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Abstract

Graphs are becoming increasingly larger, having millions of vertices and billions (or even trillions) of

edges in some cases. As a result, it’s becoming harder and harder to fit the entire graph into the main-

memory of a single machine. This may lead to significant overhead by having to read the graph from

secondary storage. Thus causing an impact in the performance of queries and the storage requirements

of the system. It is relevant to try to minimize the storage requirements of the graph data without

degrading access time and, ideally, even improving it. Current graph storage systems store their graphs

in an uncompressed format, either in a shared architecture, leading to high space overhead and the

inability to store the entire graph in main memory or a distributed architecture, in which the entire graph

is partitioned over a cluster of machines and each machine stores only a fragment of the graph in

main memory. Our solution extends a distributed graph processing system to utilize a compressed

representation of a graph while still allowing to update the graph data, all while maintaining the same

processing performance and ideally even improving it.
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Resumo

Os grafos estão a tornarem-se cada vez maiores, tendo milhões de vértices e bilhões (ou até trilhões)

de arestas em alguns casos. Desta forma, está se a tornar cada vez mais difı́cil colocar o grafo inteiro na

memória principal de uma única máquina. Isto pode causar uma sobrecarga significativa por ter que ler

o gráfico de armazenamento secundário. Por sua vez, também pode ter um impacto no desempenho

no processamento e nos requisitos de armazenamento do sistema. É relevante tentar minimizar os

requisitos de armazenamento dos dados do grafo sem degradar o tempo de acesso e, idealmente, até

mesmo melhorá-lo. Os sistemas atuais de armazenamento de grafos armazenam estes num formato

descompactado, seja numa arquitetura compartilhada, levando a uma grande sobrecarga de espaço

e à incapacidade de armazenar o grafo inteiro em memória principal ou numa arquitetura distribuı́da,

na qual todo o grafo é particionado por um grupo de máquinas e cada máquina armazena apenas

parte do grafo total em memória principal. A nossa solução estende um sistema de processamento

de grafos distribuı́do para utilizar uma representação compacta de um grafo, que ao mesmo tempo

permita atualizar os seus dados, mantendo o mesmo desempenho de processamento e, idealmente,

até melhorando-o.

Palavras Chave

base de dados de grafos; sistema de processamento de grafos; representação de grafos; optimizações;

compressão;
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Graphs [1] are now more relevant than ever, being used in social networks [2, 3], biology [4, 5], the

web [6, 7], cryptocurrency [8, 9], and many more fields (e.g., managing community clouds [10]). Their

popularity arises from the fact that they naturally model problems that other data structures cannot.

Graphs are also becoming increasingly larger, having millions of vertices and billions (or even trillions)

of edges in some cases [11, 12]. As a result, the space requirements of a graph have increased. It is

becoming increasingly more difficult to fit the entire graph into the main memory of a single machine.

This may lead to a significant overhead by having to read the graph from secondary storage. Thus it

is relevant to try to minimize the storage requirements of the graph without degrading access time and,

ideally, even improving it.

1.1 Graph Storage Architecture

There are two common architectures for graph storage systems. A shared architecture [13, 14], where

the entire graph is stored in a shared memory location and accessed by other processors. Typically, the

graph is not stored in main memory due to space requirements, and thus must be stored in secondary

memory, leading to a significant overhead when accessing the graph.

A distributed architecture [15–19] in which the entire graph is partitioned over a cluster of machines

and each machine stores only a shard of the graph. Seeing as the graph is split across multiple ma-

chines, it becomes much more feasible to store a significantly smaller portion of the graph in main-

memory. Still, partitioning a graph into many partitions can result in each partition being too large to

store in machines with standard configuration, which in turn would lead to higher space requirements for

each machine, resulting in higher operational costs.

Shared architectures rely on hardware that allows processing large graphs in a single machine. For

example, Mosaic [20] is able to process a trillion-edge graph in a single machine, using fast storage me-

dia and massively parallel co-processors. On the other hand, distributed architectures rely on distributed

deployments, based on multiple machines with standard configurations.

This indicates that with a sufficiently powerful machine one can match, or even outperform, dis-

tributed solutions. However, not all users have access to specialized hardware, making distributed solu-

tions relevant and our focus for this work.

1.2 Lossless Graph Compression

Current solutions, using both shared and distributed architectures, store graphs in a uncompressed

format [13–19, 21]. By using a lossless graph compression technique, it is possible to store the graph

in a compressed format that can be stored in the main memory of a single machine [22–25]. All while

maintaining the same performance, or even better, when accessing the graph.

3



This type of compression reduces the storage requirements needed without removing any existing

information about the structure (lossless), while still allowing for direct access to the underlying data.

This means that the data does not need to be decompressed every time it is accessed. Since com-

pressed representations can more efficiently represent the graph structure and allow for direct access

to the underlying data, they typically have better performance than the corresponding uncompressed

representations [22–24].

The graph topology can also play a big role in determining the effectiveness of the compression

technique, seeing as some compressed representations are more efficient when used in sparse graphs

as opposed to dense graphs [22].

1.3 Dynamic Graph

It also may be relevant to modify the graph, such as adding or removing edges/vertices, without having

to reconstruct the entire graph, i.e., to support a fully updatable or dynamic graph. For example, some

popular graph algorithms (i.e., PageRank) require the attributes stored in the vertices/edges to be mu-

tated. Current solutions do not allow adding new vertices/edges to a graph [13,15,17–19] but still allow

to modify the attributes of the graph. In these solutions, adding new elements requires the construction

of a new graph, with the added elements, presenting a severe space overhead and entailing processing

effort in generating the resulting complete new graph. Thus, it is relevant to provide a solution that allows

for a fully dynamic graph that can add new elements without having to construct the entire graph again.

1.4 Graph Partitioning

When using a distributed architecture, it is important to define how the graph will be partitioned through-

out all machines in the cluster. The partitioning strategy employed should try to evenly distribute the

graph through all machines, to guarantee that the workload is uniformly distributed. The strategy should

also guarantee that the space requirements of all machines are similar and that the portion of the graph

assigned to each machine can be stored in main memory.

Current solutions are centered in partitioning graphs based on edges, to better distribute work among

computing nodes [13, 15]. This leads edges to be assigned to unique partitions and vertices to be

replicated throughout various partitions. In a worst-case scenario, a vertex would need to be replicated

throughout all partitions. This approach is used because the number of edges is typically much higher

than the number of vertices, leading to smaller storage requirements when replicating vertices.

A possible solution would consist of placing edges with matching vertices in the same partition, thus

reducing the need to replicate the vertices throughout many partitions. However this solution no longer

guarantees an evenly distributed workload. An ideal solution would try to minimize the replication of

4



vertices while still evenly distributing the graph data throughout the cluster.

1.5 Current Shortcomings

Our solution aims to tackle several shortcomings that current solutions present, such as: i) Not being

able to store large graphs in main memory, requiring access to secondary storage which is much slower;

ii) Storing graphs in a uncompressed format, leading to worse storage efficiency and processing perfor-

mance than compressed representations; ii) Immutable graphs that do not support removing or adding

vertices/edges, requiring the entire graph to be re-constructed from scratch when adding new elements

(even if a single one, or a few, in a graph with millions).

1.6 Goals and Contributions

The main goal of this work is to design and develop an extension to the storage component of a relevant

distributed graph processing system so that the processed graph is made more space-efficient by using

a lossless compressed representation. The solution should achieve similar performance to the uncom-

pressed version, with relatively reduced overhead. The solution should also allow for the graph to be

fully dynamic, by being possible to mutate attributes and add new vertices and edges. To accomplish

this goal, we set the following objectives:

1. Survey the state-of-the-art work in graph databases, graph processing systems, and optimized

graph representations and processing.

2. Use an optimized dynamic graph representation to efficiently represent an attributed graph.

3. Implement an extension to the storage component of a relevant graph processing system support-

ing the optimized dynamic graph representation.

4. Perform a detailed evaluation of our implementation to determine to what extent it fulfills our re-

quirements and present the results obtained.

1.7 Document Structure

This document is structured as follows: Chapter 2 presents a survey of the state-of-the-art work done

in graph processing systems, graph databases and optimized graph representations and processing.

In Chapter 3, we present the architecture of our solution, in Chapter 4, we detail our implementation

of the solution. In Chapter 5, we describe the evaluation methodology and the results obtained for our

implementation. Finally, in Chapter 6 we conclude by summarizing the work, present our thoughts on

the topic and discuss some possible future work.
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In this chapter, we present important work on the topic of graph representation and graph processing.

We start by presenting relevant graph processing systems (Section 2.1), focusing on how they handle

graph storage and processing, and graph database systems (Section 2.2). In Section 2.3 we describe

state-of-the-art optimized graph representations and processing.

2.1 Graph Processing Systems

In this section we present a taxonomy to study, analyse, and classify the most relevant graph process-

ing systems [26, 27]. We classify graph processing systems according to six features: Architecture,

Programming Model, Partitioning, Storage, Fault Tolerance and Dynamicity. Figure 2.1 presents a

taxonomy of the state-of-the-art work in graph processing systems.

Graph Processing
Systems

Architecture Programming Model

Shared

Distributed

General
Purpose

Vertex-Centric

Partitioning

Vertex-Cut

Edge-Cut

Graph-Centric

Storage Fault Tolerance Dynamicity

Memory

Disk

Re-Execution

Checkpoint

Dynamic

Static

Figure 2.1: Graph Processing Systems Taxonomy

Architecture: The architecture of graph processing systems is divided into two categories: Shared and

Distributed.

Shared architectures store the entire graph in a centralized location, allowing multiple processors

to access the same memory. Given specialized hardware, this type of architecture can achieve better

results than distributed architectures. However, because the entire graph is stored in a single machine

the storage requirements are much higher. It also does not provide a very scalable solution.

Distributed architectures partitions the graph throughout a cluster of processors, where each proces-

sor stores only a fraction of the total graph. This type of architecture is much more scalable than the

shared architecture. However, it typically requires for the processors to communicate with each other

trough a network for synchronization purposes, leading to some overhead.

Programming Model: The programming model (PM) relates to the high-level programming interface

available to the user, we divide this feature into 3 categories: General Purpose, Vertex-Centric and

Graph-Centric.

General Purpose programming models are not made specifically to handle graphs, such as the

MapReduce framework. Because of this, these models offer a substantial reduction in performance
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when compared to programming models made specifically for graph processing. Typically graph pro-

cessing systems that use these models are extensions to already existing general purpose frameworks.

Vertex-Centric models, also sometimes referred to as ”think-like-a-vertex”, execute a user-defined

function in the context of each vertex, iteratively. In each iteration, each vertex executes the user defined

function, in parallel, manipulating only local data. The vertices can also send and receive messages from

their neighbors. The algorithm terminates when no messages are exchanged between any vertices. In

distributed systems the vertices may be located in different partitions, involving some communication

overhead when exchanging messages.

Graph-Centric models are focused on performing computations in the context of a sub-graph. This

model tries to address the issue of communication latency between vertices located in different parti-

tions. Instead of storing different vertices in each partition it proposes to store sub-graphs. If the sub-

graph is well partitioned, the communication overhead between vertices can be substantially reduced,

since the communication now occurs locally.

Partitioning: This feature relates to how a graph is partitioned to later be processed in parallel by several

processors. We divide this feature into two categories: Vertex-Cut and Edge-Cut.

Vertex-Cut partitioning divides the graph by its vertices, leading vertices to be distributed across

multiple partitions and edges to be assigned to a unique partition. For many real-world graphs where

the degree distribution follows a power law, a vertex-cut leads to a more balanced partitioning. Typically

in these scenarios, the computations are expressed from the context of an edge to allow for more efficient

parallel computations.

Edge-Cut partitioning divides the graph by its edges, leading to edges to be distributed across mul-

tiple partitions and the vertices to be assigned to a unique partition. Since graphs typically have many

more edges than vertices, this type of partitioning leads to higher space usage than the vertex-cut par-

titioning.

Storage: This feature relates to how the graph data is stored, either in Memory or in Disk, in cases

where the graph is too large to fit into memory.

Memory storage, or main memory, although typically smaller than disk storage, has much faster

access times. Most distributed graph processing systems use this approach, since they have access to

a cluster of machines, where the main memory of each machine is used to store part of the graph. This

results in the overall system having more available main-memory than a single machine.

Disk storage, or secondary-memory, is typically larger than in-memory storage, thus allowing to store

much larger graphs. However, the access time is substantially larger than in-memory solutions. Some

systems use a hybrid approach, storing the graph first in memory and using secondary storage to store

the rest of the graph.
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Fault Tolerance: This feature describes the type of fault tolerance the graph processing system has.

We divide this feature into two categories: Re-Execution and Checkpoint.

Re-Execution relates to graph processing systems that require the state to be recomputed when a

faults occurs. This type of fault tolerance can be very costly depending on the size of the entire state

and how often faults occur.

Checkpoint relates to graph processing systems that use a checkpoint system to store the current

state. This type of fault tolerance avoids having to recompute the entire state and instead periodically

stores the current state to later be reused when a fault occurs. This type of solution has higher space

requirements than the re-execution approach, but, depending on how often faults occur, may have better

processing performance.

Dynamicity: This feature relates to the type of dynamicity that is allowed on the graph data. This feature

is divided into two categories: Dynamic and Static.

Dynamic graphs allow the data to be mutated, either by changing attributes or adding or removing

vertices/edges. This type of solution typically has higher space requirements since the dynamic struc-

tures require more information to efficiently mutate the graph. Most graph processing systems do not

provide a mechanism to mutate the graph. Some systems only allow for the attributes of vertices and

edges to be changed.

Static graphs do not allow the data to be mutated. Graph processing systems that only support static

graphs are limited in the algorithms that can be implemented. For example, the PageRank algorithm

requires the attributes of vertices to be mutated. This type of solution typically requires less storage

requirements since the data structures are immutable and can be optimized as such.

2.1.1 Relevant Systems

In this section we present the most relevant graph processing systems. Table 2.1 shows the most

relevant Graph Processing Systems identified in our research, classified according to the previously de-

scribed taxonomy, highlighting their distinctive features.

GraphX: Spark’s Application Program Interface (API) for graphs and graph-parallel computation [15].

Data storage is handled by Spark’s Resilient Distributed Dataset (RDD) which represents an immutable

collection of elements that allow for several transformations (e.g., map, filter) and that can be processed

in a distributed fashion by splitting elements into various partitions and having different machines in the

cluster process different partitions.

The data is obtained from either a user-configured source (Hadoop Distributed File System (HDFS),

in-memory collection) or by applying transformations to other RDDs. All transformations create a new
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System/Work Architecture PM Partitioning Storage Fault Tolerance Dynamicity

GraphX [15] Distributed VC Vertex-Cut M/D Checkpoint Static

Gelly [19] Distributed VC Vertex-Cut Memory Checkpoint Static

Giraph [16] Distributed VC Edge-Cut Memory Checkpoint Dynamic

Giraph++ [16] Distributed GC Edge-Cut Memory Checkpoint Dynamic

GBase [17] Distributed VC Edge-Cut Disk Re-Execution Static

GPS [18] Distributed VC Edge-Cut Memory Checkpoint Static

GraphLab [13] Shared VC Vertex-Cut Memory Checkpoint Static

GraphChi [14] Shared VC Edge-Cut Disk Re-Execution Dynamic

Table 2.1: Graph Processing System Classification

RDD that will be evaluated lazily. RDDs can also be persisted, either to disk or to memory in both a

serialized and deserialized format. GraphX implements a Resilient Distributed Graph (RDG), an im-

mutable graph made up of vertices and edges that can be split into various partitions using a vertex-cut.

A vertex-cut splits the graph along the vertices, meaning that vertices span multiple machines in the

cluster while edges are evenly assigned.

The graph is represented using three unordered horizontally partitioned tables implemented using

RDDs: i) edge table that stores all edges grouped by their assigned partitions, each edge storing both

the start and end vertex identifier and user-defined data; ii) vertex data table, similar to the edge table

but stores the vertices; iii) and the vertex map that maps each vertex identifier to their assigned partition,

possibly spanning multiple partitions.

Gelly: Graph API for Flink [19] providing methods to create, transform and modify graphs, as well as

a library of graph algorithms. Opposed to Spark, Flink is a datastream–oriented big data framework

focusing on processing a potentially indefinite stream of events within a user-defined pipeline. Similar

to GraphX, Gelly implements its graph abstraction using the equivalent to RDDs in Flink, DataSets, and

supports three different computation models for the distributed processing of graphs: a vertex-centric

model; the scatter-gather model, where vertices send messages to each other and update based on the

messages received; the gather-sum-apply model [28], where a user-defined function is executed in par-

allel on the edges and neighbours of each vertex (gather), producing a partial value that is aggregated

to a single value (sum) and then applied to each vertex (apply).
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Giraph: An iterative graph processing system [16] built on top of Hadoop, designed for high scalability.

Implements the Pregel [29] model and other features such as master computation1, sharded aggrega-

tors2, edge-oriented input and out-of-core computation. Computations are done in a serious of iterations

called supersteps. The programming model used is vertex-centric. It uses the Bulk Synchronous Par-

allel (BSP) [30] model to allow for distributed parallel computations using a set of workers. One of the

workers acts as the master and coordinates with the remaining workers to perform a graph processing

job. The set of vertices is partitioned randomly and each vertex is assigned, alongside all of its outgoing

edges, to a partition based on its identifier. This partitioning corresponds to an edge-cut where a vertex

is present in a single partition and edges can exist in multiple partitions.

Giraph++: A distributed graph processing system [16], based on Giraph, that utilizes the Graph-Centric

model. This model allows the programmer to perform computations in the context of an sub-graph, in-

stead of a single vertex. Each sub-graph corresponds to a partition. The vertices of each sub-graph

are classified in either one of two categories: internal vertex or boundary vertex. Internal vertices are

unique in a given sub-graph, called the owner, and store the vertex and edge values, while boundary

vertices can be present in multiple sub-graphs and only store the vertex value, which is a local copy of

the actual vertex value stored in the owner sub-graph. Changes to boundary vertices are propagated to

their primary copies.

GBase: A distributed and scalable graph processing system [17] that stores graphs using a method

based on adjacency matrices. It supports both vertex-centric and edge-centric programming models.

The graph vertices are partitioned into several partitions, that are then grouped to form several homo-

geneous blocks. Each block has a source partition and a destination partition, that is then compressed

using standard compression algorithms such as Gzip [31] and Elias-γ3. These blocks are stored to-

gether with some metadata identifying the row and column of the block on the global adjacency matrix.

GPS: A distributed graph processing system [18] based on Pregel and a vertex-centric programming

model based on bulk synchronous processing. The graph vertices are distributed randomly to the com-

puting nodes in the cluster. The graph input is stored in HDFS files containing in each line the vertex

identifier and its outgoing neighbours. The coordination of the system is done using a master-worker

pattern, where the master nodes instruct the works to start a new superstep and to perform checkpoints

of their state for fault tolerance.

GraphLab: A shared graph processing system [13] that stores graphs in-memory and uses the BSP
1Workers use ZooKeeper to elect a master that will coordinate computation
2Each aggregator is assigned to a worker
3Universal code encoding positive integers, commonly used when the upper-bound of the integers cannot be determined

beforehand.

11



model with some modifications. Instead of a single computation function, it uses the Gather, Apply

and Scatter (GAS) model where each vertex gathers data from its neighbors, applies the computation

function to itself and scatters the relevant information to its neighbors. The partitioning of the graph is

done using vertex-cuts to better distributed the work of vertices with large degrees. There exists a global

shared state that is kept as an associative map, mapping each key to an arbitrary block of data.

GraphChi: A disk-based graph processing system [14] capable of performing efficient computations on

graphs with millions of edges. The graph data is stored on disk using a compressed graph representation

called Compressed Sparse Row (CSR), which is equivalent to storing the graph as adjacency sets. To

efficiently obtain the in-edges of a vertex, the transpose graph is also stored in a graph representation

called Compressed Sparse Column (CSC), therefore each edge is stored twice. The system uses a

method called Parallel Sliding Windows to process a graph with mutable edge values from disk by

splitting the vertices of a graph into multiple intervals associated with shards. The graphs can also be

mutated, more specifically, it is possible to change the graph structure by adding new edges.

Final Remarks

Recent works in graph processing systems include CIC-PIM by Zhang, Yongxuan, et al. [32], which

trades spare computing power for memory space, allowing for more memory and cache efficient graphs

by using the sparse features of large-scale graphs.

Another recent work is DZiG by Mariappan, Mugilan, et al. [33], which offers a novel approach in

graph processing systems by exploiting the sparsity of graphs in their incremental processing. Incre-

mental processing of graphs with streaming and approximate computing is explored in VeilGraph [34].

2.2 Graph Databases

In this section we present a taxonomy to study, analyse, and classify the most relevant graph database

systems [35]. We classify graph databases according to five features: Architecture, Model, Query

Language, Storage and Topology. Figure 2.2 presents a taxonomy of the state-of-the-art work in

graph database systems.

Architecture: The architecture of graph databases can be divided into two categories: Native or

Non-Native. This distinction relates to how graph storage is handled by the database system.

Native architectures are categorized by an exclusive preference to store graph workloads across its

entire stack. Their storage system is specifically tailored to store graph data. This leads to much better

performance when handling graphs, compared with more general databases. Another characteristic of

native architectures is that of index-free adjacency. This means that vertices physically point to other

adjacent vertices by having direct physical Random Access Memory (RAM) addresses, leading to faster
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Sharding

Replicated

Figure 2.2: Graph Databases Taxonomy

traversal times. However, this may degrade the performance of queries that do not make use of graph

traversal.

Non-Native architectures use an external data source, typically NoSQL, to store the graph data in

a non-optimized representation, leading to worse performance in general. Their storage system is not

optimized specifically for graph data but instead for other storage models. The data is typically translated

from that storage model (i.e., columnar, relational, document) as a graph, which requires the database

management system to perform costly transactions to and from the primary storage model.

Model: The model relates to how the graph is represented by the storage system. We identify two main

distinctions: Graph models and Multi-model.

Graph models can only represent graphs, typically in an optimized format. Inside this model there are

two main representations: Property Graph and Resource Description Framework (RDF). The property

graph model represents attributed graphs (sometimes multi-graphs) where both the vertices and edges

have user-defined attributes attached to them. Typically, the vertices and edges are also assigned labels,

which function as the type of that object. In the RDF model the graph is represented with a series of

triples subject-predicate-object. The subject is a vertex, the predicate is an edge and the object is either

another vertex or a literal value. In the RDF model the vertices and the edges have no internal data, they

are composed only by their identifier. In order to attach an attribute to a vertex, a new vertex containing

a literal value must be created and connected through an edge to the original vertex.

Multi-models are capable of representing multiple storage models (Documents, SQL Tables, etc.)

including graphs, sometimes keeping these models separate and without much performance overhead.

Some implementations support multiple models while still maintaining optimized representations for

each.
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Query Language: The query language is the language used to perform queries on the graph data.

Because there was no standard query language until recently with GQL4, most of the existing graph

database systems implemented their own custom query language. Thus we separate this feature into

two different categories: System Dependent languages that are implemented specifically for a database

system and API which describes database systems that only offer a public API, typically in the same

programming language used to implement the database, to perform queries.

Storage: The storage component pertains to the location the graph data is persisted. The most relevant

systems either store the graph data in File system directly, including distributed file systems such as

HDFS, in a Key-Value Store where the vertices and edges are stored by mapping their identifier to their

attributes, or in a NoSQL Database adapted to store graph data.

Topology: The topology of the database is divided into two main categories: Distributed and Centralized.

Distributed systems distribute the graph across multiple machines. These systems offer high avail-

ability and fault tolerance. Inside this category we further divide into two sub-categories: Sharding and

Replicated. Sharding horizontally partitions the graph across multiple machines to evenly distribute the

workload. This approach reduces the storage requirements of each individual machine, while still allow-

ing for the parallel processing of the graph. Replicated stores a copy of the entire graph in each machine,

typically to tolerate faults or maintain availability. Although this approach leads to overall higher storage

requirements, it has the benefit of offering much higher availability of the entire graph.

Centralized systems store the entire graph in a single machine. In some cases, where specialized

hardware is available, these types of systems may have similar or even better performance than dis-

tributed systems.

2.2.1 Relevant Systems

In this section we present the most relevant graph database systems. Table 2.2 shows the most relevant

Graph Database Systems identified in our research, classified according to the previously described

taxonomy, highlighting their distinctive features.

Neo4J: A native graph database [21] platform used to store, query, analyse and manage highly con-

nected data in property graphs, providing its own query language (Cypher ). The graph is persisted to

disk using 3 files: nodestore.db to store nodes, relationship.db to store relationships (edges) and prop-

erty.db to store the properties (attributes) of nodes and relationships. Data is stored on disk as linked

lists of fixed-size records. Properties are stored as a linked list of property records, each holding a key

and value and pointing to the next property. Each node and relationship references its first property

record. The nodes also reference the first relationship in its relationship chain. Each relationship refer-

4Graph Query Language Standard https://www.gqlstandards.org/
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System/Work Architecture Model Query
Language Storage Topology

Neo4J [21] Native Property
Graph

System
Depen-

dent
File System Sharding*

DGraph Native RDF
System
Depen-

dent
Key-Value Store Sharding

TigerGraph [36] Native Property
Graph

System
Depen-

dent
In-Memory Sharding

DEX [37] Native Property
Graph API File System Centralized

GraphDB Native RDF
System
Depen-

dent
File System Replicated*

JanusGraph Non-Native Property
Graph

System
Depen-

dent
NoSQL Database Sharding

NebulaGraph Non-Native Property
Graph

System
Depen-

dent
Key-Value Store Sharding

OrientDB Non-Native Property
Graph

System
Depen-

dent
File System Sharding

* only supported in the enterprise edition

Table 2.2: Graph Database System Classification.

ences its start and end nodes. It also references the previous and next relationship records for the start

and end nodes, respectively.

DGraph: A distributed database5 with a native graph backend using the GraphQL query language. Data

is stored in a key-value database named Badger that uses an Log Structured Merge (LSM)-tree based

design to store data in the RDF model. The subject is a node, the predicate is a relationship, and the

object can be another node or a primitive data type representing the connection from a node to an at-

tribute value.

TigerGraph: A native parallel graph database [36] with an engine that computes queries and analytics

in massively parallel processing fashion for significant scale-up and scale-out performance. The graph is

stored in-memory, with the user being able to specify how much of the available memory can be used to

5DGraph https://dgraph.io/
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store the graph. If the graph does not fit into memory the rest will spill into disk. Data values are stored in

encoded formats that effectively compress the data. The data does not need to be decompressed when

used internally, only for displaying the information to the user. The system also allows for distributed

computing supporting two classical programming paradigms: vertex-centric and edge-centric.

DEX: A graph database system [37] capable of efficiently performing out-of-core data management with

the use of bitmap structures. It represents graphs using the property graph model while also supporting

multi-graphs, allowing for multiple edges between the same two vertices. The implementation of the

system is based on assigning each object (vertex or edge) an unique identifier (oid) and using two data

structures: bitmaps and maps. A bitmap or bit-vector is a collection of presence bits that denotes which

objects are selected or related to other objects. The maps map each object identifier to a specific value.

These two structures together create a more complex one called link ; this structure allows to efficiently

retrieve a value given an identifier and to retrieve all identifiers associated with a given value. The graphs

are stored out-of-core with each storage component being divided into multiple pages of 64KB each.

GraphDB: A semantic graph database6 (also called RDF triplestores) built on the RDF4J framework,

designed for storing and querying of RDF data. The graph data is persisted to the filesystem to a pre-

configured directory, consisting of two main indices: the Predicate-Object-Subject (POS) index and the

Predicate-Subject-Object (PSO) index. Both of these indexes are used to handle RDF data. The system

also supports indexing the context identifier of statements, to speed searches, and indexing literal values

allowing for faster look-ups of numeric and date/time object values. The query language used by the

system is the SPARQL, the standardized query language for RDF graphs.

JanusGraph: A non-native scalable graph database7 optimized for storing and querying graphs con-

taining hundreds of billions of vertices and edges distributed across a multi-machine cluster (sharding).

The storage backend implementation is provided by third-parties, supporting backends such as Apache

Cassandra and Google Cloud Bigtable. The system supports the property graph model through Apache

TinkerPop, as well as the Gremlin query language.

Nebula Graph: A horizontally scalable distributed open-source graph database8 using a directed prop-

erty graph as its data model. The storage engine is based on RocksDB, an embeddable persistent

key-value store. The vertices are stored in the key-value store using a key composed of the vertex iden-

tifier and the vertex tag (or label) and its encoded attributes as the value. Edges are split into in-edge

and out-edge and stored as separate key-value entries in the store, and each edge is stored in a different

6GraphDB https://graphdb.ontotext.com/
7JanusGraph https://janusgraph.org/
8NebulaGraph https://nebula-graph.io/
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partition.

OrientDB: A non-native multi-model NoSQL database management system9 capable of handling Graph,

Document, Key/Value and Object models. In the case of graphs the model used is the property graph.

The system can be configured to be sharded by using a Multi-Master architecture, thus partitioning the

graph data across multiple workers. In this type of distributed architecture each server can read and

write to the database. Optionally, servers can function as replicas and only be able to read from the

database. The graphs are stored on disk with a caching mechanism to reduce I/O requests.

2.3 Optimized Graph Representations

In this section we present the state-of-the-art work for optimized graph representations [38] and a tax-

onomy to study, analyse, and classify them. We classify graph representations using five features:

Approach, Attributes, Edges, Graph Type and Dynamicity. Figure 2.3 presents a taxonomy of the

state-of-the-art work in optimized graph representations.

Optimized Graph
Representations

Approach Attributes

Non-Attributed

Attributed

Dynamicity

Static

Dynamic

Adjacency List

Summarization

Bitmap-based

Adjacency
Matrix

Edges Graph Type

Undirected

Directed

Multi-Graph

Simple

Figure 2.3: Optimized Graph Representations Taxonomy

Approach: The approach relates to the underlying method that the optimized representation is based

on, we divide this feature into four categories: Adjacency List, Adjacency Matrix, Bitmap-based and

Summarization.

Adjacency Lists keep an array of vertices where each entry stores a pointer to a linked list of edges.

The pointer at index u in the node list points to a linked list where each element v is an outgoing edge(u,

v ). Adjacency lists support fast inserts but slow search because the edges are unsorted.

Adjacency Matrices are n×n matrices of n vertices, where each entry is a single bit and the entry [i,

j] corresponds to the edge(i, j), or to a non-existent edge if the entry has a 0 value. It is very efficient at

9OrientDB https://www.orientdb.org/
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storing dense graphs, however, it wastes space when the graph is very sparse, requiring O(n2) space.

Bitmap-based approaches rely on values mapped to bitmaps where each bit corresponds to a vertex

or an edge, depending on the context. In these representations complex operations can be performed

efficiently by using basic binary operators between bitmaps.

Summarization approaches have the goal of providing a smaller graph description and leaving the

actual compression has secondary result. The actual technique used various from work to work but typi-

cally consists in forming groups of vertices, called super-vertices or cliques, that are connected together

through super-edges and together represent a new graph.

Attributes: This feature describes whether the graph representation supports user data attached to

vertices and/or edges. They are also denominated as properties in some works. We divide this feature

into two categories: Attributed and Non-Attributed.

Attributed graphs allow for attributes in their vertices and/or edges. Some solutions also focus on

further compressing the attributes of the graph. This type of graphs can also be categorized as property

graphs.

Non-Attributed graphs do not support attributes in their vertices and/or edges. Most optimized repre-

sentations do not focus on the compression of attributes, and only address on how to compress vertices

and edges. However, attributes can still be attached to the optimized structure by using other comple-

mentary data structures.

Edges: This feature relates to the direction of the edges of the graph. We divide this feature into two

categories: Directed and Undirected.

Directed graphs define a direction in the edge between two vertices. Directed graphs can always

support undirected edges by simply creating two directed edges in both directions. Although this would

mean that they would have twice the number of edges that an undirected graph representation would

need.

Undirected graphs do not have any direction attached to their edges. This means that any edge

is bidirectional. Because of this, these types of graphs usually have smaller space requirements than

directed graphs, since a single edge in a undirected graph would require two edges in a directed graph.

Graph Type: The graph type relates to the structure of the graph and is divided into two categories:

Simple and Multi-Graph.

Simple graphs contain at most one edge between any two vertices. If we have an attributed graph

representation, a multigraph can be supported by representing the multiple edges between two vertices

as a single edge, where each multi-edge corresponds to an attribute of that edge.

Multi-Graphs allow for multiple edges between any two vertices. Typically, this type of graph repre-
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sentation takes up more space than simple graph representations.

Dynamicity: This feature establishes if the representation allows the graph to be updated. It is divided

into two categories: (Dynamic) or (Static).

Dynamic representations typically are not as space efficient as their static counterparts since more

information is necessary to obtain efficient structures that can be updated without having to perform a

full reconstruction of the representation, as it happens with static representations.

Static representations are more common than dynamic representations and require the entire repre-

sentation to be re-constructed when any of its contents need to be changed.

2.3.1 Relevant Research Works

In this section we present the most relevant Optimized Graph Representations. Table 2.3 shows the

most relevant Optimized Graph Representations identified in our research, classified according to the

previously described taxonomy, highlighting their distinctive features.

Work Approach Attributes Edges Graph Type Dynamicity

k2-tree [22] Adj. Matrix Non-Attributed D Simple Static

Attk2-tree [39] Adj. Matrix Attributed D Multi-Graph Static*

dk2-tree [40] Adj. Matrix Non-Attributed D Simple Dynamic

Dynamic Trie [41] Adj. Matrix Non-Attributed D Simple Dynamic

DEX [23] Bitmap-based Attributed D Multi-Graph Dynamic

CSR [24] Adjacency List Non-Attributed D Simple Static

PCSR [24] Adjacency List Non-Attributed D Simple Dynamic

GraphZIP [42] Summarization Non-Attributed U Multi-Graph Static

GSSC [43] Summarization Attributed U Multi-Graph Static
* the work describes both a static and dynamic version

Table 2.3: Optimized Graph Representation Classification.

k2-tree: A compact graph representation that takes advantage of sparse adjacency matrices (Fig-

ure 2.4). Proposed by Brisaboa et al. [22] the tree represents the structure of the graph adjacency

matrix, where each node in the tree is represented by a single bit: 1 for internal nodes and 0 for leaf

nodes, except in the last level where all nodes are leaves and represent the bit values in the adjacency

matrix.
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The matrix is divided into k2 submatrices of the same size following an MX-Quadtree strategy, each

of these submatrices representing a child node of the root node in the tree. Each submatrix has a value

of 1 if it contains at least one 1 bit cell or a value of 0 otherwise, representing a leaf node. The adjacency

matrix must be a squared matrix n× n where n is a power of k, otherwise the matrix is extended to the

right and bottom with 0s, making it of width n′ = kdlogk ne.
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Figure 2.4: Graph and corresponding adjacency matrix and k2-tree representation.

A key operation in this representation is the rank(T, i) operation, which gives the number of bits

with value 1 in sequence T [1, i]. Another useful operation is childi(x) (for 0 ≤ i < k2) that gives the

position of the i-th child of node x. To obtain the direct(reverse) neighbors of a vertex we need to find

all bits with value 1 in rowi∗(column∗j), where i(j) is the identifier of the vertex. This can be obtained by

performing a top-down traversal tree traversal that chooses k out of k2 of a single node and collects all

leaf nodes with a value of 1, which can be implemented using the rank(T, i) and the childi(x) operations.

Attk2-tree: A structure proposed by Álvarez-Garcı́a, Sandra, et al. [39], the Attributed k2-tree (AttK2-tree)

is a representation based on the k2-tree and is capable of efficiently storing and processing attributed

multi-graphs. The graphs also support labels, where each node and edge can have at most one label

that represents the type of attributes that a component may have. The structure represents attributed

graphs using three components.

Paper 2

Researcher 5

Nodes Schema

Author 3

Colleague 4

Edges Schema

PhDDirector 5

Reviewer 7

Figure 2.5: Schema component of the AttK2-tree

The first component is the Schema component (Figure 2.5). The schema keeps track of all valid

node/edge labels. The labels are ordered lexicographically and the identifiers are assigned sequentially
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to the node/edges of each label.
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Figure 2.6: Data components of the AttK2-tree

The second component is the Data component that stores the attributes of both nodes and edges,

according to their given type (Figure 2.6). The attributes are represented in two different ways depending

on the frequency distribution of its values. For attributes for which their values are used by many nodes

and edges, they are referred to as dense attributes and are represented using k2-trees (Figure 2.6a).

For attributes for which the nodes (edges) usually take different values, they are referred to as sparse

attributes. These attributes are stored as a list indexed by the element identifier (Figure 2.6b).
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Figure 2.7: Relations component of the AttK2-tree
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The third and final component is the Relations component where the different edges that connect the

nodes are stored using a k2-tree (Figure 2.7). To support multiple edges between two nodes a slightly

modified version of the k2-tree is presented, called a multi-edge k2-tree. The described structure is static

and requires the whole graph to be rebuilt when changes occur, however, the paper also describes a

dynamic version of the AttK2-tree.

0 0 0 0 0 0 1 0

0 0 1 1 0 0 0 1

1 1 0 0 1 0 0 0

0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

1111 0111 0111 0011 1000

8/7 8/5 4/1

16/12 4/1

T: 1111 0111 0111 0011 1000

L: 0011 1100 0001 1001 1000 0001 1000 0001 0100

0011 1100 0001 1001 1000 0001 1000 0001 0100

8 8 8 8 4

24 12

Figure 2.8: dk2-tree representation and the corresponding Ttree and Ltree.

dk2-tree: Proposed by N.R. Brisaboa et al. [40], this structure is a dynamic variation of the k2-tree

that allows to add and remove vertices and edges (Figure 2.8). The static version of the k2-tree is

implemented using two bitmaps, T and L, in this dynamic version, named dk2-tree, these bitmaps are

replaced with practical implementations of dynamic bitmaps using two trees, Ttree and Ltree.

The leaves of Ttree and Ltree contain the bits in T and L, while the internal nodes provide access to

arbitrary positions and act as a dynamic rank structure. Each internal node contains a set of entries that

allow access to the leaves for query and update operations.

Each entry in Ttree is of the form (b, o, P) where b and o are counters and P is a pointer to the

corresponding child node the entry is referring to. If P points to a leaf node, the b counter will have the

number of bits stored in the leaf node and the o counter will have the number of bits with value 1. If P

points to a internal node then b and o will contain the sum of all the b- and o-counters in the child node.

Internal nodes in the Ltree are similar with the exception that the o-counter does not exist since there is

no need to perform rank operations on the bits of the last level.
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Figure 2.9: Example of the Dynamic Trie representation.

The nodes in both of these trees may be partially empty, having a minimum and maximum capacity

for the number of entries in each node and containing any number of bits, in the leaf nodes between

those two parameters. When the contents of the tree change, the nodes may be split or merged in order

to keep the tree completely balanced.

All basic operations performed in a K2 − tree, based on rank and child, are also supported by the

dynamic version. The relations between existing elements can be created or deleted by removing or

adding branches to the conceptual tree representation.

Dynamic Trie: Another dynamic approach that also uses k2-trees (in fact it works for kd-trees) was

proposed by Arroyuelo, Diego, et al. [41]. This approach has a different approach on the kd-tree rep-

resentation, by regarding the tree has a trie (prefix tree) on the Morton codes [44] of the cells in the

adjacency matrix (Figure 2.9).

The Morton codes are used to represent the position of each cell in the matrix, so given a cell at

position (r, c) the Morton code can be obtained by interlacing the bits of the binary representations of r

and c, for example, given cell (1, 1) the resulting Morton code would be 0011. The trie is then composed

of strings of length logkn over an alphabet of size kd.

This representation is implemented by dividing the trie into multiple blocks, and each block having

child blocks, thus forming a tree of blocks. At any given time, a block can store at most N nodes, if new

nodes need to be added then the size of the block is increased.

The main operation needed for traversing the tree structure is the child(x, i) operation, which is sim-

ilar to the static version of the k2-tree and yields the child of node x by symbol 0 ≥ i < k2.

DEX: Martı́nez-Bazan, Norbert, et al. [23] describe the internals of the DEX graph database that uses
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an approach different from the ones using k2-trees. This approach makes use of bitmaps to represent

labelled and directed attributed dynamic multi-graphs (Figure 2.10). The values are represented using

value sets that are implemented using two maps: one maps each vertex (edge) to a value, and the other

maps each value to a bitmap where each position corresponds to the identifier of a vertex (edge), if the

position i has a bit value of 1 then the vertex (edge) with identifier i also has the same value that the

bitmap corresponds to.
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Figure 2.10: Diagram of the internal representation used by the DEX graph database.

The structure used to represent the graph is divided into three groups: Objects, where the labels/-

types of both vertices and edges are stored; Relationships, where the edges are stored in two different

value sets, one mapping the edge identifiers to the tail vertex identifiers and the other mapping the edge

identifiers to the head vertex identifiers; Attributes where, for each attribute, a value set maps the vertex

(edge) identifier to the corresponding attribute.

All operations are implemented by performing logical operations with the stored bitmaps. Since each

bitmap encodes the identifier of the object with the relevant value, by performing a union operation, it is

possible to obtain all objects with that value, and by performing an intersection between 2 bitmaps it is

possible to obtain only objects that share the same value.

Compressed Sparse Row (CSR): CSR is a format used for storing sparse graphs and matrices based

on adjacency lists [24]. It efficiently packs all the entries together in arrays, allowing for quick traversal of

the data structure (Figure 2.11). This structure uses three arrays to store a graph: a vertex array, where

each entry contains the starting index in the edge array where the edges for that vertex are stored in

sorted order by destination; an edge array, where the destination vertices of each edge are stored; and

a value array only used for weighted graphs. This format only supports static graphs, needing to be
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Figure 2.11: Example of the compressed sparse row representation.

completely rebuilt when the graph changes.

To insert a new edge, we must first find the entry in the vertex array corresponding to the new edge

source vertex identifier and update the offset stored in each element. In the edge array, all elements

after the newly inserted elements are moved one position over. The new elements in the edge array will

be inserted in sorted order.

Packed Compressed Sparse Row (PCSR): A dynamic variation of the Compressed Sparse Rows

format, Packed Compressed Sparse Row (PCSR) was also proposed by Wheatman, Brian, and Helen

Xu [24]. This format efficiently packs all the entries together using Packed Memory Arrays (PMAs) that

maintain edges in sorted order and leave spaces between elements to support fast inserts and deletes

(Figure 2.12).

(0,4) (4,6) (6,10)

0 1 2

S 2 -

Vertex IDs

Vertex Array

Edge Array 3 S 1 - S 12 -

Figure 2.12: Example of the packed compressed sparse row representation.

The PMA keeps an implicit tree with n/logn leaves with each leaf having logn slots for entries in the

array, where n is the size of the array. The PCSR uses the same vertex and edge lists as the CSR,

with the exception that the edge list is implemented with a PMA instead of an array. Each element in

the vertex array stores the start and end pointers to the edge array for its corresponding range. Each

nonempty entry in the edge array contains the destination vertex identifier and the edge value.

To add a new vertex, a new entry is added to the end of the vertex array and a sentinel is added to

the end of the edge array. The new vertex keeps a pointer to this sentinel. To add a new edge, we start

by finding the corresponding vertex in the vertex array, then performing a binary search over the relevant

section of the edge array and adding the new edge in sorted order. If a rebalanced is triggered, the

sentinel entry is checked and in the case that it was moved, the pointers in the vertex array are updated.
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GraphZIP: A clique-based graph compression method that improves the performance of graph algo-

rithms and reduces the space required to store the graph in both memory and disk (Figure 2.13). A

clique is a set of vertices any two of which are adjacent.
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Figure 2.13: Example of the GraphZIP compression method.

This method, proposed by Ryan A. Rossi and Rong Zhou [42], works by using a generalization of the

CSR representation that introduces a new type of vertex called clique vertex that represents a clique in

the graph. This solution works by representing multiple vertices as a single vertex, thus the larger the

clique the better the compression.

To obtain the set of cliques an iterative algorithm is used that finds the largest clique at each step.

The algorithm can use heuristics, resulting in faster processing but worse compression, or exact clique

methods that obtain better compression. The algorithm is executed until all vertices in the graph have

been processed or a given threshold has been reached. After the cliques have been computed, a graph

encoding method is applied to map the cliques to conceptual vertices.

Graph Summarization based on both Structure and Concepts (GSSC): A compressed representa-

tion for attributed simple graphs, proposed by Ashrafi Payaman and Kangavari M. [43], that summarizes

the graph based on its structure and attributes. For this reason, a conceptual edge is introduced that

connects to vertices with similar attribute values. A new graph is generated from the original graph with

these conceptual edges added, as well as weights to each edge. The summarization uses a top-down
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approach by removing edges with a weight less than a given threshold and partitioning the graph into

multiple sub-graphs (Figure 2.14).
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Figure 2.14: Example of the GSSC compression method.

Final Remarks

Some more recent work in compressed graph representations includes g-Sum by ur Rehman, Saif, et al.

[45], a graph summarization approach for large social networks that minimizes the Reconstruction Error

(RE) of the representation, allowing for a more accurate summarization and improving its usefulness.

Another recent work, by Jihoon Ko, Yunbum Kook, and Kijung Shin. [46], focuses on incremental

lossless graph summarization. This work provides a novel approach in the efficient and lossless sum-

marization of fully dynamic graphs. However, this representation is not suitable for distributed processing

systems like Spark since the graph would need to be partitioned throughout various executors. Further-

more, the summarization is not intended to allow for the iteration of all edges/vertices of the graph,

instead it focuses on the processing of changes to the underlying graph.

2.4 Analysis and Discussion

For the graph database systems described in Section 2.2 we analysed in detail two systems: Neo4J

and JanusGraph.

Neo4J is currently the most popular graph database system, which has the advantage of a much

more active development community than other systems. It also offers a much simpler storage system

by storing the graph in the file system instead of distributing the graph (although the enterprise edition
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supports sharding). However, extending this system would require implementing a compressed repre-

sentation both in disk (binary representation) and in cache (in-memory representation). A compressed

representation for a graph database system would also not be very relevant since these systems typically

store a large majority of the graph in secondary storage.

Another relevant graph database system is JanusGraph, given that is also a very popular graph

database system capable of distributing the graph across various machines. However, the storage

backend contains several implementations (Apache Cassandra, Google Cloud Bigtable, etc) making it

much more difficult to extend the system to use a compressed representation.

We decided to extend a distributed graph processing system for the development of our solution. We

opted on extending the GraphX system since it is a relevant graph processing system that presents an

interesting challenge on the aspect of graph dynamicity. This is due to the underlying dependency on

Spark RDDs that are inherently immutable.

For the optimized graph representation, we opted for the k2-tree representation seeing as it is a

relevant compressed data structure that offers great compression for real-world graphs [22] by exploiting

sparse matrices, common in web graphs and some social networks.

Another relevant optimized graph representation is the Attk2-tree that supports attributed multi-

graphs by using k2-trees. But because of the space overhead introduced by supporting multi-edges

between vertices, we opted to use the k2-tree to represent simple attributed graphs. Simple attributed

graphs can still represent multi-edges by making use of the attributes of an edge.
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Our solution will extend the GraphX processing system and make use of a k2-tree implementation

to allow for a compressed representation of attributed graphs in main memory. The GraphX system

provides an abstraction over a graph, containing a view of vertices, a view of edges and a view of edge

triplets, that correspond to the union of an edge with its corresponding source and destination vertices.

All views are partitioned according to the user. GraphX implements this abstraction by replicating the

vertices in the edge partitions, thus efficiently performing a join between an edge and its corresponding

vertices. It is important to note that this abstraction is static and does not allow for new vertices or edges

to be added. It is possible to update the attributes of either vertices or edges, but because the underlying

Spark RDDs are immutable it presents a challenge to update the graph. Our solution will provide the

same three views while maintaining a compressed fully dynamic representation of the graph, capable of

adding new edges or vertices as well as updating their attributes.

In this chapter we will present the architecture of our extension to the GraphX platform, by providing

the specification details of our implemented solution, leaving a more detailed look of our implementation

to Chapter 4. In Section 3.1 we give a general overview of our architecture and how it integrates with the

GraphX system. In Section 3.2 we explain the base graph interface that our architecture integrates with.

In Section 3.3 and Section 3.4 we give the specification of the data structures used to store the vertices

and edges of the graph, respectively. In Section 3.5 we present the dynamic interface of the graph. In

Section 3.6 we highlight some strategies to partition the graph. Finally in Section 3.7 we give our final

thoughts on the architecture of our system.

3.1 Overview

Figure 3.1 shows a Unified Modeling Language (UML) diagram of the architecture overview of our sys-

tem and how it integrates with the GraphX platform. The diagram shows in blue the main classes of the

GraphX implementation and in green the main classes of our system.

The GraphX platform offers a very thin abstraction layer composed by the Graph, VertexRDD and

EdgeRDD classes, that together provide an interface to represent a distributed graph with a set of

operations to iterate and transform it.

The Graph class provides an interface for all basic graph operations, primitives used to implement

graph algorithms and access to the underlying vertex and edge RDDs.

The VertexRDD class provides a vertex specific interface to access an RDD of vertices. Each vertex

is represented by a tuple containing its identifier, provided by the user, and an optional generic attribute.

The EdgeRDD class, in a similar fashion to the VertexRDD class, provides an edge specific interface

to access an RDD of edges. Each edge, represented by the Edge data class, is a simple data structure

containing the identifier of both the source and destination vertices and an optional generic attribute. In

addition to the edges, the Graph abstraction also exposes a joint view between an edge and its corre-
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«interface»
DynamicGraph[V, E]

Graph[VD, ED]

VertexRDD[VD] EdgeRDD[ED]
Edge[ED]

+ srcId: VertexId
+ dstId: VertexId
+ attr: ED

EdgeTriplet[VD, ED]
+ srcAttr: VD
+ dstAttr: VD

VertexRDDImpl[VD]

ShippableVertexPartition[VD]
+ index: VertexIdToIndexMap
+ values: Array[VD]
+ mask: BitSet
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1

n

RoutingTablePartition
- routingTable: Array[(Array[VertexID], BitSet, BitSet)]

1

EdgeRDDImpl[VD, ED]

EdgePartition[VD, ED]
+ localSrcIds: Array[Int]
+ localDstIds: Array[Int]
+ data: Array[ED]
+ vertexAttrs: Array[VD]
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1

n

GraphImpl[VD, ED]
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1
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has
1 n

1

PKGraph

GraphX

Figure 3.1: Architecture overview of our system.

sponding vertices, by use of the data class EdgeTriplet. This triplet view contains the same information

as a simple edge, with the addition that the vertex attributes of both the source and destination vertices

are also stored.

Both of the RDD abstractions (VertexRDD and EdgeRDD) are implemented in GraphX by using an

underlying RDD containing their respective partition types.

In the case of vertices, the ShippableVertexPartition class provides an implementation of a vertex

partition containing a mapping of each vertex identifier to its corresponding attribute. This partition is

also prepared as to be joined together with an edge partition, by being ”shipped” to an EdgeRDD for

caching. The information necessary to perform these joins, such as to which edge partition to send each

vertex to, is stored in the RoutingTablePartition class. The vertices are cached in the edge partitions to

provide an efficient mechanism to expose the triplet views of a graph.

In the case of edges, these are stored in the EdgePartition class, alongside some metadata to keep
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track of the source and destination identifiers of each edge and their attributes. This class is encased

by a small wrapper, implemented by the ReplicatedVertexView class, that simply deals with the vertex

shipping operations.

The main focus of our system lies in the implementation of an edge partition using the k2-tree com-

pressed data structure, as proposed by Brisaboa et al. [22] and reusing GraphX ’s implementation of a

VertexRDD for the vertices. In the following sections we will explain in more detail the various compo-

nents of our architecture.

3.2 Graph

As described earlier, the Graph class provides the base abstraction for graphs in the GraphX system.

Our solution extends this base abstraction for usage with our own edge partitions. The key interaction

between PKGraph and the Graph class is detailed in Figure 3.2.

Graph[VD, ED]

VertexRDD[VD] EdgeRDD[ED]

PKGraph[V, E]

Figure 3.2: Graph component in our architecture

In more detail, we show in Figure 3.3 the interface of the PKGraph class, inherited by the Graph

class, to handle these elements. As stated in the previous section, a graph contains an RDD of both

vertices and edges, as well as a joint triplet view that combines the edges with their respective vertex

attributes.

The mapVertices, mapEdges and mapTriplets operations apply a user function to each vertex,

edge or edge triplet that allows for the creation of a new graph with modified user attributes. All identifiers

remain unchanged after these transformations. The reverse operation reverses all edges in the graph,

by switching the source vertices with the destination vertices. So an edge from A to B would become

an edge from B to A.

The subgraph operation applies a filter to both the edges and vertices and returns a sub graph of
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1 class PKGraph[V, E] extends Graph[V, E] {
2 val vertices: VertexRDD[V]
3 val edges: EdgeRDD[E]
4 val triplets: RDD[EdgeTriplet[V, E]]
5

6 def mapVertices[V2](map: (VertexId, V) => V2)
7

8 def mapEdges[E2](map: Edge[E] => E2): Graph[V, E2]
9

10 def mapTriplets[E2](map: EdgeTriplet[V, E] => E2): Graph[V, E2]
11

12 def reverse: Graph[V, E]
13

14 def subgraph(
15 epred: EdgeTriplet[V, E] => Boolean,
16 vpred: (VertexId, V) => Boolean
17 ): Graph[V, E]
18

19 def mask[V2, E2](other: Graph[V2, E2]): Graph[V, E]
20

21 def groupEdges(merge: (E, E) => E): Graph[V, E]
22

23 def partitionBy(
24 partitionStrategy: PartitionStrategy,
25 numPartitions: Int
26 ): Graph[V, E]
27

28 def aggregateMessages[A](
29 sendMsg: EdgeContext[V, E, A] => Unit,
30 mergeMsg: (A, A) => A,
31 tripletFields: TripletFields
32 ): VertexRDD[A]
33 }

Figure 3.3: Interface of the PKGraph class

the original graph, containing only vertices and edges that satisfied the predicate. The mask operation

combines two graphs and keeps only the vertices and edges that exist in both. It is assumed that the

provided graph instance is the same implementation has the graph this operation is being applied to.

The groupEdges groups any edges between the same two vertices. Because our solution uses a

standard k2-tree, we cannot represent multigraphs, so this operation does nothing. An alternative to

using multi-graphs would be to represent each additional edge using the attributes of a single edge.

All these operations are then executed in a lazy and distributed fashion, by propagating them through-

out a cluster of computing nodes and aggregating the result in the driver program. Figure 3.4 shows an

example of how a graph operation can be distributed throughout a cluster.
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Figure 3.4: Distributed graph work in a cluster

3.3 Vertices

The VertexRDD class provides an interface for vertex specific RDDs, containing operations to iterate

and transform the underlying vertices of the graph (Figure 3.5).

VertexRDD[VD] VertexRDDImpl[VD]

ShippableVertexPartition[VD]
+ index: VertexIdToIndexMap
+ values: Array[VD]
+ mask: BitSet

has
1

n

RoutingTablePartition
- routingTable: Array[(Array[VertexID], BitSet, BitSet)]

1

Figure 3.5: Vertex components in our architecture

Our solution is focused mainly on compressing the edges of the graph by use of a k2-tree, therefore

the approach for storing the vertices remains unchanged from the GraphX system. The VertexRDDImpl

class, that contains the implementation of a VertexRDD, is reused for our solution with some slight

changes in its construction, that we will explain in more detail in Chapter 4, to accommodate for our own
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specific implementation for the edge partitions.

1 class ShippableVertexPartition[VD] {
2 // Hash set of vertex identifiers
3 val index: VertexIdToIndexMap
4

5 // Vertex Attributes
6 val values: Array[VD]
7

8 // Mask of active vertices
9 val mask: BitSet

10

11 // Routing information of each vertex to its corresponding edge partition
12 val routingTable: RoutingTablePartition
13

14 def shipVertexAttributes(
15 shipSrc: Boolean,
16 shipDst: Boolean
17 ): Iterator[(PartitionID, VertexAttributeBlock[VD])]
18

19 def shipVertexIds(): Iterator[(PartitionID, Array[VertexId])]
20 }

Figure 3.6: Interface of the ShippableVertexPartition class

The vertex partitions, where the actual vertices are stored, are implemented by the ShippableVert-

exPartition that keeps them in a format ready to be ”shipped” to their corresponding edge partitions (see

Figure 3.6). Each vertex partition keeps track of the routing information for each of its vertices, to later

be used to determine to which edge partition to ship them to. The shipVertexAttributes function re-

turns an iterator of all vertices keyed by their corresponding edge partition identifier. In a similar fashion,

the shipVertexIds function returns an iterator of all vertex identifiers keyed by their edge partition. For

both operations, only active vertices can be shipped, which are kept in the mask bitset. To access the

vertices of a partition, we iterate all set bits in the mask and retrieve the corresponding vertex identifier

and attribute (see Algorithm 3.1).

Algorithm 3.1 Algorithm to iterate the vertices of a given partition

procedure ITERATE VERTICES(partition: ShippableVertexPartition)
i← partition.mask.nextSetBit()
while i >= 0 do

vertexId← partition.index[i]
attr ← partition.values[i]
output V ertex(vertexId, attr)
i← partition.mask.nextSetBit()
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EdgeRDD[ED]
Edge[ED]

+ srcId: VertexId
+ dstId: VertexId
+ attr: ED

EdgeTriplet[VD, ED]
+ srcAttr: VD
+ dstAttr: VD

EdgeRDDImpl[VD, ED]

EdgePartition[VD, ED]
+ localSrcIds: Array[Int]
+ localDstIds: Array[Int]
+ data: Array[ED]
+ vertexAttrs: Array[VD]
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1

n
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PKEdgeRDD[V, E] PKEdgePartition[V, E]

K2Tree

1

PKReplicatedVertexView[V, E]

has
1 n

Figure 3.7: Edge components in our architecture

3.4 Edges

The EdgeRDD class provides an interface for edge specific RDDs, containing operations to iterate and

transform the underlying edges of the graph (Figure 3.7).

Our solution extends this abstraction, by the PKEdgeRDD class, and provides a specific implemen-

tation of the edge partitions (PKEdgePartition) using the compressed data structure k2-tree to store the

edges of the graph (K2Tree).

The edge partitions are stored in the PKEdgePartition class which provides operations to iterate and

transform the underlying edges. The actual edges are stored in the K2Tree class, which implements the

k2-tree compressed data structure as proposed by Brisaboa et al. [22].

Figure 3.8 shows the interface of one of our edge partitions. Every operation creates a new partition

with copies of the previous data and any modifications applied, since this is the expected behavior when

changing the elements of an RDD.

The updateVertices operation receives an iterator referencing cached vertices in the partition that

should be updated with new attributes. The reverse operation reverses all edges in the partition, by
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1 class PKEdgePartition[V, E] {
2 def updateVertices(iter: Iterator[(VertexId, V)]): PKEdgePartition[V, E]
3

4 def reverse: PKEdgePartition[V, E]
5

6 def map[E2](f: Edge[E] => E2): PKEdgePartition[V, E2]
7

8 def filter(
9 epred: EdgeTriplet[V, E] => Boolean,

10 vpred: (VertexId, V) => Boolean
11 ): PKEdgePartition[V, E]
12

13 def innerJoin[E2, E3](
14 other: PKEdgePartition[ , E2]
15 )(f: (VertexId, VertexId, E, E2) => E3): PKEdgePartition[V, E3]
16

17 def aggregateMessages[A](
18 sendMsg: EdgeContext[V, E, A] => Unit,
19 mergeMsg: (A, A) => A,
20 tripletFields: TripletFields,
21 activeness: EdgeActiveness
22 ): Iterator[(VertexId, A)]
23

24 //
25 // Dynamic Operations
26 //
27

28 def addEdges(edges: Iterator[Edge[E]]): PKEdgePartition[V, E]
29

30 def removeEdges(edges: Iterator[(VertexId, VertexId)]): PKEdgePartition[V, E]
31 }

Figure 3.8: Interface of the PKEdgePartition class

switching the source vertices with the destination vertices. This operation is directly used by the graph

abstraction to perform its own reverse operation.

The map operation applies a user function to all edges stored in the partition. The filter operation

filters both the vertices of an edge and the actual edge according to the user defined predicates. The

innerJoin operation performs an inner join between two edge partitions. The aggregateMessages

operation is the primitive used to implement all popular graph algorithms. It implements a Pregel [29]

like messaging system to exchange messages between the vertices of a graph. Each vertex is capable

of ”sending” a message through an edge to another vertex. These messages are then aggregated and

merged at each vertex and collected after all messages have been sent.

Figure 3.9 shows an example of exchanging messages between vertices in a graph. In this example,

the attributes are merged by simply adding the integer values together.

The GraphX computing model also has the ability to only ”activate” some vertices, meaning that only

the active vertices would be able to receive messages. Which vertices remain active are stored in each
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3 7

14
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(b) Messages are aggregated at the central vertex

Figure 3.9: Example of vertices exchanging messages.

edge partition and the non-active vertices are skipped when aggregating messages. The activeness

requirements can then be specified as a parameter of the aggregateMessages function.

The addEdges and removeEdges functions are dynamic operations that can add or remove edges

from the partition. Although they are dynamic operations, the edge partition does not need to be mutable,

since a new instance of the PKEdgePartition class is returned as a result of these operations.

As stated previously, the edge partition uses a k2-tree compress data structure to store the edges of

the graph. This data structure is capable of representing the edges of a graph in a very space-efficient

format. Our architecture only requires that the implementation of this structure provides a method to

access and iterate its edges.

This requires iterating the k2-tree in a depth-first fashion and calculating the line and column in the

adjacency matrix of each edge.

The k2-tree iterator works by traversing all child nodes of each node, starting from a virtual node at

the top of the tree. To find the position of the next node in the bitset the algorithm makes use of the

rank operation, which counts the number of bits with a value of 1 up to a given position. This process is

repeated until a leaf node is reached by making various recursive calls that continuously move down in

the adjacency matrix into increasingly smaller quadrants. At the same time, we keep track of the current

line and column in the adjacency matrix, returning them when we reach a leaf node.

Each line and column corresponds to a local vertex identifier, which then needs to be efficiently

mapped to global identifiers, as well as determining for each edge its corresponding attribute. Algo-

rithm 3.2 shows an example in pseudo code of a possible implementation to access the edges of an

edge partition by iterating its corresponding k2-tree.

In a similar fashion to the GraphX system, our solution also uses a simple wrapper over an edge

RDD, provided by the PKReplicatedVertexView, that handles the shipping of vertices to the underly-

ing edge partitions. Figure 3.10 shows the interface of this class. This class stores the underlying
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Algorithm 3.2 Algorithm to iterate the edges of a given partition

procedure ITERATE EDGES(partition: EdgePartition)
iterator ← tree iterator(kh, 0, 0,−1) . kh is the size of the global adjacency matrix
i← 0
while iterator.hasNext() do

(localSrcId, localDstId)← iterator.next()
srcId← partition.local2Global[localSrcId]
dstId← partitino.local2Global[localDstId]
attr ← partition.edgeAttrs[i]
output Edge(srcId, dstId, attr)
i← i+ 1

procedure TREE ITERATOR(size, line, col, pos)
if x ≥ |T | then . leaf node

if L[pos− |T |] = 1 then output (line, col)
else . internal node

if pos = -1 or T[pos] = 1 then
y ← rank(T, pos) · k2 . k2-tree rank operation to find child node
for i = 0..k2 − 1 do

tree iterator(size/k, line · (size/k) + i/k, col · (size/k) + i mod k, y + i)

1 class PKReplicatedVertexView[V, E] {
2 var edges: PKEdgeRDD[V, E]
3 var hasSrcId: Boolean
4 var hasDstId: Boolean
5

6 def reverse(): PKReplicatedVertexView[V, E]
7

8 def upgrade(vertices: VertexRDD[V], includeSrc: Boolean, includeDst: Boolean)
9

10 def updateVertices(updates: VertexRDD[V]): PKReplicatedVertexView[V, E]
11 }

Figure 3.10: Interface of the PKReplicatedVertexView class

PKEdgeRDD instance and keeps track of whether the view includes the attributes of both the source

and destination vertices or if these are only partially shipped, since in some cases these may be unnec-

essary.

The reverse function simply reverses all edge partitions in the underlying RDD. The upgrade func-

tion prepares the given vertices to be ”shipped” to their corresponding edge partitions, which can be

deduced by using the routing table stored in the VertexRDD class. The updateVertices function up-

dates the attributes of the vertices cached in the underlying edge partitions.
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3.5 Dynamism

The DynamicGraph interface exposes various functions to both add and remove vertices and edges

from a graph. However, since the underlying Spark RDDs are immutable, some partitions of the graph

will need to be rebuilt, or at the very least a new copy of them will need to be made. This does not mean

that the entire graph will need to necessarily be rebuilt, only the partitions which we are transforming.

Thus, adding or removing both vertices and edges requires determining the partitions affected, and only

transforming these. Figure 3.11 shows the interface of the DynamicGraph class.

1 class DynamicGraph[V, E] {
2 def addVertices(other: RDD[(VertexId, V)]): Graph[V, E]
3

4 def addEdges(other: RDD[Edge[E]]): Graph[V, E]
5

6 def removeVertices(other: RDD[VertexId]): Graph[V, E]
7

8 def removeEdges(other: RDD[(VertexId, VertexId)]): Graph[V, E]
9 }

Figure 3.11: Interface of the DynamicGraph class

The addVertices and addEdges functions add new vertices and edges, respectively, to the graph,

returning a new graph instance in the process.

The removeVertices and removeEdges functions remove the given vertices and edges from the

graph, also returning a new graph instance in the process. Both of these functions work very similarly to

applying a filter over the graph, with the slight optimization that only either the vertices or the edges of a

graph are affected, instead of always having to filter both.

3.6 Partitioning

Because GraphX processes the graph data in a distributed fashion, our solution also needs to address

the problem of how to partition the graph to allow for spatial and computational efficiency.

The input graph is represented by two RDDs provided by the user, one representing the vertices

and another representing the edges (similar to the GraphX implementation). For the case of edges,

our solution interprets them as an edge adjacency matrix that is partitioned using a 2D partitioning

scheme [47] that splits the adjacency matrix into several submatrices of equal size, each assigned to a

unique partition (see Fig. 3.12). In case the number of partitions is not a perfect square the last column

will have a different number of rows than the others.

One problem with this distribution is that it leads to poor work balance since, given a sparse adjacency

matrix, some partitions will have many more edges than others. To overcome this, we shuffle the vertex
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Figure 3.12: Adjacency matrix partitioning scheme

locations in order to evenly distribute them through all partitions.

Like GraphX ’s implementation, our solution also replicates the vertices in the edge partitions to pro-

vide an efficient way to join the edges with their respective vertices. Using this distribution we guarantee

that any vertex is replicated at most 2 ×
√
|P |, where |P | is the number of partitions to partition the

adjacency matrix by, since any vertex is represented by a line and a corresponding column in the matrix,

and every line and column intersect at most
√
|P | partitions.

The described partitioning scheme is applied by default, with no configuration required to the edges.

It is also possible for the programmer to specify a different partitioning scheme by using the already

existing API provided by Spark. For the vertices, we would default to the partitioning scheme supplied

by the user or, if no scheme was provided, default to a uniform partitioning strategy such as the one

based on the hash of each vertex.

In cases where the graph becomes unbalanced, the user can repartition the underlying vertex and

edge RDDs to either increase or decrease the number of partitions, using Spark ’s re-partition function.

When increasing the number of partitions these are shuffled, which incurs a significant overhead due

to network communication between workers. However, when decreasing the number of partitions it is

possible to avoid a shuffling phase by using Spark ’s coalesce function.
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The PartitionStrategy class provides an interface to implement all existing partition strategies in the

GraphX platform (see Figure 3.13).

PartitionStrategy

EdgePartition2D

EdgePartition1D

RandomVertexCut

CanonicalRandomVertexCut

PKGridPartitionStrategy

Figure 3.13: Overview of the existing partition strategies

The PartitionStrategy class exposes a simple interface to implement a partition strategy to use to

partition a graph (see Figure 3.14).

1 class PartitionStrategy {
2 def getPartition(
3 src: VertexId,
4 dst: VertexId,
5 numParts: PartitionID
6 ): PartitionID
7 }

Figure 3.14: Interface of the PartitionStrategy class

The getPartition function returns the partition identifier for an edge with the given source and desti-

nation vertex identifiers.

The GraphX platform already offers several partition strategies, such as: EdgePartition2D, this

is the strategy described earlier and implements a strategy that divides the adjacency matrix of the

graph into several blocks, as well as shuffling the vertices of the graph to provide a more balanced work

distribution; EdgePartition1D, groups together edges with the same source vertex; RandomVertexCut,

distributes the edges based on the hash code of both the source and destination vertex identifiers;

CanonicalRandomVertexCut, is the same strategy as the RandomVertexCut but the direction of the

edge is also taken into account when performing the hash.

Our solution also introduces a new partition strategy, represented by the PKGridPartitionStrategy

class. This strategy is very similar to the EdgePartition2D approach that already exists implemented in

the GraphX platform. The main difference between the strategies is that the vertices won’t be shuffled,

as to not change the data locality of the edges, thus providing a more space efficient representation of
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the entire graph in some cases, at the cost of worse workload distribution in the cluster.

3.7 Discussion

Our solution is designed to improve upon GraphX ’s implementation by using a k2-tree to efficiently

represent binary relations between two vertices, representing an edge. More specifically, GraphX ’s

implementation uses two arrays to store the local source and destination vertex identifiers and a hash

map to keep track of all the direct neighbors of each vertex. Our solution replaces all this by a k2-tree

that can efficiently compute the direct and reverse neighbors of any local vertex. GraphX does not

provide any mechanism to transform the graph by adding new elements while our solution implements

a dynamic graph API that allows to add and remove vertices and edges.
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Our implementation uses the k2-tree compressed data structure to store the edges of a graph in the

GraphX platform. Our implementation was made using Spark version 3.1.1 and implemented in the

Scala programming language version 2.12.10.

In this chapter we present our implementation of the architecture described in the previous chapter.

We start by presenting the implementation of the chosen compressed representation in Section 4.1,

introducing our implementation of the base graph abstraction in the GraphX platform in Section 4.2,

explaining the implementation of both the vertex partitions and edge partitions in Section 4.3 and finally

analyzing and discussing our implementation in Section 4.4.

4.1 K2-Tree

As we will see in Section 4.3, the K2-tree structure is used to store the edges of an edge partition in a

space-efficient format. The basic components of a K2-tree were already described in Sub-Section 2.3.1

when describing the structure as proposed by Brisaboa et al. [22], so in this section we will only focus

on the details of our implementation.

The K2-tree structure is implemented by the K2Tree class. Each instance stores some metadata

about the structure (such as the k -value used and the size of the adjacency matrix the tree represents)

and a single bitset to keep all internal and leaf bits, as well as two integers to keep track of the number

of internal and leaf bits.

The tree is stored in a bitset by representing each node by a single bit, ordered by each level of the

tree (from top to bottom), and ordered from the leftmost node to the rightmost node inside each level

(Figure 4.1).

1 0 0 1

1 1 0 1 1 1 1 0

Bitset: 1001   1101 1110
Level 1 Level 2

Level 1 (Internal)

Level 2 (Leaves)

Figure 4.1: Diagram of how a K2-tree is represented using a bitset.

Instead of separating internal bits and leaf bits into their own bitset structure, these are kept in the

same Bitset which allows for a slightly more space efficient implementation and only requires the usage

of an integer to keep track of where the internal bits end and the leaf bits begin.
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4.1.1 Construction

The work of constructing the K2-tree structure is delegated to the K2TreeBuilder class. The structure is

built from a ordered list of edges, each edge being a simple tuple containing the line and column of the

edge in the adjacency matrix.

The order that the edges are added to the tree must be the same as the order that they are traversed

when iterating the tree. To calculate this order an index is assigned to each edge of the adjacency matrix

based on the same strategy used to create a K2-tree from an adjacency matrix. This strategy essentially

consists in calculating the row-major index of a quadrant at each level of the tree and then combining

them to create a K2TreeIndex. These quadrants are obtained by calculating the quadrant that a given

edge belongs to at each level of the tree, which can be determined by simply consecutively dividing the

current line and column by the k value of the tree. Figure 4.2 shows an example of calculating the index

of the edge (2, 2) in a 8x8 matrix using a k = 2.

0 1

2 3

4 5
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8 9

10 11

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

16 17 20 21

18 19 22 23

24 25 28 29

26 27 30 31

32 33 36 37

34 35 38 39

40 41 44 45

42 43 46 47

48 49 52 53

50 51 54 55

56 57 60 61

58 59 62 63

12 13

14 15

0 1

2 3

Level 1 Level 2 Level 3

Figure 4.2: Example of calculating the K2TreeIndex for an edge.

At each level we calculate the row-major index of the quadrant and multiply it by size of the quadrant.

By repeating this process for each level, we reach the final index of the edge. By building this index

for each edge we can order the edges to build the tree. This process does not introduce significant

overhead since the edges will need to be ordered regardless because of the attached user attributes, as

we will see in Section 4.3.

The building algorithm used consists in keeping a cursor at each level of the tree (the height of the

tree is calculated at the start by knowing the k value used and the size of the adjacency matrix). Each

cursor keeps track of all bits of a given level, the index of the last set bit (sentinel) and the index of the

its parent node (parentIndex), which is used to determine whether a new bit belongs to the same parent

as the current node.

For each edge that is added to the builder we traverse the tree from the bottom to the virtual root,

updating the cursors at each level as necessary. Because the edges are ordered when inserting, we

only need to move the cursor from left to right and keep track of whether the new node we are placing
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in the tree belongs to the same existing parent node as the sentinel node of that level or whether a new

parent node is needed. In case a new parent node is needed, we simply add a new sequence of k2 bits

and place a value of 1 in the correct bit.

1 0 0 0

1 1 0 1

- parentIndex: 0
- sentinel: 0

 Cursor (Level 1)

- parentIndex: 0
- sentinel: 3

 Cursor (Level 2)

(a) K2-tree with one branch built

1 0 0 1

1 1 0 1 1 0 0 0

- parentIndex: 0
- sentinel: 3

 Cursor (Level 1)

- parentIndex: 3
- sentinel: 4

 Cursor (Level 2)

(b) Adding a new edge belonging to a dif-
ferent parent node

1 0 0 1

1 1 0 1 1 1 0 0

- parentIndex: 0
- sentinel: 3

 Cursor (Level 1)

- parentIndex: 3
- sentinel: 5

 Cursor (Level 2)

(c) Adding a new edge belonging to the
same parent node

Figure 4.3: Example of building a K2-tree.

Figure 4.3 shows the process of adding new edges to the builder. In Figure 4.3a we start by having a

tree with only a single branch built with a cursor at each level pointing to the sentinel bit. In Figure 4.3b

we add a new edge that belongs to a new parent node. We start from the bottom of the tree (level 2),

check if the new bit belongs to the same parent node as currently defined in the cursor, in this case the

bit belongs to the a different parent node so we add a new sequence of k2 bits and update the sentinel

bit. We then repeat this process up to the virtual root. Figure 4.3c highlights one optimization that

building the tree from the bottom to the top allows for. In this case the new edge belongs to the same

parent node, which means that the entire tree is already built down to that node and it is only necessary

to flip the bit at the last level. In web graphs, there can be large clusters of vertices, this method can

greatly increase the efficiency of building the K2-tree when compared to building from the top to bottom.

1 0 0 1

1 1 0 1 1 1 1 0

1001

1101 1110

 Level 1:

 Level 2:

Tree: 1001 1101 1110

Level 1 Level 2

Figure 4.4: Transforming the builder to the final compressed K2-tree.

After this process is repeated for all edges we are left with the bits for each level in their respec-
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tive bitsets. To build the final K2-tree we simply need to copy all bits of each level to a single bitset

(Figure 4.4).

It is worth noting that the bitset at each level is allocated with a default initial size and may need to

potentially grow as the number of bits added increases. We employed a simple approach that simply

checks if the bit we are trying to change is within the capacity of the bitset and if not, double its capacity

until it is sufficient.

This approach allows for an efficient performance when building a new K2-tree while needing very

little extra space when compared with the final compressed representation.

An alternative approach that was also considered consisted in creating an initial tree with all nodes

represented, meaning each node (independently of whether it had a value of 1 or 0) had k2 child nodes,

and then adding each edge from top to bottom. The final compressed representation would be con-

structed by iterating all bits and removing sequences of k2 bits which all had a value of 0.

This approach removes the need to order the edges, but as we will see in Section 4.3 this will still

be necessary, and thus slightly improved the time needed to build a new tree but at the cost of much

more space overhead when compared to the final compressed representation, making it impossible to

use values greater than k = 14 due to the exponential growth of the number of bits.

Considering these penalties, our implementation uses the first approach described which requires

much less space and still offers very efficient performance when building the tree.

4.1.2 Iteration

The algorithm used to iterate a K2-Tree is the same as described in Section 3.4 but implemented with

an iterative method instead of using recursive calls and using an auxiliary rank structure to reduce the

number of rank calls needed.

The algorithm consists in iterating all the children of a node, from left to right, in a depth-first traversal

until the leaf nodes are reached. To accomplish this, a similar approach to the tree construction is taken,

by having a cursor at each level of the tree, but now each cursor only keeps the index of the current bit

inside the respective level.

As stated in Section 2.3.1 when discussing the K2-tree, the rank operation is crucial to iterate the

edges of a tree and is typically used to determine the position of the next child node in the bitset. Our

implementation reduces the number of rank calls by creating an auxiliary rank structure that performs

only a single rank call for each level and stores them in a map as level offsets. This way, we only need to

add the level offset of the current level to determine the position of the current node in the bitset. Then,

by keeping track of the current line and column, and updating them as we iterate up and down the tree,

we can determine the line and column of an edge when a leaf node is found.

Figure 4.5 shows an example of how the K2-tree is iterated. The cursor at a given level only moves

to the next node when all of its children nodes have been iterated.
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1 0 0 1

1 1 0 1 1 1 1

1 2

1 2 3 4 5 6

- Level 1 Cursor
- Level 2 Cursor

0

Figure 4.5: Example of iterating a K2-tree.

Since not all child nodes of a node need to be iterated, only the nodes which have a value of 1,

our implementation makes use of a special operation of the bitset, called nextSetBit. This operation

guarantees a time complexity of O(1) to find the next bit with a value of 1 by counting the number of

trailing zeros of a word and making use of masks and bit shift operations. Our tests showed that using

this operation over iterating all bits significantly increases the performance of iterating the K2-tree.

4.2 Graph

The GraphX platform uses a property graph, meaning that user attributes can be attached to both the

vertices and edges of a graph.

The base class abstraction is provided by the Graph class, which contains an interface as described

in the previous chapter (see Figure 3.3).

Our implementation of the base graph abstraction is provided by the PKGraph class, which contains

a similar implementation to GraphX ’s version, but uses its own type of edge partitions, reusing the same

implementation for the vertices as well.

The mapVertices and mapEdges operations transform their corresponding RDDs by mapping each

element with a given user function.

The edge triplet view is obtained by creating a new RDD from joining both the vertex and edge RDDs,

mapping for each edge their corresponding vertex attributes. The vertices are kept cached in the edge

partitions, updating whenever necessary, and then access to create the resulting joint view.

The reverse operation reverses the edges of all edge partitions of the graph. As we will see in the

following sections, this requires reconstructing each edge partition.

The subgraph operation applies a filter to the underlying vertex RDD, then updates the cached

vertices in the affected edge partitions and finally applies a filter over the edges as well. The cached
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vertices need to be updated first, since the user function receives the edge triplet view.

The mask operation performs an inner join between the RDDs of each graph and creates a new

graph with the new transformed RDDs.

As explained in the previous chapter, the groupEdges operation does nothing since our solution

does not support multi-graphs.

4.2.1 Partitioning

The partitionBy operation partitions the entire graph according to a PartitionStrategy. By default the

graph will be partitioned based on the hash value of its vertices and edges, but in some cases, it may

provide better performance to partition the graph using a specific strategy.

Our solution is capable of using any kind of partitioning strategy, but as described in Chapter 3 a

2D partitioning scheme will be better suited for most web graphs. This strategy will lead to better load

distribution and reduce the space requirements of each partition.

The implementation of this strategy already exists in the GraphX platform in the form of the EdgePar-

tition2D class. Our solution implements a slightly altered version of this strategy that aims to better

preserve the locality of the edges in the adjacency matrix by not shuffling the vertices of the matrix, pro-

vided by the PKGridPartitionStrategy class. This partitioning strategy is based on a strategy proposed

by Brisaboa et al. [47] called Grid Partitioning. Our implementation divides the entire adjacency matrix

of the graph into various blocks of equal size, each block corresponding to an edge partition, and can

potentially lead to better compression of the edges at the cost of a slightly worse load distribution.

4.2.2 Dynamism

The dynamism offered by our implementation consists in rebuilding only the necessary partitions of the

graph, more specifically, the ones that will have vertices or edges added/removed. The DynamicGraph

interface, as described in Chapter 3, contains the methods to add or remove vertices and edges to an

existing graph.

The addVertices operation adds new vertices to existing partitions. The given RDD can either be

already partitioned, in which case the vertices are added to their respective partitions, or may need to

be partitioned first, according to the graph vertex partitions, to determine the partition of each vertex.

The addEdges operation adds new edges to the existing edge partitions. Similar to the addVertices

operation the given RDD can already be partitioned according to the graph edge partitions.

The removeEdges function filters out all edges with the specified identifiers. This operation can be

slightly more efficient than simply applying a filter on the graph since only the edges of the graph are

affected and not all partitions need to be traversed. Only the partitions which removed edges belong to

need to be processed.
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The removeVertices operation is similar to the removeEdges but removes vertices from the vertex

partition and any edges referencing the vertices to be removed from the edge partitions. This means

that, in some cases, if most vertices are being reference by existing edges it may be more efficient to

remove the edges instead.

For all previously described graph functions, the underlying edge partitions handle the actual logic of

transforming the edge partition, so these operations will be described in the more detail in the following

section.

4.3 Partitions

The vertex partitions are handled by the GraphX implementation of a VertexRDD, provided by the Ver-

texRDDImpl class. Our solution simply changes how the vertex partitions are built to support our im-

plementation of the edge partitions by creating alternative functions to create a new VertexRDD. These

functions are very similar to GraphX ’s version used when building a new VertexRDD, with the difference

that they use our implementation of an edge partition.

The edge partitions are handled by the PKEdgeRDD class, that uses a very similar implementation

to that of GraphX but using a different implementation for the edge partitions. The main focus of our

work was placed in the implementation of these edge partitions, in the PKEdgePartition class.

The edge partitions use our implementation of a K2-tree to store the edges and some metadata about

that specific partition. Figure 4.6 shows a snippet of the metadata kept in the PKEdgePartition class.

1 class PKEdgePartition[VD, ED](
2 val vertexAttrs: Array[VD],
3 val global2local: OpenHashMap[VertexID, Int],
4 val tree: K2Tree,
5 val srcOffset: Long,
6 val dstOffset: Long,
7 val activeSet: Option[VertexSet]
8 )

Figure 4.6: Metadata of the PKEdgePartition class

The srcOffset and dstOffset fields are used to keep track of the offset of the partition in regard

to the global adjacency matrix. These offsets allow the edges to be mapped from global identifiers to

local identifiers and vice versa, which in turn allows to create a smaller k2-tree. Figure 4.7 highlights

the difference between using and not using these offsets. If these offsets were not present the resulting

partition would become much larger, since it would start at the beginning of the global adjacency matrix.

As an example, with an offset of 5 for both the source and destination vertices, the edge (5, 6) would

become the edge (5− 5, 6− 5) = (0, 1). The resulting K2-tree will only represent the section highlighted
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Figure 4.7: Example of a edge partition with an offset from the global adjacency matrix.

in green highlighted in Figure 4.7, leading to a more space efficient tree.

Besides storing the edges, the edge partition will also keep the cached vertices of those edges.

The vertices are kept cached in the edge partitions as an efficient way to join the vertices and edges

to create the EdgeTriplet view. The attributes of the vertices are kept in the vertexAttrs array and the

global2local mapping maps the global identifier of the vertices to sequential local identifiers, this is the

same approach used by the GraphX implementation of the edge partitions.

The activeSet keeps track of a set of vertices that are active in this partition. The active vertices are

taken into account when aggregating messages between vertices in the aggregateMessages function.

We will describe in more detail how this metadata is used in Section 4.3.2.

4.3.1 Construction

Creating a new edge partition consists in building a new k2-tree, as described in Section 4.1, and also

creating the necessary metadata alongside it.

The class responsible for building a new edge partition is called PKEdgePartitionBuilder, this class

receives the edges that should be included in the partition, in no particular order, and stores them in a

dynamic array. This dynamic array uses an optimized implementation, provided by the Spark platform,

by the class PrimitiveVector. At the same time, the largest and smallest source and destination vertex

identifiers are collected to later calculate the offsets of the partition, as well as the actual size of the

partition. Figure 4.8 shows an example of building a new edge partition.

After all edges have been added to the builder these are sorted according to their K2TreeIndex and

used to create a new k2-tree. The edge attribute array is also constructed with the attributes ordered
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Figure 4.8: Example of building a new edge partition.

by this index. This way, the order that the edges are navigated in the k2-tree corresponds to their order

in the attribute array. The final step is creating a mapping from the global vertex identifiers to their

respective local identifiers and building a new edge partition.

In some cases, after applying certain operations, the partition needs to be rebuilt with either modified

edge attributes or removed edges. In these cases, to optimize the performance of building a new parti-

tion, a different approach is used and the partition is not entirely rebuilt, re-using some existing data and

avoiding a full rebuild.

The class PKExistingPartitionBuilder is similar to the previous builder but keeps most of the metadata

untouched, only needing to rebuild the k2-tree and the edge attributes. It is assumed that the size of the

adjacency matrix represented by the partition does not increase, as this is the case for all implemented

operations. The edges are also already inserted in the correct order, meaning that there is no need to

sort neither the edges nor their attributes, since this builder is used when iterating an already existing

partition that already navigates the edges in the correct order.

4.3.2 Processing

In Chapter 3 we already described the interface of the PKEdgePartition class (see Figure 3.8), so in this

section we will simply explain in more detail the implementation of each function of the interface.

Every operation creates a new partition by transforming the previous data, typically using a pro-

vided user function (e.g map, filter, etc), since this is the expected behavior in the Spark platform when

transforming an RDD.

The updateVertices operation receives an iterator referencing cached vertices in the partition that

should be updated with a new attribute. In our implementation we simply make a copy of the array of
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vertex attributes and iterate the new vertices to update their attributes.

The reverse operation reverses all edges in the partition. Because the metadata may suffer some

changes in this operation our implementation reconstructs the entire partition by iterating the existing

edges and reversing their source and destination vertices.

The map operation applies a user function to all edges. In our implementation we navigate the

k2-tree and map the corresponding edge attribute.

The filter operation filters both the vertices of an edge and the actual edge according to the user-

defined predicates. In this case, our implementation iterates the k2-tree and, using an existing partition

builder, build a new partition containing only the edges that satisfy the predicate.

The innerJoin operation performs an inner join between two edge partitions. The algorithm used

consists in traversing both partitions at the same time, calculating which edge currently has the smallest

index, and advancing its corresponding iterator until either the same edge is found or an edge with a

larger index is found.

A small optimization was also implemented that can avoid performing an inner join at all in the case

that the partitions have no possible shared edges. By interpreting the partitions as blocks in the global

adjacency matrix and calculating their start and end position, we can determine if the partitions intersect,

and in case they do not immediately return an empty partition. Figure 4.9 shows an example of detecting

if two partitions have any intersection.
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Figure 4.9: Example of testing the intersection between two partitions.

The aggregateMessages operation is the primitive to implement all popular graph algorithms. Our

implementation consists on using an aggregating edge context that will store all aggregated messages

at each vertex, and then scan all edges in the partition and send messages through all active edges.

An edge is active according to its vertices and the EdgeActiveness parameter specified. This parameter

can determine if both, neither, only the source vertex or only the destination vertex need to be active. A

vertex is active if its present in the activeSet of the partition, which is supplied by the graph algorithm

implementation when necessary. For example, the Page Rank algorithm only activates vertices that
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have received messages in the previous iteration.

Both the dynamic operations (addEdges and removeEdges) will cause the partition to be completely

rebuilt due to the changes in the underlying k2-tree.

In the case of adding new edges, the existing edges and the new edges are added back to a new

partition builder, these are then sorted according to their index and a new partition is built.

In the case of removing existing edges, the edges to remove are placed in a set, so that the lookup

for an edge is efficient, then the existing k2-tree is navigated and all edges that do not exist in the set are

added back to the partition. Because the edges are added back in the correct order, there is no need to

sort them in this operation.

It is worth noting that all these operations are used when applying some transformation to an existing

RDD, that is then used in the creation of a new graph instance, without having to reconstruct the entire

graph again. Because transforming the graph typically involves various operations to the underlying

RDDs, the graph is cached after being transformed. Meaning that after the partitions of the graph are

constructed once, and if no modifications have happened since, none of the graph partitions will need

to be rebuilt.

For some cases where this behaviour is undesirable, since all intermediate graphs resulting from

these transformations will be cached in memory or secondary storage (user defined), it is also possible

to remove the graph from cache by using the existing mechanisms in Spark RDDs (unpersist method).

4.4 Analysis

Our implementation differs from GraphX mainly in the implementation of the edge partitions. GraphX

uses a simple approach to store the edges by keeping two arrays, one for the source vertices and

another for the destination vertices. Inside each array the vertices are sorted according to their local

identifier and its possible that there exists repeating vertices inside the arrays. Although this is not a

very space efficient solution it allows for very efficient navigation of all edges in the partition, which is

typically the case for most operations. To navigate the edges in the GraphX implementation, it is simply

necessary to iterate both arrays at the same time, extracting the source vertex from one array and the

destination vertex from the other. The edge attributes are also stored in an array sorted by the order that

the edges are navigated.

Our solution replaces both of these arrays with a single k2-tree and eliminates the need for most

of the metadata required by the GraphX implementation, that as we will see in Chapter 5, offers a

significantly more space efficient edge partition. However, iterating all edges will naturally be slightly

less efficient when compared to the GraphX implementation, since our solution will require a depth-first

traversal of the k2-tree, instead of simply iterating an array.

Finally, the GraphX implementation is not dynamic and as such does not allow adding new vertices
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or edges. It can be possible to remove vertices and edges by obtaining a sub-graph of the total graph,

but all vertices and edges will need to be removed, which for very large graphs can be less efficient than

our approach.

4.4.1 Limitations

One limitation of our implementation is how the aggregateMessages primitive is implemented and the

lack of optimizations from our solution when compared to what the GraphX implementation can perform.

In the case of GraphX, their implementation offers two possible methods to perform this operation.

The first approach consists in scanning all edges in the partition and performing the exchange of

messages for all active edges, this method is called aggregateMessagesEdgeScan.

The second approach consists in keeping a mapping of clusters of vertices in the metadata of the

edge partition. This cluster mapping assigns a cluster identifier to each vertex, each cluster correspond-

ing to the neighboring vertices of a given vertex. This approach can be effective for graphs with a sparse

adjacency matrix or for graphs with a small amount of active vertices, since we can skip an entire cluster

of vertices when we detect that the vertex assigned to that cluster is not active. It is worth noting that

the GraphX implementation only keeps this clustering for the source vertices. Figure 4.10 shows an

example of the clusters generated for a given edge partition, each source vertex (left) with neighboring

vertices is grouped into a cluster (right).
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Figure 4.10: Example of building vertex clusters in a edge partition.

In the case of our implementation, we experimented with a similar approach, since this second ap-

proach corresponds almost directly with finding the direct neighbors of a vertex, with a possible advan-

tage of also being able to find the reverse neighbors, all without any need for more metadata. However,

our tests showed that this approach was actually less efficient, then simply iterating the entire partition,

even in the case of only a small portion of the vertices being active. This can be explained by the fact

that finding all direct or reverse neighbors of a vertex consists in having to iterate the entire height of

the tree, effectively having similar performance to iterating the entire tree (specially for small values of
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k ) for each active vertex. As such, our solution uses only a single approach of scanning all edges in the

partition.

Another limitation lies in how the k2-tree encodes the graph’s adjacency matrix. As stated before,

each graph as a corresponding adjacency matrix where lines represent source vertices and columns

represent destination vertices. In the case of the GraphX platform, the line and column number map

directly to the vertex identifier, as such, the total size of the adjacency matrix is given by M = max−min

where M is the size of the adjacency matrix, max is the largest vertex identifier and min is the smallest

vertex identifier. As such, a k2-tree representing an adjacency matrix of size M can store at most M2.

The resulting k2-tree will then encode this entire adjacency matrix and efficiently compress larger empty

areas.

For adjacency with good data locality, meaning that most edges are clustered, this leads to a k2-tree

with small heights and very good compression results (see Figure 4.11a) since the adjacency matrix

can be shrunk to only contain the area with active edges (highlighted in green in Figure 4.11).
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Figure 4.11: Example of data locality of adjacency matrices.

However, for adjacency matrices with very poor data locality, meaning that there exist very little

clusters of edges and as such the edges in the adjacency matrix are very far apart, the total number

of edges that can be stored ends up being much larger than necessary (see Figure 4.11b) and thus

leading to a k2-tree with an unnecessarily large height, which is the main limiting factor in the processing

performance of the structure. This is an inherent limitation of the k2-tree data structure, since it mainly

focuses on web graphs, where this corner case does not typically occur. The data locality of web graphs

is also much better suited because of the common occurrence of edge clusters and sparse matrices.

To help alleviate this limitation a partition strategy such as the one described in Section 4.2 could be

used. This strategy would lead to partitions with overall better data locality at the cost of a slightly worse

distributed workload.
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In this chapter, we detail the metrics and testing environments used to evaluate our implementation

and how it fulfills the established requirements. We start by explaining the metrics we will consider in our

evaluation in Section 5.1, then in Section 5.2 we explain how the micro-benchmarks were performed and

the results obtained in Section 5.3 we present the macro-benchmarks and their results and in Section 5.4

we showcase some possible optimizations and how they compare with the standard implementation.

5.1 Metrics

In this section, we present the evaluation metrics and the requirements of our system.

Our goal is to reduce the graph storage requirements as much as possible without any loss of in-

formation, allowing for the graph to be kept in main memory, although distributed throughout a cluster

of computing nodes. The impact on the processing time of the graph should be minimal or even non-

existing, being acceptable if the compression gains are significant. To study the performance of our

implementation, we will analyse the impact on:

Latency The total time the system takes to execute graph processing jobs.

Resource Usage To assess the operation of the system and its potential impact on resource

utilization introduced by its internal operations.

CPU Overhead Percentage of the Central Processing Unit (CPU) being used by tasks in

the cluster as well as assessing resource waste and cost.

Memory Overhead Assess the memory overhead introduced by storing the data structures

described in our solution.

Throughput Amount of data the system can process per unit of time.

Cost-Benefit Efficiency The relation between resource overhead (savings) and performance im-

provements (penalties).

Scalability How the system behaves as the volume of data and resources increase.
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5.2 Microbenchmarks

In this section we present the micro-benchmarks performed on our implementation and the results ob-

tained.

The micro-benchmarks performed focus on analyzing the latency and memory overhead of the main

differentiating aspects of our implementation compared to the GraphX implementation.

More specifically, we focus on comparing the performance of the edge partitions of both implemen-

tations, focusing on the memory usage of the internal data structures and the latency of performing

transformations on these partitions. These tests are executed outside of the Spark /GraphX system.

The evaluation compares three different versions of our implementation, each having a different k

value to determine its impact on latency and memory usage, with the GraphX implementation. These

benchmarks were performed on a machine running Ubuntu 21.04 x64 bit operating system, with a AMD®

Ryzen 5 2600 six-core processor with 12 threads per core and 16GB of available RAM.

To perform the micro-benchmarks, we make use of the Scalameter library that handles the necessary

preparations to execute the tests and collect metrics, such as creating a new Java Virtual Machine

instance for each test, handling the garbage collector to avoid collecting inaccurate results and taking

multiple samples of each test and obtaining their average value. Each test is invoked in a new Java

Virtual Machine containing 2GB of available memory.

We start by first analyzing the memory usage of each implementation, then move to analyzing the

latency in building, iterating and performing the aggregate messages operation on an edge partition,

and finally analyzing the performance of dynamic operations on our implementation. For each test, we

present a bar graph detailing the results obtained as well as its standard deviation.

5.2.1 Memory

These tests will examine the memory overhead of the data structures in various edge partition imple-

mentations. Figure 5.1 shows the results of the memory overhead of the edge partition as the number

of edges increases.

As the results shows our implementation takes up 33% of the original size of an edge partition

(corresponding to a reduction of 66% in memory usage) depending on the number of edges and the

sparsity of the corresponding adjacency matrix. For partitions of web graphs, the results could achieve

even better compression and thus reduce even more the memory usage.

Besides the number of edges in a partition, the locality of these edges may also impact the memory

usage of the edge partition as explained in Section 4.4.

Because our implementation makes use of a k2-tree, the size of the adjacency matrix corresponding

to an edge partition will determine the overall height of the tree. The larger the adjacency matrix the

bigger the tree height, leading to more memory overhead and worse performance navigating the tree.
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Figure 5.1: Edge partition memory overhead in relation to the number of edges

Figure 5.2 shows the results of the memory usage of a partition storing 1M edges with bad locality.

The memory overhead is given in relation to the density of the adjacency matrix, which always

contains a fixed size of 1M edges. A density of 10% corresponds to an adjacency matrix with only 10%

of its maximum capacity of edges being used, these edges are then randomly distributed throughout the

matrix leading to very poor data locality.

In these tests, the size M of the adjacency matrix is scaled such that the density D of an adjacency

matrix is such that M × D = 1.000.000, guaranteeing that the partition is always storing 1M edges but

with varying levels of density to simulate partitions that are increasingly more or less sparse. As such,

each edge partition takes up roughly 4MB in memory.
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Figure 5.2: Edge partition memory overhead with poor data locality

As the results show, the data locality of the edges can slightly affect the compression of the partition,

having an impact of roughly 1.5MB when comparing good to very poor data locality. Moreover, as

the density of the adjacency matrix increases and the better the data locality becomes reaching its

maximum value when the entire adjacency matrix is being used, the less the memory overhead of the
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edge partition.

In the case of the GraphX implementation, the density of the matrix is not as relevant since this

solution does not make use of any compression, so as expected the memory usage is always the same

since the same number of edges are being stored.

We also conclude that our solution works best for sparse graph partitions, meaning that the edges are

mostly clustered in a few areas of the adjacency matrix, which is expected as this increases compression

potential for the matrix.

5.2.2 Build

These tests compare the latency in building an edge partition from a list of edges. This is used when

building the graph for the first time, after which slightly more optimized building techniques are used to

build a new edge partition from an existing one. The results are show in Figure 5.3.
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Figure 5.3: Edge partition build latency compared with partition size

The results show how the number of edges in a partition affect the performance of building a new

edge partition. As expected, the more edges are in the partition the higher the latency in building that

partition.

The results also show that the higher the k value used in the k2-tree the better the performance in

building the edge partition. This is due to the fact that higher values of k result in k2-trees with smaller

overall heights.

However, in all cases the GraphX implementation achieves a better performance than our implemen-

tation. This is explained by the time required to build a k2-tree, which requires navigating the entire

height of the tree (worst case). This is in comparison with the GraphX implementation which simply

places the vertices of each edge into an array, separating them by source and destination vertices.

Again, we note that this operation is seldom executed (just once) for each graph during the whole time it

is being processed, updated dynamically, and reprocessed possibly several times.

62



5.2.3 Iterator

These tests will compare the latency in iterating the entire edge partition. This is the most basic type

of operation that exists in the edge partition, being used by most all operations. Figure 5.4 shows the

results of the iteration latency as the number of edges increases.
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Figure 5.4: Edge partition iteration latency compared with number of edges

The results obtained are very similar to the results observed in the build operation. As expected, the

higher the k value of the k2-tree the better the iterator performance, due to the smaller height of the tree.

The GraphX implementation outperforms our implementation in iteration since the data is stored in an

uncompressed format that requires only traversing an array of source vertices and an array of destination

vertices to iterate all edges of the partition. This is in comparison to our implementation which requires

a depth-first tree traversal. As observed in the previous tests, the height of the k2-tree continues to be

the main factor in the iteration performance, seeing as k2-trees with smaller values of k have a worse

performance.

5.2.4 Aggregate Messages

As stated in Section 4.4, this operation is the primitive used in the implementation of all graph algorithms

in the GraphX platform. Our implementation offers only one implementation of this operation, which

consists in iterating all edges of the partition, which the GraphX platform designates as edge scan. The

GraphX platform also offers the edge scan approach and an additional approach designated as source

index, which effectively keeps a mapping of the direct neighbors of each vertex, allowing for a small

optimization in some algorithms.

Figure 5.5 shows the results of the latency of the aggregate messages operation as the number of

edges increases.

Since this operation consists in essentially iterating the entire edge partition the results obtained

are very similar to the results obtained in the iterator tests, and as such, the GraphX implementation

outperforms our implementation.
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Figure 5.5: Edge partition aggregate messages latency compared with number of edges

As explained before, the GraphX implementation has an optimized method to aggregate messages

in an edge partition, which consists in the source index approach. Figure 5.6 shows the results of

aggregating messages in an edge partition containing 1M edges. We consider an implementation of a

similar optimization for our solution has future work.

1
.0×

1
.0×

1
.0×

1
.0×

1
.0×

1
.0×

1
.0×

1
.0×

1
.0×

1
.0×

1
0
.6×

1
9
.9×

1
5
.1×

1
2
.5×

1
1
.7×

1
0
.1×

8
.8×

7
.7×

8
.1×

7
.8×

8
.5×

1
6
.3×

1
2
.4×

1
0
.9×

9
.9×

9
.1×

8
.0×

7
.2×

7
.7×

7
.4×

7
.9×

1
5
.3×

1
1
.7×

1
0
.3×

9
.8×

8
.8×

7
.7×

6
.9×

7
.4×

7
.2×

10 20 30 40 50 60 70 80 90 100
0

50

100

150

active

ms

GraphX PKGraph (k=2) PKGraph (k=4)
PKGraph (k=8)

Figure 5.6: Edge partition aggregate messages with source index with varying percentage of active vertices

In these tests, the number of edges in the partition is fixed but the percentage of active vertices

varies. This highlights the efficiency of this approach when only a small percentage of the vertices of an

edge partition are active.

It is worth noting that not all algorithms can use this optimization, since some algorithms always have

all vertices active or in some cases may not send messages to the source vertices.

The results show that the GraphX implementation can achieve even better performance using this

approach for edge partitions with a low percentage of active vertices. This optimized approach is typ-

ically used whenever the active percentage of vertices in the partition is below 80%. Our implemen-

tation achieves a slightly better performance has the number of active vertices decrease, since fewer

exchanges of messages between vertices occur.

64



5.2.5 Dynamism

Since the GraphX implementation does not have any operations to dynamically add or remove edges

from an edge partition, these tests will only show the results of our implementation with different values

of k.

In fact, we can consider that updating a graph in the original GraphX implementation would imply

writing the graph to disk, updating it offline, and reload it from disk in order to re-execute some graph al-

gorithm which becomes painfully slow and resource consuming, hence being one of the the motivations

for this work.

For all dynamic tests the edge partition has a fixed size of 1M edges and only the number of edges

being added or removed varies. Since our implementation requires rebuilding the entire partition when

adding or removing edges, another important factor in the performance of these operations would be

the size of the edge partition that is being altered. As showcased before, the more edges the higher the

latency in building the partition.

Figure 5.7 shows the results of adding new edges to an existing edge partition and figure 5.8 shows

the results of removing edges from an edge partition.
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Figure 5.7: Results of adding new edges to an existing edge partition

In the case of adding new edges, as the number of edges to add increase so does the latency values.

This result is expected since more edges result in more operations to add new nodes to the k2-tree being

constructed. The results are also consistent with the results obtained in the Build tests, since we are

recreating the entire k2-tree again with some new edges added.

In the case of removing existing edges, we are simply excluding existing edges from being added to

the new partition. These removed edges are kept in a hash set and each edge is checked for potential

removal before being added to the partition. This means that the more edges to remove, the less time it

will take to build the new partition but also the more time it will take to build the hash set.

In both cases, the results show that the higher the k value is, the better the performance will be, due

to having a smaller tree height.
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Figure 5.8: Results of removing existing edges from an existing edge partition

5.3 Macrobenchmarks

In this section we will present the macro-benchmarks performed on our implementation and the results

obtained. For this evaluation, we will setup a cluster of computing nodes, each node corresponding to a

Spark worker that keeps part of the total graph in main memory.

We will submit several graph processing jobs to the cluster, executing some basic graph operations

and some of the more popular graph algorithms, using relevant graph datasets and analyse the gains

(penalties) our solution has in terms of storage compression and processing.

5.3.1 Setup

The cluster was prepared using the Amazon Web Services (AWS) Elastic Map Reduce (EMR) service,

that allows to easily setup a cluster of Spark workers. The cluster uses a single master node and various

worker nodes (see Figure 5.9). The actual number of workers used will vary throughout each test. Each

machine in the cluster has a 4 core processor with 16 GB of available main memory.

Worker 1 Worker 2 Worker N

...

Master
Job

Driver

Storage Node

Figure 5.9: Overview of the cluster used to execute spark jobs.
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The Spark jobs are submitted from a driver program in a remote machine and the datasets are

retrieved from AWS Simple Storage Service (S3) buckets to be used in the jobs executed in the cluster.

5.3.2 Datasets

The datasets used in the evaluation of our implementation are from the Network Repository [48] and the

Stanford Large Network Dataset Collection [49]. Table 5.1 presents the datasets used.

The datasets chosen are grouped into two types: i) Web graphs describing the references from one

web page to another. Typically these types of graphs contain a very high clustering coefficient, making

them ideal for compression using our solution; ii) Social network graphs to benchmark the use cases

when a web graph is not used. In contrast to web graphs, some networks may have a very low clustering

coefficient.

Graph Name Type |V |1 |E|2 kavg
3 davg

4

Youtube Growth social network 3.2M 12.2M 0.07 7

EU (2005) web 863K 19M 0.71 43

Indochina (2004) web 7M 194M - 26

UK (2002) web 18M 298M - 16
1 - number of vertices; 2 - number of edges; 3 - average local clustering coefficient; 4 - average degree

Table 5.1: Table describing the datasets used in our benchmarks.

To evaluate our solution we used various types of workloads, ranging from common graph operations

like constructing the graph and iterating it, to popular graph algorithms such as PageRank and Triangle

Count, all of which already contain implementations in the GraphX system. In the following sections,

we will present the various workloads used to evaluate our implementation, comparing it to the GraphX

implementation, and the results obtained. For all workloads, we will use k = 8 for the k2-tree, since,

as we observed in Section 5.2, this value offers the best trade-off between performance and memory

usage.

5.3.3 Memory Overhead

Our benchmarks show that the memory overhead of the data structure of the graph remains the same

independent of the number of processors. This is due to the fact that the number of partitions used,

chosen by Spark based on the size of the file where the dataset was read from, remains the same.

Figure 5.10 shows the results of the memory usage of the entire graph with varying datasets.

The results show, as did the micro-benchmark results, that our solution has significantly less memory

overhead then the GraphX implementation. Although our previous tests showed a reduction between

60% to 70% when compared to the GraphX implementation, when testing the memory usage of the
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Figure 5.10: Results of the memory overhead for each dataset

entire graph the reduction now is between 30% to 50%, in part due to the partitioning of the graph and

the nature of the graph. The best performance is obtained in web graphs, since these have much higher

edge clustering when compared to other types of graphs. Furthermore, the number of processors has

no significant impact on the size in memory of the graph.

5.3.4 Build

This workload constructs the graph from a given dataset. Each dataset is stored in a single text file

and each line corresponds to an edge of the graph. Each worker node in the cluster is responsible for

building part of the entire graph, so we should observe that as the number of processors increases the

build latency of the entire graph should decrease.

As the results show in Figure 5.11, the GraphX implementation achieves lower build latency’s when

compared to our implementation, which is the same results obtained on our micro-benchmarks in Sec-

tion 5.2. For smaller datasets, such as the Youtube Growth dataset (Figure 5.11a), the build latency

values are not affected as much by the increase in the number of processors, since for smaller datasets

the time needed to divide the work through all the workers becomes increasingly larger. For larger

datasets, such as UK (2002) (Figure 5.11d), the number of processors used has a much bigger effect

on the latency.

Despite these results, it should be noted that the graph is typically built once at the beginning and

reused for every following operation. As such, the cost of this operation is suppressed, especially for

long running sessions where the graph is reused multiple times.
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Figure 5.11: Results of the build latency for each dataset

5.3.5 Iteration

This workload iterates all edges of the graph and applies a user function to each edge. The results

obtained are showed in Figure 5.12.

Just like the previous tests, as the number of processors increases, the iteration latency decreases.

Due to the GraphX implementation being much more efficient at traversing all edges in an edge partition,

it achieves a lower latency compared to our implementation, even using a more processing optimized k

value.

Overall, our implementation, in terms of iteration latency, is between 15% to 40% slower than the

GraphX implementation (which uses 2x or more memory than our solution), depending on the type of

graph, obtaining better results for web graphs when compared to social network graphs.
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Figure 5.12: Results of the iteration latency for each dataset

5.3.6 PageRank

This workload executes the PageRank algorithm on the graph. This is a relevant graph algorithm used

to measure the importance of web pages, used by Google Search to rank pages in their search engine

results. Figure 5.13 shows the results obtained.

This workload is the longest running out of all workloads tested, since it requires running multiple

iterations until the edge values no longer vary more than a certain tolerance. For these tests, a tolerance

of 0.1 is used.

The results show that although our implementation has slightly higher latency than the GraphX im-

plementation, it still achieves competitive results, having an increase in latency of around 20% while

only having half of the original graph size. The results also show that, for large graphs, as the number

of processors available increases the latency of the graph operation decreases, this can be explained

by having more processors available for processing and incurring in less of an overhead in network
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Figure 5.13: Results of the latency of the Page Rank algorithm for each dataset

communication.

5.3.7 Triangle Count

This workload executes the Triangle Count algorithm on the graph. This algorithm counts the number

of triangles in a graph. A triangle is a set of three vertices, where each vertex is connected to all other

vertices. This algorithm is typically used in social network analysis to detect communities and measure

clustering coefficients. Figure 5.14 shows the results obtained.

This graph algorithm has much less latency than the Page Rank algorithm tested previously, and as

such the difference between the two implementations becomes even smaller. Still, this graph algorithm

shows similar results to the previous test, with the GraphX implementation still achieving a lower latency

than our implementation.

In both the Triangle Count and Page Rank algorithms the results shows that our solution’s perfor-
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Figure 5.14: Results of the latency of the Triangle Count algorithm for each dataset

mance increases with the size of the graph. The performance penalty of our implementation decreases

as the complexity of the algorithms executed or the graph size increases, demonstrating the scalability

of our solution.

5.3.8 Throughput

To measure this metric, we analyzed the total number of bytes read and the total execution time, calcu-

lating the average number of bytes read per second for a predefined workload consisting in iterating all

edges of a graph. Figure 5.15 shows the results obtained.

As expected, as the number of processors increases so does the average throughput. The GraphX

implementation achieves higher throughput values when compared to our implementation, which matches

with the lower latency values obtained in the previous tests.
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Figure 5.15: Results of the average throughput for each dataset

5.3.9 CPU Usage

For this metric we compared the total run time of the Spark executors with their total CPU time for

each workload and calculated the overall average value. The CPU usage shows the percentage of the

total runtime spent on the processor. The higher the CPU usage the less time was spent waiting for

Input/Output (IO) operations to finish. Figure 5.16 shows the results obtained.

The results show that our implementation incurs in a higher CPU usage than the GraphX implemen-

tation due to the added complexity in processing the graph, seeing as the iteration algorithms used by

our solution require more processing than the GraphX implementation.
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Figure 5.16: Results of the average CPU usage for each dataset

5.4 Optimization

Although our implementation has significantly less memory usage than the GraphX implementation, it

has a worse performance at iterating the edges of a partition, which as we saw is a basic operation that

is then used to implement all other partition operations.

One possible optimization aims at improving the performance when iterating an edge partition while

still having a low memory overhead. The latency overhead observed when iterating a k2-tree is mostly

due to the height of the tree. Iterating child nodes belonging to a parent node is very efficient by the

use of the nextSetBit operation of a BitSet, which can find the next bit with a value of one in O(1) time

complexity. This means that trees with a smaller height will have much better performance than trees

with large heights, hence why higher values of k, although having a higher memory overhead, achieve

a better iterating performance.

This optimization focuses on changing how the k2-tree is iterated by only iterating the leaf nodes,
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instead of traversing the entire height of tree. The information in the leaf nodes is not sufficient to

determine the line and column of the corresponding edge, as such, the information about the parent

node of each leaf node is also kept.

1 1

0 0

0 0

0 1

0 0

0 0

0 0

0 0 1 0

1 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0 0 0 0 0 00 0

1

654

9 11

0

Figure 5.17: Example of assigning row major indices to a parent node

Each parent node is assigned an index, this index corresponds to the row major index of the quadrant

the parent node represents. Since only the parent nodes of leaf nodes are kept, the quadrant will be a

submatrix of the adjacency matrix with a size of k, holding k2 cells. Figure 5.17 shows an example of

assigning an index to each parent node in an adjacency matrix that is being represent by a k2-tree with

k = 2.

The indices of all parent nodes with leaf nodes are then kept in an array of 64 bit integers. Each

index encodes the line and column of the parent node, which is then used as the line and column offset

to apply to their respective child nodes. All that is left is to calculate the lines and columns of the leaf

nodes inside their parent node’s quadrant and add the offsets.

With this optimization, there is no need to store the entire k2-tree, only the bits of the last level and the

array containing the parent indices. The compression capabilities of the k2-tree are also kept, although

to a lesser extent, since each parent node will represent k2 bits. This means that for sparse graphs this

optimization should still achieve very good compression results. See Figure 5.18 for an example of bits

and parent indices used to represent a standard k2-tree.

1 0 0 1

1 1 0 1 1 1 1 0

Tree: 1101 1110

Level 2

Parents: 0 3

Figure 5.18: Example of the optimized iterator representation of a standard k2-tree

However, since each parent index takes up 8 bytes, this approach requires slightly more memory

overhead than the standard k2-tree implementation, especially for very small graphs which would only
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require a few bytes.

Building this optimized representation is the same as building a standard k2-tree with the exception

that the parent index array also needs to be constructed as the parent node bits are inserted into to the

tree and all levels of the k2-tree except the last one are discarded.

The iteration then becomes simply iterating all bits of the last level and keeping track of their corre-

sponding parent node index. Every time we iterate a sequence of k2 bits we move to the next parent

node (see Figure 5.19).

0 3

1 1 0 1 1 1 1

1 2

1 2 3 4 5 6

- Parent Indices Cursor
- Leaf Bits Cursor

0

Figure 5.19: Example of iterating the edges of the optimized iterator representation.

The benchmark results show that this representation achieves significantly better performance in

iterating edges than our standard implementation, with minimal memory overhead added to the edge

partition.

Figure 5.20 shows the latency in iterating all edges of an edge partition with varying number of edges.
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Figure 5.20: Edge partition iteration results using the optimized iterator

The results show a performance improvement of up to 60% when compared with the standard ap-

proach, depending on the k value used and the number of edges in the partition. However, it still has

slightly more latency than the GraphX implementation. As observed with the standard implementation,

the higher the k value is, the better the performance in iterating the partition.

Figure 5.21 shows the memory overhead of an edge partition using the optimized iterator represen-

tation with varying number of edges.

The results show only a slight increase in the memory overhead, in the order of 33% in comparison

with the standard approach for k = 2 (meaning that this approach uses 66% of the original size) and a
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Figure 5.21: Edge partition memory overhead results using the optimized iterator

smaller increase for higher values of k. In all cases, the memory usage is still lower than the GraphX

implementation. And again, the higher the k value is, the less the memory usage of the edge partition.

5.5 Analysis

In this chapter we provided a detailed evaluation of our implementation. Overall our solution provides

a significant reduction in memory usage, between 40% and 50% depending on the k value used for

the k2-tree, the type of graph and the partitioning strategy employed. As we are using a k2-tree as

the compressed data structure, the more sparse the adjacency matrix of the graph is, the better the

compression.

Our implementation also provides a competitive processing performance when compared to the

GraphX implementation, specially considering that this current GraphX approach focuses mainly on

having the best possible processing performance by keeping all edges in an array with no compression

whatsoever.

Our results show a slowdown limited to 1.4 (meaning 40% slower) when compared to the GraphX

implementation, which has a memory overhead 2x larger than our solution. Thus, the relative gains

in memory savings outweigh the relative overhead in performance. This net favourable trade off could

enable, when needed, employing more partitions (for higher processing power, e.g. in burst situations),

without sacrificing memory savings completely (note that memory reserved for each partition is harder

to reassign quickly, as opposed to CPU).

We also analyzed some possible optimizations to further improve the processing performance of our

solution (60% improvement compared to our initial approach), but at the cost of more memory usage

(33% more than our initial approach and 66% of the original size) and still not as efficient as the GraphX

implementation.
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Graphs are now more relevant than ever, and its becoming increasingly more important to keep the

entire graph in main memory to provide fast access to the underlying data.

Our work focused on reducing the memory usage of graphs while still maintaining a competitive

processing performance. The main goal of our work was to design and develop an extension to the

storage component of the GraphX distributed graph processing system so that the processed graph is

made more space-efficient by using the k2-tree lossless compressed representation, while also aiming

to achieve similar performance to the uncompressed version.

To achieve this goal we presented a survey of the current state of the art on the storage components

of graph databases and graph processing systems, as well as optimized graph representations with the

goal of reducing the memory footprint of the graph while still maintaining fast access to uncompressed

data.

Our solution consisted in implementing an extension to the GraphX graph processing system using

the k2-tree as the optimized graph representation in a distributed setting. We described the architecture

of our solution in which we would make use of the compressed data structure to implement the edge

partitions of the graph in the Spark ecosystem.

The architecture is built on the already existing graph abstraction implemented in the GraphX system.

This abstraction is built on top of Spark RDDs that store the vertices and edges of a graph, using a

number of partitions. Our work focused primarily in the memory usage of the edge partitions, while

reusing the existing implementation in GraphX for the vertex partitions. To reduce the memory usage of

the overall graph our solution made use of the k2-tree compress data structure, capable of representing

very efficiently sparse adjacency matrices which are very common in web graphs.

We then presented our implementation of a graph, called PKGraph, and described the details of the

compressed data structure, the construction of the edge partitions and their processing, explaining some

of the limitations of our approach and some possible optimizations that could be applied to enhance the

performance of the implementation.

Finally, we performed a detailed evaluation of our implementation split into micro-benchmarks, which

evaluated the performance of the edge partition in a single machine, and macro-benchmarks which

were performed in a cluster of Spark workers and evaluated the performance of the overall graph, using

various datasets to showcase the effectiveness of our solution in both web and non-web graphs, as well

as how our solution scales as the size of the graph and number of available processors increase.

Our evaluation concluded that our solution offers a significant reduction in the memory usage of a

graph, specially for web graphs, while maintaining a competitive processing performance when com-

pared to the GraphX implementation.
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6.1 System Limitations and Future Work

As explained in Section 4.4, our solution depends on good data locality in the adjacency matrix to provide

an efficient k2-tree compression, otherwise the resulting partition will be able to store much more edges

than necessary, which results in a k2-tree with a unnecessarily large height.

One possible solution would be to use an hybrid k2-tree as proposed by Brisaboa et al. [22], in which

the first level of the tree uses a different k value then the remaining levels. This approach leads to a tree

with a smaller height at the cost of slightly more memory usage.

As noted in Chapter 5 the height of the tree is the main factor in the tree’s iteration performance, so

by reducing the height of the tree, this performance can be improved with a very slightly increase in the

memory usage of the overall graph.

The vertex partitions could also be implemented with a similarly lossless data structure to further

reduce the space overhead of the entire graph. Although the number of vertices are significantly less

than that of the edges, the vertices are still replicated throughout the edge partitions as a caching

mechanism. By optimizing the space overhead of the vertices, the overall size of the graph, as well as

that of the edge partitions, could be significantly reduced.
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