
Project - Auditable Data Provenance in Streaming
Data Processing (revised)

Afonso Bate
afonso.bate@tecnico.ulisboa.pt

Advisors: Luis Veiga, Paulo Carreira

Instituto Superior Técnico, Universidade de Lisboa

Abstract. Stream processing is becoming more and more used in the field of Big
Data analysis. The need to analyze unbounded data and data that needs to be
processed in real-time has made batch processing obsolete in these cases. However,
data processing systems are not perfect and errors or incorrect computations can
lead to wrong results. When these wrong results occur we must inspect the flow
from the input until the result while understanding all the transformations that
lead to this outcome. This is useful both to understand why errors occur, but
also to justify certain results. However, due to the dynamic nature of stream
processing, data provenance in these systems poses a greater challenge. The works
and proposed solutions for this challenge are in its majority incomplete, since they
don’t provide fine-grained provenance, and those who do, are limited because they
are not a general solution to the problem. In this work, we present a survey of the
current state-of-the-art in stream processing and data provenance and lineage.
We also propose a solution to the problem of providing fine-grained provenance
in a stream processing system. We attempt to do this by inspiring ourselves in
a solution that provides fine-grained provenance for a fully deterministic stream
processing system implemented in Apache Flink. We improve this solution by
extending Apache Spark to provide coarse-grained and fine-grained provenance
for a stream processing system which includes deterministic and non-deterministic
operators.

Keywords: Stream Processing · Data Provenance

Table of Contents

1 Introduction . 1
1.1 Auditable Stream Processing . 1
1.2 Objectives . 1
1.3 Roadmap . 2

2 Related Work . 2
2.1 Stream Processing . 2

2.1.1 Stream Processing Systems . 2
2.1.2 Stream Processing Engines . 5
2.1.3 Relevant Related Systems . 10

2.2 Data Audit, Lineage and Provenance . 12
2.2.1 Relevant Related Systems . 14

3 Architecture . 17
3.1 Requirements . 18
3.2 Overview . 18
3.3 Detailed Description . 18

3.3.1 Stream Processing System . 18
3.3.2 Online Phase . 20
3.3.3 Offline Phase . 21
3.3.4 Provenance Management . 22

4 Evaluation Methodology . 23
4.1 Metrics . 23
4.2 Workload. 24
4.3 Setup . 25

5 Conclusion . 25
A Planning . 30

Project - Auditable Data Provenance in Streaming Data Processing (revised) 1

1 Introduction

Data processing has been around for millennia, but in recent times real-time informa-
tion has become more valuable with the increased use of information-collecting devices.
Nowadays, from Internet of Things sensors to smartphones, it’s easier than ever to obtain
information and the amounts of information gathered are greater than ever. However,
this raw data is some times of limited value and some of that information loses value
very fast after being collected. The typical data analysis technique of batch processing
does not satisfy these needs and this is where stream processing comes into play. Stream
processing queries continuous data streams and provides results of those queries almost
in real-time. One of the main advantages of stream processing over batch processing
is the ability to extract meaningful and timely insights from unbounded data. Stream
processing can handle and process never-ending stream of events, while in batch pro-
cessing you need to store the data, stop its collecting, and only then can you process
it. Another big advantage is the use of fewer resources, especially memory resources
since in batch processing the data needs to be stored in order to be processed, while
in stream processing, data is processed after being collected and then it’s discarded,
all in quick succession. This allows stream processing to handle larger amounts of data.
There are plentiful examples of domains of application of stream processing, namely real-
time fraud detection [19] and anomaly detection, Internet of Things [40] edge analytics,
cyber-physical systems [30], real-time personalization and recommendation systems [48],
marketing [27], and advertising.

1.1 Auditable Stream Processing

Just like any other software system, stream processing applications are not perfect and
some errors may occur, which lead to incorrect results. When these situations occur
it’s important to audit the data stream in question and trace data lineage to find what
caused that incorrect computation. However, providing this data provenance in a stream
processing system is not as easy as in a batch processing one due to the dynamic nature
of stream processing systems.

Data provenance consists of a system’s ability to trace the flow of data and the
transformations it suffered from input to output in order to justify a certain result. This
provenance is even harder to implement in systems that face massive amounts of data
since a result can result from a wide range of input data and it is hard to keep track of all
that source data. The state-of-the-art regarding provenance in stream processing systems
shows that most of the solutions are still quite limited. Most solutions only identify the
source data which led to a specific result, however, this can be insufficient to understand
and justify the correctness or incorrectness of those same results. A few works propose
more complete solutions, however, this area can still be studied and developed in more
depth.

1.2 Objectives

The main goal of this work is to develop a stream processing system capable of audit-
ing data streams and providing data provenance to justify and comprehend the results
obtained by our system. In order to accomplish this we set the following objectives:

2 A. Bate

1. Survey the current state-of-the-art in stream processing engines, compile the set of
key design decisions that make up those engines, and understand the shortcomings
of currently available solutions.

2. Study the relevant related systems in lineage and provenance for stream processing
systems, understand the set of key design decisions that make up those systems, and
understand the shortcomings of currently available solutions.

3. Design an architecture that extends a stream processing engine in order to provide
correct data provenance while reducing at most the implied overhead.

4. Implement a framework that will support our architecture.

5. Create a structured evaluation methodology for assessing that our future work fulfills
our requirements when tested on real-life environments and with real-life datasets.

1.3 Roadmap

The rest of the document is organized in the following way: In Section 2, we analyze the
related work. Section 3, describes our proposed architecture. In Section 4, we describe
how to evaluate our solution in terms of system metrics, and what workloads will be
used to test its performance. Lastly, Section 5 concludes our work.

2 Related Work

This section represents all the work we found to be relevant to the creation of our
proposed solution. We will divide this section into the two main topics of our work:
Stream Processing and Data Audit, Lineage, and Provenace.

2.1 Stream Processing

In this section, we will start by presenting the basic concepts of a stream processing
system and its archetypal framework. Then we will present a taxonomy to classify stream
processing engines. Finally, we will present some of the most used stream processing
engines and compare them based on the taxonomy previously introduced.

2.1.1 Stream Processing Systems

In order to facilitate the discussion of the relevant related systems, it is important
that we first understand the composition of a stream processing system. We start by
presenting an archetypal framework, as described in Fig. 1, which we believe describes
the components of a stream processing system as a set of layers. Despite having diverse
data domains and business logic, the layers we will present next are constant to the
data processing pipeline of distinct stream processing systems. We will describe the
importance of each layer to the overall framework of a stream processing system, how it
is implemented, and the technologies which are used.

Project - Auditable Data Provenance in Streaming Data Processing (revised) 3

Fig. 1. Framework of a Stream Processing System

Data Stream Ingestion Layer: Data ingestion in stream processing is the process
of transferring the received data streams from its source to its processing or storage
system in an efficient and correct manner. This layer is the doorway into the stream
processing system and it deals with input data streams derived from different sources and
parsed in distinct ways. These sources can be any element that can collect and transmit
time-sensitive data. Some examples are: social network APIs, IoT devices, REST Web
services, WebSockets, service usage logs and different stream processing systems. This
layer must be prepared to receive data streams in different types of input, such as
JSON objects, graphs [11], or plain text delimited by commas or tabs. The systems
implemented in this layer are known as Stream Ingestion Systems or Queueing systems.
MQTT1, ActiveMQ2, RabbitMQ3, ZeroMQ4 and NSQ5 are well known queueing systems
and Kinesis Data Firehose6, IBM WebSphere MQ7 and Microsoft Message Queuing8 are
commercial stream ingestion systems.

Data Stream Processing Layer: This layer is where the previously received data is
processed. The data can be processed by disjoint applications or by a stream processing
engine or even a combination of both. It’s through processing that value is extracted
from the data received. Today there is a large variety of stream processing engines, that,
unlike traditional engines, which run a periodical analysis over finite stored data sets,
can process data over dynamic unbounded data streams in real-time and in any given
time interval. They can process high volume and velocity of streaming data. Some ex-
amples of modern stream processing Engines are Apache Storm9, Apache Flink10, Spark

1 ”MQTT” https://mqtt.org/
2 ”ActiveMQ” https://activemq.apache.org/
3 ”RabbitMQ” https://www.rabbitmq.com/
4 ”ZeroMQ” https://zeromq.org/
5 ”NSQ” https://nsq.io/
6 ”Kinesis Data Firehose” https://aws.amazon.com/kinesis/data-firehose/
7 ”IBM WebSphere MQ” https://www.ibm.com/docs/en/ibm-mq/7.5?topic=mq-
introduction-websphere

8 ”MSMQ” https://learn.microsoft.com/en-us/previous-versions/windows/desktop/msmq/ms711472(v=vs.85)
9 ”Apache Storm” https://storm.apache.org/

10 ”Apache Flink” https://flink.apache.org/

4 A. Bate

Streaming11, Kafka Streams12, IBM Streams13, Amazon Kinesis14, Azure Streams15 and
Google Cloud Dataflow16. We make a more in-depth analysis of some of these engines
in Section 2.1.3.

Storage Layer: It’s common for stream processing systems to store analyzed data,
extracted knowledge, or even patterns found in different stages of data processing. This
stored information is organized and indexed along with external knowledge or meta-
data to be used in future tasks of the processing of data streams. Data storage in a
stream processing systems can be provided by a wide variety of solutions, like HDFS17,
a traditional file system, PostgreSQL18, a distributed file relational database, Redis, a
key-value store, VoltDB19, an in-memory database, MongoDB20, a document storage,
Neo4j21, a graph storage system, Cassandra22, a NoSQL database, or CockroachDB23

for NewSQL.

Resource Management Layer: This layer is responsible for the coordination of ac-
tions between compute and storage nodes, but is also responsible for managing the
allocation and scheduling of resources in distributed systems, so that parallel processing
of high volume and velocity of data stream are possible. Resource Management is even
more important when building multi-cluster distributed streams. Some tools to support
this are ZooKeeper24 or Twine25.

Output Layer: The final layer of a stream processing system is the one responsible
for handling the results from the data stream processing pipeline. After the data is
processed the produced results can be directed to monitoring dashboards, visualization
tools, different workflows, and applications, or simply stored in temporary or permanent
data storage for subsequent analysis. According to previous works [26, 34] these visual-
ization tools can be divided into four groups: (i) graph visualization tools for static and
dynamic graph visualization, (ii) text visualization tools for static and dynamic text vi-
sualization, (iii) map visualization tools for geographic data exploring, (iv) multivariate
data visualization tools for generic data types.

Now that we understand the framework of a stream processing system as a whole, we
will focus on the stream processing engines, which are the core of the system, and how
value is extracted from the data streams received.
11 ”Apache Spark Streaming” https://spark.apache.org/docs/latest/streaming-programming-

guide.html
12 ”Apache Kafka Streams” https://kafka.apache.org/documentation/streams/
13 ”IBM Streams” https://www.ibm.com/pt-en/cloud/streaming-analytics
14 ”Amazon Kinesis” https://aws.amazon.com/kinesis/
15 ”Azure Streams” https://azure.microsoft.com/en-us/products/stream-analytics/
16 ”Google Cloud Dataflow” https://cloud.google.com/dataflow
17 ”HDFS” https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
18 ”PostgreSQL” https://www.postgresql.org/
19 ”VoltDB” https://www.voltactivedata.com/
20 ”MongoDB” https://www.mongodb.com/
21 ”Neo4j” https://neo4j.com/
22 ”Cassandra” https://cassandra.apache.org/_/index.html
23 ”CockroachDB” https://www.cockroachlabs.com/product/
24 ”Zookeeper” https://zookeeper.apache.org/
25 ”Twine” https://twinery.org/

Project - Auditable Data Provenance in Streaming Data Processing (revised) 5

2.1.2 Stream Processing Engines

Stream processing engines are complete processing systems that include the Dataflow
Pipeline we described when we presented a stream processing system’s framework. They
are responsible for processing the data provided by the input data stream and extracting
some value from that data. Nowadays, there is a wide variety of these stream processing
engines, some being open-source platforms, while others are developed and commercially
provided by major software companies like Google, IBM, Microsoft, or Amazon.

To better understand what stream processing engine better suits our solution, we must
first understand what are its components. As we can see in Fig. 2, these platforms
are composed of four main components: Input Sources, where the data is read from,
Output Streams, where the processed data is written, Stream Processor, where
transformations and analysis are performed into the received data in order to extract
value, and State Management, which keeps store of the progress and the results of
former operations done by the processor.

Fig. 2. Components of a Stream Processing Engine

Based on some works [26, 20, 2, 32] it’s possible for us to propose a taxonomy that
takes into consideration the classification and main characteristics of stream process-
ing engines, which are, System Openness, Type of System, Architecture, Pro-
gramming Model, Data Partitioning Strategy, State Management, Execution
Semantics, Fault Tolerance and Deployment. However, there are also properties
and metrics that affect a stream processing engine’s performance and usability. After
reading and analysing some works regarding benchmarking of these engines [5, 29, 26,
10, 47, 28, 32], we concluded that Scalability, Performance and Resource Utiliza-
tion, must also be present in this taxonomy since they are a big factor when analyzing
any stream processing system. This taxonomy will be later used to help us compare the
state-of-the-art stream processing engines.

6 A. Bate

System Openness: Like any other software, stream processing engines can be either
Open-Source software when their source code is available to the public, so it’s easy to
make modifications to the systems, or Closed-Source software, when their source code
is not available to the public and can only be accessed with the payment of a high value
and if an authenticated license is acquired. Even after meeting these conditions, there are
a lot of restrictions on the usability and ability to make modifications to these kinds of
software. Apache Spark, Apache Flink, and Apache Kafka are examples of open-source
stream processing engines, while Amazon Kinesis and Azure Streams are closed-source.

Type of System: According to the work of Bockermann [3], stream processing en-
gines can be divided into four major types of systems, which are Query-based systems,
systems that originated from database research, Online Algorithm Research systems, sys-
tems which explores distinct algorithmic aspects of computing results from unbounded,
streaming data sources, and finally, General Purpose Streaming Data Processing sys-
tems, those that allow custom streaming applications to be implemented and executed.

Architecture: As previously mentioned, stream processing engines are composed of
several processes or nodes that must communicate and be coordinated with each other.
There are two architecture models that a system can implement to do this, and they
are, a Master-Slave model or a Peer architecture.

In aMaster-Slave architecture, one node or process is chosen as the master, which will
control the other nodes, who are known as slaves and will serve as their communication
hub. stream processing engines like Kafka Streams or Apache Spark use this architecture.

The Peer architecture divides the capabilities and responsibilities equally amongst all
of its composing processes or nodes. This architecture model is used by stream processing
engines such as Apache Storm and Apache Flume26.

Programming Model: Stream Programming Models define how a stream processing
engine works in general. However, we will divide this category into four distinct cat-
egories, Type of Streaming, Flow of Data, Storage System, and Application
Language.

Type of Streaming describes the method used by the system to process the data
flow it receives. It can be categorized into two types, Native and Micro-Batching. Native
models do real-time streaming data processing by continuously processing each tuple
received in the data stream, individually and as soon as they arrive. This allows time-
sensitive systems to receive valuable processed data quickly. Apache Flink and Kafka
Streams are some prominent stream processing engines that use this model. Micro-
Batching models split the input data stream into smaller batches through the use of
windows. These windows are usually defined by time duration or by record count. These
models are a middle ground between the typical Batch Processing and the processing
done in Stream Programming Native models, they are useful to systems that need fresh
data, but not real-time processed data. The most prominent stream processing engine
which uses Micro-Batching is Apache Spark Streaming.

Flow of Data in this case refers to the type of data models a stream processing
system uses to represent its data flow. It’s common for some systems to use Topologies or
graphs, like Directed Acyclic Graphs or Directed Computational Graphs to define their
data flow operations.

26 ”Apache Flume” https://flume.apache.org/

Project - Auditable Data Provenance in Streaming Data Processing (revised) 7

Storage System are responsible for the storage of data in stream processing en-
gines. Some engines provide native In-memory storage, but most of the others rely on
independent storage systems or Data Bases to fulfill this need.

Application Language is related to high-level languages supported by the stream
processing engines. Java, Scala, Python and others, are examples of these high-languages.
An engine’s ability to support several high languages, can provide the developers with
a greater choice of coding language, which can reduce the implementation time of pro-
cessing pipelines.

Data Partitioning Strategy: In some application areas it’s common for stream pro-
cessing systems to have to handle big workloads, so managing the resources and partition-
ing the data within the used stream processing engine is critical to achieving efficiency.
The two most commonly used partitioning strategies are Hash and Range, but there is
a wide variety of others within all the stream processing engines.

The Hash partitioning uses a hash function to examine an input record, which pro-
duces a hash value. Records with the same values are allocated to the same data parti-
tion. As for the Range strategy, the partitions to where the data is allocated depend on
the value of each tuple. Tuples with key values that fall within the same range will end
up in the same partition.

Some engines, like Apache Storm, don’t use one of these two strategies and instead
use specific grouping strategies to distribute incoming tuples among bolt tasks. These
grouping strategies can be a random distribution or based on a user-specified field,
among others.

State Management: In stream processing the processes can be represented as a di-
rected tree or a Directed Acyclic Graph composed of node operators and the output and
source stream operators. Operators can be Stateless or Stateful.

The output produced by Stateless operators is uniquely dependent on the input
received, while the output of Stateful operators, despite also being based on the input
received, can potentially be affected by information obtained from previous operations
and stored in internal data structures called states.

Execution Semantics: This feature of a stream processing system has a great effect
on the balance between its reliability and cost. Some systems may want to focus on
reliability and make sure that every message is received, while others are more focused
on the cost of processing, and losing some messages won’t affect their functionality. A
system can use one out of three semantics regarding message processing, and they are
At-Most-Once, At-Least-Once, and Exactly-Once.

The At-Most-Once semantics guarantees that a message will be delivered one or zero
times. If an event is lost during routing, then there will be no other attempts for it to
be delivered. This semantics has the least fault tolerance out of the three, but it’s the
simplest one.

The At-Least-Once semantics is commonly used by stream processing engines, it
ensures an event is delivered a minimum of one time. This is possible because there will
be continuous attempts to deliver a message until an acknowledgment of its delivery is
received. This may lead to situations where events are delivered more than once, because
the acknowledgment can be lost, and, therefore, processed more than once, resulting in
an additional cost to the system. This semantics is used by Apache Storm.

8 A. Bate

The Exactly-Once semantics is the optimal solution to guaranteeing an event is de-
livered and processed. However, it’s also the most complex. In this semantics, there is
the certainty of an event being delivered exactly one time through the use of multiple
acknowledgment checks, which provides the reliability that an event is delivered, but
also avoids additional costs that would be caused by data processing repetition. Apache
Flink and Apache Spark employ this semantics.

Fault Tolerance: Failures can occur in stream processing systems due to a variety
of reasons, and when they happen it’s important that the system remains operational
during the time of recovery. This demonstrates the system’s fault-tolerance capability.
However, the ability of a system to recover from a failure requires additional resources
and, therefore, an extra cost.

Fault Tolerance in stream processing engines can follow two distinct approaches,
Passive or Active. The Passive approach can be implemented through checkpoints, up-
stream buffer, and source replay, while the Active approach can be achieved through the
use of replicas.

Scalability: Scalability is an important property of any software system and one of
the most studied ones (e.g. [4]), but even more for a stream processing system. With
the evolution of technology and the increase of connectivity between people online, the
amount of data available for processing is constantly growing and stream processing
systems must be capable of handling that increase of data flow. Scalability is precisely
the capability of a system to process a higher workload without service interruption.
A system can scale-up when handling a bigger workload with the current resources, or
scale-out when using the current resources as well as newly added ones to handle the
increase in workload.

Scalability is a spectrum, some stream processing engines like Flink and Storm are
less scalable, while Apex27 is highly scalable, and Spark is in the middle of the spectrum.

Two big properties that influence a system’s scalability are Elasticity and Paralleliza-
tion. Elasticity guarantees a stream processing engine’s low latency against the variation
of workload. A system’s resource needs may vary depending on the workload, an elastic
system can scale its resources according to these needs. However, this creates the chal-
lenge of balancing between over-provisioning and on-demand scaling. Over-provisioning
is costly but can handle surges in the workload, while on-demand scaling is not as robust
to those surges, despite saving costs.

A lot of research has been done on how to increase elasticity in already existing
stream processing engines (e.g.de Assuncao et al. [13] and Wang et al. [53]).

As for Parallelization, stream processing systems parallelize processing to provide
high throughput and low latency despite the massive amount of data. However, the
workload or available resources can change at runtime and this creates the challenge of
how to continuously adapt the level of parallelization when these conditions change.

Frameworks like STRETCH [22, 39] propose a new concept of Virtual Shared-Nothing.
This work shows that is possible to define parallel and elastic SPE operators that, by
virtualizing the common Application Programming Interfaces based on Shared-Nothing
parallelism, can leverage shared memory to first scale streaming applications up while
allowing to rely on Shared-Nothing parallelism to later scale them out.

27 ”Apache Apex” https://apex.apache.org/

Project - Auditable Data Provenance in Streaming Data Processing (revised) 9

Röger and Mayer [44] propose a survey that overviews and categorizes the state of
the art in stream processing elasticity and parallelization.

Performance: Stream processing systems are designed to handle heavy workloads of
data to process online. For these systems, the main performance goals are low latency and
high throughput, they characterize a system with quality of service. A system with low
latency has the ability to process and react to new events in real-time, while throughput
is a metric that measures the number of data units processed per unit of time.

A number of works [44, 5, 29, 26, 20, 10, 47, 43] use these two metrics to evaluate the
performance of the most notable stream processing engines in an effort to benchmark
and compare them, while other works [22, 39, 7, 6, 38] propose or discuss solutions to
best the performance of these engines regarding to these metrics. From all these works
we can conclude that some engines prioritize latency, others throughput and some try
to find a balance between both. Some examples of this are: Storm and Flink, which
by having a native programming model, prioritize low latency by handling data items
immediately as they arrive, but present relatively high per-item cost; Spark, which is
a batch-based processing system, prioritizes high throughput at the cost of the time an
individual item spends in the data pipeline, despite achieving great resource-efficiency;
and finally, Spark-Streaming28, an extension of the Spark API, which by employing a
micro-batching model balances latency and throughput.

The work of Palyvos-Giannas et al.[43] stands out. In this work, the authors propose
Lachesis, a middleware system decoupled from any stream processing engine, which by
manipulating the OS scheduler enforces its desired scheduling goals. The performance of
several prominent stream processing engines, like Storm and Flink, with and without the
use of Lachesis was compared, and the results clearly prove that the use of this scheduling
middleware can provide higher throughput, as well as considerably lower average latency.

Another way to improve performance, and also optimize resource usage, is by limiting
the amount of data that is actually processed, addressing only the pending input is
considered relevant [36], possibly while observing and attempting at bounding result
error [15].

We also observed a current trend of fog and edge computing. Due to a lot of data
streams originating from devices at network edges, like IoT devices, processing the in-
coming data right at the source can reduce a system’s latency. However, this solution
presents a limitation, since these edge devices present resource scarcity compared with
cloud-based stream processing systems, so a high throughput is very difficult to achieve.

Resource Utilization: Besides latency and throughput, which can be directly per-
ceived by users, the other metric from which a stream processing engine’s performance
can be evaluated is resource utilization. Despite only being observed at the level of
the underlying stream processing system, this metric is crucial in the choice of engine.
It’s important for these systems to use distributed resources efficiently with minimal
overhead. This resource utilization can be CPU or memory usage.

Concepts mentioned before like scalability, elasticity, and parallelization can all be
used to improve resource utilization in stream processing systems. Such an example of
this is the work done by Gulisano et al. [21], which present a stream processing engine,
which reactively controls the average CPU utilization of the cluster hosting the operator

28 ”Apache Spark Streaming” https://spark.apache.org/docs/latest/streaming-programming-
guide.html

10 A. Bate

graph. This elasticity management is combined with a novel parallelization technique to
minimize the computational resources used.

There is also a considerable amount of works [44, 29, 47, 7] comparing and bench-
marking stream processing engines, as well as relevant literature on the topic, that
besides latency and throughput, also use resource utilization as an important metric.
From these, the work by Bordin et al. [5] stands out. By collecting consumption metrics
related to CPU, memory, and network utilization, extensive results were obtained and
an in-depth comparison between Spark Streaming and Apache Storm is provided.

Deployment: Stream processing engines may be deployed in successively larger set-
tings and more flexible manners. The simplest approach is to deploy locally on a single
machine, which is easy to implement but limits the system’s scalability, velocity, and ca-
pability to handle a lot of data. Systems that need to handle high velocity and volume of
data use Cloud or Cluster deployments. Cluster deployments still face limited scalability,
due to cluster size, and incur in high startup costs and low resource utilization. In Cloud
deployments, there may be increased latency but mostly unlimited scalability is achieved
via elasticity; here, scheduling and cost optimization become more relevant issues due
to the pay-per-use service model (as in continuous data processing [17]). Finally, stream
processing can be made further decoupled with components deployed at locations in the
edge of the network, closer to data repositories or input event sources [16] to address
latency and privacy concerns.

2.1.3 Relevant Related Systems

In this section we will go into more detail on the analysis of the stream processing
engines we found to be more relevant. These systems were chosen due to their prominence
in works regarding stream processing state-of-the-art and, because, they fit some of the
desired criteria or features that we highlight in the previously presented taxonomy.

It’s important to note that for the choice of relevant related systems, we took only into
consideration those with open-source frameworks. From the observed works [44, 5, 29, 26,
20, 10, 2, 35, 28, 32], we conclude that the most notable open-source stream processing
engines are Apache Spark, Apache Flink, Apache Storm and Apache Kafka
Streams.

Apache Spark This stream processing engine is very versatile, since it can be used
not only for stream processing, but also for batch processing and interactive queries,
and is also efficient for large-scale data stream processing. It offers high-level APIs
for Python, Java, Scala, R, and SQL. Apache Spark has the advantages of being a
mature product, with a large community and several real-world use cases that prove
its efficiency. It’s fault-tolerant and supports advanced analysis. However, Apache
Spark is not a true stream processing engine, it’s a batch-processing system that
performs very fast. It can present a latency of a few seconds in some cases and it
can also consume a lot of memory. To handle stream processing, the developers of
Apache Spark created a module named Apache Spark Streaming. Spark Stream-
ing shifts Spark’s batch-processing approach towards real-time requirements. This
is achieved by dividing the stream of incoming data into smaller batches. Spark
Streaming is the most popular open-source framework for micro-batch processing. It
presents all of the advantages of Spark since it’s part of its framework and runs on

Project - Auditable Data Provenance in Streaming Data Processing (revised) 11

top of a common Spark cluster. The incoming data is transformed into resilient dis-
tributed datasets, which are processed in order. However, data inside these resilient
distributed datasets is processed in parallel, hence having no ordering guarantees.
Later, the creators of Apache Spark also implemented a module called Structured
Streaming29. This module, just like Spark Streaming, uses micro-batches and
expresses streaming computation like one would express batch computation. Instead
of RDDS, this module uses Dataset/DataFrame APIs. This module is an upgrade
over the first one and brings Apache Spark closer to real stream processing. Apache
Spark and its modules have the great benefit of assuring end-to-end exactly-once
processing guarantee.

Apache Flink Flink is a native stream processor that can run stateful streaming appli-
cations and can be used both for batch and stream processing to compute unbounded
or bounded data streams from several sources, which is possible due to Flink’s ap-
proach to batches as data streams with finite boundaries. Flink ingests streaming
data from many sources, processes it, and distributes it across various nodes. Flink
has the advantages of providing exactly-once processing guarantees, presenting high
throughput with low latency, dynamic analysis and optimization of tasks, and an
easy-to-use User Interface. However, the disadvantages are that it can present some
scaling limitations, only supports Scala and Java, and there’s limited support from
the community.

Apache Storm This stream processing engine probably has the best technical solution
for true real-time processing. Storm can handle large quantities of data while pro-
viding results with low latency. Its architecture is based on spouts and bolts, spouts
being the origins of information that transfer this information to several bolts that
are themselves linked with other bolts. This topology forms a DAG, where spouts
and bolts are nodes connected through streams, which are the edges that direct the
flow of information. Storm has a simple API, supports a wide variety of languages,
and is very flexible and extensible. Even though Storm presents several advantages,
it also has some disadvantages when compared with other stream processing engines,
like the lack of a built-in windowing or state management feature, only providing
at-least-once processing semantics, and not providing any guarantee regarding or-
dering.

Apache Kafka Streams This is a stream processing Java API provided by Apache
Kafka that can be used to build real-time streaming data pipelines and applications,
giving developers the ability to filter, join, aggregate and group without writing
any code. Kafka Streams is very easy to integrate with other existing applications,
which offers low latency and replaces the need to have standard message brokers.
Nonetheless, it also presents some disadvantages like limited analytics, lack of point-
to-point queuing and other messaging paradigms, and struggling when there is an
increase in the number of queues in a Kafka cluster.

In Table 1, we can see a comparison of the previously mentioned stream processing
engines. It’s important to note that some elements of our taxonomy, despite representing
important characteristics and metrics of a stream processing engine, are not present in
this table because they are not relevant to the context of our work at this time or due
to there being no relevant differences between the mentioned engines regarding these
elements.
29 ”Apache Spark Structured Streaming” https://spark.apache.org/docs/latest/

structured-streaming-programming-guide.html

12 A. Bate

Table 1. Comparison of Stream Processing Engines

Stream Processing Engines

Spark Flink Storm Kafka

Architecture Master-Slave Master-Slave Peer Master-Slave

Type of Streaming Micro-Batch Native Native Native

Storage System HDFS, Cassandra
and others

HDFS, S3, RocksDB
and others

HDFS, Cassandra,
MongoDB and others

In-memory

Application Lan-
guage

Java, Scala and
Python

Java, Scala and
Python

Java, Scala, Ruby,
Python and others

Java and Scala

Data Partitioning
Strategy

Hash and Range Hash Grouping Hash

State Management Yes Yes Yes Yes

Execution Semantics Exactly-Once Exactly-Once At-Least-Once Exactly-Once

2.2 Data Audit, Lineage and Provenance

With the increase of data sharing and the massive amounts of data available to be
processed, stream processing systems face the challenge of keeping track of data sets’
sources and what influenced their state along their lifecycle. This puts into cause the
trustworthiness of a system and its data quality because it’s hard to trust results or
data processed when you don’t know where the data ingested came from or how it is
transformed along the stream processing pipeline.

In Section 2.1 we analyzed stream processing and the existing stream processing
engines as we detailed their framework, and most relevant characteristics and metrics.
However, no widely deployed and used stream processing engine incorporates a feature or
mechanism that allows one to trace back the processed data path and transformations it
suffered. To tackle this challenge, we must first understand the concepts of Provenance
and Lineage.

These concepts do not have a unanimous definition, however, in the context of our
work we will interpret them as the following:

Data Provenance Is the policy we want to add to a system to ensure we know the
origin of the processed data sets, their steps from their origin until the end result,
and the transformations they suffered.

Data Lineage Is the mechanism we want to implement in a system to provide Data
Provenance by tracing each data set’s course and changes.

In Fig.3 we can see a representation of a classification of Provenance considering
its granularity, according to [49].

Coarse-grained Provenance This type of granularity refers to provenance informa-
tion gathered at the level of stream or sets of stream events. It’s typical for details
regarding data transformations to be hidden. With coarse-grained provenance we
only know what source data led to a specific output, we have no information about
what happened between those stages.

Fine-grained Provenance This type refers to provenance information gathered at
the level of individual stream events, which provides more detail on what transfor-
mations might have originated that particular data item. Fine-grained provenance
gives us the information that coarse-grained provenance does not. With this type of

Project - Auditable Data Provenance in Streaming Data Processing (revised) 13

Fig. 3. Classification of Provenance regarding its granularity

provenance, besides knowing the source data that led to a certain output, we also
know all its values at intermediate stages of the data processing pipeline and what
transformations influenced those values.

It’s also important to note that lineage tracing can be distinguished into two types
according to where the tracing starts:

Backward Tracing Begins at the latest version and is used to find the origin of infor-
mation and data sets.

Forward Tracing Starts at the source of the data and is used to find which results
originated from a specific source tuple.

As we can see, data provenance is important to guarantee data quality by understanding
the data’s lifecycle, but that is not its only benefit. It can also be used to check the data’s
integrity, and help understand and justify the occurrence of some errors by providing an
audit trail.

However, as we can see from several works [33, 52, 57, 18] on the topic of data prove-
nance, this is not an easy feature to implement or to add to a stream processing system,
as it poses numerous challenges. To trace data’s lineage is an inherently heavy process
and ties the efficiency of the whole system to its own, since it can implicate an increase
in latency, a reduction of throughput and complications in memory storage. We can
conclude the main challenges are:

Storage To identify data provenance it is not sufficient to store the final results of the
processing and the data sources, it is also crucial to keep a record of all the inter-
mediate data objects and dependencies in an efficient manner. In stream processing
systems where the workload is already substantial and the input data enters at a
high rate, all the intermediate data and dependencies implicate that the total data
is multiple times larger than the source data.

Latency and Throughput Stream processing systems handle a high rate of incoming
data and one of the most desired attributes of one of these systems is the capa-
bility to handle a big workload while also giving near real-time results, however,
the implementation of a data provenance feature will cause significant overhead in
the system’s performance. The additional computation to trace data’s lineage will

14 A. Bate

cause delay, which means higher latency and higher throughput since the system’s
resources will be occupied for longer periods of time.

Determinism A deterministic system is a system that, given the same input, always
produces the same output. Due to the dynamic nature of stream processing systems,
it’s not possible for us to assume that a given input will always produce the same
output. To be able to reproduce a flow that leads to the output of a given data
set and trace its lineage, it’s important to keep track of intermediate data and
dependencies not only during the execution. We must then store the state, and the
data associated to it, at the time of the data processing, to ensure a replay of tasks
will always produce the same output.

2.2.1 Relevant Related Systems

Through extensive research we were able to find works that propose solutions to the
previously mentioned challenges while still providing correct data provenance in stream
processing systems and in this section we will summarize them.

GeneaLog The work by Palyvos-Giannas et al. [41] presents GeneaLog, a fine-grained
provenance system for support in deterministic stream processing engines. The main
contributions of GeneaLog are regarding storage cost. By leveraging a small, fixed-size
set of meta-attributes, common to every standard data streaming operators, for each
tuple processed by a stream processing system, it is possible to reduce the per-tuple
memory overhead that usually occurs in data provenance. Besides this, GeneaLog also
leverages the memory management of the process to identify which source tuples con-
tribute to the application output and which ones do not, in order to discard those that
do not contribute and subsequently save temporary storage that would be wasted by
that unnecessary data.

In this work, prototypes of GeneaLog were implemented on top of the Liebre30 and
Flink stream processing engines. The correctness and performance of these prototypes
were evaluated and the results allowed to conclude that GeneaLog provides correct data
provenance while also minimizing throughput and latency overheads when compared
with other state-of-the-art provenance systems.

Ananke A different approach is followed in [42], where the authors present Ananke,
a framework that extends any fine-grained backward provenance tool and produces a
live bipartite graph of fine-grained forward provenance. This framework was built to
tackle the issue of the lack of streaming-based tools for forward lineage tracing. Ananke
has the benefit of not only providing to the user the source tuples that contribute to
every output, but also identifying which of those source tuples can still generate future
distinct outputs, preventing duplication, which can reduce the memory cost, since there
is no need to store the tuples that can no longer generate distinct results or store the
same results more than once. This is possible, through the leveraging of native operators
of the underlying stream processing engine, by enabling specialized-operator-based and
modular implementations that use those operators.

The authors implement two variations of the framework in Flink, one showing how
Ananke’s algorithm can be parallelized, which allows for the income of higher amounts of
provenance data, and the other focused on optimizing the labeling of the expired source

30 ”Liebre SPE” https://vincenzo-gulisano.github.io/index

Project - Auditable Data Provenance in Streaming Data Processing (revised) 15

data as fast as possible. The authors proved Ananke’s correctness and results regarding
rate, latency, throughput, memory, and CPU utilization were obtained and they show
that, despite presenting small overheads, this framework can provide live forward lineage
tracing with similar overheads to the state-of-the-art in backward lineage tracing and
outperform Genealog, the system presented before and the system that Ananke extends
and uses to provide backward lineage tracing.

s2p Ye and Lu [57] present s2p, a provenance solution for providing fine-grained and
coarse-grained provenance in stream processing systems. Inspired by the philosophy
of lambda architecture [31], the design of this solution combines online provenance,
used to trace and map the lineage from source data to result data, thus providing
coarse-grained provenance, with offline provenance, used to provide detailed information
regarding intermediate results or transformation processes, which provides fine-grained
provenance.

The authors follow the logic that, in a stream processing system, abnormal results
are rare, and the results that require an in-depth analysis are even rarer; so there is
no need to track in detail the transformations and lineage for every input data, an
approach followed by several systems, which causes major overheads and costs to the
system. Instead, s2p targets detailed lineage of only a limited set of data considered to
be relevant by replaying that data in an independent cluster. This solution also takes
into account operator states, considering the semantics of each operator when analyzing
the relationship among data and considering state transformation of stateful operators
together with the data transformation process in lineage analysis. Another beneficial
feature of this solution is managing data locally and only aggregating some chosen data
if a lineage query happens, which contributes to reducing the cost of data transformation
in the system.

A prototype of s2p was implemented on Flink and three experiments were con-
ducted. Although these experimental evaluations were conducted in a resource-limited
environment, the results show that s2p causes an increase in end-to-end cost, a decline
in throughput, and a limitation in memory storage. However, by comparing these results
with other existing provenance solutions, the authors were able to conclude that the run-
time overhead achieved is acceptable, taking into consideration that this solution targets
more provenance-related data. It’s also important to note that s2p is limited since it can
only provide detailed lineage results for a stream processing engine consisting entirely
of deterministic operators.

Ariadne One of the earlier systems we encountered that tackles the challenges of fine-
grained provenance for stream processing systems is Ariadne, presented by Glavic et
al. [18]. The authors introduce an approach that by modifying the behavior of oper-
ators, also known as operator instrumentation, can provide fine-grained provenance.
The Reduced-Eager operator instrumentation is an approach that consists of eagerly
propagating a form of lineage during query execution and lazily reconstructing lineage
independent of the execution of the original network.

This approach implemented in Ariadne has the disadvantage of having a greater cost
for storing and reconstructing tuples. However, due to the compressed representations
used, this cost is offset thanks to better performance in terms of runtime and latency.
This approach also gives the user the power to only request the lineage tracing of specific
results and has the advantage of being able to correctly handle non-deterministic oper-

16 A. Bate

ators. The Replay-Lazy and Lazy-Retrieval techniques are also implemented to provide
additional optimizations to decouple lineage computation from stream processing.

The authors conducted an experimental evaluation which by using a variety of pa-
rameters and workloads assesses the computational cost and latency of the system. The
results allow the authors to validate the correctness and effectiveness of Ariadne’s im-
plementation and prove that, although presenting minor overheads, the system clearly
outperforms query rewrite, the state-of-the-art at the time of the work’s publication.

SAC Another system that claims to enable interactive data provenance in stream pro-
cessing systems is presented by Tang et al. [50]. The system is called Spark-Atlas-
Connector or SAC and extends Apache Atlas31. SAC can be easily implemented in
Spark, needing no modifications to the stream processing engine or additional users’
inputs, in order to provide an efficient query interface to manage the captured data lin-
eage. The system also presents the advantage of providing data lineage tracing to all the
processes in the stream processing pipeline and supports different data storage, as well
as distinct stream processing paradigms. SAC also has the ability to provide a visual
representation of data lineage, which allows the user to understand the flow of data from
its source to the output stream.

This system achieves efficient data lineage tracking for more than 100GB per day,
a conclusion that was taken from the results of this system’s real-world deployment.
However, this system has the major difference of focusing on coarse-grained provenance,
while all the previous works mentioned focus on providing fine-grained provenance.

Visualization Tool Another work with a similar feature of providing a visual rep-
resentation of lineage to the users is proposed by Yazici and Aktas [56]. The authors
propose a real-time visualization method of data lineage through the use of graphs. The
authors also implemented the use of forward and backward tracing to identify post or
prior relationships of any data tuple. Two other relevant features in this work are first: i)
the ability to summarize the provenance data acquired to only the more relevant aspects
since this data can be of a very large scale; ii) the ability for users to compare lineage
graphs, which can be very useful in understanding anomalies.

The implemented prototype visualization tool and the visualization methods it uses
were evaluated through an experimental study using two distinct data sets. The obtained
results proved the visualization methods proposed present an insignificant processing
overhead and are scalable.

Lineage Tracing Framework Zvara et al. [60, 59] present a lineage tracing frame-
work design for batch and streaming processing systems. The authors propose this so-
lution with the goal of detecting inefficiencies in lineage tracing to increase performance
and reduce the overhead in these systems.

Lineage is found by wrapping each record and capturing record-by-record causal-
ity. The authors also sample incoming records randomly to reduce overhead, which
contributes to efficiency optimization. The main advantages of this solution are its suit-
ability for batch and streaming data processing, as well as being able to trace lineage in
multiple systems, with the same framework. To perform an experimental evaluation, two
distinct prototypes were implemented on Spark, one for batch processing and another
for stream processing.

31 “Atlas,” https://altas.apache.org/

Project - Auditable Data Provenance in Streaming Data Processing (revised) 17

Through these prototypes and their results, it was shown that this solution does
improve efficiency and reduces tail-latency. However, tracing the lineage for all the data
proves to be too expensive and major overheads occur.

Provenance Inference Algorithm As mentioned previously, storage is one of the
main challenges of provenance, and fine-grained provenance consumes an additional
amount of storage. Huq et al. [25] propose a solution to this problem through the creation
of a provenance inference algorithm, which uses a temporal data model and coarse-
grained provenance.

The temporal data model consists of adding a temporal attribute, like a timestamp,
to each data item, which allows us to obtain the overall state of a database at any
given time. This, combined with the ability to reconstruct the window which was used
for the original processing, obtained by the leveraging of coarse-grained provenance,
ensures reproducibility and allows the algorithm to infer the fine-grained provenance of
data. This approach is dataset independent and the more the sliding processing windows
overlap, the more storage consumption it reduces.

However, this approach also presents some limitations, like only providing accurate
lineage information if the processing windows always produce the same number of output
tuples. The approach also only provides completely accurate lineage information in a
system almost infinitely fast, something that is unlikely achievable in a real-world system.
The probability of the inferred fine-grained provenance being inaccurate is high for real-
world systems since these systems present processing delays that will cause errors in the
algorithm.

Stream Ancestor Function Other works proposing a solution for fine-grained prove-
nance in stream processing, which tackles the issue of storage consumption are presented
by Sansrimahachai et al. [46, 45]. The solutions presented in this work are based on a
reverse mapping function called Stream Ancestor Function. This function identi-
fies dependency relationships for any data tuple from the data stream, hence providing
fine-grained provenance and ensuring the reproducibility of data processing in a system.
However, this solution still presented a storage issue. To solve this, the authors optimized
the function and were able to reduce the storage cost by eliminating the need to store
every intermediate stream element and by enabling provenance queries to be performed
dynamically.

An experimental evaluation was conducted by the authors. This evaluation proved
the solution’s correctness and assessed the solution’s influence on storage consumption
and throughput. The results showed that this solution, besides reducing storage con-
sumption, also provides acceptable processing overheads.

Augmenteed Lineage Finally, we also find it important to mention the work of Yamada
et al. [55]. This work presents the concept of augmented lineage, a technique that
ensures lineage traceability of complex data analysis including User Defined Functions for
processing in the areas of Artificial Intelligence and Machine Learning. According to the
authors, the presented framework can be extended to stream processing environments.
Since this framework proved to be efficient, in the future it can present a contribution
to lineage tracing in stream processing.

18 A. Bate

3 Architecture

In this section, we will present the architecture for our proposed solution to the problem
of auditable data provenance in streaming data processing. We will start by describing
the requirements of our work, followed by an overview of our proposed solution, before
giving an in-depth and detailed description of the basic concepts and implementation of
our solution.

3.1 Requirements

Before we present in detail the architecture of our proposed solution, it’s important to
first understand the requirements that influenced our decisions and design.

As seen numerous times throughout this work and other works mentioned, providing
provenance of data in stream processing is a complex and costly operation, in such a
latency and throughput-dependent class of systems. To tackle this issue we follow the
assumption that having to audit a stream and provide fine-grained provenance of specific
data will be a rare event and executed offline. However, when that need arises our system
must be able to audit the stream in a complete and accurate manner, even if that implies
big memory and performance costs. We believe this trade-off is crucial to maximizing
the system’s overall performance, but without disregarding our main goal, which is to
provide trustful and accurate provenance in a stream processing system.

3.2 Overview

Given the similarity of our main philosophy and the one followed by Ye and Lu when
presenting s2p [57], we decided to inspire ourselves in their work. As mentioned when we
first discussed their work, Ye and Lu developed a prototype of s2p in Apache Flink, which
they called s2p-flink, and which allowed them to prove the correctness of their proposed
solution. Our work will focus on following the same logic detailed in the creation of s2p,
but with its implementation on Apache Spark. We will extend Spark and implement our
s2p-like solution internally following the idea of having two distinct phases, the online
provenance phase to provide coarse-grained provenance, and the offline provenance
phase responsible for fine-grained provenance. In our work, we will also attempt to
overcome the s2p limitation of only providing correct provenance when a system consists
of only deterministic operators.

3.3 Detailed Description

In this section, we will give a detailed description of the used systems and several compo-
nents that constitute our proposed solution, which is represented in Fig.4. We will start
by presenting the overall architecture of our stream processing system which can audit
streams of data and provide provenance, followed by a description of both phases that
respectively provide coarse-grained and fine-grained provenance. Finally, we will provide
further information on our Provenance Management System. The relation between the
Online phase, the Offline phase, and the Provenance Management System is depicted in
Fig.5

3.3.1 Stream Processing System

Project - Auditable Data Provenance in Streaming Data Processing (revised) 19

Fig. 4. Overview of our proposed solution’s architecture

As mentioned previously, our proposed solution consists of a stream processing system
where at the core, the stream processing engine chosen is Apache Spark. However, we
perform an extension of Apache Spark in order to provide provenance for audited stream
processing data.

To start, our proposed solution will rely on Apache Kafka to handle the input streams
of data. Besides having the ability to manage several distinct input sources and grouping
them to feed an input stream of data to Apache Spark, we will also take advantage of
Kafka’s internal data management to store every source data that enters our processing
pipeline and produce unique IDs for it.

As mentioned before, at the core of our system we will have an Apache Spark ex-
tension. We will use Apache Spark Structured Streaming, a scalable and fault-tolerant
stream processing engine built on the Spark SQL engine. This allows us to express
streaming computation the same way we would express batch computation for static
data. Queries in Structured Streaming are processed with the use of micro-batches,
which allows to achieve low end-to-end latency. The other main advantages of Spark
Structured Streaming are being fault-tolerant and providing end-to-end exactly-once
processing, which is guaranteed through checkpointing and Write-Ahead Logs.

The choice of using Apache Spark Structured Streaming is greatly influenced by its
state store feature. A state store is used to store crucial intermediate data that needs to
be maintained to correctly process streams of data. This feature could be implemented
externally by us, however, the existence of built-in state store provider implementations
in this engine is greatly beneficial to us, since we will leverage it to maintain a record of
states which we will use to tackle the challenge of providing provenance for streams which
include non-deterministic operations. We will use the RocksDB32 state store provider,
the more optimized built-in state management solution. RocksDB will allow us to store
and update state information after the successful completion of the processing of a
micro-batch which causes a change in the state.

We will also have a simulated environment where we will replay the stream of data
from a specific point in order to obtain detailed information about that particular pro-
cessing flow, which will allow us to provide fine-grained provenance for a specific result
of interest.

32 ”RocksDB” http://rocksdb.org/

20 A. Bate

Finally, we will need to implement a provenance management system that will be
responsible for querying the provenance data, storing the detailed information regarding
fine-grained provenance obtained by our replays in the simulated environment, and to
serve as auxiliary storage for our state store.

Fig. 5. Relation between Online phase, offline phase, and Provenance Management System

3.3.2 Online Phase

Just like in s2p, our online phase for provenance corresponds to coarse-grained prove-
nance, so there is no detailed description of how inner transformation affects the stream
of data passing through the operators. In this phase, the main contribution is a mapping
of the relationships between source data and result data.

To obtain this mapping we start by associating a unique ID to every input data
before this data is ingested by source operators, which will give us the ability to access
the stored input data when future provenance queries happen. We will take advantage
of Apache Kafka to produce these unique IDs. Since Kafka manages internally the input
data and produces an offset, which is a unique number, we can attach this to the input
data and use it as its unique ID.

When the input data is processed and transformations occur we must propagate the
unique ID to the newly formed data so we can keep track of the relationships between the
data formed and the input data that led to its formation. With the use of piggybacking,
the unique ID from source data is transmitted from data to data downstream through the
use of operators in order when processing the data inside the stream. By extending the
original data structure with a new list property, which saves the IDs from its ancestral
source data upstream, we can observe in the result data a list with the IDs of all the
ingested and processed source data that led to its creation, allowing us to know exactly
which source data affected that result.

Despite this phase only being able to provide coarse-grained provenance, it is a cru-
cial phase because it is here that the data we will later use to provide fine-grained

Project - Auditable Data Provenance in Streaming Data Processing (revised) 21

provenance is stored. Even though the process of ID propagation at the time of transfor-
mations is sufficient to provide provenance for stateless operators, since data produced
from these operators depends entirely on the input data received, the same cannot be
said for stateful operators, which can have its processing affected by past events and
non-deterministic data. For this reason, the intermediate and temporary data used by
stateful operators must be stored so we can infer fine-grained provenance. This will be
done through the use of RocksDB which can serve as a state store backend in Apache
Spark. State store is a versioned key-value store that provides read and write operations.
In Apache Spark Structured Streaming, the state store provider is used to handle the
stateful operations across micro-batches. This means that for each micro-batch, all in-
termediate data needed for the replay of stateful operations will be stored in the state
store.

Later, in the offline phase, if a stream needs to be audited, we can replay the pro-
cessing of the data in our simulated environment knowing that by accessing the state
store and retrieving the data that influenced the creation of non-deterministic data we
will produce the same results as the original processing.

3.3.3 Offline Phase

As for the offline phase, it’s in this phase that fine-grained provenance will be pro-
vided. As explained before, the data acquired in the online phase allows us to replay
the processing of specific data at a specific point in a simulated environment. Which, al-
though costly, since we assume the need to replay data processing to be something rare,
it will provide a good trade-off, because the original stream processing system won’t be
affected.

Our ability to provide fine-grained provenance relies on a combination of checkpoint-
ing and the RocksDB state store previously mentioned.

The process of obtaining fine-grained provenance information follows the next steps:

1. Initialize the simulation environment with our extended Apache Spark system;
2. Obtain the source data IDs list from the result data object we want to trace the

lineage;
3. Determine which source data was processed first and what was its micro-batch;
4. After determining the first micro-batch to be processed, find in the state store the

state at the time of its processing;
5. Configure the simulated environment with the state information extracted from the

state store;
6. Replay the data processing in the simulated environment and track detailed infor-

mation regarding data transformation.

In step number 3 we use a simple Algorithm 1 to determine which checkpoint is the
earliest of those bound to the source IDs obtained previously.

It’s also important to note that, just like in the online phase, in this phase, we also
generate unique IDs, but this time for every data formed in the processing of our source
data, these IDs will then also be added to a similar list structure in each data object, to
identify all the pieces of data that led to its creation. We also store relevant information
like temporary data and intermediate data, and we record the state values for stateful
operators that contribute to the result data.

22 A. Bate

Algorithm 1 Algorithm to determine earliest checkpoint

Require: Object source data set {(IDn, CPm)}
Ensure: Earliest checkpoint CPr needed to replay data processing

CPr ←MAX CP
length← length of {(IDn,CPm)}
for i← 0 to length− 1 do

if CPr is smaller than CPi in (IDi, CPi) then
CPr ← CPi

end if
end for

3.3.4 Provenance Management

Our provenance management system is extremely important to our proposed solution
since it’s here that most of the data, like intermediate and temporary data of interest,
state information regarding stateful operators, parents’ ID lists of stream data and the
nearest checkpoint information associated with it, which are all needed for provenance.
We will call all this stored data which is useful to provide provenance as provenance
data from now on.

With all this data being stored by our Provenance Management system, it’s impor-
tant to differentiate it. Intermediate data formed in the processing of data is all stored in
the offline phase and must be stored in a specific manner that preserves all the valuable
information that comes with it. Hence, we will use the same data structure proposed by
the authors of s2p to represent this data. Intermediate data is expressed as <OPname,
Duuid, Dvalue, {Puuid}, Flag>.

OPname Operator’s name.

Duuid ID of this specific data.

Dvalue Actual value of this data.

{Puuid} Set of IDs from upstream data that this data object is related to.

Flag Denotes it as input or output.

The Provenance Management system is also responsible for querying the provenance
data, which varies from the online to the offline phase. In the online phase, this query is
the simple process of extracting the source ID list from the result data being queried and
identifying the corresponding input data stream, represented by Algorithm 2, similar to
the one presented by the authors of s2p.

Algorithm 2 Algorithm for provenance querying in the online phase

Require: Result data object of interest R
Ensure: Source data set S[0...i]

S ← NULL
if R.listOfIDs[] is not NULL then

for all key ∈ R.listOfIDs[] do
S.add(value)

end for
end if

Project - Auditable Data Provenance in Streaming Data Processing (revised) 23

The process of querying provenance data in the offline phase is more complex and
is explained by Algorithm 3 proposed by the authors of s2p. This algorithm produces a
tree with result data as the root and the corresponding source data as the leaves. This
tree can be reversed to obtain a Directed Acyclic Graph which depicts the data lifecycle
from the input source to the result on the output stream with all the intermediate data
in between. With this graph or tree, we can trace backward or forward to find data
lineage.

Algorithm 3 Algorithm for provenance querying in the offline phase

Require: Result data object of interest R
Ensure: Tree T with result data as the root and the corresponding source data as the leaves

Q← NULL
T ← NULL
Q.add(R)
while Q.size() is not 0 do

treenode← (TreeNode)Q.poll()
T.add(treenode)
parentIDs← treenode.parentList
if parentIDs is not NULL then

for all id ∈ parentIDs do
data← GetData(id)
Q.add(data)

end for
end if
for all node ∈ T do

if node.parentList contains treenode.ID then
node.nextSet.add(treenode)

end if
end for

end while

4 Evaluation Methodology

In the previous section, we described the requirements and architecture of our proposed
solution. In this section, we will present and explain the metrics and workloads used to
analyze the performance and fulfillment of the requirements and architecture proposed.
Several approaches to stream processing benchmarking have been proposed with the aim
of creating standards to assess their performance [37], or energy consumption [12].

4.1 Metrics

The following list represents the main performance metrics that we will consider during
the evaluation phase of our implemented proposed solution.

Latency This metric represents the delay our system presents when processing data.
The lower the latency, the more our system can handle data close to in real-time.
We aim to achieve low latency, although we expect some overhead caused by our
provenance-related operations.

24 A. Bate

Throughput This metric measures how many units of data our system can process per
unit of time. A system with high throughput can process greater amounts of data
in less time. We aim to provide high throughput, however, some overhead can be
expected and accepted, since our system takes longer to process data and release
resources.

Resource Utilization As the name says, this metric evaluates the usage of resources
by our implementation. We can divide this metric into two sub-metrics, which are
CPU and Memory utilization.

It’s important to note that the evaluation of these metrics will be done both for the
regular streaming data processing with no audit operation and for the stream processing
when an audit occurs to determine the provenance of some data. This way we can have
a clear picture of the overhead caused by the provenance feature. These metrics are also
important to compare the performance of our system with our main reference, s2p, but
also with other implementations of solutions for the problem of provenance in stream
processing which use the same metrics to evaluate their performance.

4.2 Workload

Next, we will present the workloads we will measure the previous metrics on. We will
use several distinct workloads and data sets in order to obtain the most reliable results
possible. To start we chose the same two datasets used in s2p’s experimental evaluation:

Tweets Our first dataset consists of several Tweets from a period of six months and
used on the data benchmark in [9].

Movie Ratings Our second dataset is consisted of several ratings of movies and was
used on the data benchmark [24].

These two datasets are then used in conjunction with three subject applications chosen
from earlier works [51, 23]. The first subject application is WordCount, which counts
the times each word appears at regular intervals. The second subject application, Grep,
finds the words in the input data sets that match any one in one given list of words.
Lastly, we use the subject application MovieRatings, which finds movies with scores
greater than four. Besides these micro-benchmarks, we will also use the ones proposed
by [54] which are specific to streaming systems. They are Search, Rolling Top Words,
K-means and Collaborative Filtering.

We will also utilize the use cases presented next, which are used in the performance
evaluation of GeneaLog [41] and Ananke [42], plus some macro-benchmarks commonly
used to benchmark stream processing systems, to obtain a bigger result sample.

Linear Road We run two queries from the Linear Road Benchmark [1]. The first query
detects broken-down vehicles through consecutive reports of zero speed and constant
position, while the second one detects accidents from cars that are stopped at the
same position.

Smart Grid From the smart grid domain we will also run two queries. The first one
reports long-term blackouts by identifying meters with zero consumption for 24
hours. As for the second one, it detects anomalies through meters that report unusual
consumption at midnight as compensation for the previous day.

Project - Auditable Data Provenance in Streaming Data Processing (revised) 25

Object Annotation In this use case, two queries receive information from a LiDAR
and two cameras to enrich an in-vehicle computer vision system. It uses the Argoverse
Tracking dataset [8], with 113 segments of 15-30s continuous sensor recordings of
urban driving, plus 3D annotations of surrounding objects.

Vehicle Tracking This use case utilizes the GeoLife dataset [58], composed of 18670
GPS traces of various vehicles over 4 years around Beijing. To simulate a large fleet
driving simultaneously, it employs 10046 traces of cars driving a full day each.

Taxi Trip This dataset [14] contains data extracted from a four-year period of taxi
trips in New York City, stored in CSV format. It contains two types of data: i) Fare
data, which includes fare, tax, and tip amounts; ii) Ride data, which includes trip
distance, trip duration, and pickup and dropoff location. Both types of data also
include medallion number, hack license, and vendor ID. These there fields can be
used to uniquely identify the taxi and its driver.

4.3 Setup

In order to evaluate our proposed solution with the previously mentioned workloads and
to obtain results regarding the referred metrics, we need a setup where we can implement
our desired framework.

We will first do a small deployment of our prototype in a server or a local cluster
to simplify the implementation and testing of our stream processing system. Once the
system is ready to be evaluated in a more demanding environment, closer to a real-life
environment, we will use the Testground33 for a larger deployment which simulates a
deployment on a distributed infrastructure in a cloud provider.

5 Conclusion

Our work presented a survey of the current state of the art in stream processing as
well as a wide variety of works that discuss data provenance in general, and some even
propose solutions for the challenge of providing data provenance in stream processing
systems. We also proposed an architecture for a system that is able to effectively provide
stream processing functionalities while keeping a record of important data to use in rare
cases where data streams need to be audited to obtain data provenance. We compare
the capabilities of the most successful stream processing systems to help us decide what
features we want to implement in our work. We also compare the proposed solutions for
the problem of data provenance in stream processing systems to identify their limitations
and important contributions to our work.

We design an architecture in which, even though some major overhead can be present,
we know that the situations where that overhead occurs are rare and that is a tradeoff
we gladly pay to achieve our main goal, which is to provide correct data provenance in a
stream processing system. Our solution is inspired by a similar approach implemented in
Apache Flink, which we will adapt and improve to extend Apache Spark and implement
a feature of complete and correct data provenance in this stream processing engine.

We also propose a methodology to evaluate the correctness and performance of our
proposed solution to assess its adequacy in realistic deployments and enable comparison
against other approaches previously studied.

33 ”Testground” https://docs.testground.ai/master/#/

26 A. Bate

References

1. A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina, M. Stonebraker,
and R. Tibbetts. Linear road: a stream data management benchmark. In Proceedings of
the Thirtieth international conference on Very large data bases-Volume 30, pages 480–491,
2004.

2. F. Bajaber, R. Elshawi, O. Batarfi, A. Altalhi, A. Barnawi, and S. Sakr. Big data 2.0
processing systems: Taxonomy and open challenges. Journal of Grid Computing, 14:379–
405, 2016.

3. C. Bockermann. A survey of the stream processing landscape. 2014.
4. A. B. Bondi. Characteristics of scalability and their impact on performance. In Proceedings

of the 2nd international workshop on Software and performance, pages 195–203, 2000.
5. M. V. Bordin, D. Griebler, G. Mencagli, C. F. Geyer, and L. G. L. Fernandes. Dspbench:

A suite of benchmark applications for distributed data stream processing systems. IEEE
Access, 8:222900–222917, 2020.

6. T. Buddhika, R. Stern, K. Lindburg, K. Ericson, and S. Pallickara. Online scheduling and
interference alleviation for low-latency, high-throughput processing of data streams. IEEE
Transactions on Parallel and Distributed Systems, 28(12):3553–3569, 2017.

7. V. Cardellini, F. Lo Presti, M. Nardelli, and G. R. Russo. Runtime adaptation of data
stream processing systems: The state of the art. ACM Computing Surveys, 54(11s):1–36,
2022.

8. M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr,
S. Lucey, D. Ramanan, et al. Argoverse: 3d tracking and forecasting with rich maps. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
8748–8757, 2019.

9. Z. Cheng, J. Caverlee, and K. Lee. You are where you tweet: a content-based approach
to geo-locating twitter users. In Proceedings of the 19th ACM international conference on
Information and knowledge management, pages 759–768, 2010.

10. S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu, K. Nus-
baum, K. Patil, B. J. Peng, et al. Benchmarking streaming computation engines: Storm,
flink and spark streaming. In 2016 IEEE international parallel and distributed processing
symposium workshops (IPDPSW), pages 1789–1792. IEEE, 2016.

11. M. E. Coimbra, A. P. Francisco, and L. Veiga. An analysis of the graph processing land-
scape. J. Big Data, 8(1):55, 2021.

12. M. Dayarathna, Y. Li, Y. Wen, and R. Fan. Energy consumption analysis of data stream
processing: a benchmarking approach. Software: Practice and Experience, 47(10):1443–
1462, 2017.

13. M. D. de Assuncao, A. da Silva Veith, and R. Buyya. Distributed data stream processing
and edge computing: A survey on resource elasticity and future directions. Journal of
Network and Computer Applications, 103:1–17, 2018.

14. B. Donovan and D. Work. New york city taxi trip data (2010-2013). University of Illinois
at Urbana-Champaign, 2016.

15. S. Esteves, H. Galhardas, and L. Veiga. Adaptive execution of continuous and data-intensive
workflows with machine learning. In P. Ferreira and L. Shrira, editors, Proceedings of the
19th International Middleware Conference, Middleware 2018, Rennes, France, December
10-14, 2018, pages 239–252. ACM, 2018.

16. S. Esteves, N. Janssens, B. Theeten, and L. Veiga. Empowering stream processing through
edge clouds. SIGMOD Rec., 46(3):23–28, 2017.

17. S. Esteves and L. Veiga. Waas: Workflow-as-a-service for the cloud with scheduling of
continuous and data-intensive workflows. Comput. J., 59(3):371–383, 2016.

18. B. Glavic, K. S. Esmaili, P. M. Fischer, and N. Tatbul. Efficient stream provenance via
operator instrumentation. ACM Transactions on Internet Technology (TOIT), 14(1):1–26,
2014.

Project - Auditable Data Provenance in Streaming Data Processing (revised) 27

19. A. S. Gomes, J. Oliveirinha, P. Cardoso, and P. Bizarro. Railgun: managing large streaming
windows under MAD requirements. Proc. VLDB Endow., 14(12):3069–3082, 2021.

20. D. V. Gorasiya. Comparison of open-source data stream processing engines: spark stream-
ing, flink and storm. 2019.

21. V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and P. Valduriez. Stream-
cloud: An elastic and scalable data streaming system. IEEE Transactions on Parallel and
Distributed Systems, 23(12):2351–2365, 2012.

22. V. Gulisano, H. Najdataei, Y. Nikolakopoulos, A. V. Papadopoulos, M. Papatriantafilou,
and P. Tsigas. Stretch: Virtual shared-nothing parallelism for scalable and elastic stream
processing. IEEE Transactions on Parallel and Distributed Systems, 33(12):4221–4238,
2022.

23. M. A. Gulzar, S. Mardani, M. Musuvathi, and M. Kim. White-box testing of big data
analytics with complex user-defined functions. In Proceedings of the 2019 27th acm joint
meeting on european software engineering conference and symposium on the foundations of
software engineering, pages 290–301, 2019.

24. F. M. Harper and J. A. Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

25. M. R. Huq, A. Wombacher, and P. M. Apers. Inferring fine-grained data provenance in
stream data processing: reduced storage cost, high accuracy. In Database and Expert Sys-
tems Applications: 22nd International Conference, DEXA 2011, Toulouse, France, August
29-September 2, 2011, Proceedings, Part II 22, pages 118–127. Springer, 2011.

26. H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine, and S. Khan. A survey of
distributed data stream processing frameworks. IEEE Access, 7:154300–154316, 2019.

27. A. Jabbar, P. Akhtar, and S. Dani. Real-time big data processing for instantaneous market-
ing decisions: A problematization approach. Industrial Marketing Management, 90:558–569,
2020.

28. Z. Karakaya, A. Yazici, and M. Alayyoub. A comparison of stream processing frame-
works. In 2017 International Conference on Computer and Applications (ICCA), pages
1–12. IEEE, 2017.

29. J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and V. Markl. Bench-
marking distributed stream data processing systems. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE), pages 1507–1518. IEEE, 2018.

30. P. Kathiravelu, P. V. Roy, and L. Veiga. SD-CPS: software-defined cyber-physical systems.
taming the challenges of CPS with workflows at the edge. Clust. Comput., 22(3):661–677,
2019.

31. M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja. Lambda architecture for
cost-effective batch and speed big data processing. In 2015 IEEE international conference
on big data (big data), pages 2785–2792. IEEE, 2015.

32. D. K. Lal and U. Suman. Towards comparison of real time stream processing engines. In
2019 IEEE Conference on Information and Communication Technology, pages 1–5. IEEE,
2019.

33. H.-S. Lim, Y.-S. Moon, and E. Bertino. Research issues in data provenance for stream-
ing environments. In Proceedings of the 2nd SIGSPATIAL ACM GIS 2009 International
Workshop on Security and Privacy in GIS and LBS, pages 58–62, 2009.

34. S. Liu, W. Cui, Y. Wu, and M. Liu. A survey on information visualization: recent advances
and challenges. The Visual Computer, 30:1373–1393, 2014.

35. X. Liu, N. Iftikhar, and X. Xie. Survey of real-time processing systems for big data. In
Proceedings of the 18th International Database Engineering & Applications Symposium,
pages 356–361, 2014.

36. T. Lopes, M. E. Coimbra, and L. Veiga. Smart distributed datasets for stream process-
ing. In L. Sousa, N. Roma, and P. Tomás, editors, Euro-Par 2021: Parallel Processing -
27th International Conference on Parallel and Distributed Computing, Lisbon, Portugal,
September 1-3, 2021, Proceedings, volume 12820 of Lecture Notes in Computer Science,
pages 249–265. Springer, 2021.

28 A. Bate

37. M. R. N. Mendes, P. Bizarro, and P. Marques. Towards a standard event processing bench-
mark. In S. Seelam, P. Tuma, G. Casale, T. Field, and J. N. Amaral, editors, ACM/SPEC
International Conference on Performance Engineering, ICPE’13, Prague, Czech Republic
- April 21 - 24, 2013, pages 307–310. ACM, 2013.

38. H. Najdataei, V. Gulisano, P. Tsigas, and M. Papatriantafilou. pi-lisco: parallel and in-
cremental stream-based point-cloud clustering. In Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing, pages 460–469, 2022.

39. H. Najdataei, Y. Nikolakopoulos, M. Papatriantafilou, P. Tsigas, and V. Gulisano. Stretch:
Scalable and elastic deterministic streaming analysis with virtual shared-nothing paral-
lelism. In Proceedings of the 13th ACM International Conference on Distributed and Event-
based Systems, pages 7–18, 2019.

40. H. Nasiri, S. Nasehi, and M. Goudarzi. Evaluation of distributed stream processing frame-
works for iot applications in smart cities. J. Big Data, 6:52, 2019.

41. D. Palyvos-Giannas, V. Gulisano, and M. Papatriantafilou. Genealog: Fine-grained data
streaming provenance in cyber-physical systems. Parallel Computing, 89:102552, 2019.

42. D. Palyvos-Giannas, B. Havers, M. Papatriantafilou, and V. Gulisano. Ananke: a streaming
framework for live forward provenance. Proceedings of the VLDB Endowment, 14(3):391–
403, 2020.

43. D. Palyvos-Giannas, G. Mencagli, M. Papatriantafilou, and V. Gulisano. Lachesis: a mid-
dleware for customizing os scheduling of stream processing queries. In Proceedings of the
22nd International Middleware Conference, pages 365–378, 2021.

44. H. Röger and R. Mayer. A comprehensive survey on parallelization and elasticity in stream
processing. ACM Computing Surveys (CSUR), 52(2):1–37, 2019.

45. W. Sansrimahachai, L. Moreau, and M. J. Weal. An on-the-fly provenance tracking mech-
anism for stream processing systems. In 2013 IEEE/ACIS 12th International Conference
on Computer and Information Science (ICIS), pages 475–481. IEEE, 2013.

46. W. Sansrimahachai, M. J. Weal, and L. Moreau. Stream ancestor function: A mechanism
for fine-grained provenance in stream processing systems. In 2012 Sixth International
Conference on Research Challenges in Information Science (RCIS), pages 1–12. IEEE,
2012.

47. A. Shukla, S. Chaturvedi, and Y. Simmhan. Riotbench: An iot benchmark for dis-
tributed stream processing systems. Concurrency and Computation: Practice and Expe-
rience, 29(21):e4257, 2017.

48. X. Su, G. Sperl̀ı, V. Moscato, A. Picariello, C. Esposito, and C. Choi. An edge intelligence
empowered recommender system enabling cultural heritage applications. IEEE Transac-
tions on Industrial Informatics, 15(7):4266–4275, 2019.

49. W. C. Tan et al. Provenance in databases: Past, current, and future. IEEE Data Eng.
Bull., 30(4):3–12, 2007.

50. M. Tang, S. Shao, W. Yang, Y. Liang, Y. Yu, B. Saha, and D. Hyun. Sac: A system for big
data lineage tracking. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pages 1964–1967. IEEE, 2019.

51. J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada, and J. Tourifio. Performance
evaluation of big data frameworks for large-scale data analytics. In 2016 IEEE International
Conference on Big Data (Big Data), pages 424–431. IEEE, 2016.

52. J. Wang, D. Crawl, S. Purawat, M. Nguyen, and I. Altintas. Big data provenance: Chal-
lenges, state of the art and opportunities. In 2015 IEEE international conference on big
data (Big Data), pages 2509–2516. IEEE, 2015.

53. L. Wang, T. Z. Fu, R. T. Ma, M. Winslett, and Z. Zhang. Elasticutor: Rapid elasticity for
realtime stateful stream processing. In Proceedings of the 2019 International Conference
on Management of Data, pages 573–588, 2019.

54. L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang,
et al. Bigdatabench: A big data benchmark suite from internet services. In 2014 IEEE
20th international symposium on high performance computer architecture (HPCA), pages
488–499. IEEE, 2014.

Project - Auditable Data Provenance in Streaming Data Processing (revised) 29

55. M. Yamada, H. Kitagawa, T. Amagasa, and A. Matono. Augmented lineage: traceability
of data analysis including complex udf processing. The VLDB Journal, pages 1–21, 2022.

56. I. M. Yazici and M. S. Aktas. A novel visualization approach for data provenance. Con-
currency and Computation: Practice and Experience, 34(9):e6523, 2022.

57. Q. Ye and M. Lu. s2p: provenance research for stream processing system. Applied Sciences,
11(12):5523, 2021.

58. Y. Zheng, X. Xie, W.-Y. Ma, et al. Geolife: A collaborative social networking service among
user, location and trajectory. IEEE Data Eng. Bull., 33(2):32–39, 2010.

59. Z. Zvara, P. G. Szabó, B. Balázs, and A. Benczúr. Optimizing distributed data stream
processing by tracing. Future Generation Computer Systems, 90:578–591, 2019.

60. Z. Zvara, P. G. Szabó, G. Hermann, and A. Benczúr. Tracing distributed data stream
processing systems. In 2017 IEEE 2nd International Workshops on Foundations and Ap-
plications of Self* Systems (FAS* W), pages 235–242. IEEE, 2017.

30 A. Bate

A
P
la
n
n
in
g

T
h
e
G
a
n
tt

C
h
a
rt

p
re
se
n
ts

th
e
sc
h
ed

u
le
o
f
th
e
m
a
in

ta
sk
s
a
n
d
th
e
re
sp

ec
ti
v
e
d
el
iv
er
a
b
le
s
a
n
d
it
w
il
l
g
u
id
e
th
e
w
o
rk

p
ro
g
re
ss

d
u
ri
n
g
th
e
d
ev
el
o
p
m
en

t
o
f
th
e
th
es
is
.

F
ig
.
6
.
G
a
n
tt

C
h
a
rt

