained way to cluster thread �elds.

4.1 Thread instrumentations

This section describes the instrumentations developed for clustering threads. We instrument the appli-

cation classes using the ASM framework [11]. As mentioned in the architecture chapter, we developed

a method adapter named AddClusterThreadAdapter for implementing the indirections necessary for

replacing Java Thread instantiations and method calls with our special ClusterThread class. We also de-

veloped a class adapter named ThreadClassAdapter that applies method adapters and adds annotations,

depending on the mode chosen by the user.

4.1.1 AddClusterThreadAdapter

The AddClusterThreadAdapter instrumentation replaces Java type opcodes that have the Java Thread

type as argument with equal opcodes with the ClusterThread type. This includes the new opcode for

creating simple instances of objects, a newarray opcode for creating arrays with a reference type, and

the checkcast opcode for performing type casts. The instrumentation also replaces the getfield and

getstatic opcodes type with ClusterThread instead of Thread. As the ClusterThread class extends the

original Java Thread class, type compatibility is guaranteed. It should be noticed that threads that are

created extending the Thread class always remain in the home node, as a Thread object is not portable

for Terracotta. This may be seen as a limitation, but on other hand, this approach allows for both

clustered and local threads to coexist.

For the method calls, some of the methods belonging to the Thread class are �nal, and therefore

cannot be overridden. To circumvent this, we renamed the �nal methods and replaced Thread method
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calls with the renamed method. For example, if we have an invokevirtual opcode that invokes the �nal

�join� method of the Thread class, we invoke the �clusterJoin� method instead.

To illustrate this method adapter, we now present a series of bytecodes corresponding to a Java Thread

being created, started, and joined.

1 new java / lang /Thread // c r ea t e s a new o b j e c t in s tance o f the Thread c l a s s

and puts i t on the s t a c k

2 dup // dup l i c a t e s the l a s t o b j e c t r e f e r ence on s t a c k

3 aload 1 //Push the o b j e c t r e f e r ence corresponding to the Runnable t a r g e t to

be passed to the cons t ruc t o r

4 invokespecial java / lang /Thread.< i n i t >(Ljava/ lang /Runnable ; )V // invokes the

cons t ruc to r o f the Thread c l a s s t ha t r e c e i v e s a Runnable t a r g e t as

parameter

5 astore 2 // Stores the new o b j e c t on v a r i a b l e 2 o f the s t a c k

6

7 aload 2 //Push the o b j e c t r e f e r ence corre spo ing to the i n s t an t e o f the

Thread c l a s s

8 invokevirtual java / lang /Thread . s t a r t ( )V // invokes the s t a r t method o f the

Thread c l a s s

9

10 aload 2 //Push the o b j e c t r e f e r ence corre spo ing to the i n s t an t e o f the

Thread c l a s s

11 invokevirtual java / lang /Thread . j o i n ( )V // invokes the j o i n method o f the

Thread c l a s s

After applying the instrumentation, the bytecodes would be replaced by the following sequence:

1 new org / t e r r a c o t t a / c a f t /common/ClusterThread // c r ea t e s a new o b j e c t

in s tance o f the ClusterThread c l a s s and puts i t on the s t a c k

2 dup // dup l i c a t e s the l a s t o b j e c t r e f e r ence on s t a c k

3 aload 1 // loads the Runnable t a r g e t to be passed to the cons t ruc t o r

4 invokespecial org / t e r r a c o t t a / c a f t /common/ClusterThread .< i n i t >(Ljava/ lang /

Runnable ; )V // invokes the cons t ruc t o r o f the ClusterThread c l a s s t ha t

r e c e i v e s a Runnable t a r g e t as parameter

5 astore 2 // Stores the new o b j e c t on v a r i a b l e 2 o f the s t a c k

6

7 aload 2 //Push the o b j e c t r e f e r ence corresponding to the in s tance o f the

ClusterThread c l a s s

8 invokevirtual org / t e r r a c o t t a / c a f t /common/ClusterThread . s t a r t ( )V // invokes

the s t a r t method o f the ClusterThread c l a s s

9

10 aload 2 //Push the o b j e c t r e f e r ence corresponding to the in s tance o f the

ClusterThread c l a s s

11 invokevirtual org / t e r r a c o t t a / c a f t /common/ClusterThread . c l u s t e r J o i n ( )V //

invokes the c l u s t e r J o i n method o f the ClusterThread c l a s s

In this case, the start method was overridden in ClusterThread. This way, the only thing that needs
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to be changed in the invokevirtual bytecode of the start method invocation is the class passed. As

the join method is �nal, we need to invoke a special �clusterJoin� method instead. The ClusterThread

class supports all constructors and methods present in the original Java Thread class, guaranteeing

compatibility with existing applications.

This concludes the description of the AddClusterThreadAdapter method adapter. This instrumen-

tation is used by the ThreadClassAdapter class adapter, and should be applied to every method of the

multi-threaded Java application.

4.1.2 ThreadClassAdapter

The ThreadClassAdapter instrumentation is the class adapter responsible for adding Terracotta anno-

tations and applying instrumentations, depending on the mode chosen. This instrumentation applies the

AddClusterThreadAdapter to all methods of the Java multi-threaded application that is going to run

in the middleware. It also checks if the class �elds are supported by Terracotta, and if not, marks them

as transient. Not-supported �elds include classes corresponding to a local resource, such as a Process, a

FileInputStream or a Socket. With this mechanism, the programmer only has to con�gure that speci�c

class to not share transient �elds when the class is shared in the Terracotta DSO.

In Identity mode, the ThreadClassAdapter also adds the Terracotta AutolockWrite annotation, in

order to take advantage of the local synchronization to add a Terracotta transaction in every method.

Without synchronization present, this annotation has no extra side-e�ect. In Full SSI mode, the Thread-

ClassAdapter also applies the GetterSetterAdapter instrumentation for adding synchronization at its

lowest level, on �eld access and array writes, which will be described in Section 4.2.2 in more detail. To

�nalize, in Serialization mode, this instrumentation applies the CaftRootAdapter instead, which will be

described in Section 4.3. The CaftRootAdapter instruments access to speci�c �elds annotated by the

programmer, and does not apply any Terracotta annotation, as it is not needed due to the fact that the

remaining �elds will be serialized. Also, to avoid the extra work of having the programmer make each class

implement the Serializable interface, which is only really needed using this mode, this instrumentation

adds the Serializable interface to every class automatically.

As the middleware supports a mode for instrumenting every class loaded, this instrumentation also

applies the Terracotta InstrumentedClass and HonorTransient annotations to every class loaded, if

requested. The former annotation tells Terracotta to instrument the class for sharing in the Terracotta

DSO, while the latter tells Terracotta to not cluster �elds marked as transient.

This concludes the description of the ThreadClassAdapter. It is the bytecode instrumentation that,

together with the AddClusterThreadAdapter, allows the running of threads in remote worker nodes,

with proper synchronization. It is also responsible for applying the instrumentations speci�c to the three

modes supported by the middleware.

4.2 FullSSI instrumentations

In this section, we are going to describe the bytecode instrumentations that add the extra synchronization

needed by the Caft Full SSI mode. These instrumentations add getters and setters for every �eld, with

proper synchronization and Terracotta locking annotations. After this, a method instrumentation is
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applied to every method by the ThreadClassAdapter, replacing �eld access with getters and setters

calls and array writes with synchronized writes. Both instrumentations will be described in the next

subsections, and its impact will be measured in the evaluation chapter.

4.2.1 Getter and Setter adapters - adding getters and setters for every �eld

For adding getters, we implemented an ASM class adapter transformation that adds a getter for each

non-static �eld. Each getter has the Java synchronized method modi�er and is annotated with the

Terracotta AutolockRead annotation to allow for concurrent reads of the �eld, but still within the context

of a Terracotta transaction. The example below illustrates the bytecode generated for the getter of a

simple String �eld. It should be noticed that each �eld type is checked to generate the correct return

instruction:

1 //Get ter temp la te

2 pub l i c synchronized getf ie ld ( ) Ljava/ lang / St r ing ;

3 @Lorg/ t e r r a c o t t a /modules/ annotat ions /AutolockRead ; ( )

4 aload 0 //Push the o b j e c t r e f e r ence ( t h i s ) a t index 0 o f the l o c a l

v a r i a b l e t a b l e .

5 getf ie ld some/ c l a s s . f i e l d : Ljava/ lang / St r ing ; //Pop the o b j e c t

r e f e r ence ( t h i s ) and push the o b j e c t r e f e r ence f o r ` ` f i e l d ' '

6 areturn //Pops the top va lue and pushes i t on the operand s t a ck o f the

invok ing method ( i n s t r u c t i o n generated v a r i e s wi th f i e l d type )

We use the synchronized method modi�er to simplify the implementation and minimize the bytecode

generated. This is equivalent to add a synchronized block in the body of the method, but without the need

to generate extra bytecode for monitorenter and monitorexit, as well as aditional code for handling

exceptions. For adding setters, we add a method modi�er in a similar way to the getter adder, with the

corresponding AutolockWrite annotation:

1 // Se t t e r temp la te

2 pub l i c synchron ized set f i e ld ( Ljava/ lang / St r ing ; )V

3 @Lorg/ t e r r a c o t t a /modules/ annotat ions /AutolockWrite ; ( )

4 aload 0 //Push the o b j e c t r e f e r ence ( t h i s ) a t index 0 o f the l o c a l

v a r i a b l e t a b l e .

5 aload 1 //Push the o b j e c t r e f e r ence corresponding to the S t r ing

argument o f the method at index 1 o f the l o c a l v a r i a b l e t a b l e

6 putfield some/ c l a s s . f i e l d : Ljava/ lang / St r ing ; //Pops two va l u e s from

the s t a c k and s t o r e s the top va lue in t o the f i e l d named " f i e l d " o f

the in s tance o f ` ` some/ c l a s s ' ' on the s t a c k .

7 return //Returns to the operand s t a c k o f the invok ing method

Finally, for static �elds, we proceed in a similar way, but in this case there is no object reference (this)

to push to the stack. The examples below illustrate the bytecode generated for the getter and setter

methods of a static String:

1 //Get ter f o r a s t a t i c f i e l d temp la te

2 pub l i c synchron ized getf ie ld ( ) Ljava/ lang / St r ing ;
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3 @Lorg/ t e r r a c o t t a /modules/ annotat ions /AutolockRead ; ( )

4 getstatic some/ c l a s s . f i e l d : Ljava/ lang / St r ing ; //Push the o b j e c t

r e f e r ence f o r ` ` f i e l d ' ' a t ` ` some/ c l a s s ' '

5 areturn //Pops the top va lue and pushes i t on the operand s t a ck o f the

invok ing method ( i n s t r u c t i o n generated v a r i e s wi th f i e l d type )

1 // Se t t e r f o r a s t a t i c f i e l d temp la te

2 pub l i c synchron ized set f i e ld ( Ljava/ lang / St r ing ; )V

3 @Lorg/ t e r r a c o t t a /modules/ annotat ions /AutolockWrite ; ( )

4 aload 1 //Push the o b j e c t r e f e r ence corresponding to the S t r ing

argument o f the method at index 1 o f the l o c a l v a r i a b l e t a b l e

5 putstatic some/ c l a s s . f i e l d : Ljava/ lang / St r ing ; //Pops one va lue from

the s t a c k and s t o r e s in on the s t a t i c f i e l d named ` ` f i e l d ' ' o f ` `

some/ c l a s s ' '

6 return //Returns to the operand s t a c k o f the invok ing method

These instrumentations allow us to synchronize writes and reads of clustered �elds, in code without

synchronization initially present. In the next subsection, we will describe the method adapter used for

replacing �eld access bytecodes with method calls.

4.2.2 Method adapter - replacing �eld access with instrumented methods

To use the getters and setters generated using the instrumentations described in the previous section,

we developed a method adapter that replaces direct �eld accesses with method calls. In a regular Java

application, a getfield bytecode is used as follows:

1 aload 0 //Push the o b j e c t r e f e r ence ( t h i s ) a t index 0 o f the l o c a l v a r i a b l e

t a b l e .

2 getf ie ld some/ c l a s s . f i e l d : Ljava/ lang / St r ing ; //Pop the o b j e c t r e f e r ence (

t h i s ) and push the o b j e c t r e f e r ence f o r ` ` f i e l d ' '

In this particular case, we have the object instance on the stack, and the getfield instruction will

consume it, leaving the �eld value of that particular instance on stack. Considering this, we just have to

replace the getfield instruction with an invokevirtual that will call the appropriate getter, consuming

exactly the same argument and leaving the �eld value on stack.

1 aload 0 //Push the o b j e c t r e f e r ence ( t h i s ) a t index 0 o f the l o c a l v a r i a b l e

t a b l e .

2 invokevirtual some/ c l a s s . getf ie ld ( ) Ljava/ lang / St r ing ; //Pops the o b j e c t

r e f e r ence from s tack and invokes the g e t t e r method

In the putfield bytecode case, we have the object instance and the new value to be put on the instance

�eld. The putfield bytecode will consume both arguments and store the new �eld value on the object

instance. Considering this, we just have to replace the putfield instruction with an invokevirtual

that will call the appropriate setter, consuming exactly the same arguments and leaving the stack state

consistent.
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1 aload 0 //Push the o b j e c t r e f e r ence ( t h i s ) a t index 0 o f the l o c a l v a r i a b l e

t a b l e .

2 aload 1 //Push the o b j e c t r e f e r ence to s t o r e on f i e l d at index 1 o f the

l o c a l v a r i a b l e t a b l e .

3 putfield some/ c l a s s . f i e l d : Ljava/ lang / St r ing ; //Pops two va l u e s from the

s t a c k and s t o r e s the top va lue in t o the f i e l d named ` ` f i e l d ' ' o f the

in s tance o f ` ` some/ c l a s s ' ' on the s t a c k .

4

5 Replaced by :

6

7 aload 0 //Push the o b j e c t r e f e r ence ( t h i s ) a t index 0 o f the l o c a l v a r i a b l e

t a b l e .

8 aload 1 //Push the o b j e c t r e f e r ence to s t o r e on f i e l d at index 1 o f the

l o c a l v a r i a b l e t a b l e .

9 invokevirtual some/ c l a s s . set f i e ld ( Ljava/ lang / St r ing ; )V //Pops two va l u e s

from s tack and invokes the s e t t e r method

For static �eld access, there is no object instance on stack to be considered. The putstatic instruction

only consumes the value to be put on the �eld. As the getters and setters methods generated for this

kind of �elds are also static, all we need to do is to invoke them using the invokestatic bytecode. We

illustrate this in the examples below:

1 getstatic some/ c l a s s . f i e l d : Ljava/ lang / St r ing ; //Push the o b j e c t r e f e r ence

f o r ` ` f i e l d ' ' a t ` ` some/ c l a s s ' '

2

3 Replaced by :

4

5 invokestatic some/ c l a s s . getf ie ld ( ) Ljava/ lang / St r ing ; // Invokes the s t a t i c

g e t t e r method and pushes the f i e l d va lue onto the s t a c k

1 aload 1 //Push the o b j e c t r e f e r ence to s t o r e on f i e l d at index 1 o f the

l o c a l v a r i a b l e t a b l e .

2 putstatic some/ c l a s s . f i e l d : Ljava/ lang / St r ing ; //Pops the top va lue from

the s t a c k and s t o r e s in on the s t a t i c f i e l d named ` ` f i e l d ' ' o f ` ` some/

c l a s s ' '

3

4 Replaced by :

5

6 aload 1 //Push the o b j e c t r e f e r ence to s t o r e on f i e l d at index 1 o f the

l o c a l v a r i a b l e t a b l e .

7 invokestatic some/ c l a s s . set f i e ld ( Ljava/ lang / St r ing ; )V //Pops the top va lue

from the s t a c k and invokes the s e t t e r method

It should be noticed that we only add getters and setters on instrumented application code. As such,

the method adapter was designed to not replace �eld access on system classes (e.g. belonging to the

java.* package).
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4.2.3 Array access - synchronizing array stores

In array accesses, writes using array store instructions (iastore, fastore, dastore, aastore, bastore,

castore, sastore), also need synchronization at some point if the array is shared by Terracotta. Prior to

invoking an array store instruction, we have on stack the array reference, an int referring to the position

on the array where the value will be stored, and the value itself. Considering this scenario, we developed

a new class with static methods that consumes exactly the same arguments and performs the array store

inside a synchronized block. The array store instruction is then replaced by an invocation of the method

corresponding to the data type. Below, we have an example for storing an int inside an array of ints:

1 iastore //Pops the top th r ee va l u e s from stack , corresponding to the array ,

p o s i t i o n and va lue and s t o r e s the va lue in the s p e c i f i e d p o s i t i o n o f

the array

Replaced by:

1 invokestatic org / t e r r a c o t t a / c l u s t e r t h r e ad /asm/ Sta t i cAr raySe t t e r . s e t IntArray

( [ I I I )V // invokes the s t a t i c method f o r s t o r i n g an i n t in an array o f

i n t s

It should be noticed that this synchronization is very �ne grained, and inside a for loop that writes

to an array, it generates a signi�cant overhead that could be avoided by synchronizing outside the loop.

However, detecting such cases is a non trivial problem that falls outside the scope of this work. Also,

writing to a very large array in a single transaction can take large amounts of memory as Terracotta does

not automatically fragment transactions. As the Terracotta platform develops and integrates batching

algorithms, this kind of problems will become less of an issue.

This concludes the description of the instrumentations used by the Full SSI mode. These instru-

mentations allow the middleware to run a non-synchronized application by replacing direct �eld accesses

with invocations to special getters and setters, with the synchronized modi�er and annotated with the

corresponding Terracotta annotations. In the next section, we are going to focus on the instrumentations

used by the Serialization mode.

4.3 Serialization mode - Caft Root mapping

So far, both the Identity and Full SSI mode rely exclusively on the Terracotta DSO, sharing every �eld

belonging to a Runnable target and guaranteeing object identity for the entire thread context. However,

every �eld that is shared holds a communication cost, and in some cases we could simply copy the data

and read it locally, without need for further synchronization with the master node for the program to

work correctly. This assumption is the main motivation to add an extra mode, that relies on plain Java

serialization for passing a Runnable target to a worker node.

In this mode, we use ASM to add the Java Serializable interface, along with the Serialization UID if

it does not exist already, in order to avoid the scenario where the user or programmer has to manually

change the source code to add a new interface that was not needed before. This allows us to instantiate

threads on remote workers with Runnable targets that are serialized by RMI. However, to guarantee

correctness in some applications, we need to provide a way to preserve object identity between �elds of
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a Runnable target and other �elds that remain in the home node. It should be noticed that the original

Terracotta Root annotation for �elds does not work in this case, as the changes in the Runnable object in

the worker node are done in a serialized copy, which is considered by Terracotta as just another di�erent

object, and as such the synchronization is not done.

To solve this problem, we introduce a new Java annotation �CaftRoot�. This annotation should be

applied to all pairs of �elds whose identity should be the same across the cluster. Pairs of �elds are

created by assigning the same string key in the key annotation parameter. We illustrate this concept

with a code example below, taken directly from the Sun�ow modi�cation applied to Serialization mode.

In this example, we show the BucketThread class and the BucketRenderer class. A bucket is a Sun�ow

concept corresponding to the set of pixels to be generated by a thread. The results will be presented in

the Evaluation chapter 5.

1 public class BucketThread implements Runnable {

2 private int threadID ;

3

4 @CaftRoot ( key=" d i sp l ay " )

5 private Display d i sp l ay ;

6 @CaftRoot ( key="bucketCounter " )

7 In t eg e r bucketCounter ;

8 @CaftRoot ( key="bucketCoords " )

9 int [ ] bucketCoords ;

10 private BucketRenderer i n s t ance ;

11

12 public BucketThread ( int threadID , BucketRenderer ins tance , Display

d i sp lay , I n t eg e r bucketCounter , int [ ] bucketCoords ) {

13 this . threadID = threadID ;

14 this . i n s t anc e = in s t ance ;

15 this . bucketCounter = bucketCounter ;

16 this . bucketCoords = bucketCoords ;

17 }

18

19 . . .

20

21 @AutolockWrite

22 public void run ( ) {

23 // render bucke t . . .

24 }

25

26 . . .

27 }

1 public class BucketRenderer implements ImageSampler {

2 Scene scene ;

3 @CaftRoot ( key=" d i sp l ay " )

4 Display d i sp l ay ;

5 // r e s o l u t i o n

6 int imageWidth ;
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7 int imageHeight ;

8 // bucke t ing

9 St r ing bucketOrderName ;

10 BucketOrder bucketOrder ;

11 int bucketS ize ;

12 @CaftRoot ( key="bucketCounter " )

13 In t eg e r bucketCounter ;

14 @CaftRoot ( key="bucketCoords " )

15

16 . . .

17

18 @AutolockWrite

19 public void render ( Display d i sp l ay ) {

20 . . .

21

22 Thread [ ] renderThreads = new Thread [ scene . getThreads ( ) ] ;

23 for ( int i = 0 ; i < renderThreads . l ength ; i++) {

24 renderThreads [ i ] = new Thread (new BucketThread ( i ,

this , d i sp lay , bucketCounter , bucketCoords ) ) ;

25 renderThreads [ i ] . s e t P r i o r i t y ( scene .

ge tThreadPr io r i ty ( ) ) ;

26 renderThreads [ i ] . s t a r t ( ) ;

27 }

28 }

29

30 . . .

In this example, we map the Display object corresponding to the shared data structure used by all

threads to store the rendering calculations, as well as the array used to determine the next bucket to

render and an Integer counter to keep track of the number of buckets processed. When a new thread

is instantiated for computing a new bucket, the instance of the BucketThread class will be serialized

and sent to a worker node. However, the Caft middleware will use the Terracotta DSO to hold the

�elds annotated with our special CaftRoot annotation. This annotation has the same semantics as the

original Terracotta Root annotation, meaning that any �elds annotated with it will be shared among all

cluster nodes. In a scenario with a normal Java application running in one node, it would be the same as

declaring the �eld to be static. The di�erence lies in the need to specify a key for each pair of �elds, to

indicate to our middleware that they should be considered the same in both the class that implements

the Runnable target and the one that uses it, passing �elds to its constructor. This way, the programmer

gets the ability to choose pairs of �elds to preserve identity, while the remaining �elds will be copied and

no synchronization will be done between them.

Regarding the original Sun�ow application, the BucketThread class manipulated all three �elds of

the BucketRender class directly, so our program remains correct. It is the programmer responsibility

to ensure that having just one instance shared among all cluster nodes of a �eld makes sense in the

application, just like if it was using Terracotta without our middleware. If not, the �eld itself could be

replaced by a map, which would store the several instances of the �eld.
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Table 4.1: CaftRoot mapping

Map Key Value

�eldToKey

BucketRendererdisplay
display

BucketThreaddisplay
BucketRendererbucketCounter

bucketCounter
BucketThreadbucketCounter
BucketRendererbucketCoords

bucketCoords
BucketThreadbucketCoords

clusteredFields

display Display instance

bucketCounter Integer instance

bucketCoords int[] instance

In practice, we implement the access to �elds annotated with the CaftRoot annotation by having

two concurrent hash maps, one that that associates a string composed by the concatenation of the class

name plus the �eld name with the key speci�ed by the user, and another that associates this key with the

concrete object instance. Both maps will belong to the Terracotta DSO to be accessible in every node.

The table 4.1 summarizes the mapping that will be done for this example.

4.3.1 Caft Root Adapter

Considering the mapping done in the previous subsection, all that is left to do is to �nd a way to �ll

the ��eldToKey� map, and add instrumentations that intercepts �eld access and get the values from the

�clusteredFields� map, leaving the stack in a correct state. The ��eldToKey� map is �lled at class load-

time, using our custom class loader and the Java re�ection API to detect which �elds have the mapping

put down by the programmer. The �eld access instrumentations are done by a special method adapter

that is applied to every method in the application, which after checking if there is a key for a class and

�eld name pair replaces the coded accesses as follows:

1 // Ge t f i e l d

2 ldc key

3 invokestatic org / t e r r a c o t t a / c l u s t e r t h r e ad / c a f t r o o t /CaftRootMap ge tF i e l d (

Ljava/ lang /Object ; Ljava/ lang / St r ing ; ) Ljava/ lang /Object ; " ) ;

4 checkcast f i e ldType

For the getfield bytecode, it should be reminded that at this point we have the object instance on

stack, so we simply generate code that pushes the key and invokes a static method that will consume

both arguments and get the value present in the �clusteredFields� map. After this, we also generate a

checkcast bytecode to ensure that the value put on stack is the same type of the �eld. The �eld type

information is available via the ASM framework.

1 // Pu t f i e l d

2 ldc key

3 invokestatic org / t e r r a c o t t a / c l u s t e r t h r e ad / c a f t r o o t /CaftRootMap putFie ld (

Ljava/ lang /Object ; Ljava/ lang /Object ; Ljava/ lang / St r ing ; )V
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For the putfield bytecode, we also need to push the key onto the stack, so it can be passed to our

static method that will put the new �eld value into the �clusteredFields� map. This static method needs

to take three arguments, in order to consume the object instance, the value to be put on the speci�ed

�eld, and the string we put, and leave the stack in a coherent state.

For the static versions, the instrumentations are similar to the ones described for non-static �elds,

except for the fact that the static method signature takes one less argument, as there is no object instance

on stack in this case:

1 // Ge t s t a t i c

2 ldc key

3 invokestatic org / t e r r a c o t t a / c l u s t e r t h r e ad / c a f t r o o t /CaftRootMap

g e t S t a t i cF i e l d ( Ljava/ lang / St r ing ; ) Ljava/ lang /Object ; ) ;

4 checkcast f i e ldType

1 // Put s t a t i c

2 ldc key

3 invokestatic org / t e r r a c o t t a / c l u s t e r t h r e ad / c a f t r o o t /CaftRootMap

pu tS ta t i cF i e l d ( Ljava/ lang /Object ; Ljava/ lang / St r ing ; )V) ;

This concludes the overview of �Caft� Serialization mode implementation. It should also be noticed

that the programmer needs to add the proper synchronization for the �elds that are shared in the

Terracotta DSO, while the serialized �elds will not need any.

4.4 Summary

In this chapter, we described the implementation of our middleware, focusing on the bytecode instrumen-

tations developed. We started by describing the basic instrumentations for scheduling threads to worker

nodes, followed by the ones used by the Full SSI mode for adding extra synchronization. We �nalized

with the description of the Serialization mode, with a concrete example and the detailed explanation of

its instrumentations and data structures used.
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Chapter 5

Evaluation

In this chapter we are going to describe the methodology used for evaluating the prototype, and its results.

We used up to three machines in a cluster, with Intel(R) Core(TM)2 Quad processors (with four cores

each) and 8GB of RAM, running Linux Ubuntu 9.04, with Java version 1.6.0_16, Terracotta Open Source

edition, version 3.3.0, and three multi-threaded Java applications that have the potential to scale well with

multiple processors, taking advantage of the extra resources available in terms of computational power

and memory (Fibonacci, Sun�ow renderer and Matrix by vector multiplication). We are also concerned

with the transparency of our approach, and how much is the impact of our bytecode instrumentations.

In short, we evaluated:

1. Correct operation of the application in the clustered environment, while taking advantage of all

processors in the worker machines.

2. The extent of possible modi�cations required to application source code, middleware and API.

3. The increase in bytecode size, due to instrumentations (besides Terracotta own instrumentations)

4. Speed-up

5. Memory usage

5.1 Fibonacci

For testing purposes, we developed a simple application that computes Fibonacci numbers using Binet's

Fibonacci number formula. The idea was to test the middleware �rst with an application that did not

have much data to be shared (in this case, only an array of BigIntegers has to belong to the global

heap). This scenario is very CPU intensive with trivial I/O, so it was expected that it would scale well

with more processors. Our application takes the maximum number of Fibonacci to compute, along with

the number of threads, and splits the workload by having each thread compute a number of Fibonacci

numbers corresponding to the maximum given divided by the number of threads. As the computation of a

Fibonacci sequence number gets more demanding with larger numbers, the split is done in an interleaved

way, assigning the Fibonacci of zero to the �rst thread, the Fibonacci of one to the second thread, and

so on. Each thread will write its computations to a private array, which will be read by the home node.
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In this section, we are going to describe the changes that need to be done at source code level to

make the application work in each mode, as well as the impact in the bytecode size due to the extra

instrumentations applied. We measured the execution time obtained by running the application in a

cluster supported by our middleware, with two or three worker nodes. For comparison purposes, we also

measured the execution time in Terracotta, and in a standard JVM.

5.1.1 Source code changes

Concerning the several modes of our middleware, in Full SSI mode we simply edited the tc-config.xml

�le of our middleware to add the classes necessary to be instrumented by Terracotta. This can be done

easily by instrumenting every class �rst, and then checking the Terracotta Developer Console to see

the classes that really need instrumentation (as in, have some instances that are shared in the DSO). For

Identity mode, we needed to add some synchronization, illustrated by the code examples below:

1 public class FibonacciThread implements Runnable {

2 private int min , max , nthreads ;

3 private Big Intege r [ ] r e s ;

4

5 public synchronized Big Intege r [ ] getRes ( ) {

6 return r e s ;

7 }

8

9 . . .

10

11 @Override

12 public void run ( ) {

13 int j = 0 ;

14 synchronized ( r e s ) {

15 for ( int i=min ; i < max ; i += nthreads ) {

16 r e s [ j ] = f i b ( i ) ;

17 j++;

18 }

19 }

20 }

21

22 . . .

In this case, we needed to add a synchronized block in the run method, to allow the subsequent writes

inside the for loop to be done in the context of a Terracotta transaction. It should be noticed that the

extra synchronized block does not a�ect concurrency, as each thread has its own private array. Also,

the array results will be read later by another class in the home node, so we added the synchronized

keyword to the getRes method in order to avoid dirty reads and guarantee that the correct values will

be read from the Terracotta Server Array. For the Serialization mode, we used a ConcurrentHashMap

shared by all threads and mapped by the CaftRoot, in order to store the private arrays of each thread.

Since each thread has its own private array to store the results, we can add a synchronized block outside

the for loop and de�ne only one transaction for storing the results, just like we did for Identity mode.

We illustrate this in the code examples below:
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1 public class FibonacciThread implements Runnable {

2 private int min , max , nthreads ;

3 @CaftRoot ( key=" r e s " )

4 private ConcurrentHashMap<Integer , B ig Intege r [] > r e s u l t s ;

5

6 @AutolockRead

7 public synchronized Big Intege r [ ] getRes ( ) {

8 return r e s u l t s . get (min ) ;

9 }

10

11 . . .

12

13 @Override

14 @AutolockWrite

15 public void run ( ) {

16 int j = 0 ;

17 Big Intege r [ ] r e s = r e s u l t s . get (min ) ;

18 synchronized ( r e s ) {

19 for ( int i=min ; i < max ; i += nthreads ) {

20 r e s [ j ] = f i b ( i ) ;

21 j++;

22 }

23 }

24 }

25

26 . . .

27 }

1 public class Fibonacc i {

2

3 @CaftRoot ( key=" r e s " )

4 private stat ic ConcurrentHashMap<Integer , B ig Intege r [] > r e s u l t s ;

5

6 . . .

7

8 }

This concludes the subsection regarding the necessary code changes made to the Fibonacci application

to make it work correctly in our middleware, concerning the several modes. As we can observe, the

modi�cations necessary for Identity mode are quiet trivial and easy to understand to a programmer that

has a notion of the concepts behind Terracotta and how it clusters data. For Serialization mode, we

needed to add a map to keep the same semantics of the application, which makes this approach the least

transparent and probably harder to understand. Nevertheless, the modi�cations needed are made using

only simple Java concepts, and are certainly easier to add than it would be to develop an equivalent

distributed application. In the next subsection, we are going to focus on the bytecode size impact of the

custom instrumentations added for each mode.
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5.1.2 Bytecode size

For the bytecode size measurements, we ran the application in our middleware in a single node, running

both the master and the worker components, and used our custom Classloader to keep track of the

bytecode size of each class, before and after applying our instrumentations in each mode. Since each

mode needs di�erent changes in the source code (or none), as described in the previous section, the

original bytecode size before applying the bytecode instrumentations will be di�erent, depending on the

mode chosen. Also, we have taken all the measurements in the master node, which is the one that will

load all the application classes needed. The results are shown in the table 5.1.

Table 5.1: Fibonacci - Bytecode size

Mode
Original After instr. Overhead
(bytes) (bytes) ratio

Serialization 7419 8313 1.12

Identity 6275 6702 1.06

Full SSI 6253 8174 1.31

As we can observe, the mode with the largest overhead is the Full SSI mode, followed by the Serial-

ization and Identity. Considering the bytecode instrumentations de�ned in chapter 4, this is expected, as

the Full SSI mode adds more methods to each class. The Serialization mode shares a ConcurrentHashMap

as demonstrated in the previous section, so it is expected to have the largest bytecode in the end, while

Identity mode gets to have the least impact. However, we should keep in mind that in this case we have

very few classes, and the extra annotations from Identity mode do not make much di�erence. In the

next sub-section, we are going to focus on the speed-up improvements, which is the main motivation for

running this application in a clustered environment.

5.1.3 Execution time

For the execution time measurements, we con�gured our application to compute the �rst 1200 numbers

of the Fibonacci sequence, with a number of threads directly proportional to the number of processors

available. In short, we ran the application with no more than one thread per processor and measured

the time taken by each mode with two, four, eight and twelve threads. Also, we tested our application

using only the Terracotta middleware, to have a general idea of how the usage of the original Terracotta

platform impacts the performance. Considering that the Terracotta developers refer that the bytecode in-

strumentations impact performance, even when there is no data being shared, we considered two di�erent

scenarios for the tests: Terracotta Inst. only and Terraocotta Inst + Sharing. The former tested

the application with only the Terracotta bytecode instrumentations activated, while the latter also shared

the same data structures shared in the Identity and Full SSI modes. Finally, we tested our application in

a standard local JVM, for comparison purposes with our distributed solution. As a distributed solution

implies more communication overhead, the local solution should be always better as long as we can run

one thread per core. The results are presented in Figure 5.1.

As we can observe in the graph, the overhead introduced by Terracotta is not much, as we only share

a relatively small array in each thread for storing the Fibonacci numbers, along with some auxiliary
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Figure 5.1: Fibonacci - Identity and Full SSI modes

variables. Also, the number of classes in the application is very small. By adding our middleware, we

introduce an extra overhead which is not very signi�cant, even when running it in Full SSI mode and as

such, it is possible to obtain smaller execution times by adding more nodes to the Terracotta cluster.

For Serialization mode, we made the necessary code changes as described in section 5.1.1. The test

scenario was similar to the previous one, measuring the execution time in a local JVM, in our middleware,

in Terracotta with only the Terracotta instrumentations enabled, in Terracotta with instrumentations

and sharing of data equivalent to the one needed for the Serialization mode to work in Caft. The results

are presented in Figure 5.2.
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Figure 5.2: Fibonacci - Serialization mode

As we can observe in the graph, the overhead introduced by Terracotta is very similar to the one

in the previous case, despite the source code being slightly di�erent as we described in section 5.1.1.

The overhead introduced by Serialization mode ends up being larger, but it is still able to achieve lower

execution times that a single node in a local JVM. To �nalize, we also tested the application with only
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one thread in a standard JVM, in order to calculate the speed-up achieved by using a standard JVM,

Terracotta, and our middleware. The results are presented in Table 5.2.

Table 5.2: Fibonacci - Speed-up comparing to Local JVM

Mode Speedup 2 threads 4 threads 8 threads 12 threads

Local 1.97 3.79 - -

Serialization 1.75 3.20 4.42 4.34

Identity 1.89 3.45 6.49 8.02

Full SSI 1.76 3.18 5.57 7.66

In conclusion, the Identity mode scales very well, followed by the Full SSI and as last, Serialization.

This is expected, as the Full SSI adds more synchronization and the serialization of the Runnable target

implies a larger overhead than simply sharing it with Terracotta. In this case, the Serialization mode

ends up sharing almost the same structures as Identity mode, and the more �ne grained approach does

not compensate. In the next section, we are going to test our middleware with Sun�ow, an Open Source

Java multi-threaded renderer.

5.2 Sun�ow

Sun�ow is an Open Source rendering system for photo-realistic image synthesis. It supports rendering of

scenes to popular image formats such as PNG, TGA and HDR. The scenes can be speci�ed using Java

or a special scene graph language, typical of other similar applications such as POV-Ray. It should be

noticed that the Swing GUI used normally in Sun�ow is not supported by Terracotta, so we will perform

all renderings using the command line mode instead.

5.2.1 Source code changes

As with the previous Fibonacci application, in Full SSI mode we simply edited the tc-config.xml �le of

our application to add the classes necessary to be instrumented by Terracotta. This can be done easily

by instrumenting every class �rst, and then checking the Terracotta Developer Console to see the

classes that really need instrumentation (as in, have some instances that are shared in the DSO). This

technique facilitates the task even more, as the number of classes in Sun�ow is much larger than in our

previous Fibonacci application. For Identity mode, we simply ran the application and hoped that the

synchronization present would su�ce. In the end, we just needed to add an extra synchronized block in

the Scene class, illustrated by the code example below:

1 public class Scene {

2

3 . . .

4

5 public void render ( Options opt ions , ImageSampler sampler , Display

d i sp l ay ) {

52



6

7 . . .

8

9 synchronized ( this ) {

10 bak ingPr imi t ive s = null ;

11 bakingAccel = null ;

12 }

13

14 . . .

15 }

16 }

For the Serialization mode, the code changes necessary were described in section 4.3 as a pratical

example. Despite being a much more complex application, the changes necessary for the several modes

are fairly easy to understand and apply. As already mentioned, in Serialization mode, the decision of

what needs to be shared and what does not requires some knowledge of how the application works. In

the next subsection, we are going to focus on the bytecode size impact of the custom instrumentations

added for each mode.

5.2.2 Bytecode size

As with the previous Fibonacci application, we ran the application in our middleware in a single node,

running both the master and the worker components, and used our custom Classloader to keep track of

the bytecode size of each class, before and after applying our instrumentations in each node. The results

are shown in the table 5.3:

Table 5.3: Sun�ow - Bytecode size

Mode
Original After instr. Overhead
(bytes) (bytes) ratio

Serialization 400559 408518 1.01

Identity 399819 416429 1.04

Full SSI 405687 542191 1.34

In the Sun�ow application case, the quantity of classes that need to be instrumented is larger than

in the previous Fibonacci application. As such, the Serialization mode bytecode overhead is less than

its counterparts, as the programmer annotates the speci�c methods that require synchronization directly

in the source code. Identity mode will add the AutolockWrite annotation to every method, and as

such, the original bytecode is slightly smaller than its Serialization counterpart, but after applying the

instrumentations, it becomes larger. The Full SSI still remains the mode that generates the largest

bytecode, due to the extra methods that need to be added in each class. In the next sub-section, we are

going to focus on the speed-up improvements and check if it compensates to run this application in our

middleware.
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5.2.3 Execution time

For the execution time measurements, we con�gured Sun�ow to render one of the example images, with

a number of threads directly proportional to the number of threads available. In short, we ran the

application with no more than one thread per processor and measured the time taken by each mode

with two, four, eight and twelve processors. We also tested our application in a standard local JVM, for

comparison purposes with our distributed solution. The results for Identity and Serialization mode are

presented in Figure 5.3.
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Figure 5.3: Sun�ow - Identity and Full SSI modes

As we can observe in the graph, the Terracotta bytecode instrumentations add a considerable overhead,

even when we do not share any data in the DSO. By adding the same data structures that are shared

in both Identity and Full SSI modes, the execution times of the application in Terracotta for two and

four threads are very similar to the ones presented by Caft in Identity mode, for the same number of

threads. Our middleware can then obtain better execution times by using the extra processors and obtain

scalability compared to Terracotta by itself. The Full SSI mode adds a more signi�cant overhead, having

the greatest execution times. However, we still do not obtain scalability when compared to a standard

JVM. Considering this, we performed the necessary code changes to run Sun�ow in Serialization mode,

and sharing only the data structures necessary for storing the results, as described in section 5.2.1. For

comparison purposes, we measured the execution time in Terracotta with instrumentations enabled, and

also with an equivalent sharing of data. The results are presented in Figure 5.4.

As we can observe in the graph, the overhead introduced by both the Terracotta instrumentations and

sharing of data decreased and its execution time is comparable with a standard JVM. This is expected,

as there are a lot less changes that need to be propagated to the Terracotta Server, comparing to Identity

and Full SSI modes. Also, many classes that needed to be instrumented by Terracotta in the previous

example are not included anymore. With our middleware on top, we are able to achieve better execution

times than the ones that are possible with only one node and a standard JVM.

To summarize the results obtained, we also tested our application with only one thread in a standard

JVM, calculating the speed-up obtained by our middleware in the several modes. The results are shown

in Table 5.4.
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Table 5.4: Sun�ow - Speed-up

Mode Execution Time 2 threads 4 threads 8 threads 12 threads

Local 1.97 4.04 - -

Serialization 2.02 3.71 6.13 8.35

Identity 0.33 0.49 1.10 1.27

Full SSI 0.25 0.43 0.75 1.04

As we can observe, the sharing of the entire thread context in Identity mode adds a large overhead,

as every change computed in every node needs to be propagated to the Terracotta Server. Also, the

necessary bytecode instrumentations of Terracotta also contribute to its overhead. In Serialization mode,

where each thread only shares the data structures where the rendering results are kept, performance

increases and can achieve speed-up with several nodes, compared to having just a local JVM. In the

next section, we are going to test our middleware with an application that performs a multiplication of

a matrix by a vector, and focus on the possibility of using our middleware to take advantage of having

more memory, distributed by all nodes.

5.3 Matrix-vector multiplication

For testing purposes, we also developed a multi-threaded application that multiplies a matrix by a vector,

splitting the matrix rows across the threads. It should be noticed that the matrix rows are generated

randomly, each thread generating their own set of rows, storing them in local variables. In a more real

world scenario, the matrix values could be read from a �le which had to be accessible to all nodes. This

was done in order to attempt a memory stress test, and check if it was possible to take advantage of the

extra memory provided by several nodes, and if it would scale by adding more nodes into the cluster.
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In our test scenario, we are limited to only one instance of the Terracotta Server, due to the fact that

we are using the Open Source version of Terracotta. As such, we only obtained and measured memory

scalability using the Serialization mode, where we can have local variables in the thread context that use

only the local heap. Results in Identity and Full SSI mode could be di�erent if we used the enterprise

version of Terracotta, that allows the splitting of the global heap across several machines.

5.3.1 Source code changes

As with the previous applications, in Full SSI mode we simply edited the tc-config.xml �le of our

application to add the classes necessary to be instrumented by Terracotta. For Identity mode, we simply

ran the application and hoped that the synchronization present would su�ce. In the end, we just needed

to add three extra synchronized blocks in the MatrixVectorMultiplication class, corresponding to

writes in the shared �elds of the Runnable target. We illustrate these changes in the code example below:

1 public class Matr ixVecto rMul t ip l i ca t i on implements Runnable {

2 private int nrows , ncolumns ;

3 private int [ ] [ ] rows ;

4 private int [ ] v ec to r ;

5 private int [ ] r e s u l t ;

6

7 @AutolockRead

8 public synchronized int [ ] g e tResu l t ( ) {

9 return r e s u l t ;

10 }

11

12 . . .

13

14 @AutolockWrite

15 public void run ( ) {

16 //Generate rows

17 Random randNumGenerator = new Random( ) ;

18 synchronized ( this ) {

19 this . rows = new int [ nrows ] [ ncolumns ] ;

20 }

21 for ( int i =0; i < nrows ; i++) {

22 int [ ] row = new int [ ncolumns ] ;

23 for ( int j =0; j < row . l ength ; j++) {

24 row [ j ] = randNumGenerator . next Int ( ) ;

25 }

26 synchronized ( rows ) {

27 rows [ i ] = row ;

28 }

29 }

30

31 //Apply mu l t i p l i c a t i o n

32 for ( int i =0; i < nrows ; i++) {

33 int [ ] row = rows [ i ] ;
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34 int acc = 0 ;

35 for ( int j =0; j < ncolumns ; j++) {

36 acc += row [ j ]∗ vec to r [ j ] ;
37 }

38 synchronized ( r e s u l t ) {

39 r e s u l t [ i ] = acc ;

40 }

41 }

42 }

For Serialization mode, we added the CaftRoot annotation to share the array responsible for storing

the result of the multiplication of the matrix rows by the vector. We also changed the main loop in

order to take into account that the array for storing results is now shared with every instance of the

MatrixVectorMultiplication class. The idea is similar to the one applied when running Sun�ow, share

the results that need to be available in the master node, as well as the data structures relevant to keep

the state of the master and workers coherent. Also, as every thread will write to di�erent positions of the

array, we can use a Terracotta transaction that allows multiple writers in the same synchronized block,

by applying the AutolockConcurrent annotation. We illustrate the code changes in the example below:

1 public class Matr ixVecto rMul t ip l i ca t i on implements Runnable {

2 private int nrows , ncolumns , threadIndex ;

3 private int [ ] [ ] rows ;

4 private int [ ] v ec to r ;

5 @CaftRoot ( key=" r e s u l t " )

6 private int [ ] r e s u l t ;

7

8 . . .

9

10 @AutolockConcurrent

11 public void run ( ) {

12 //Generate rows

13 . . .

14 //Apply mu l t i p l i c a t i o n

15 for ( int i =0; i < nrows ; i++) {

16 . . .

17 synchronized ( r e s u l t ) {

18 r e s u l t [ i+nrows∗ threadIndex ] = acc ; //acc =

row by vec to r mu l t i p l i c a t i o n r e s u l t

19 }

20 }

21 }

22 }

1 public class App {

2

3 @CaftRoot ( key=" r e s u l t " )

4 private int [ ] r e s u l t ;
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5

6 public App( int [ ] r e s u l t ) {

7 this . r e s u l t = r e s u l t ;

8 }

9

10 @AutolockRead

11 public synchronized int [ ] g e tResu l t ( ) {

12 return r e s u l t ;

13 }

14

15 . . .

5.3.2 Bytecode size

As with the previous examples, we ran the application in our middleware in a single node, running both

the master and the worker components, and used our custom Classloader to keep track of the bytecode

size of each class, before and after applying our instrumentations in each node. The results are shown in

the table 5.5.

Table 5.5: Matrix-vector multiplication - Bytecode size

Mode
Original After instr. Overhead
(bytes) (bytes) ratio

Serialization 6561 7466 1.13

Identity 6472 6863 1.06

Full SSI 6252 8813 1.41

In this case, the results concerning the bytecode size are similar to the ones obtained by the Fibonacci

application. Before we apply the instrumentations, code size is slightly smaller in the Full SSI mode due to

the fact that the programmer does not introduce extra synchronization or Java annotations for clustering

the application. In Identity mode however, we require that the programmer adds some synchronized

blocks, impacting the original size. Code size is further increased in Serialization mode, by also adding

Java annotations. After we apply the instrumentations, Full SSI mode generates the largest code, followed

by Serialization and Identity mode.

5.3.3 Execution time

For the execution time measurements, we tested our application by multiplying a matrix of 32768 rows

by 32768 columns and a vector of 32768 positions. As with previous applications, we ran the matrix by

vector multiplication with no more than one thread per processor and measured the time taken by each

mode with two, four, eight and twelve processors. We also tested our application in a standard local

JVM, for comparison purposes with our distributed solution. The results for Identity and Serialization

mode are presented in Figure 5.5.
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Figure 5.5: Matrix*vector - Execution times for Identity and Full SSI modes

As we can observe in the graph, the Terracotta bytecode instrumentations add a small overhead,

even when we do not share any data in the DSO. By adding the same data structures that are shared

in both Identity and Full SSI modes, the execution times of the application in Terracotta for two and

four threads are very similar to the ones presented by Caft in Identity mode, for the same number of

threads. Our middleware can then obtain better execution times by using the extra processors and obtain

scalability compared to Terracotta by itself. The Full SSI has an execution time much greater than any

of its counterparts, as every write in an array of results needs to be propagated to the DSO.

As with the Sun�ow application, we still do not obtain scalability when compared to a standard JVM.

Considering this, we performed the necessary code changes to run the application in Serialization mode,

and sharing only the data structures necessary for storing the results, as described in section 5.3.1. For

comparison purposes, we measured the execution time in Terracotta with instrumentations enabled, and

also with an equivalent sharing of data. The results are presented in Figure 5.6.
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Figure 5.6: Matrix*vector - Execution times for Serialization mode
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As we can observe in the graph, the results are slightly better than the previous modes, but the

execution times are still not better than a local JVM. This can be explained by the fact that this

application is much more memory-intensive than CPU intensive, spending a more considerable amount

of time writing results to array positions instead of computing the matrix, which is pretty trivial in

comparison with the previous applications, where we computed Fibonacci numbers or performed ray-

tracing calculations. This type of applications should not scale very well in Terracotta, in terms of

speed-up, but we believe the extra memory available in the cluster can still give a competitive advantage

over a single node. This assumption shall be tested and measured in section 5.3.4.

To summarize the results obtained, we also tested our application with only one thread in a standard

JVM, calculating the speed-up obtained by our middleware in the several modes. The results are shown

in Table 5.6. As we can observe, despite the fact that the speed-up increases a little with the number of

nodes, it has no comparison possible with a local JVM.

Table 5.6: Matrixvecmul - Speed-up

Mode Execution Time 2 threads 4 threads 8 threads 12 threads

Local 1.38 1.80 - -

Serialization 0.11 0.22 0.24 0.26

Identity 0.09 0.09 0.18 0.26

Full SSI 0.01 0.02 0.04 0.05

5.3.4 Memory usage

In this section, we attempted to stress test our middleware from the memory usage perspective, to check

if it was possible to take advantage of the extra memory provided by several nodes, and if it would

scale by adding more nodes into the cluster. It should be noticed that measuring the exact memory

taken by an instance of a Java object is tricky, as it will depend a lot on the JVM implementation. As

such, we attempted to run the application using three di�erent matrix sizes: 32768x32768, 62556x32768,

53090x53090. The memory occupied by each of them was estimated considering that each int value

has at least 4 bytes. This technique will not determine the exact amount of maximum memory that

we could allocate with a certain number nodes, as the actual size in memory is dependent on the JVM

implementation itself, but it can demonstrate that by adding more nodes we can allocate more memory.

The heap sized was �xed at 7 GB of data, as the machines were limited to 8 GB of RAM and we wanted

to save some space for other JVM objects and other applications running in each node. The results are

shown in Figure 5.7:

In this example, we managed to allocate a matrix of 62556x32768 with two nodes, corresponding to

8 GB of data, while with one node only we would get a java.lang.OutOfMemoryError. In a similar

way, with three nodes we could allocate about 10.5 GB of data, while with only two nodes we got the

same exception. In conclusion, adding more nodes allowed us to perform computations with a matrix in

memory split across several machines, which would not be possible if the application was running in a

local JVM.
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Figure 5.7: Matrix*vector - Memory Stress

5.4 Compatibility issues

In this work, we tried to keep the middleware with the greatest compatibility possible, allowing it to

run any Java multi-threaded application. However, by running our middleware on top of Terracotta, we

inherit the following limitations:

• Volatile keyword: Terracotta does not support the volatile keyword. Volatile �elds will behave

just as normal �elds. Applications that use it, or rely on its semantics for synchronization may not

work correctly.

• Non-serializable �elds: Some �elds may not be serializable and we need to mark them as

transient. This workaround may not work if the �eld really needs to be accessible on another

machine. For example, we may have a Java CyclicBarrier accessed by a thread that is supported

in Terracotta, but not serializable, which limits our prototype to use only the Identity and Full SSI

modes.

• Non-portable �elds: Some �elds may not be portable at all by Terracotta. These types are well

documented by Terracotta and correspond mainly to network and I/O classes.

5.5 Summary

In this chapter, we evaluated our middleware using three multi-threaded Java applications: Fibonacci,

Sun�ow renderer and Matrix by vector multiplication. We focused on the code changes necessary to

run each application on all three modes, in order to illustrate the transparency and compromises of

our implementation. Considering performance, we measured the code size overhead generated by our

instrumentations, as well as speed-up or memory usage depending on the application. We concluded that

the code changes necessary are mostly local and easy to implement, and the most transparent mode is

Full SSI, followed by Identity mode and Serialization mode.
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From the evaluation of the three applications, we concluded that the best use case for our middleware

is for running already existent Java multi-threaded applications, designed for running in a single node,

and in which an adaptation for running in a clustered environment should not be trivial to implement.

Using our round-robin scheduler, our middleware will scale with applications that have about the same

amount of work per thread, and require little or no communication. Such problems are often referred

in the literature as Embarrassingly parallel. In applications that are not very CPU intensive and require

more I/O writes, the performance of our middleware will not be that good. Despite these limitations,

our solution is scalable, in the sense that it can achieve shorter execution times by adding more nodes to

the Terracotta cluster, in all modes.

Comparing our solution to running an an application in a single, standard JVM, more transparency

comes with a trade-o� of performance. Identity and Full SSI modes are dependent on the nature of the

�elds shared and manipulated. These problems can be circumvented by sharing only what is necessary

in some applications that implement an embarrassingly parallel problem, such as Sun�ow. Concerning

memory usage, our middleware can take advantage of the extra memory given by several nodes in a

scenario where threads allocate a big amount of local objects.
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Chapter 6

Conclusion

In this work, we explored a di�erent use case for Terracotta, the running of simple, multi-threaded

applications, that were not designed with Terracotta or clustering in mind. We attempted to develop

an approach with the best transparency possible that would not require deep changes in the application,

and still be powerful enough to achieve good performance.

We started by developing a method to create threads and schedule them to worker nodes, while using

the Terracotta DSO to store the Runnable target. We concluded that this method allows the programmer

to run multi-threaded applications in a distributed way, using only pure Java and adding synchronization

as necessary. The overhead will be very dependent on the thread context itself, concerning the amount

of data shared and manipulated.

By implementing a bytecode approach that adds synchronization on �eld and array access, we con-

cluded that it is possible to improve the Terracotta DSO usage by automatically adding some extra

synchronization that is needed for de�ning transaction boundaries. It should be noticed that some of

this synchronization would not be needed when running in a single JVM, as the semantics of the code

running can guarantee that there are no write con�icts by itself. This mode should be kept optional in

our middleware, due to the extra overhead observed in the evaluation section. As Terracotta is developed,

and new transaction batching algorithms are integrated, the performance impact of coarse-grained versus

�ne-grained transactions should be minimized.

And last, the Serialization approach allows for a more �ne-grained sharing of objects on the global

heap. This provides a �mixed� semantic that is not very typical of Terracotta, as the most common use

case is to use �Ehcache� replication which either serializes every object put on cache or preserves identity.

We concluded, from the evaluation section, that this approach can hold very good results in real-world

applications such as the Sun�ow renderer.

6.1 Future work

The current approach of our middleware assumes that every machine has the same resources in terms

of memory and computational power. Also, the computation cost of every thread has to be similar, in

order to preserve load-balancing. In this section, we present a non-exhaustive list of improvements to the
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current design and implementation that could be done in order for the middleware to work with other

kind of applications:

• Add mechanisms that would make Caft aware of the resources available in the cluster, such as the

current number of threads executing, the CPU load of each node, and memory available. These

mechanisms could be used to implement extra load-balancing mechanisms based on the cluster

state.

• Implement fault-tolerance mechanisms that allows the coordinator component to assign threads to

other workers, if one of them goes o�-line.

• Allow for clustered threads with classes that extend the Java Thread class.

• For the array writes in Full SSI mode, research code static analysis techniques that could be applied

to avoid the linear growth of the number of Terracotta transactions with the number of loop

iterations.

• Integrate thread migration mechanisms that can stop a thread executing in a certain node, and

resume it on another node which should be less loaded.
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