
1

OBIHOC - Middleware for ad-hoc network

Paulo Ferreira, Luis Veiga, André Conrado
Instituto Superior Técnico – Campus Taguspark, Av. Prof. Dr. Aníbal Cavaco Silva — 2744-016 Porto Salvo

Abstract: The appearance of new mobile devices with significant

improvements in terms of processing, storage and wireless

communication capacity, suggests the possibility of creating ad-hoc

networks. In view of this possibility, the need of developing

applications for these networks increases. However this

development implicates that programmers master areas of which,

sometimes, they are not prepared for. Therefore this work proposes

the creation of a middleware that releases the programmers of these

duties, implementing them in a correct and effective way –

OBIHOC. The OBIHOC middleware is a solution that proposes a

data replication mechanism that allows maintaining unaltered the

application’s functions. The use of this mechanism allows a more

efficient management of the resources used by the application (e.g.

memory), as well as the possibility of using it on an ad-hoc

environment, supported by multiple wireless communication

solutions (Wi-Fi and Bluetooth) - Furthermore, it implements a

DGC mechanism coherent in the presence of replicas as well as the

use of SPL language, for specification and security policies

implementation.

1. INTRODUCTION

In this world where technology advances by leaps and

bounds, the technical developments that arise are numerous.

If the computers are practical, without which the reality we

know today would be totally different.

Through these technological advances, the paradigms of

these devices have suffered many changes. One of the

paradigms most popular is the mobility, i.e., users no longer

have to move to their desktop, because these devices will be

permanent with users. A practical case, and has a huge use,

mobile phones. Who hasn´t one?

Although this new paradigm had brought the requirement

for new features, the limitations of these devices to the

energy level, memory and processing are a problem to

resolve. Beyond these equipment’s limitations, other

priorities such as the ability to be always connected don´t be

ignore.

To gather this priority, currently we are dependent on

structured networks – Wi-Fi [1], Bluetooth [2], GPRS [3].

This limitation sets rather the ability to create a customizable

network, i.e., independent of the generic service that is

offered to all members of that network as well as their

availability. In addition, these networks are mostly associated

direct costs for the user.

As an example, consider two people are in a garden and one

of them wants to share some content from her digital library.

At this place does not have access to any external network

infrastructure. In a real case that would be difficult to realize

this change of content. But if the contents are in mobile

devices and these devices are within range of each other,

which need to connect to an external network if the person

you want to swap the contents is right next to me?

Thus, it is natural to consider that the ad-hoc networks

facilitate the development of new applications. However,

developing these applications is complex because it is

necessary to deal with various problems in low-level layers of

the system - system-level - for which most programmers are

not ready. In addition, programmers would be forced to

deviate from the application logic, for which they are

prepared and which should be concentrated.

For these reasons, this was designed, implemented and

evaluated a middleware OBIHOC, which has the following

characteristics:

 Paradigm Flexibility: allows programmers to develop

applications using either RMI, object replication, or

mobile agents, according to the specific needs of

applications.

 Automatic Replication: supports distributed memory

management capable of dealing with object replicas

automatically (incremental replication).

 Distributed Garbage Collection (DGC): supports the

automatic reclamation of useless replicas.

 Security Policies: supports the definition and

enforcement of history-based security policies well

adapted to agencies needs.

 Ad-hoc network: supports the entrance and exit of

devices on the network.

2. RELATED WORK

This piece of work can be related to several different

systems currently in existence which supports remote object

invocation, replication, DGC, security and ad-hoc networks.

However most of them just provide some of the mechanisms,

not all. OBIHOC provides paradigm flexibility (RMI,

replication and mobile agents), automatic replication, DGC

(consistent in the present of replicated object) and security

politics.

CORBA’s [4] aim is to develop and specify an

infrastructure for distributed systems based on objects

(reutilization, portability and interoperability between

heterogeneous distributed systems). It is a system drawn to

provide support for replicated objects on a wide scale

network, such as World Wide Web. The key word is

transparence, based on client / object communication. This

system does not provide DGC mechanism, security politics

or implementation ability on an ad-hoc network.

Javanaise [5], a platform developed on JAVA, offers

support to collaboration between Internet’ distributed

applications. With this platform, programmers develop their

2

applications as if they were centralized. After this, they build

up the application to became distributed, don´t being

necessary any change on font code. Then, an automatic

mechanism generates all the needed data structure.

Nevertheless, Javanaise does not allow incremental

replication (although programmer can define a group of

objects), nor definition of security politics, mobile agents or

DGC.

Thor [6] is an OO data base management system.

Developed for heterogeneous distributed systems, it makes

possible programs written on different languages to share

objects. This system allows users to store and manipulate

objects that capture the semantics of their applications.

Besides, it provides users a range of persistent objects. These

can refer other objects, allowing the use of objects structures,

such as graphics and trees. In order to support heterogeneity

Thor has a specific language, independent of the ones of

programs. This language allows the development of

hierarchic systems to hold applications evolution. Notice

Thor provides a limited DGC mechanism once it does not

include replica existence.

Object Space Voyager [7] is a mobile agent system based

on Java. An agent is an object with the ability to move on a

network. On this system, is introduced the concept of virtual

object, this is, a representation of an object or agent using a

proxy. With OSV, it is possible to transform any object on a

mobile agent, using a virtual compiler. However, this system

does not make available automatic replication mechanisms or

DGC.

OBIWAN [8] is a middleware platform that allows develop

distributed applications without the programmer is compelled

to deviate from the application logic. With the OBIWAN the

application allows to decide, at runtime, the mechanism by

which object should be invoked: remote call, local call or

mobile agent. The creation and management of replicas is

done transparently, however the programmer can control, at

runtime, the amount of replicated objects. Concerning DGC,

the OBIWAN provides a mechanism that resolves some of

CGD caused by replication of objects, for example, the

possibility of replicas. This system supports the use of mobile

agents and consequently a security mechanism. This

mechanism uses the definition and implementation of

security policies based on previous events. This support is

extremely important because it allows the organization

security policy, in which the agent's past behavior influences

the permissions.

7DS [9] is a system that allows exchange of information

between devices that have an intermittent connection to the

Internet. In this system some of the participants in the

network obtain data from several servers on the Internet and

store data. After this operation the stored data can change

with devices that do not have Internet access. The data

changed could be web pages, maps, short clips, music and

another type of object with small size. 7DS provides some

mechanisms for data replication in ad-hoc network. However,

it provides no mechanism for DGC, or security policies or the

flexibility of paradigms.

Babylon [10] is a system that provides facility

development, implementation and parallel and distributed

management of Java applications mobile. This system

supports object migration, asynchronous method invocation

and downloads remote classes without authentication.

Furthermore, was given the possibility of application to

create and interact with remote objects, and can also protect

these objects from other applications. This system has not

support for security policies neither implementing an ad-hoc

network.

Ajanta [11] is a system based on Java mobile agents. The

main security concern of this system is seen to protect the

devices from mobile agents by implementing an access

control mechanism to protect the device. Have not considerer

past events.

SPL [12] is a system that defines a vast group of political

commitment and obligation, very efficient and controlled by

a safety monitor. Allows the creation of complex security

models such as access control based on preceding events,

discretionary access control and policies based on

obligations. Allows the definition of different kinds of

entities: objects, groups, rules and policies. Note that the

rules restrict the relationships between objects and groups

and the policies resulting from the decomposition of multiple

rules and groups.

3. ARCHITECTURE

OBIHOC it’s a middleware peer-to-peer, in the since that

all devises may work for clients or servers at any given

moment. This way, an application used on a devise, may

carry out tasks of server (supply objects for replication) or

client (demand the replication of objects from other devises).

Its Architecture was though out in a general form so that any

programmer could integrate it in its own application very

easily. Furthermore, it is easily adaptable to innumerous

options of existent hardware.

 From the point of view of the programmer, his application

will communicate directly with the other application,

however, this communication is established by OBIHOC,

allowing an abstraction form the communication method, as

well as the management of the objects to by replicated.

However, this abstraction cannot be total because it remains

to be an application that defines certain parameters, such as

the technology used in the communication (Wi-Fi or

Bluetooth for example) as well as the objects that may be

replicated (for example, choosing the depth of the

replication).

As possible of verifying in Fig. 1, the architecture of

OBIHOC as three modules:

• Objects management – module responsible of managing

the objects that may be replicated. It is also in this module

that DGC control takes place.

3

• Security – module responsible for validating the security

policy.

• Communication – module responsible for the transfer of

objects between devices. It allows you to establish

connections with other applications and perform all

information exchanges needed.

Fig. 1 - OBIHOC architecture

3.1. OBJECTS MANAGEMENT

For the objects management, the architecture allows (1)

storage of information about which objects are suitable of

being replicated to other devices, (2) managing the

replication mechanism and invocation of local objects and/or

remotes and (3) guaranty the correct mechanism operation of

DGC.

This function uses five modules:

• OBIHOC – makes the connection between appliance and

middleware. It’s the central module of the whole

architecture, as it is he who unchains the majority of

processes that allow middleware operation.

• OBIRep – stores a data structure that allows the

management of objects replications. Furthermore, this

module has an active rule in the DGC mechanism.

• Master Object –stores information about the graphs of

objects that are suitable for replication.

• ID Generator – generates unique identifiers

The OBIHOC allows the programmer of the application to

define which objects odd to be invocated remotely and

locally. This way the programmer has the ability of defining

the best way of invocating the object, having in consideration

the needs of the application and the resources used by the

device.

The OBIHOC module unchains all processes needed for the

proper operation of middleware. Considering that an

application can be either used as client or as server or even

both, this module contains all properties for each case, for

example, an addition of objects graphs is a process typically

associated to a server, where as the request of an object

replication is typically associated to the client process. For

the operation of these, two modules are used– OBIRep e

Master Object.

The Master Object is responsible for managing the objects

identifiers, meaning, every time a new object is added to this

module a unique identifier is created. Furthermore, it

possesses a list that associates the graphs name to the object

identifier of the rout of that graph – LoohUp_table

The OBIRep is responsible for managing local and remote

objects, meaning that it manages the local objects as well as

the objects that were replicated from other devices. This

module consists of two lists. The local_list allows storing,

just as suggested by its name, data structures of local objects

that are suitable to be replicated for other devices. The

foreign_list is a list of objects that were replicated for other

devices. The utilization of this list allows the mechanism

DGC to be controlled, for as long as an object stays on the

this list, that means it was replicated e for that reason should

not be erased without the verification that it is in fact suitable

for being erased.

All objects stored in this list have:

 A numerical identifier (Long);

 A PropEntry – a data structure that allows associating

various attributes to that object;

o PropState: flag that allows to differ the various

status that the object might have – NONE, PROP_IN

e PROP_OuT.

o ObjRef: a reference for the local object;

o foreignID: identifier oh the position held by the

object in the foreign_list, after it has been replicated.

If this identifier has a value of -1 that means it still

hasn’t been replicated

If an object is marked with a flag NONE, that means it still

hasn’t been loaded, meaning, that it is necessary to obtain the

local object where it was stored, for example, a data base.

This flag is used in application that required persistent data

storage. The flag PROP_OUT allows identifying an object as

being local and suitable for being replicated. The flag

PROP_IN is used in devices to who the objects was

replicated, meaning, that during the process of replicating an

object, if this is successfully done, than that object is marked

with this flag. For the replication mechanism, the use of these

three flags is enough. However, more flag can be added

according to the security policy applied (for example to

prevent the object to be replicated outside the devise that

created it).

Fig. 2 - Adding object graphs

4

For the replication of objects it’s necessary to make a

request to an application so that it lets it be available. This

request consists on the graphs name and the reference to the

rout. Afterwards, starts an automatic process that analyses

every objects of that graph and if identified as an object

suitable for replication, it is given a unique identifier created

by the ID Generator and a PropEntry data structure is created

and a flag PROP_OUT is attributed. After that it is added to

the local_list which connects that identifier to the data

structure. On the example presented in Fig. 2 you may see in

detail that object B has been added with identifier 3 and

respective PropEntry.

In the end of the process, the graph e finally added to the

LookUp_Table list (Fig. 2), in the Master Object module.

From that moment on, this graph stays available to be

replicated for other applications.

3.2. REFERENCE MANAGER

The replication of object might cause some problems on the

application’s behaviour, since it’s necessary the execution of

a lower level mechanism in comparison to the application.

From de point of view of the application all objects are

locally invocated, however, in some cases this might not

happen, because the invocated object might not have been

replicated. It’s in these situations that reference management

is important, because this way it’s possible to maintain intact

the application’s behaviour. In the cases where the objects are

local, reference management is useless, because the

application might invocate them directly. Meanwhile in cases

of objects replication, this management gains extreme

importance, and that is one of main focus of this work.

Fig. 3 - Replication of "Graph Root" from D1 to D2, with deep 1

Consider the situation in which a device D1contains a graph

of objects prepared to be replicated to device D2. This graph

of objects is named ―Graph Root‖, being the root of the graph

object A.

In any given moment, D2 takes all the steps to initiate the

replication of the graph ―Graph Root‖ from D1 to D2, with a

depth of 1. After completing this process, we get a situation

like the one depicted in Fig. 3 (a) in which the root of the

graph as well as object B have been totally replicated from

D1 to D2 (1).The desired depth was 1 and for that reason the

remaining objects of the graph haven switched for proxy’s (

represented by ―C‖, ―D‖, and ‖E‖) in D2 (2). These proxies’

allow the application to continue to function even if it doesn’t

have the actual object, because these implement and

interfaces of the original object. Furthermore, the proxy’s

maintain a reference for the object of the device of origin (3),

allowing the application to do remote invocations on that

object.

In the case of an invocation of an object represented by a

proxy not being explicitly defined and a remote invocation, a

new process is automatically unchained to replicate that

object. Continuing the previous scenario but referring to Fig.

3 (b), the application makes a new invocation to object ―C‖,

which is in fact proxy C. A replication request for that object

is sent to D1. After receiving the new object, the process

reference update is initiated. In this case a method is

invocated on object B in order for this to pass referencing

object C, recently replicated (4), and the next C stars to point

at D, which is a proxy from de original object D from D1(5).

Finally, the proxy C stops being reachable and can now be

deleted (6). From that moment, any invocation to object C

will be done locally, allowing its repercussion on object C of

D1, and for that an update request is sent.

The OBIHOC allows the replication of a set of objects,

depending on the chosen depth, by doing so it minimizes the

resources used by the device, because instead of an object

being treated individually, they are grouped and replicated

together, avoiding needless references updates.

3.3. DGC

The use of resources on devices most be controlled to

guarantee that they are used in the proper way. This attitude

might lead to situations in which the objects are marked as

garbage, since they are no longer unreachable locally.

However, this situation should be treated carefully. The

object should not be treated just locally, but in a global

context, having in consideration all the replicas that might

exist throughout the various devices. This situation demands

that the referential integrity is maintained, meaning that the

objects should maintain their references for the correspondent

objects.

5

Fig. 4 - DGC scenario

Considering the scenario presented in Fig. 4, in which object

B on device D1 has been replicated to D2. In this case, object

B in D2 will also make a reference to Y in device D3, just

like in object D1. During the execution of application D1,

object B stops been reachable (1) and in D2, object B stops

referencing Y (2). In this case should Y be considered

inaccessible and garbage? In reality, object Y should not be

considered garbage, unlike what the majority of GC would

say. Object Y should not be considered garbage because

object B in D2 might be updated and considering that in D1

object B maintains the reference to Y, this update would

recreate the reference in D2 between B e Y (3). This way Y

should not be considered as garbage, despite that in D1 B it

stops being referenced and that D2 B, Stops referencing Y.

So, Y should only be considered garbage when the union of

all replicas stops referencing Y.

In relation to the local environment, the treatment of

inaccessible objects e left for the local garbage collector

(GC). In case of an environment distributed beyond the local

GC, collaboration between the GC and the DGC is needed.

For the proper function of this algorithm, existent lists form

module OBIRep are used – local_list e foreign_list. When an

object is replicated to another device, the module OBIRep

executes two actions on these lists:

1. Creates a new PropEntry similar to the existent in

local_list, however this one has a new field – hostID.

This field is a list of all the other devices to which the

object has being replicated to. Furthermore, each

element of that list is assumes the device identifier as

the local identifier of the object in that device.

2. The PropEntry of the object replicated from the

local_list in updated, meaning that the value of the field

foreingId comes to be the position of the object on the

foreing_list.

With these two actions the collaboration between local GC

and DGC is possible because when an object is locally

inaccessible it is marked has being garbage. However, before

the object is definitely eliminated, the DGC mechanism will

verify if there is any existent reference for that object on the

foreing_list.

If it exists that means that the object was replicated to

another device and therefore should not be eliminated

without verifying if it is globally inaccessible. For this

verification a message is sent to the device for which the

object has been replicated so that it can verify if it is

inaccessible. In case of a positive response, the next device to

which the object has been replicated will be contacted. If

there is a positive response from all the devices, the object is

considered globally inaccessible and, therefore, suitable of

being locally removed.

However if one of the devices gives a negative response,

then the object should not the removed, because it might be

updated and this way becoming accessible again, just like

represented in the example on Fig. 4.

In the case of an object been replicated, already being

registered in the foreing_list, meaning that it has already been

replicated to another device, that information will also

transferred in the process of replication. Besides that, all

devices to which the object has been replicated will be

notified. This situation creates two rules:

 Before a copy is sent, all devices to which the object has

been replicated should be notified, to add that fact in the

hostID field of the respective PropEntry.

 After a copy is delivered, the device should notify all

devices to whish the object was replicated, informing the

local identifier of that object, to confirm the delivery of

the object.

Summarizing, this DGC mechanism allows an object to

only be considered garbage, when globally inaccessible,

meaning, when all the existent copies won’t reachable that

object.

3.3. OBJECT MIGRATION

To support the possibility of objects migration, namely the

use of mobile agent, the architecture used is similar to the

objects replication situation. However there are a few

changes due to the characteristics of these agents. One of the

main characteristics of mobile agents is the capacity of

moving throughout the network to execute their functions.

Therefore, is crucial that this movement is taken into

consideration within the architecture of OBIHOC. When the

application creates a mobile agent, two other data structures

are created and associated to that agent:

 Home Agent – this module allows a interaction

between the application and the mobile agent and is

located on the device from which the agent was

launched. It’s in this module that the information about

the agent’s location is kept.

 Mobile Agent – this module interacts with the home

agent module and moves side by side with the agent,

meaning that it’s logged in the same device as the

mobile agent.

6

These data structures allow the application to interact with

the Mobile Agent without it needing to know the location of

the Mobile Agent, because the communication e mediated by

the Home Agent and the Mobile Agent. So we can see the

Mobile Agent as an extension of the Home Agent in the

device visited by the agent. With this mechanism the

application doesn’t need to know the location of the agent to

interact with it. This interaction is made by the OBIHOC,

making in completely transparent to the application.

3.4. COMMUNICATION

The replication of objects needs the existence of two

components: (1) a server to arrange objects and (2) one or

more clients that may interact with that server.

Considering that this work is focused for an ad-hoc

environment, various aspects have to be taken into account:

 An application should have the possibility to perform

the role of the server and client at the same time or one of

the cases separately

 The characteristic of mobile devices, namely in terms

of processing and memory

 The communication technology being used

The architecture for this component is composed of three

modules:

 Session – module responsible for the connection. In

this module some parameters are established, such as

the technology being used and the properties of the

connection.

 Client – module that implements the protocol

communication, meaning that it creates types of data

to be sent in requests to the server.

 Server – module that receives the coming request

from the various clients. In the case of response to the

receive requests, this module is responsible for the

creation of data to be sent.

Of the previously presented modules, the session module is

the one that needs a configuration from the application.

Considering the existence of various forms of wireless

communication – Bluetooth and Wi-Fi – it’s necessary that

the OBIHOC is more flexible as possible so that it allows the

use of these communication technologies. The technology

choose should by made the application, because only this

way the application can know its needs, so this module to be

created and configurated by the application. During this

process the application should indicate which technology

should be used, as well as the respective properties.

During the execution of this process there are some

compulsory parameters, in the previous case, the IP e the

server’s port. However there are some optional parameters

that may be defined:

 Timeout – total time in which the session is valid. In

the precious example that time would be five minutes.

The use of this parameter allows the application defines a

reasonable time line for the connection to stay active.

This way its possible reduce needles use of the resource

in the case of a time line not being defined, a predefined

time line (5 minutes) is set.

 User – Identifier of the network application. In the

case of this parameter being omitted, it will be generated

by using a device property, for example de IP address.

 Security protocol– The security protocol being used

during the. This protocol should be defined by the

application e can include for example, authentication

and/or cipher de switched data. In the case of this

parameter being omitted no security protocol will be used.

Considering the countless applications that may use this

middleware, it was necessary to create a communication

architecture that was flexible enough so that it can adapt itself

to each applications needs. For example, the use of a security

protocol on an application in which the data exchange doesn’t

need to be secure, this would be using resources that are

important for the device.

To start server, the application should indicate the port

where this will be waiting to receive the requests. From this

moment the server is adequate to receive object graph from

application and letting them be available for the other

devices, without it needing to interact with the server.

The establishment of the security protocol should be made

by the application’s programmer, because only it can know

the best security mechanism to be used (for example, an

authentication method and the algorithm cipher).

3.5. SECURITY

For the security policies definition, the architecture

OBIHOC uses a SPL language. Due to the previous

announced characteristics the use of this language was the

most suitable considering the environment of the applications

use.

Due to the characteristics of this work, namely the

migration of objects between devices, it’s essential to be able

to offer a security mechanism of the own device and of the

objects present in the migrations. In the specific case of

OBIHOC, the main concerns are related to:

 Interaction between Mobile Agents and devices – The

inappropriate use of resources from a ill intentioned agent

on a device and vice-versa;

 Interaction between agents – unwanted interaction

between mobile agents.

The security component has five modules:

7

 Events Filter – module allows to detect which events

can unchain the need of analysing the security policies;

 Security policy – the security policy to be presented for

validation;

 Context information – information associated to the

policy that is going to be used;

 Security monitor – module responsible for analysing the

security policy presented. For this analysis this module may

resort to context information presented along with the

security policy. After the analysis, the policy will be

validated or rejected.

 Events register – module responsible for the storage of

important events and will be used for situations in which

passed events influence the validation.

During the execution, OBIHOC may unchain several types

of events and for that reason the use of an events filter is very

important because it prevents the needles use of resources on

the device. When an unchained event endangers the device

(migration of remote objects or invocations are some of the

examples) the security monitor receives an authorization

request for the event’s execution. After the analyses of the

security policy and respective context information, the

security monitor informs the system if the event is authorised

or not, notifying the events register about the decision as

well. For the security policies evaluation we resort to the

language for defining SPL security policies.

The SPL language is based on 4 entities: Objects, rules and

policies. The rules establish restrictions in the relation

between objects and groups. The policy results in the

composition of multiple rules and groups and these are the

main module of SPL language.

4. IMPLEMENTATION

This work was implemented for the Android operating

system [13]. This very recent operating system is focused

primarily for mobile devices, and so, it was chosen to be the

implementation platform. It is mostly an open-source

platform and, therefore, very attractive for programmers

developing new applications. It also has available a Software

Development Kit (SDK) that allows the simulation the

operating system behavior, replicating a mobile device.

The applications for this operating system are developed

using Java programming language [14]. Therefore, OBIHOC

was also developed in this language, running on a Java virtual

machine [15] (JVM - Java Virtual Machine). Furthermore,

the JVM supports several features to be used - RMI, sockets.

One of the positive factors is that OBIHOC requires no

changes to the JVM and this reason makes it easily portable.

4.3. CLASSES AND INTERFACES

To facilitate the implementation of OBIHOC in any

application, it was necessary that these classes extend some

OBIHOC specific interfaces as well as the creation of a new

class - proxy. The required interfaces are:

 IMobihocObject – allows the objects to have a property

that will be changed by the identifier generated by

OBIHOC. Classes that implement this interface are

considered possible to replicate and therefore should also

implement the interfaces IXMLTranspor and IDemander /

IDemandee.

 IXMLTransport – allows the conversion of a class into

an object, possible to be replicated by OBIHOC along with

its recovery in the device on which was replicated.

 IDemander – allows changing the references after the

arrival of a replicated object in exchange with the proxy

that replaced it.

 IDemandee – allows running the replication process

automatically. Thus, when a proxy is invoked, starts

automatically the replication process of the corresponding

object.

For the proper implementation of OBIHOC on the

application, the programmer must:

1. Define the interface of the class and implemented.

2. Implement, on the class, the interfaces (1)

IMobihocObject, (2) IXMLTransport and (3)

IDemander.

3. Create the class proxy that implements the interface of

the object and (1) IMobihocObject, (2) IXMLTransport

and (3) IDemandee.

To implement the communication process it was used a

very simple and minimalist solution. In order to reduce the

resources used on the communication devices, the

communication is performed using the direct communication

features offered by the JVM (sockets).

Given the similarities between SPL language and Java,

most of compiler’s actions are translation actions: each SPL

policy is translated into a Java class, each rule in a function

without parameters and SPL objects are translated into Java

interfaces.

This work was developed using the Eclipse IDE, Galileo

version. It was used the ADT plug-in (Android Development

Tools) because it allows the integration of the IDE with the

SDK, with the focus on two tools: (1) ADB (Android Debug

Bridge) to debug and (2) DDMS (Dalvik Debug Monitor

Server) for control and management of the processes and

resources used in the emulator. The SDK version 2.2, the

latest version available, was also used.

5. EVALUATION

The evaluation of the work was done in two stages: (1)

definition of a microbenchmark and (2) performance analysis

of an application developed using OBIHOC. Through this

second method, it is possible to get credible results so that the

8

work can be evaluated in a realistic scenario. The evaluation

will be based on the following aspects:

• Resources used in the device – Due to memory and

processing limitations in mobile devices, it is essential to

analyze the impact that OBIHOC’s execution will have in

these devices.

• Communication overhead – Since the use of ad-hoc

networks implies data exchange between devices, it is

important to minimize the overhead of data exchanged.

• Impact in the application – Despite the extra features

given to the application, these should not influence the flow

of the application, so that the desired transparency isn’t lost.

In this chapter, the developed application is explained as

well as how the executed tests have contributed to the

gathering of relevant results for the evaluation of the work. In

each of the following subchapters, the work flow for the

gathering of data, its importance and analysis are explained.

5.1. DEMO APPLICATION

The demo application, called Digital Library, is an

application designed and developed for Android version 2.2.

This application allows the checking, adding, editing and

erasing of different content in this library. Content can be of

three types: (1) audio (music, voice recordings, etc.), (2)

documents (books, reports, etc.) and (3) videos. This

application shows the advantages of using it in an ad-hoc

network, giving it extra features. Among the extra features, it

should be highlighted:

• The possibility of sharing content library without the

need for an external service, using just its own ad-hoc

network.

• The possibility of having the application executing,

through content replicas, despite communication

failures. This situation will most definitely occur in an

ad-hoc network since these networks are bound to have

devices entering and leaving the network at any time.

• More efficient use of device capabilities. Since this

application can transfer high quantities of data, it is

important that this data is really necessary for the

intentions of the user.

5.2. TEST SCENARIO

For the evaluation of this work it was created a test scenario

which uses the application Digital Library. This test scenario

is based on the access of all the contents in a remote library in

a sequential way, in other words, first the properties and

content of all audio are accessed, after these the documents

and finally the videos. There is a file associated with each

content, kept in the local machine with the following

properties:

 Audio – .mp3 file with 484KB;

 Document – .pdf file with 100KB;

 Video – .mp4 file with 988KB;

The application was configured so that, during its

execution, if some object is invoked but, it in fact represents a

proxy, the process of replication is automatically started for

that object and later, the wanted method is invoked on that

recently replicated object. The depth to be applied in this

process depends on the type of test being executed.

This scenario was done using two emulators executed in a

PC with a Intel® Core(TM)2 Duo processor, 3GB of RAM

memory e with the operating system Windows 7

Professional. Due to the fact that the emulators were being

executed on the same machine, the communication speed

reached didn’t match the reality. For this reason, the

emulators were configured so that they showed a

communication speed close to that of the communications

protocol HSDPA, commonly known as 3.5G.

5.3. RESOURCES USED

Just like it was referred before, mobile devices have several

limitations in resources. In this case, the access time for a

certain object that hasn’t been replicated yet will be analyzed

as well as the total memory used in the device.

5.3.1. ACCESS TIME

To get this data results, the test scenario referred before was

executed with a depth of 0, in other words, each object is

replicated individually, leaving aside the situation where a

group of objects is replicated. The replicated library had 10

audio contents, 10 documents and 10 videos. This scenario

was executed 10 times, being the shown results the average

of the execution of the scenarios.

Fig. 5 - Access time to remote object

Fig. 5 represents the total percentage of time used by each

process during the replication process. The processes

represented in the graphic are: (1) creation of data structures

to be sent from server to client (in blue), (2) conversion of the

information, received from the server, to objects being used

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

9

by the application which includes the reference manager (in

red) and (3) data transfer over the network (in green). As one

can see, most of the time needed to access a file that hasn’t

been replicated yet, is used in the data transfer between

devices. This let’s one conclude that the use of this

middleware does not affect directly the response time of the

application, since the data exchange is independent from the

middleware and essential for the application’s proper

operation.

5.3.2. MEMORY USAGE

To get this data results, the test scenario referred before was

executed with a depth of 0, in other words, each object is

replicated individually, leaving aside the situation where a

group of objects is replicated. The replicated library had 20

audio contents, 20 documents and 20 videos.

Fig. 6 -Memory usage on device

Fig. 6 represents the memory used in the device, during the

execution of the test scenario described before. Looking at

the graphic, one can see three distinct slopes. Each of these

represent the invocation of each content type, in other words,

the invocation from 0 to 20 are audio contents, from 20 to 40

are documents and the remaining are video content. Since the

test used files with the same size for the same content type,

the memory usage in the device is constant during the

invocations of the same content type. For this reason, the

three moments have different slopes that depend on the file

type associated to that content.

With this data, one can see that the integration of OBIHOC

with the application allows reducing the usage of unnecessary

resources in the device, in a way that, only the necessary data

for the user to interact with the application is transferred and

stored in the device. Although this could be done by the

application, it would require a lot of effort by the

programmer. With the integration of OBIHOC, these features

are easily associated with satisfactory results.

5.4. COMMUNICATION OVERHEAD

Since this application runs on a mobile environment, it is

necessary to check data overhead exchanged between

devices. For this reason, the test scenario was executed 10

times and the data collected indicated the quantity of

information exchanged in which had also the quantity of data

transferred that corresponds to the really useful data for the

application.

The number of bytes for each data type exchange between

devices was analyzed, in other words, the number of bytes

received for each object and the number of bytes that ended

up being useful for the application. Each value was obtained

through the average of the execution of all test scenarios.

Fig. 7 - Overhead data transferred

Fig. 7 represents the percentage of data received (in blue)

and the percentage of excess data (in green). The Content

object shows a distinct behavior with a percentage very close

to 100% for useful data. This is a normal value since the

replication of this object implies the transfer of high

quantities of data (data associated to a file). This excess data

result from the data structure created by OBIHOC, in which

the object to be replicated is inserted. This structure has

several parameters that allow for the proper execution of

OBIHOC, for example: identifier of the request type sent,

identifier of the object and the list of the devices for which

the object was already replicated.

6. CONCLUSION

Technological advances in mobile devices provide the

possibility of incorporating new features. Due to significant

improvements in processing, storage and communication

capacity wireless mobile devices are increasingly present in

our professional and personal lives. However there are still

enough options to be explored, including the creation of

applications that benefit from a distributed environment, for

example an ad-hoc network.

However the development of applications in this

environment means that programmers dominate areas for

which, in most cases, are not prepared. Moreover, these areas

differ from the logic of the application, which the

programmers should be concentrated. Thus this study

allowed developing a middleware that relieves programmers

of these areas, implementing them effectively and correctly.

Throughout the study analyzed various technical aspects: 1)

flexibility of paradigms, 2) automatic replication, 3) DGC

and 4) security policies. In addition to this analysis was

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

M
em

o
ry

 u
sa

g
e

(M
B

)

number of invocation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10

carried out research work on another works: for example

OBIWAN.

The evaluation work was performed in a controlled

environment using emulators. However this is not an

impediment to conclude, based on the results obtained, which

allows the use of middleware rather improve the

characteristics of applications, including: (1) integration on

an ad-hoc network, (2) control of resources to be used in

mobile devices, (3) using targeted security policies for each

application, (4) maintaining a consistent state in the presence

of replicas and (5) increase in functionality that will be

available to users.

Concerning future work is important to implement the

flowing features to improve this middleware:

 Developing a plug-in (for Eclipse) to assist the

development of applications

 Integration of a mechanism to automate the generation

and extension of code.

 Development of a graphical interface for defining

security policies.

 Possibility of integration of a protocol for data

consistency.

 Integration of the middleware in case on other mobile

operating systems.

7. REFERENCE

[1] M S Gast and M Loukides, 802.11 wireless networks:

the definitive guide.: OReilly & Associates, Inc.

Sebastopol, CA, USA, 2002.

[2] Brent A Miller and Chatschik Bisdikian, Bluetooth

Revealed.: Prentice Hall PTR, 2001.

[3] R Kalden, I Meirick, and M Meyer, "Wireless Internet

access based on GPRS," IEEE Personal

Communications, vol. 7, pp. 8--18, 2000.

[4] S Vinoski, "CORBA: Integrating diverse applications

within distributed heterogeneous environments," IEEE

Communications Magazine, vol. 35, pp. 46--55, 1997.

[5] D Hagimont and D Louvegnies, "Javanaise: distributed

shared objects for Internet cooperative applications," in

Middleware’98, 1998.

[6] B Liskov, M Day, and L Shrira, "Distributed object

management in Thor," Distributed Object Management,

pp. 79--91, 1993.

[7] A Silva, M Mira da Silva, and J Delgado, "An overview

of AgentSpace: a next-generation mobile agent system,"

Lecture Notes in Computer Science, pp. 148--159, 1998.

[8] P Ferreira, L Veiga, and C Ribeiro, "OBIWAN: design

and implementation of a middleware platform," IEEE

Transactions on Parallel and Distributed Systems, vol.

14, pp. 1086--1099, 2003.

[9] M Papadopouli and H Schulzrinne, "Seven degrees of

separation in mobile ad hoc networks," GLOBECOM-

NEW YORK-, vol. 3, pp. 1707--1711, 2000.

[10] W van Heiningen, S MacDonald, T Brecht, and M S

Witter, "Babylon: middleware for distributed, parallel,

and mobile Java applications," Concurrency and

Computation: Practice & Experience, vol. 20, pp. 1195-

-1224, 2008.

[11] A Tripathi and N Karnik, "Protected resource access for

mobile agent-based distributed computing," in

Proceedings of the 1998 ICPP Workshop on Wireless

Networks and Mobile Computing, 1998, pp. 144--153.

[12] C Ribeiro, A Zuquete, P Ferreira, and P Guedes, "SPL:

An access control language for security policies with

complex constraints," in Proceedings of the Network

and Distributed System Security Symposium, 2001, pp.

89--107.

[13] Google Inc. (2007, Abril) Android.com - Android at

Google I/O. [Online]. http://www.android.com/

[14] J Gosling, B Joy, G Steele, and G Bracha, Java (TM)

Language Specification, The (Java (Addison-Wesley)).:

Addison-Wesley Professional, 2005.

[15] T Lindholm and F Yellin, Java virtual machine

specification.: Addison-Wesley Longman Publishing

Co., Inc. Boston, MA, USA, 1999.

[16] The Eclipse Foundation. (2010) Eclipse.org home.

[Online]. http://www.eclipse.org/

http://www.android.com/
http://www.eclipse.org/

