
Reliable and Locality Driven Scheduling in Hadoop

Tran Anh Phuong

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Doctor Luı́s Manuel Antunes Veiga

Examination Committee

Chairperson: Doctor Luı́s Eduardo Teixeira Rodrigues
Supervisor: Doctor Luı́s Manuel Antunes Veiga
Member of the Committee: Doctor David Manuel Martins de Matos

July 2014

Acknowledgements

The work here presented is delivered as final thesis report at Instituto Superior Tecnico (IST)
in Lisbon, Portugal and it is in partial fulfillment of the European Master in Distributed Com-
puting belonging to cohort of 2012-2014. The Master programme has been composed of a first
year at IST, a second year’s first semester at Royal Institute of Technology (KTH) and for this
work and last academic term, an internship at KerData team INRIA (Rennes, France).

Special thanks to my industrial advisor Dr. Shadi Ibrahim for his support throughout the
project. Assisted with his invaluable comments, I was able to successfully conclude this study. I
would also like to thank to my supervisor Prof. Luı́s Antunes Veiga for his continuous support
and the encouragement he has provided all throughout the project.

I would like to present my special appreciation to KerData team leader Dr. Gabriel Antoniu for
his support and trust in my work.

I am thankful to my family for their valuable support all throughout my life.

Last but not least, to all the professors from IST and KTH that during these last two years
challenged me to think out of the box and face always the difficulties in despite of any other
matters, they taught me to always work towards bigger and better goals.

This work was done in the KerData team INRIA (Rennes,France). The experiments presented
in this paper were carried out using the Grid’5000/ALADDIN-G5K experimental testbed, an
initiative from the French Ministry of Research through the ACI GRID incentive action, INRIA,
CNRS and RENATER and other contributing partners (see http://www.grid5000.fr/ for
details)

Lisboa, September 2, 2014
Tran Anh Phuong

http://www.grid5000.fr/

To my family.

Abstract

The increasing use of computing resources in our daily lives leads to data being generated at
an unprecedent rate. The computing industry is being repeatedly questioned for its ability to
accommodate the unpredictable growth rate of data, and its ability to process them. This has
encouraged the development of cluster based data-intensive applications. Hadoop is a popular
open source framework known for its massive cluster based data processing power. Hadoop is
widely used in the computer industry because of its scalability, reliability, ease of use, and low
cost of implementation.

Cloud computing in the recent years has gained increasingly popularity by its cost-efficient
and flexible way to leverage the power of commodity hardware. Hadoop based services on the
Cloud have also emerged as one of the prominent choices for smaller businesses. However,
evidence in the literature shows that faults on the Cloud do occur and normally result with
performance problems. Hadoop hides the complexity of discovery and handling failures from
the schedulers, but the expenses of failure recovery rest entirely on users, regardless of root
causes. We systematically assess these expenses through a set of experiments, and argue that
more effort to reduce this cost to users is desirable.

We also analyze the drawback of current Hadoop’s mechanism in prioritizing failed tasks.
By trying to launch failed tasks as soon as possible regardless of locality, it significantly in-
creases the execution time of jobs with failed tasks, due to two reasons: 1) available slots might
not be free up as quickly as expected and 2) the slots might belong to machines with no data
on it, introducing extra cost for data transferring through network, which is normally the most
scarce resource in nowadays’ data centers.

This thesis then introduces a new algorithmic approach called the waste-free preemption.
The waste-free preemption saves Hadoop scheduler from choosing solely between kill, which
instantly releases the slots but is wasteful, and wait, which does not waste any previous ef-
fort but suffers from the two above mentioned reasons. With this new option, a preemptive
version of Hadoop default scheduler (FIFO) is implemented. The evaluation demonstrates the
effectiveness of the new feature by comparing its performance with the traditional Hadoop
mechanism.

Resumo

A crescente utilização de recursos de computação na nossa vida diária leva a que os dados
sejam gerados a um ritmo surpreendente. A indústria de computação está sendo desafiada
repetidamente na sua capacidade de acomodar a taxa de crescimento imprevisı́vel de dados,
e a sua capacidade de processá-los. Isto tem estimulado o desenvolvimento de aplicações in-
tensivas de dados baseadas em clusters. O Hadoop é uma framework open source popular,
conhecida pelo seu enorme poder de processamento de dados em clusters. O Hadoop é am-
plamente utilizado na indústria de computadores, devido à sua escalabilidade, confiabilidade,
facilidade de uso e baixo custo de implementação.

A computação em nuvem nos últimos anos tem vindo a ganhar cada vez mais popular-
idade pela sua forma flexı́vel e eficiente, em termos de custo, para aproveitar o poder de
hardware commodity. O Hadoop como outros serviços baseados na nuvem surge também
como uma das alternativas importantes para as pequenas empresas. No entanto, evidências
na literatura mostram que as falhas na nuvem ocorrem e resultam normalmente em proble-
mas de desempenho. O Hadoop esconde a complexidade da descoberta e gestão de falhas
dos programadores, mas os custos de recuperação de falhas recaiem quase totalmente sobre
os utilizadores, independentemente das suas causas. Avaliamos sistematicamente esses cus-
tos através de um conjunto de experiências, argumentando que mais esforço para reduzir esse
custo para os utilizadores é necessário.

Analisamos o inconveniente do mecanismo atual da Hadoop em prioritizar tarefas que
falharam. Ao tentar iniciar tarefas que falharam o mais rápido possı́vel, independentemente da
localidade, isto aumenta significativamente o tempo de execução de trabalhos com tarefas que
falharam, devido a duas razões: 1) slots disponı́veis podem não ficar livres tão rapidamente
quanto o esperado, e 2) os slots podem pertencer às máquinas que não contêm os dados a
processar, representando um custo extra para a transferência de dados através da rede, que é o
recurso mais escasso nos dias de hoje em data centers.

Apresentamos uma nova abordagem algorı́tmica chamada de preempção livre de des-
perdı́cio. A preempção livre de desperdı́cio evita que o escalonador Hadoop escolha apenas
apenas entre matar tarefas, o que liberta imediatamente os slots, mas é um desperdı́cio, e es-
perar, que não desperdiça qualquer trabalho anterior, mas perde para as duas questões acima
mencionadas. Com esta nova opção, foi implementada uma versão de escalonador padrão
do Hadoop (FIFO) regido por preempção. A avaliação demonstra a eficácia do novo recurso,
comparando o seu desempenho com o mecanismo tradicional do Hadoop.

Palavras Chave

Keywords

Palavras Chave

Hadoop

Tolerância a Falhas

Preempção

Processamento Distribuı́do

Localidade

Desempenho

Keywords

Hadoop

Fault - tolerance

Preemption

Distributed processing

Locality

Performance

Índice

I Introduction and Background 3

1 Introduction 5

1.1 Motivation . 5

1.2 Contribution . 7

1.2.1 Our contribution . 7

1.2.2 Document structure . 8

2 Background and Related Work 9

2.1 Hadoop framework . 9

2.1.1 Map Reduce programming paradigm . 9

2.1.2 Execution overview . 10

2.1.3 Apache Hadoop . 11

2.2 Hadoop scheduling . 13

2.2.1 FIFO scheduler . 13

2.2.2 Fair scheduler . 14

2.2.3 Capacity scheduler . 14

2.3 Fault tolerance in Hadoop . 15

2.3.1 Task Tracker failure . 15

2.3.2 Job Tracker failure . 16

2.3.3 Speculative tasks . 16

i

II Fault Tolerance Assessment in Hadoop 17

3 Hadoop fault tolerance mechanism 19

3.1 Detection of failed tasks . 19

3.1.1 Declaring Map output lost . 19

3.1.2 Declaring a Reduce Task faulty . 20

3.2 Failure handling and recovery . 20

3.3 Speculative execution . 21

3.4 Life cycle of a Task . 23

4 Systematic Assessment of Hadoop Performance Under Failures 25

4.1 Experiment settings . 25

4.2 Hadoop under stress . 26

4.3 Hadoop under failure . 31

5 Related Works 37

III Algorithmic Solution 41

6 Pause and Resume
A waster free preemption mechanism 43

6.1 Wait or Kill: Hadoop’s dilemma . 43

6.2 Pause and Resume: a waste-free preemption mechanism 44

6.2.1 Map task preemption . 45

6.2.2 Reduce task preemption . 47

6.2.2.1 Pause . 47

6.2.2.2 Resume . 48

6.3 Preemptive locality-driven scheduler . 48

6.3.1 Design of the Preemptive Locality-driven scheduler 48

6.4 Discussion about usability . 50

ii

IV Evaluation and Conclusion 51

7 Evaluation 53

7.1 Experimental setup . 53

7.2 Overview results . 53

7.3 Zoom in the tasks execution . 57

8 Conclusion 63

iii

iv

List of Figures

2.1 Map Reduce’s overview execution (Dean & Ghemawat 2008) 10

2.2 Hadoop’s simple cluster architecture . 12

3.1 The life cycle of a task in Hadoop . 24

4.1 Total execution time under 3 different schedulers 27

4.2 Data locality of the 3 schedulers under different situations 28

4.3 Speculation execution in Normal situation of the 3 schedulers 29

4.4 Speculation execution in Stressed situation of the 3 schedulers 30

4.5 Total execution time of Hadoop in 3 scenario: Normal, Mix Stress and Failure . . 32

4.6 Data locality of the 3 scheduler under Normal, Mix Stress and Failure scenario . 33

4.7 Speculation execution in the Failure scenario of the 3 schedulers 34

4.8 Total execution time in 3 different situations: Normal, Failure with 60s of expiry
time, Failure with 600s of expiry time . 35

6.1 Illustration of different scenarios: waiting, killing and preemption 44

7.1 Finish time of jobs with different schedulers . 54

7.2 Execution with different flavors of PLS . 55

7.3 Locality of the first job . 56

7.4 Overhead of preemption in normal cases . 57

7.5 FIFO*’s execution of job 1 . 58

7.6 Preemption’s execution of job 1 . 59

7.7 Kill-PLS’s execution of job 1 . 60

7.8 Fifo*’s execution of job 2 . 61

7.9 PLS’s execution of job 2 . 62

v

7.10 Kill-PLS’s execution of job 2 . 62

vi

List of Tables

1.1 Popularity of Hadoop . 6

4.1 List of jobs and their input size used in the experiment, in the order of submission 26

7.1 Number of local re-executed tasks . 56

7.2 Overhead on Map tasks . 57

1

2

IIntroduction and
Background

1Introduction

”The goal is to turn data into information, and information into insight.”

– Carly Fiorina, former chief executive of Hewlett-Packard Company or HP

1.1 Motivation

From the Big Data era

Data insight forms an essential part in today’s decision making process. With the massive
growth in available data, companies are spending millions of dollars on Business Intelligence
and Big Data analytics (Lai 2013). Companies become data-driven, shifting the business poli-
cies from the traditional instinct-based decision to analyzing available data. Every two years,
the amount of data in the world doubles, and by 2015, it is estimated that the total data on
Earth will amount to 7.9 zeta bytes (Roe 2011).

Internet-centric enterprises are among the most active player in Big Data analytic field.
Yahoo! uses its large datasets to support research for advertising system. In 2008, Yahoo! re-
portedly processed 24 billion events per day in the effort of analyzing Web visitors’ behavior
(TCS). Ebay, an e-commerce organization, allows employees to access 52 petabytes of data
(Lampitt 2012) on everything from user behavior to online transactions to customer shipments.
Other institutions have also reported to process datasets in the order of terabytes or even
petabyte(Thusoo et al. 2010) (Logothetis et al. 2010).

The practice of analyzing huge amounts of data motivated the development of data in-
tensive applications. In this context, Hadoop MapReduce (Apache) is a big data processing
framework that has rapidly gained popularity in both industry and academia (Jindal et al.
2011). Facebook, a popular social networking website, is a strong supporter of Hadoop. The
company claimed to have the world’s largest Hadoop cluster (Borthakur 2010) with more than
2000 machines and running up to 25000 MapReduce jobs per day. Many other enterprises also
claim to have Hadoop clusters of various sizes: while most of the enterprises have clusters of
less than 100 machines, some consist of up to hundreds of machines (see Table 1.1). The main
reasons of such popularity are the ease-of-use, scalability, and failover properties of Hadoop
MapReduce.

6 CHAPTER 1. INTRODUCTION

Cluster Size
(No. of machines)

No. of companies, as listed in
”Powered by Hadoop” page

<10 42
11-30 31
31-50 11
51-100 14

101-1000 10
>1000 5

Table 1.1: Popularity of Hadoop

To the Cloud

The unprecedented growth in data center technologies and services in the recent years allow
smaller companies to take advantages of the ”cloud-based” infrastructure. Well-known Cloud
providers such as Amazon Web Services(Amazon b), Google App Engine(Google) and Mi-
crosoft Azure(Microsoft) respond to the need of data processing by equipping their software
stack with MapReduce-like systems. Amazon Elastic MapReduce (Amazon a) is an example
for platforms that facilitate large-scale data applications. Many successful case studies have
demonstrated the simplicity, convenience and elasticity of MapReduce on Cloud. For example,
the New York Times rented 100 virtual machines for a day to convert 11 million scanned arti-
cles to PDFs (Gottfrid 2007). Amazon Elastic MapReduce uses Hadoop, and is perhaps a very
successful example of scalable MapReduce-Cloud.

Hadoop is also easy to use. Equipped with three different ready-to-use schedulers (FIFO,
Fair and Capacity schedulers), Hadoop allows users to have more control in choosing the be-
havior when it comes to scheduling tasks. Fair and Capacity schedulers also allow admin-
istrators to share the cluster with multiple users with certain level of fairness and resource
guarantees. The idea is that the available resources in the Hadoop MapReduce cluster are par-
titioned among multiple organizations who collectively fund the cluster based on computing
needs. There is an added benefit that an organization can access any excess capacity not being
used by others. This provides elasticity for the organizations in a cost-effective manner.

Regarding reliability, knowing that users are charged for their purchased service in pay-
as-you-go model, it is presumably expected that Cloud offers highly reliable environment, but
evidence shows that failures do happen in the Cloud (Fox et al. 2009). In fact, researchers
interested in fault tolerance have accepted that failure is becoming a norm, rather than an ex-
ception. For instance, Dean reported that in the first year of a cluster at Google there were 1000
individual failures and thousands of hard drive failures (Dean 2009). Despite this prevalence
of failures, with the absence of clear definition of QoS in the Cloud, the expenses of failures
entirely rest on users, regardless of the root causes. With respect to MapReduce-Cloud, Cloud
providers rely completely on the fault-tolerance mechanisms which is provided by Hadoop
system. This policy entitles users the freedom to tune these fault tolerance mechanisms, but
leaving also the consequences and the expenses on the users side.

1.2. CONTRIBUTION 7

Hadoop currently handles failures by simply re-executing all the failed tasks. However,
all these efforts to handle failures are entirely entrusted to the core of Hadoop and hidden
from the task schedulers. To our knowledge, there has been no scheduler that explicitly copes
with failure. This potentially leads to degradation in Hadoop’s performance. In this study,
we address the problem of failure in Hadoop, and present our approach to improve Hadoop
performance under failure.

1.2 Contribution

1.2.1 Our contribution

This thesis contributes to the field of data-intensive applications in several ways. First, it sys-
tematically assesses the Hadoop architecture, focusing on the fault tolerance mechanisms that
Hadoop employs. A set of experiments were conducted to illustrate the limitations of its de-
fault mechanism. Second, it explores the possibility of improving the performance by introduc-
ing a new Preemption scheduling heuristic in Hadoop. This new option is accompanied with
a new scheduler that explicitly deal with failures in Hadoop. Finally, it performs evaluation of
the new scheduler and discusses other possibilities to fully utilize the new feature in different
scenarios. The specific contributions are as follows:

Assessing the Hadoop architecture and its fault tolerance mechanism

This thesis first analyzes and explains the Hadoop’s mechanism to discover and handle failures.
A set of experiments demonstrates how Hadoop and its built-in schedulers behave in different
scenarios. It briefly discusses potential improvements that can be achieved regarding failures.

Waste-free preemption scheduling

The thesis discusses the potential improvement with the new preemption mechanism. It is the
first to present both Map and Reduce preemption mechanism in a work-conserving manner.
A new scheduler, namely the Preemptive Locality-driven scheduler that leverages this new
option is also presented. The details of design and implementation are briefly discussed.

Evaluation of the new scheduler

We evaluate the new scheduler by comparing it with the already available schedulers that
come with the Hadoop distribution package. The evaluation is performed based on the total
execution time and the data locality of tasks between different implementations.

8 CHAPTER 1. INTRODUCTION

1.2.2 Document structure

This thesis is organized as follows. Chapter 2 provides background into the Hadoop frame-
work, the three built-in schedulers as well as a glimpse on the fault-tolerance mechanism
of Hadoop. Chapter 3 discusses in detail the failure discovery and handling procedure of
Hadoop. Chapter 4 presents some data to illustrate Hadoop’s behavior under certain circum-
stances. Chapter 5 discusses recent works that share the same similar objectives in improv-
ing the fault tolerance mechanism in Hadoop. Chapter 6 opens new possibilities to improve
Hadoop performance by introducing the work-conserving preemption mechanism with its im-
plementation details. Chapter 7 analyzes the performance of the new feature in comparison
with the default scheduler in terms of execution time and data locality. Finally, chapter 8 con-
cludes the thesis with some ideas on how to further improve Hadoop’s performance with the
introduced feature.

2Background and Related

Work

2.1 Hadoop framework

2.1.1 Map Reduce programming paradigm

MapReduce is a programming paradigm designed for processing and generating large data
sets. The MapReduce abstraction is inspired by the Map and Reduce functions, which is com-
monly found in functional programming languages, such as LISP. Users can easily express their
computation as a series of Map and Reduce functions. The Map function processes a series of
< key, value > pairs to generate a set of intermediate < key, value > pairs.

Map(key1, value1)→ list (key2, value2)

Reduce function aggregates all intermediate values that associate to the same intermediate key
to produce the final output, also in the form of < key, value > pairs.

Reduce (key2, list(value2))→ list (key 3, value3)

The WordCount example

WordCount is a simple program that counts the number of occurrences of each word in a large
collection of documents. The process can be briefly described as follows:

Map function: inputs are read (typically from a distributed file system) and broken up into
a series of single words. Each of the words, as the key, is emitted together with its associate
count of occurrence (the value), which is just “1”.

Algorithm 1 Map(String key, String value)

/*key: document name*/
/*value: document content*/
for each word w in value do

Emit(w,”1”);
end for

Reduce function: The pairs are automatically partitioned into groups and sorted according
to their key by the framework. At the Reduce function, for each unique key in the sorted list,

10 CHAPTER 2. BACKGROUND AND RELATED WORK

the combined result (the sum of all sorted reduce-input pairs of the same key) is calculated and
emitted as the final output.

Algorithm 2 Reduce(String key, Iterator values)

/*key: a word*/
/*value: a list of counts*/
int result = 0;
for each word v in value do

result += ParseInt(v);
end for
Emit(w,result);

2.1.2 Execution overview

As illustrated in Figure 2.1, when the user program calls the MapReduce function, the following
sequence of actions occurs:

Figure 2.1: Map Reduce’s overview execution (Dean & Ghemawat 2008)

The MapReduce framework splits the input files in to M pieces of typically 16 to 128
megabytes (MB) per piece. It then starts many copies of the program on a cluster, including 1

2.1. HADOOP FRAMEWORK 11

Master and other Workers. The Master node will be responsible for scheduling the job to each
Worker, and monitoring the job progress, as well as the workers’ health.

Workers with idle capacity will contact the Master asking for tasks of certain types (Map
or Reduce, or both). The Master will look into the pool of non-running (including failed) tasks
and assign one or more tasks to the Worker. Map tasks are assigned with consideration to
data locality. When a Worker is assigned with a Map task, it first reads the content of the
corresponding input split (either locally or remotely) and emits < key, value > pairs to the
user-defined Map function.

The output of the Map function is first buffered in the memory and periodically written
to local disks. A partitioning function partitions the output into R sets, each associated with
a Reducer task The Master passes the location of these outputs to Workers with Reduce tasks
running, which read these buffered data using remote procedure calls (RPC). The Reduce task
then sorts all the intermediate keys so that occurrences of the same key are grouped together.
For each key, the entire list of values is passed to the Reduce function. Each Reducer, upon
finishing its share of keys, outputs a result file (R output files in total).

2.1.3 Apache Hadoop

Hadoop is an open-source software for reliable, scalable, distributed computing. The project
claims are :

(Apache Hadoop)... is a framework that allows for the distributed processing of large data sets across
clusters of computers using simple programming models. It is designed to scale up from single servers
to thousands of machines, each offering local computation and storage. Rather than rely on hardware
to deliver high-availability, the library itself is designed to detect and handle failures at the application
layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone
to failures.(Apache)

Hadoop is developed in Java which allows its distribution and portable installation across
many available operation systems such as Linux, freeBSD, Windows, Solaris and Mac OSX. It
consists on a few sub-projects that we are only interested in a few:

• Hadoop Common: consists of the common utilities that support the other Hadoop sub
projects.

• MapReduce: the implementation of MapReduce, which first appeared in the Apache
mailing list in April 2014.

• HDFS: a distributed file system that provides high-throughput access to application data.

A common installation of Apache Hadoop includes of the Hadoop distributed file sys-
tem (HDFS), and the MapReduce implementation. The Hadoop’s MapReduce implementation
(from now on, we call it Hadoop for short) relies heavily on the HDFS for data storage and

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.2: Hadoop’s simple cluster architecture

access. Both have the Master/Slave architecture: in the Hadoop layer, the Master is called Job
Tracker, while the Slaves are called Task Trackers. In the HDFS layer, the NameNode is the
master that controls many DataNodes (Figure 2.2).

Each Hadoop cluster contains one Job Tracker. The Job Tracker is responsible for (a) query-
ing the underlying HDFS for the block locations, (b) scheduling the tasks on the slave which is
hosting the task’s blocks, and (c) monitoring the successes and failures of the tasks. Equivalent
to the slave workers are Task Trackers, who execute the tasks as directed by the Job Tracker.
Each Task Tracker is set up with certain numbers of Map and Reduce slots respectively, i.e., a
Task Tracker cannot have more than these numbers of Map or Reduce tasks running simulta-
neously. Each Map (or Reduce) task is a separate program that contains the user-defined map
(or reduce) function and can be missing (Map-only jobs).

2.2. HADOOP SCHEDULING 13

2.2 Hadoop scheduling

Hadoop runs several maps and reduces concurrently on each Task Tracker to overlap commu-
nication and I/O. At each heartbeat, the Task Tracker notifies the Job Tracker the number of
available slots it currently has. The Job Tracker assigns tasks depending on jobs’ priority, num-
ber of non-running tasks and potentially other criteria. The first version of Hadoop comes with
a fixed FIFO scheduler, which was good for traditional usages such as Web Indexing or log
mining, but rather inflexible and could not be tailored to different needs or different workload
types.

Since bug report Hadoop-3412, Hadoop has been modified to accept pluggable schedulers,
which allows the use of new scheduling algorithms to help optimize jobs with different specific
characteristics. At the current stable version, Apache Hadoop is augmented with 3 pluggable
schedulers, namely the default FIFO scheduler, the Fair scheduler, and the Capacity scheduler.

2.2.1 FIFO scheduler

The FIFO scheduler is the original scheduler that was integrated inside the Job Tracker. In FIFO
scheduling, the Job Tracker simply pulls jobs from a single job queue. Although the scheduler’s
name suggests the prioritization of old jobs, the FIFO scheduler also takes into account jobs’
priority. Algorithm 3 illustrates the comparator the FIFO scheduler uses to decide the order of
jobs in the job queue.

Algorithm 3 int compare(Job j1, Job j2)

/*Compare priority first: favoring jobs with higher priority*/
if (j1.getPriority() < j2. getPriority()) then

return 1;
else if (j1.getPriority() > j2.getPriority()) then

return -1;
else

/*Compare job start time: favoring older job*/
if (j1.getStartTime() < j2.getStartTime()) then

return -1;
else if (j1.getStartTime() > j2.getStartTime()) then

return 1;
else

/*Tiebraking by job id*/
return (j1.getID() - j2.getID());

end if
end if

14 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.2 Fair scheduler

The Fair scheduler assigns resources to jobs in a way such that on average over time, each job
gets an equal share of the cluster’s resources. “Short jobs” (jobs that require less time to finish)
are thus able to access the CPU, and will finish intermixed with the execution of “long jobs”
(jobs that require longer time to finish). The Fair scheduler was developed by Facebook, and
aimed at providing better responsiveness for short jobs, which are the majority at Facebook’s
Hadoop usage.

The Fair scheduler uses a two-level scheduling hierarchy. At the top level, the Fair sched-
uler allocates task slots across pools using weighted fair sharing i.e. the higher the weight a
pool is configured with, the more resources it can acquire. Each user, by default, is assigned
one pool, but organizations can also create special pools for practical reasons. At the second
level, each pool allocates its assigned slots among jobs in the pool, using either FIFO with prior-
ities (the same with FIFO scheduler) or a second level of fair sharing. In the second level of fair
scheduling, each job is assigned a weight equal to the product of its (user-defined) priority and
the number of tasks. Jobs with higher number of tasks generally need more time to finish, and
will be assigned more task slots. Note that the Fair scheduler associates the number of tasks
with the length of job, which means it assumes tasks have the same length. This assumption is
not necessarily true since the length of a task differs between applications: even with the same
amount of data, a complicated map (reduce) function will probably take more time to finish
than a simple map (reduce) function.

While the FIFO scheduler does not employ preemption, the Fair scheduler uses Kill action
to guarantee pools meet their minimum share. The minimum share represents a minimum num-
ber of slots that a pool is guaranteed to be given as long as it contains jobs, even if the pool’s fair
share is less than this amount (e.g., because many users are running jobs in the same cluster).
The minimum share is automatically adjusted if the total minimum share of all pools exceeds
the number of slots in the cluster.

The Fair scheduler gracefully handles short jobs, to which locality is of high importance. A
short job will be prolonged a larger portion if is is executed non-locally, compared to a longer
job, in which the data transfer time only accounts for a smaller portion. The Fair scheduler
is equipped with the Delay technique, which allows the execution of a task on a Task Tracker
to be postponed if the scheduler can find a local task for that Task Tracker. Postponed tasks
are recorded so that if a task has waited for too long, it will be launched at the next free slot
regardless of locality. This is to avoid starvation for tasks in a big cluster, where the chance for a
task to have local data on a certain node is rather low. Algorithm 4 illustrates the Fair scheduler
with Simple Delay scheduling.

2.2.3 Capacity scheduler

The Capacity Scheduler is designed to run Hadoop MapReduce as a shared, multi-tenant clus-
ter. The central idea is that the resources are partitioned among tenants based on computing

2.3. FAULT TOLERANCE IN HADOOP 15

Algorithm 4 Fair Sharing with Simple Delay Scheduling

Initialize j.skipcount to 0 for all jobs j.
when a heartbeat is received from node n:
if n has a free slot then

sort jobs in increasing order of number of running tasks
for j in jobs do

if j has unlaunched task t with data on n then
launch t on it n
set j.skipcount = 0

else if j has unlaunched task t then
if j.skipcount ≤ D then

launch t on n
else

set j.skipcount = j.skipcount +1
end if

end if
end for

end if

needs. Unused quotas are divided equally among using tenants. This provides elasticity for
tenants (usually organizations) in a cost effective manner.

Although the idea is rather similar to that of the Fair scheduler, the Capacity scheduler has
specific characteristics. The Job Tracker is considered as a rather scarce resource, therefore the
number of initialized jobs are limited, i.e., not all jobs are always initialized upon submission.
Jobs are divided into queues and accessed sequentially in a manner similar to FIFO. Once a job
starts, it will not be preempted by other jobs. Preemption is deemed an interesting functionality,
but it has not yet been implemented.

2.3 Fault tolerance in Hadoop

Hadoop is designed to help process very large amounts of data using hundreds or thousands
of machines. Since data centers usually consist of commodity hardware (Ananthanarayanan
et al. 2011) and built incrementally (Rezaei & Mueller 2013), failure has become a norm rather
an exception. In order to facilitate the correct execution of jobs in such environment, Hadoop
needs to tolerate machine failures gracefully.

2.3.1 Task Tracker failure

As often found in many Master/Slave architecture, the Job Tracker in Hadoop also pings every
Task Tracker periodically. If no response is received from a worker in a certain amount of time,
Job Tracker marks this Task Tracker as failed. Any Map tasks completed on this Task Tracker
that belong to unfinished jobs are reset back to idle state and therefore eligible for scheduling

16 CHAPTER 2. BACKGROUND AND RELATED WORK

again. Similarly, any map task or reduce task in progress on the failed Task Tracker is also reset
to idle and becomes eligible for rescheduling.

When a map task is re-executed on another Task Tracker (because the first Task Tracker
failed), all Reduce tasks are notified of the re-execution. Reduce tasks that have not read map
output from the failed Task Tracker will read the data from the newly completed location in-
stead.

2.3.2 Job Tracker failure

The Job Tracker in Hadoop remains as a single point of failure. All the activities inside a
Hadoop cluster are monitored and controlled by the Job Tracker. If the Job Tracker fails, all
activities are stopped. Hadoop does not implement any fault-tolerance mechanism related to
Job Tracker failure. Users need to monitor the health of the Job Tracker on their own and restart
Hadoop jobs if they desire in case of Job Tracker failure.

2.3.3 Speculative tasks

One of the common causes that prolong the execution of a Map Reduce job is a ”straggler”: a
machine that fails to progress at the normal rate. Stragglers can arise for a number of reasons,
such as contention in disk activities, or CPU overload. Hadoop employs a simple mechanism
to alleviate the problem of stragglers: speculative execution. When a Map Reduce operation is
close to completion, the Job Tracker schedules backup execution of tasks that are currently still
running. The first copy to finish between original and backup task will be marked as Complete,
while the other is killed to avoid duplication. Organizations have mixed opinions about the
effectiveness of Speculative execution. While Google claimed that speculative execution helped
boost performance by 44% (Dean & Ghemawat 2008), Yahoo! decided to disable speculation
by default (Seo et al. 2009).

In this chapter, we have introduced the Hadoop framework, its architecture and the con-
ceptual fault tolerance mechanism. In the following chapters, we will discuss this mechanism
in depth, and provide a systematical analysis on the effect of failures to the performance of
Hadoop.

IIFault Tolerance
Assessment in Hadoop

3Hadoop fault tolerance

mechanism

3.1 Detection of failed tasks

This section analyzes the mechanisms that Hadoop uses to guard against failures. A source-
code analysis was performed on Hadoop version 1.2.1 (the version 1.x current stable release at
the timet of this thesis). We notice a few changes compared to version 0.21.0 (Dinu & Ng 2012).
Although the system is highly configurable, i.e., most of the parameters can be configured
through configuration files without re-compiling the source code, we use the default values for
simplicity and clarity.

Hadoop employs a static timeout mechanism for the detection of fail-stop failures. It keeps
track of each Task Tracker’s last heartbeat, so that should a Task Tracker does not send any
heartbeat in a certain amount of time, that Task Tracker will be declared Failed. Each Task
Tracker sends a heartbeat every 0.3s (many literatures have claimed that the heartbeat interval
is 3 seconds, however here we use the value we found in the source code). The Job Tracker
checks every 200s for any Task Tracker that has been silent for 600s. Once found, the Task
Tracker is labeled as a failed machine, and the Job Tracker will trigger the failure handling and
recovery process

3.1.1 Declaring Map output lost

Hadoop allows quick detection of Map task failures, in the form of Map Output Lost. The loss
of a Task Tracker makes all map outputs stored on that machine inaccessible to Reduce Tasks. A
Map Output is declared lost if the Job Tracker receives enough notifications from Reduce Tasks
that they cannot obtain the map output. In fact, the map output is recomputed if the number
of notifications that a Map Output is unavailable is higher than 3, or 50% of the total number
of Reduce tasks in the job. The double condition allows Hadoop to avoid prematurely false
conclusion in a system with high number of Reduce Tasks, as well as eager false conclusiosn
when the amount of running Reduce Tasks is small.

A notification is, by default, sent immediately if a read error occurs while the Reduce task
R is copying map output from Map task M. User can also change the default true Boolean pa-
rameter ”mapreduce.reduce.shuffle.notify.readerror” to false, so that a notification is only sent after
every 10 failed retries. A back-off mechanism is used to dictate how soon a node is contacted
again after a connection error. The penalty time is calculated as follows:

20 CHAPTER 3. HADOOP FAULT TOLERANCE MECHANISM

Penalty (in seconds)= 10 ∗ ((1.3) ˆ (FR
M))

where (FR
M) is the number of times the Reduce task failed to fetch Map M’s output.

Note that with the above-mentioned back-off mechanism, a Map output will be declared
Lost after roughly

∑10
i=1 10∗ ((1.3)i) = 554 seconds from the first attempt. Since all the values in

the above formula are hard-coded, this early Map Output Lost detection mechanism will not
be useful if the expiry time is set to a smaller number.

3.1.2 Declaring a Reduce Task faulty

A Task Tracker considers a reduce task to be faulty if the task fails too many times trying to
copy map outputs. There are 2 events that can trigger the declaration of a failed reduce task:
1) the Reduce task has failed more than both 30 times and 10% of the amount of Map tasks in
the jobs, or 2) the Reduce task is ”too faulty” to continue i.e., it has failed so many times. The
2nd condition is only checked whenever there are 10 failed attempts in fetching a certain map
output, and three conditions need to be simultaneously true for the 2nd event to be triggered.
First, there must be too many unique unavailable Map outputs: either more than 5 or equals to
the number of not-yet-copied Map outputs. Second, more than half of the attempts made by
Reduce Task R have failed. Finally, the Reduce task has stalled for more than half the amount
of time during which it has made progress.

If a Reducer happens to meet the conditions for the 2 events above, it will be considered
as Failed, and will be returned to the Job Tracker for another scheduling opportunity. Since all
failed Reducers are incomplete Reducers, failed Reducers will be sent to another queue before
getting back to the normal failed queue. Details will be discussed in the next section.

3.2 Failure handling and recovery

Tasks that were running on the failed Task Tracker will be restarted on other machines. Map
tasks that completed on this Task Tracker will also be restarted if they belong to jobs that are
still in progress and contain some reduce tasks. Completed Reduce Tasks are not restarted, as
the output is supposedly stored persistently on HDFS.

Hadoop failed tasks are either added to a queue for failed tasks (Map task), or back to non-
running queue (Reduce task). Both the queues are sorted in the order of failed attempts: tasks
with higher number of failures are positioned at the beginning of the queues. In case tasks have
the same number of failed retries, the task ID is used to tie-break.

Hadoop distinguishes between completed failed tasks and running failed tasks. While the
completed failed tasks are added directly to the failed queue as mentioned above, running
failed tasks are added to different lists called the Task Clean Up lists. This is because failed
running tasks might leave some remnants of corrupted data on the local storage of the Task

3.3. SPECULATIVE EXECUTION 21

Tracker, and they can cause trouble to later executed attempts of the same task. In order to
avoid this, the Job Tracker will launch a clean up task (of the same type) for every item in the
Task Clean Up list. Only after a Task Clean Up task finishes is the failed task moved to the
failed queue.

Hadoop prioritizes failed tasks to run first over pending (non-running) tasks when it comes
to assigning new tasks. The aim of this decision is to quickly discover any jobs’ ”internal
failures”. Hadoop jobs’ ”internal failures” are failures that are specific to a certain job and
cannot be tolerated by re-execution mechanism. One example of internal failures is corrupted
input files. While each task consumes a certain amount of resources (disk space, computational
cycles, memory...) faster discovery of internal failures allows Hadoop to quickly purge those
failed jobs and release the resources for other waiting jobs, hence achieving better utilization of
resources.

Although Hadoop pays much effort to achieve locality for Map tasks in normal situations
(it tries to assign as many local tasks as possible, while only assigingn at most 1 non-local task
regardless of the number of available slot at each time), it completely ignores locality when it
comes to failed tasks. As long as there are failed (Map) tasks, any Task Tracker that has free slots
will be assigned the maximum number of tasks that it can handle. This leads to degradation in
the performance of Hadoop when there are many failed tasks, as the number of non-local tasks
might become very high.

3.3 Speculative execution

Besides the physical failures when a node stops functioning, Hadoop has speculative mecha-
nism to guard against another type of failures, called time failure. Time failure occurs when a
task fails to progress at an average normal rate. In an heterogeneous environment, this is likely
to happen at nodes with lower capacity. In cloud environments, due to the fact that some phys-
ical nodes can host an unknown number of virtual machines, some of those virtual machines
might suffer from resource starvation, which in turn leads to slow progress of tasks on those
machines.

In either situation, those ”straggler” tasks prevent jobs from finishing and can lead to se-
rious underutilization of resources. Hadoop avoids these situations by running a speculative
algorithm, which attempts to improve jobs’ running time by duplicating under-performing
tasks. When the Map/Reduce task pool is empty and there are free slots in the system, the Job
Tracker tries to identify the slowest running tasks, and accordingly launch a copy of these tasks
on other machines.

In the currently examined version of Hadoop (1.2.1), a simple algorithm is employed to
find tasks to execute speculatively. If the progress score of any task is less than the average of
its category minus 0.2, and the task has started for more than one minute, it is considered for
speculative execution. There are a few points worth noticing about the current implementation

22 CHAPTER 3. HADOOP FAULT TOLERANCE MECHANISM

of this algorithm:

1) Speculative tasks will not be launched if there are other tasks in the job (failed and non-
running tasks).

2) The average progress score of a category (Map or Reduce) is calculated by the total
progress score of all tasks (including completed and non-running tasks) in the system divided
by the total number of tasks in that category. A Map task progress score is calculated by the
fraction of input that it has processed. For a reduce task, the execution is divided into three
phases, each of which accounts for 1

3 of the score:

• The Shuffle phase, when the task fetches map outputs

• The Sort phase, when map outputs are sorted by key

• The Reduce phase, when the user-defined function is applied to the list of map outputs
within each key

In each phase, the score is the fraction of the data processed. For example, a task that has
fetched 50% of the map outputs (still in Shuffle phase) has a progress score of 0.5∗ 13 = 1

6 . A task
that has ”reduced” half the number of map output keys has the progress score of 1

3+
1
3+0.5∗ 13 =

5
6 . There is no ”fraction of data sorted” in the Sort phase, therefore the progress score of Sort
phase has only 2 values: 0 and 1

3 .

Since the average progress score includes already completed tasks, the speculation algo-
rithm does not accurately address the stragglers among currently running tasks. In fact, when
the job comes near the end (most of the tasks have finished), a newly launched task always has
very low progress score compared to the average, and is often prone to be executed specula-
tively.

3) The age of a task is calculated from the moment it is initialized, rather than the moment
when it is launched. This is very close to the initialization time of the job, when all the meta-
data for the tasks are constructed. It means a task can have its speculative copy launched only
a few seconds after the launch of the original, providing that the job has been running for more
than 60s, and the average progress score is high enough to trigger speculation. This mechanism
might sound strange at first, but it probably evolves from the fact that the dominant use of
Hadoop is for short jobs with tasks that can finish in less than 60s (Chen et al. 2011).

This speculative algorithm has a potential drawback of excessive launching of tasks in the
last ”wave”. A ”wave” in Hadoop is a set of tasks that are launched and finish at similar point
in time. A job J with M map tasks and R reduce task running in a cluster with SM map slot and
SR reduce slot has potentially at least d M

SM
e map wave and d R

SR
e reduce wave. If the number

of waves is large enough that the average progress score is higher than 0.2, and the job has run
for more than 60s, then any tasks from the last wave will be executed speculatively.

To guard against this excessive launching phenomenon, the default Hadoop scheduler
(FIFO) is equipped with a mechanism to limit the capacity of each Task Tracker depending

3.4. LIFE CYCLE OF A TASK 23

on the number of unfinished tasks. Each Task Tracker cannot assign the number of tasks more
than the number of its capacity multiplied by the ratio between the number of unfinished tasks
and the cluster capacity (called the load factor). In a cluster with 15 nodes, each has 2 Map slots
(so the total cluster capacity is 30 slots), a job J with 100 Map tasks will run in 4 waves. In the
last waves, there are (100 − 3 ∗ 30) = 10 tasks left, and the load factor of the cluster would be
10
30 = 1

3 . Each Task Tracker will then have its new capacity of Min (d13 ∗ 2e, 2) = 1 slot. After
assigning 10 map tasks, there are only (1 ∗ 15 − 10 =)5 slots for speculative execution, instead
of Min (running tasks, free slots in the cluster) = Min(10, 30− 10) = 10 speculative tasks.

This guarding mechanism seems to be omitted from the other 2 schedulers (Fair scheduler
and Capacity scheduler). However, organizations have reported to turn off the speculative
execution, as they mostly degrade the performance of Hadoop rather than improving it (Seo
et al. 2009).

3.4 Life cycle of a Task

To conclude the failure handling process of Hadoop, we summarize the life cycle of a task as in
figure 3.1:

Initially, all tasks are in pending (non-running) state. The Job Tracker assigns tasks to the
Task Trackers as free slots become available. Tasks that are assigned move to Running state,
and eventually to Completed state. Should a task fails; it is marked as Failed and sent back to
the Job Tracker waiting for re-launch. In the course of a task, the Job Tracker might declare that
task is a straggler, and launch a copy of that task on a different Task Tracker. The first finishes
is marked as Completed, while the other is marked as Killed.

In the next chapter, we will present a systematic analysis of Hadoop performance under
failures. We consider two type of failures: stress - a mild variant, and actual Task Tracker
failure. The experiment results will give insight about actual Hadoop’s behavior, which will
help us in the real problem behind the degradation of performance under failures.

24 CHAPTER 3. HADOOP FAULT TOLERANCE MECHANISM

Figure 3.1: The life cycle of a task in Hadoop

4
Systematic Assessment of

Hadoop Performance

Under Failures

This chapter presents a systematic performance evaluation of the 3 schedulers that come in the
Hadoop release package, namely the default FIFO scheduler, the Fair scheduler and the Capac-
ity scheduler. We conduct a series of experiments to assess the impact of stress (a mild variance
of failure) and failures in the execution of multiple applications in Hadoop. The metrics that
we are interested in include average execution time, individual job execution time and data
locality. In some experiment, we also concern about the execution of speculative tasks, as these
tasks can either speed up the execution time, or wastefully compete for resources.

4.1 Experiment settings

Cluster setup

We conduct our experiment on (Grid5000). Grid5000 is a large-scale experiment testbed, which
provides the research community with highly configurable infrastructure. We perform our
experiment on the Rennes site with 21 nodes: 1 Master node running the Job Tracker and
Name Node processes, and 20 Slave nodes running Task Tracker and Data Node processes
(all the other experiments, unless states otherwise, will always have 1 dedicated node as the
Master, and many other slave nodes). Each node is equipped with 2.5Ghz Intel Xeon L5420
CPU with 8 cores, 16GB Memory and one 320GB SATA II hard drive. Nodes are connected
using Gigabit Ethernet cables.

Hadoop setup

On the Grid5000 testbed described above, we deployed and configured a Hadoop cluster using
the 1.2.1 stable version. Each node is configured with 6 Map slots and 2 Reduce slots (1 slot per
core on average). The number of Reduce tasks is set at 40 tasks. The HDFS replication is set at
2, and the block size is set at 128MB. To better cope with small workload, we set the expiry time
(the amount of time a Job Tracker will wait before declaring a Task Tracker failed if there was
no heartbeat from that Task Tracker) to 60 seconds instead of the default 600 seconds. Besides
that, all the other configurations are kept at the default value.

26CHAPTER 4. SYSTEMATIC ASSESSMENT OF HADOOP PERFORMANCE UNDER FAILURES

Benchmarks

We use WordCount and TeraSort applications from the official Hadoop release’s example pack-
age. Data is extracted from PUMA data set (Ahmad et al. 2012) to create different input sizes.

Jobs

We run a series of 6 jobs (from the combinations between applications and input sizes. Each job
is submitted 10 seconds after each other, and job types are intermixed so that we have mixed
set of long, medium and short jobs of different characteristics.

Application Input size
1 Terasort 31GB
2 WordCount 11GB
3 TeraSort 2.8GB
4 WordCount 30GB
5 TeraSort 12GB
6 WordCount 1.1GB

Table 4.1: List of jobs and their input size used in the experiment, in the order of submission

4.2 Hadoop under stress

In this experiment, we want to understand Hadoop behavior under the circumstances when
one of the nodes in the cluster gets stressed. In a shared cluster, nodes may run many different
processes at the same time for utilization reasons. It is not uncommon to have some of the nodes
having more running processes than other. The situation becomes even more significant when
virtualization is employed. Since each of the virtualized nodes has to compete for resources
from the physical machines, spontaneous congestions can happen frequently.

Stressing

We launch some extra processes (while loop for CPU stress & dd command for IO stress) on
one of the nodes from the Slave set. These processes act as the stress factor on that node. Each
process lasts for 30 seconds, and is launched interleaved with each other. Between any 2 stress-
ing processes there is a gap of 30 seconds of stress-free to simulate sporadic stress condition.
The first stress process is launched 60 seconds from the beginning of the experiment.

4.2. HADOOP UNDER STRESS 27

Result

Total execution time and data locality

Figure 4.1: Total execution time under 3 different schedulers

Figure 4.1 presents the total execution time of the experiment test under 2 different scenar-
ios. In Normal situation where there are no stresses or failures, all the three schedulers demon-
strate similar performance in term of finishing time: in average, Fair and Capacity schedulers
both finish after 249 seconds, and FIFO finishes after 246 seconds. In Stressed condition, the
three schedulers start to show some differences. FIFO scheduler once again finishes first with 4
seconds of degradation. Capacity scheduler also suffers the same amount, while Fair scheduler
gets prolonged for 7 seconds (finishes after 256 seconds) and becomes the slowest among the
three.

Figure 4.2 presents the locality (the ratio between the number of locally executed tasks and
total number of tasks) of the 3 schedulers under different situations. Fair scheduler demon-
strates the highest locality as expected, thanks to the Delay technique. FIFO scheduler and
Capacity scheduler demonstrate similar performance in this aspect, and significantly lower

28CHAPTER 4. SYSTEMATIC ASSESSMENT OF HADOOP PERFORMANCE UNDER FAILURES

Figure 4.2: Data locality of the 3 schedulers under different situations

compared to Fair scheduler. The difference was not reflected in the total execution time, as net-
work bandwidth is rather abundant in our experiment: all the nodes are in the same rack, and
besides Hadoop, there were no other users’ running processes that involves network during
the course of the experiment. The result of this abundance is that even a chunk of 128MB can
be quickly transferred between nodes without much delay. This setting is normally not true in
a multi-purpose, multi-tenant cluster: network bandwidth is generally considered as a scarce
type of resource (Rao et al. 2012).

Under stressed conditions, all the three schedulers witness degradation in data locality.
This is because tasks on the stressed node are likely to become stragglers, and receive specula-
tion from Hadoop. Although Hadoop also tries to provide locality for these speculative tasks,
if the original copy was launched on a node with data, then the second launch will have less
chance to be local.

Another effect of stressing a node is that the increase in number of speculative tasks is
accompanied with more waste in the resources. Speculative tasks are launched, but they even-
tually are killed when the original tasks finish. We can see more about this phenomenon in

4.2. HADOOP UNDER STRESS 29

figure 4.3 and 4.4

Speculative execution

Figure 4.3: Speculation execution in Normal situation of the 3 schedulers

Figure 4.3 shows the number of running speculative tasks at different points in time of
the Normal scenario. The red color depicts the total number of running speculative, while
the green color, noted as ”Useful speculative tasks”, illustrates those speculative tasks that
actually finish before the original one, and hence, are meaningful. Note that the figure shows
the number of running speculative tasks at different points in time during the course of the
experiment: tasks are generally accounted for more than once.The shaded region marks the
duration during which stress processes are running. Although there was no stress processes
during Normal scenario, we keep the shaded color for the ease of comparison with stressed
scenarios. Figure 4.3 shows that the speculation mechanism in Hadoop is not very effective in
this scenario: most of the speculative tasks are actually wasted.

Figure 4.3 also compares the difference in how each scheduler chooses tasks to execute
speculatively. The FIFO scheduler and the Capacity scheduler show a similar pattern in specu-

30CHAPTER 4. SYSTEMATIC ASSESSMENT OF HADOOP PERFORMANCE UNDER FAILURES

lative execution: when running Capacity without concerning about share, the default queue in
Capacity is basically a FIFO queue. However, there are still some differences in the number of
concurrently running speculative tasks at each moment: the FIFO scheduler has the padding
mechanism to slow down the rate of assigning tasks while the Capacity scheduler does not, and
this difference alters the number of occupied slots in the last wave of a job. Fair scheduler has
less speculative tasks compared to the other two schedulers. In Normal scenario without stress
and failure, where speculative tasks are mostly wasted, This means Fair scheduler achieves
better utilization of resources compared to the other 2 schedulers..

Figure 4.4: Speculation execution in Stressed situation of the 3 schedulers

Figure 4.4 illustrates the speculative execution of the 3 schedulers, but in the Stress sce-
nario. Both the number of speculative tasks, as well as the number of useful tasks increase
(though slightly), showing the effect of stressing processes on Hadoop. Once again, the FIFO
and Capacity schedulers show similar behavior, while the Fair scheduler still introduces fewer
number of speculative tasks compared to the other two. The occurrence of speculative tasks
is generally delayed a few seconds: this is because stressed nodes take more time to finish
their tasks, and therefore delay the last wave for a short period of time. We can also observe
more ”useful speculative tasks” (green tasks): the speculative mechanism proves to be useful,

4.3. HADOOP UNDER FAILURE 31

though limited.

4.3 Hadoop under failure

Failure is a part of everyday life, mainly due to large scale and shared environments. Earlier
studies have reported that failures are frequent in large-scale distributed system (Dean 2009)
(Schroeder & Gibson 2010) (Pinheiro et al. 2007) (Chandra et al. 2008) (Schroeder et al. 2009).
Some failures can be quickly recovered, but some are disastrous. For instance, on Thursday
April 21st, 2011 (Dailymail 2011), a outage with Amazon Cloud occurred and resulted in crash-
ing major businesses and websites including the New York Times, Reddit, Quora and Hootsuite
etc. Some of these sites went offline for up to 12 hours, and they suffered performance degra-
dation for at least one week after the outage. Even worse, Amazon was not able to recover
some of the customers’ data even after many ultimate efforts.

Failures are a major concern during run-time execution of Hadoop applications. Reported
experiences indicate that both transient (i.e., fail-recovery) and permanent (i.e., fail-stop) fail-
ures are prevalent, and will only worsen as the amount of computation increases. For example,
Google reports 5 average worker deaths per MapReduce job in March 2006 (Dean 2006), and at
least one disk failure in every run of a 6-hour MapReduce job with 4,000 machines (Czajkowski
2008).

We evaluate Hadoop’s performance when there are failures in the system. To mimic the
failure, we simply kill the Task Tracker process on one of the slave nodes. Failure injection time
is set at 80 seconds since the beginning of the experiment (although other failure injection times
result in different levels of degradation; in this section we only present one representative case).
The Task Tracker process is never restarted (fail-stop). The Data Node process is kept running,
so that no re-replicate activities occur. Data is still accessible from that node, but there will be
no more tasks to be launched from the same machine. Note that since we set the replication
factor to 2, the maximum number of failures that Hadoop can tolerate is 1, as any number more
than this will result in loss of data and render the job failed.

The default expiry time (the amount of time after which a task tracker will be declared
”lost” if there was no heartbeat) is 600 seconds. This value is considerably large compared to
the job size (the largest job in this experiment only takes around 200 seconds to finish). We
change this value to 60 seconds for a more timely reaction to failure.

32CHAPTER 4. SYSTEMATIC ASSESSMENT OF HADOOP PERFORMANCE UNDER FAILURES

Result

Total execution time and locality

Figure 4.5: Total execution time of Hadoop in 3 scenario: Normal, Mix Stress and Failure

Figure 4.5 presents the total execution time in 3 different scenarios: Normal, Mix Stress and
Failure. The Mix stress scenario is included for better comparison. As we can see from Figure
4.5, failures prolong the execution of Hadoop jobs by a significant amount of time as much as
56 seconds (roughly 22.5%) in case of Capacity scheduler. Fair scheduler appears to suffer the
least: its execution time is prolonged for only 29 seconds (10.4%), and it also finishes the fastest
among the three schedulers under failure (278 seconds compared to 294 seconds for FIFO, and
305 seconds for Capacity scheduler).

The small degradation of Fair scheduler can be explained by the fact that Fair scheduler
allows multiple jobs to share the cluster proportional to their job sizes. Each job now has less
resources at a point in time compared to that in FIFO. When a failure occurs, since jobs have
been progressing slower than that in FIFO, they can overlap the useful effort (to finish other
tasks) with the expiry time (failure detection window). Besides since the failed node only ac-

4.3. HADOOP UNDER FAILURE 33

counts for 5% of the total number of slots, there may be a chance that none of the tasks on the
failed node belongs to a job (especially Reduce tasks). This job will not be blocked and can be
finished even during the failure detection window. This helps limit the impact of a node failure
on jobs under the scheduling of Fair scheduler.

Figure 4.6: Data locality of the 3 scheduler under Normal, Mix Stress and Failure scenario

Figure 4.6 shows the percentage of locally executed tasks over the total number of tasks
in the 3 different scenarios: Normal, Stress, and Failure. Fair scheduler still enjoys the highest
number of locality, even though this number is decreasing. FIFO and Capacity scheduler shows
some degradation, though this degradation is rather small compared to Fair scheduler (3% and
1% compared to 9%). To explain this phenomenon, remember that Fair scheduler was designed
based on the assumption that most tasks are short and therefore, nodes will release slots quickly
enough for other tasks to get locally executed. However, in case of failure, the long failure
detection time (expiry time) creates the illusion of long-lasting tasks on failed nodes. These
”fake” long tasks break the assumption of Fair scheduler, leading to higher degradation.

34CHAPTER 4. SYSTEMATIC ASSESSMENT OF HADOOP PERFORMANCE UNDER FAILURES

Speculative execution

Figure 4.7: Speculation execution in the Failure scenario of the 3 schedulers

Figure 4.7 demonstrates the speculative execution of the 3 schedulers under failure. The
number of ”useful speculative tasks”, i.e., those speculative tasks that finish before the original
ones, increased compared to Normal execution (Figure 4.3). This is because during the 60 sec-
onds between the failure of task tracker and its failure discovery, some speculative tasks were
launched and finished successfully. Other than this increase in the number of successful spec-
ulative tasks, all other observations remain the same: The FIFO and Capacity schedulers show
similar patterns in speculative execution; the Fair scheduler has the least number of speculative
tasks among the three.

Although rather obvious, we also include a situation when the default expiry time (600
seconds) is used. The total execution time is by far longest in this default setting. This is
because there are some already finished tasks on the failed node when it failed. These Map
outputs will either have to wait until the node is declared Failed, or there are enough ”Failed
to fetch Map output” notifications in order to be re-executed. The longer the expiry time, the
longer the job is blocked, and therefore total execution time becomes longer. The Speculation

4.3. HADOOP UNDER FAILURE 35

Figure 4.8: Total execution time in 3 different situations: Normal, Failure with 60s of expiry
time, Failure with 600s of expiry time

mechanism does not improve the situation, as it can only speculate on currently running tasks.

This chapter discussed the effect of failure to Hadoop performance. In the next chapter, we
will briefly introduce some related works in the scope of fault tolerance in Hadoop.

36CHAPTER 4. SYSTEMATIC ASSESSMENT OF HADOOP PERFORMANCE UNDER FAILURES

5Related Works

Failures significantly increase the execution time of Hadoop applications. There are two factors
that contribute to this degradation: the timeout in failure detection, and the failure handling
mechanism that Hadoop employs.

Hadoop uses a fixed value for the expiry time regardless of the workload. The default value
is 10 minutes, which is of disadvantages to small jobs. Although this timeout would be the
same in value, the toll for larger jobs (jobs that take longer time to finish) is relatively smaller.
Besides, during the period of failure detection, larger jobs might have other un-finished tasks
to run, so the delay time overlaps with other tasks’ execution time and therefore, the penalty
can be reduced even more. However, it is not the case for small jobs. There has been effort in
trying to adaptively adjust the expiry time. (Zhu & Chen 2011) introduces a job size estimator
in order to adjust this value according to job size. Smaller jobs will benefit greatly from this
adaptive expiry time value in case of failure.

Other efforts to improve Hadoop performance under failure includes attempts to protect
intermediate data. Upon failure, intermediate map output that is stored on the failed machine
becomes inaccessible for non-finished Reduce tasks, and those tasks need to be re-executed.
(Ko et al. 2010) develop the Intermediate Storage System (ISS) to keep the intermediate data
safe. ISS uses an asynchronous rack- level selective replication mechanism, which minimizes
the effect of run-time server failures on the availability of intermediate data. Another attempt
is from (Bicer et al. 2010). Their system design can be seen as a check point based approach,
where the reduction object is periodically copied to another node. Therefore, if one worker
fails, its reduction value exists on another node.

Preserving intermediate data can be promising in case of failures, but it induces a very
high cost in term of resources (storage space) as well as time (replicating intermediate data to a
number of machines is costly). It also affects the resources utilization, when intermediate data
is generally only useful during the course of the job, and will be discarded after the job finishes.

There exists another problem regarding the failure handling mechanism of Hadoop that
often gets unnoticed. When a task is declared failed, it gets ”special treatment” in the manner
that, failed tasks will be launched as soon as any slot becomes available, regardless of data
locality. In a cluster where Data Node and Task Tracker processes co-reside, a machine failure
will reduce the replication factor for those data splits originally on that node. Providing that
Hadoop tries its best to provide locality for tasks in normal situation, it is likely that the failed
tasks will have one less machine to run locally, which in turn leads to lower locality in general.

38 CHAPTER 5. RELATED WORKS

Providing locality for tasks is crucial for performance of Hadoop in large clusters because
network bisection bandwidth becomes a bottleneck (Dean & Ghemawat 2008). Besides, since
most of the Hadoop usage is for small jobs (jobs with small number of map tasks), it is difficult
for a small job to obtain slots on nodes with local data. Data then has to be transferred through
the network, which might significantly increase the execution time if network bandwidth is
scarce. Providing locality for these jobs will greatly increase the performance of Hadoop in
term of time and resource preserving.

Unfortunately, achieving high locality is not easy. Zaharia et al. (Zaharia et al. 2010)
introduces the Delay technique inside the Fair scheduler to improve locality of tasks. Instead
of strictly following the order of jobs, the Fair scheduler allows behind jobs launch their tasks
first if the head-of-line job fails to launch a local task. However, the Fair scheduler relies on the
assumption that tasks are mostly short and slots are freed up quickly. In case of long tasks that
occupy the slots, a node may not free up quickly enough for other jobs to achieve locality.

Map locality is important, but Reduce locality can also improve Hadoop performance.
During the Shuffle phase of a Reduce tasks, a large amount of data is transferred through
the limited network. Traditional Hadoop tries to cope up with this problem by providing the
Combiner function, which is basically a Map-side Reduce function. Combiner indeed helps
reduce the amount of Map output, but they cannot help with the skew in data: some Map
tasks have more data for a certain Reduce tasks, and less for others. Providing Reduce locality
means placing the Reduce tasks on nodes that have the most data for these Reducers. However,
providing Reduce locality poses the same problem above: slots may not be available.

In the effort to overcome the above-mentioned problems, we propose preemption. Pre-
emption allows a task to quickly release the slot for more urgent tasks. Locality can be assured
with the employment of preemption. Also, preemption allows the scheduler to have better
control on the resources (i.e., the task slots). Shorter tasks can preempt a longer one to achieve
fast response time.

Preemption in Hadoop

To our knowledge, there has been not much work aiming at providing the preemption feature
for Hadoop.

• (Liu et al. 2012) introduces a Preemptive Deadline Constraint Scheduler (PDCS), which
aims at minimizing the total completion time of jobs under deadlines. Traditional non-
preemptive schedulers have to wait for previously assigned jobs’ completion or halt. This
delays the execution of production jobs, sometimes render them violating their deadlines.
To avoid this, PDCS employs the Hadoop built-in preemption mechanism (kill) to pro-
vide slots for near deadline jobs. Upon submission, jobs are checked whether they can
finish under its deadline or not using estimation. Jobs are then scheduled if the num-
ber of available slots meets the requirement. Otherwise, the scheduler would determine
whether these jobs are legal to preempt the slots that have been already allocated.

39

• (Wang et al. 2013) introduce the Fair Completion Scheduler (FCS) that supports Reduce
Task pre-emption. A long Reduce task would occupy the reduce slot, and significantly
increase the completion time of shorter jobs. By check pointing the Reduce task, the
reduce slot can be passed on to a different shorter job. After the short job finishes, the
long Reduce task picks up the work from where it was left off, and continue until the
end.

• (Pastorelli et al. 2014) propose to leverage the already available POSIX signals such as
SIGTSTP and SIGCONT to suspend running tasks. In Hadoop, Map and Reduce tasks are
regular Unix processes running in child JVMs spawned by the TaskTracker. This means
that they can safely be handled with the POSIX signaling infrastructure. The state of tasks
is implicitly saved by the operating system, and kept in memory. If not enough physical
memory is available for running tasks at any moment, the OS paging mechanisms saves
the memory allocated to the suspended tasks in the swap area.

Pastorelli’s approach save the states of the JVM and can be applied seamlessly to arbitrary
tasks regardless of types. However a suspended process can only be resumed on the same
machine it was suspended on. If the same task gets scheduled on a different machine, it
has to be restarted from scratch, losing work done so far: in that case, the suspend is
effectively analogous to a delayed kill.

Discussion

Although very interesting, the above mentioned efforts all suffer from some drawbacks. The
Preemptive Deadline Constraint Scheduler approach employs the naive Kill primitive from
Hadoop, which incurs a large amount of wasted work. The Fair Completion Scheduler only
concerns about preempting Reduce tasks but ignores the case of Map tasks. Pastorelli’s OS-
assisted preemptive primitives allow a seamless preemption mechanism for all types of tasks,
but does not support migration, i.e. restarting the preempted tasks on a different node. These
drawbacks limit the usefullness of these approaches. In the next chapter, we will discuss more
about the choices between preemption styles, and our approach to overcome these drawbacks.

40 CHAPTER 5. RELATED WORKS

IIIAlgorithmic Solution

6
Pause and Resume

A waster free preemption

mechanism

6.1 Wait or Kill: Hadoop’s dilemma

Preemption is a highly desirable feature in many cases. In schedulers that deal with fair shar-
ing of resources, the scheduler must reallocate resources between jobs when the number of
jobs changes. Since resources are normally fully utilized (in fact, this is also a novel require-
ment for any schedulers), newly arrived jobs often have to suffer the under-shared condition.
Preemption can help release resources from over-shared jobs to give to under-shared ones, thus
balancing the fairness in the system.

In other cases, it is sometimes desirable to preempt some long running jobs to give the slots
to shorter jobs. Shorter jobs contain a smaller number of tasks, and have a lower chance to get a
local task, compared to a longer one. Even if the splits are of the same size, the time to transfer
data from one node to another will be more significant for a short job, compared to a long one.
Preempting long jobs to provide local execution for short jobs not only helps reduce the relative
response time, but also reduces the average waiting time for jobs.

However, original Hadoop only comes with a simple approach for this need: the Kill mech-
anism. Killing is fast and dirty: it reallocates resources instantly and gives control over locality
for the needed ones, but it has a serious disadvantage of wasting the work of killed tasks, espe-
cially long running tasks. Moreover, the amount of wasted work becomes more consequential
if the killed task is a Reduce task: later re-launched copy of the task will have to fetch all the
map output again, causing more stress on the network resource which has always been scarce.

Waiting for running tasks to finish helps avoid the above-mentioned disadvantage. How-
ever, waiting will negatively impact fairness, as a new job needs to wait for tasks to finish to
achieve its share. Besides, locality is not guaranteed, as the new job may not have any input
data on the nodes that free up.

Figure 6.1 demonstrates an example of the three methods when a short map task needs a
slot from a longer one. Figure 6.1-a presents the arrival and local execution length of each task
as a rectangle. Shorter task arrives in the middle of the execution of longer task. Figure 6.1-b
presents the outcome of this execution in case a wait decision is made. The length of short
task is prolonged, as the task might have to execute remotely. Figure 6.1-c illustrates the kill
decision. The first part of long task is discarded, and it is re-launched after the completion of
short task. This scenario tends to have the longest execution time. Figure 6.1-d illustrates the
situation when a waste-free preemption mechanism is implemented. All the work that long

44 CHAPTER 6. PAUSE AND RESUME A WASTER FREE PREEMPTION MECHANISM

Figure 6.1: Illustration of different scenarios: waiting, killing and preemption

task has done is saved at the moment short task arrives. After completion of short task, long
task picks up where it left off, and continues until it finishes. This scenario promises the best
completion time, as well as fast response time, low average waiting time for tasks.

While it would always be very useful to have Map task preemption, the impact for having
Reduce task preemption is even more significant. Experiments from (Tan et al. 2013) showed
that even with schedulers that aims at providing fairness to jobs like Fair Scheduler, a long
occupying Reduce task can defeat the effort.

6.2 Pause and Resume: a waste-free preemption mecha-
nism

A preemption mechanism needs to be efficient and lightweight so that it can react fast enough
to the dynamic system workloads. In this section, we introduce our preemption mechanism
that can preempt tasks at almost any time during its execution, with low overhead and neg-
ligible delay. Due to the differences between the natures of Map tasks and Reduce tasks, our

6.2. PAUSE AND RESUME: A WASTE-FREE PREEMPTION MECHANISM 45

waste-free preemption distinguishes Map and Reduce tasks. We highlight that our mechanism
is fully portable, transparent as it leaves the current API of Hadoop and HDFS intact: all the
existing Hadoop applications can run without any modifications.

6.2.1 Map task preemption

When a job is submitted to the Job Tracker, all of its Map tasks are initialized. Each Map task
is given a “split” (or chunk) of data to process. The Job Tracker keeps track of which split
belongs to which task, and has a cache list of local tasks for each node for quick retrieval.
When a Task Tracker is assigned a task, it either loads the data chunk from its local storage,
or fetches it from the nearest node. It then launches the actual map task by looping through
every input < key, value > pair and applies the map function on those pair. Once all the input
< key, value > pairs have been processed, the Map task reports back to the Job Tracker as
“Completed”, and map output is entrusted to the Task Tracker to serve to Reduce tasks.

Although the name is “pause and resume”, our Map preemption mechanism is imple-
mented in a structurally different manner. There is no “pause” in Map task preemption, but
we actually split the map tasks into 2 sub-tasks at the boundary between input < key, value >

pairs. The first sub-task covers all the map input < key, value > pair that the task has pro-
cessed so far. This sub-task is considered Completed and will report back to the Job Tracker as
a normally completed task. The second sub-task includes all the map input < key, value > pair
that has not yet been processed. This sub-task will be treated as a new independent task with
almost no difference compared to any other non-running tasks. The independence between
< key, value > pairs of the Map Reduce programming paradigm guarantees that our mecha-
nism works correctly and does not produce any extra (or lose any) < key, value > pair, thus
ensuring correctness.

The mechanism requires the machines to know which < key, value > pairs belong to the
task’s covering range. In our implementation, we augment each task with the information
about its range by providing the starting key and the ending key of the range. A normal task
would have the values of both starting key and ending key equal to 0, signaling that its covering
range spans the whole split. A sub-task will have either starting key, or ending key, or both the
two keys to be different from 0. Our mechanism does not dictate the maximum number of
sub-tasks an original task can split into: a task can split to any number of sub-tasks, and a
sub-task, upon creation, is treated as a normal original task, and can be further split into more
sub-sub-tasks.

A Map task now does not simply loop through every single < key, value > pair like in the
original source code. At every < key, value > pair, it needs to make sure the pair falls inside the
task’s covering range. A simple comparison between starting key, ending key and the current
key at each round serves the purpose. Besides, the Map task now needs to actively listen to the
signal from the Task Tracker in order to stop at any time. Finally, before committing the map
output, the Map task needs to mark the last processing input < key, value > pair, so the Job

46 CHAPTER 6. PAUSE AND RESUME A WASTER FREE PREEMPTION MECHANISM

Algorithm 5 Pseudo for new Map task logic

/*get the information of the range*/
startKey = task.getStartKey();
endKey = task.getEndKey();
boolean canGoOn = true;
while (task.hasNextKey() AND canGoOn) do

currentKey = task.getCurrentKey();
if (currentKey < startKey) then

/*Skip*/
else if (endKey 6= 0 AND currentKey > endKey) then

/*has finished this task’s range*/
canGoOn = false;

else
apply map function(currentKey);

end if
/*get stop signal from Task Tracker*/
canGoOn = !getStopSignal();

end while
if ((endKey == 0 AND task.hasNextKey()) OR currentKey < endKey) then

markCurrentKey(currentKey);
end if

Tracker can know whether this task has completely finished or needs to be split into sub-tasks.
Algorithm 5 illustrates the new Map task’s workflow.

The creation of sub-tasks does not modify the underlying data split’s structure. Sub-tasks
still require the same data split to process compared to its parental original task. This poses
a drawback in our mechanism regarding the efficiency of data usage: the range of a sub-task
might only cover, for example, 10% of the data, but the same amount of data (1 chunk = 64 MB
by default) will be required to transfer. It is then advisable not to split the task into too many
small sub-tasks, as the network and computational waste would be high.

A few more details need to be taken care in order to facilitate the correct execution of our
Map preemption mechanism. First, Reduce tasks need to know about the existence of the new
sub-tasks. In Hadoop, the Job Tracker notifies Reduce tasks about the location of map outputs
through a Map Completion Event message. Reduce tasks assume that if they receives enough
Map Completion Event messages (equals to the number of Map tasks that was initialized at
the beginning), they will know about all the existing Map outputs’ locations. Since our number
of Map tasks changes, we need to include this information inside the Map Completion Event
message to notify the Reduce tasks about the newly born sub Map tasks.

Second, the preemption command cannot be delivered in a timely manner to the Map tasks.
Communication between child Map task process (the JVM instance that actually carries out the
work of a Map task) and the Task Tracker process is rather limited: a child task only updates its
progress every (by default, the parameter PROGRESS INTERVAL) 3 seconds. There is no di-
rect way for the Task Tracker to command the child task, except forcefully killing it. We modify

6.2. PAUSE AND RESUME: A WASTE-FREE PREEMPTION MECHANISM 47

the progress update channel to transmit the command: the communication will return a value
signaling whether it is safe for the task to continue processing. Since this value is only transmit-
ted at each progress update, there is at least a PROGRESS INTERVAL (by default, 3 seconds)
delay between the moment the Task Tracker receives the preemption request, and when the
Map task is actually preempted. In our implementation, we adjust the PROGRESS INTERVAL
parameter to be equal to the heartbeat interval for better reaction, even though the value itself
does not affect the correctness of the mechanism.

6.2.2 Reduce task preemption

A Reduce task is divided into 3 different phases. The Shuffle phase fetches all the segments
that belong to it from intermediate Map Output data. The Sort phase performs a sort operation
on all the fetched data, which was kept in < key, value > pair format. Finally, the Reduce
phase applies the user-defined reduce function on each of the Reduce-input < key, value >

pairs. Since the 3 phases are heavily dependent on each other, a similar “splitting” approach
like in Map task preemption is unviable. We instead choose the traditional “pause and resume”
approach where, at the moment of pausing, all the data of the Reduce task is stored in the local
storage of the Task Tracker and, at the moment of resuming, data is loaded back to the memory.

Our mechanism allows a Reduce task to preempt itself at any time during the course of the
Shuffle phase, and at the boundary of other phases. The Sort phase is usually very short due to
the fact that Hadoop launches a separate thread to merge the data as soon as they become
available. Preempting Reduce task during Reduce phase is also feasible, however we will
consider this in future work.

6.2.2.1 Pause

During the Shuffle phase, a Reduce task fetches all the segments that belong to it from all
intermediate map outputs. According to the sizes of the segments, the Reduce task stores them
either to local disks or in memory. Meanwhile, multiple merging threads merge fetched data
into larger segments and store them in an ordered structure that later can be popped out to
feed to Reduce functions. Preserving the state of the Shuffle phase means to keep track of the
shuffling status of all segments. Upon receiving preemption request, the Reduce task stops all
the fetching and merging thread gracefully: it allows the threads to finish the last unit of work
they are currently on. Fetching threads can finish fetching the last segment of Map output,
while Merging threads can finish merging the current segment.

After stopping all communication and sorting threads, the Reduce task flushes all the in-
memory data to the disks while leaving all the on-disk segments untouched. In-memory data
includes in-memory segments and other data to keep track of the progress (number of copied
segments, number of sorted segments). These data are kept in files stored in each task attempt’s
specific folder so that later re-launched attempt can access to these files and resume operation.

48 CHAPTER 6. PAUSE AND RESUME A WASTER FREE PREEMPTION MECHANISM

Preemption at the phases’ boundary follows exactly the same procedure. Data is flushed
to disks, and all the information needed to re-create the running task is also stored in files.
After that, the Reduce task preempts itself and releases the slot. The task reports back to the
Job Tracker with a new status of “SUSPENDED”. Suspended tasks will go through almost
the same procedure as Failed tasks, except increasing the count for failed tasks. They are also
added back to the pool for later resumption.

6.2.2.2 Resume

The information about the previously launched Task Tracker is stored inside the task. Upon re-
launch, the Reduce task checks to see if it has been launched somewhere before. The location
can be either local (task is re-launched on the same Task Tracker) or remote (task is re-launched
on a different Task Tracker). The task then tries to fetch the already processed data from the
previously launched Task Tracker before resuming to the point where it left off.

Our mechanism is incremental in the sense that it allows the task to be preempted multiple
times. However, we do not allow the re-launched task to be preempted during the period when
it fetches data from a previously launched Task Tracker. The Task needs to finish resuming to
the previous state before being able to be preempted again. This is to prevent having flushed
data on too many Task Trackers, which will make the resuming process complex and inefficient.

6.3 Preemptive locality-driven scheduler

In order to demonstrate the effectiveness of out new mechanism, we designed a new scheduler,
called the Preemptive locality-driven scheduler (PLS), that employs this new option to provide
better locality for Map Reduce jobs. In normal situations without any failure, PLS behaves
similarly to the default FIFO scheduler of Hadoop. However, when failures occur, PLS actively
leverages the preemption mechanism to provide local execution for failed tasks.

6.3.1 Design of the Preemptive Locality-driven scheduler

FIFO is the default scheduler that comes with the current stable release of Hadoop (version
1.2.1). As mentioned earlier, FIFO simply executes jobs in the order they were submitted. When
a failed task is discovered, it is sent to the failed queue and will be executed as soon as any slot
becomes available, regardless of locality. This might lead to performance degradation if many
failed tasks are assigned non-locally. The Preemptive Locality-driven scheduler addresses this
problem by trying to provide local execution for failed tasks using its preemptive primitive.

In Hadoop, the Job Tracker maintains the latest status of each task tracker (as seen from the
latest heartbeat). Leveraging this information allows the scheduler to make smarter decision
about the allocation of resources. Upon a task’s failure, PLS assembles a list of Task Trackers
that has data local to the failed task (if it was of Map type), or simply list of all running Task

6.3. PREEMPTIVE LOCALITY-DRIVEN SCHEDULER 49

Trackers (if it was of Reduce type). If any of these task trackers has a free slot of the right task
type, PLS simply allows the task to be launched from that task tracker at the next heartbeat. If
no free slot is found, PLS tries to find appropriate task from all the currently running tasks on
those task trackers to preempt. Figure 6 illustrates the logic of finding a task to preempt:

Algorithm 6 Finding a task to preempt

/*get the list of all suitable Task Trackers*/
List taskTrackers = getListOfTaskTracker();
/*get the list of all tasks running on those task trackers*/
List tasks = getListStatusesOfTasks(taskTrackers);
/*sort the tasks in the reverse job order*/
tasks.sort();
for {Task t : tasks} do

if (t belongs to jobs of lesser priority)
AND t.progressScore < THRESHOLD
AND !t.isCleanUp() AND !t.isSetUp()
AND !preemptList.contains(t) then

preempt task(t);
preemptList.add(t);
return;

end if
end for

PLS only allows failed tasks to preempt tasks from later submitted jobs. To respect the FIFO
order, PLS prioritizes preempting tasks that belong to the latest submitted jobs. However, not
all tasks would be considered for preemption. Preempting a task at, for example, 0.99 progress
score would not be advisable, as it only introduces unnecessary waste which is more costly
than waiting for that task to end (and perhaps the task will be already completed by the time of
the next heartbeat). We impose a THRESHOLD of progress score so that almost complete tasks
will not be considered for preemption. This THRESHOLD value is configurable via mapred-
site.xml file, and the default value is set to 0.8.

PLS also needs to maintain a list of “already chosen for preemption” tasks for duplication
check. The preemption request is only sent when the next heartbeat from the Task Tracker host-
ing the task arrives. In the mean time, other failed tasks might trigger a preemption decision
routine, and might end up selecting the same promising task. The list of ”already chosen for
preemption” makes sure no two failed tasks decide to preempt the same running task, thus
ensuring the correctness of preemption decision.

In case PLS cannot find any task to preempt (for example, tasks all belong to the same or
higher priority jobs, or all tasks are close to completion), PLS lets the task to be launched at
any arbitrary Task Tracker that has free slot the earliest. This is similar to the original FIFO
scheduler’s procedure. This is to avoid having to wait for too long for a local slot.

50 CHAPTER 6. PAUSE AND RESUME A WASTER FREE PREEMPTION MECHANISM

6.4 Discussion about usability

The preemptive locality-driven scheduler is just one example of how the Pause and Resume
mechanism can be utilized to improve Hadoop performance. Consider the Fair scheduler,
where Hadoop sometimes needs to kill tasks to rescue slots for under-shared pools. Provid-
ing that jobs arrive at pools at different rate, a serious problem of ”mass killing” can arise when
Fair scheduler tries to meet the ever-changing share ratio.

Pause and Resume does not help to avoid this problem, but it can limit the effect of Killing
by preserving the previous effort of tasks. Capacity scheduler does not support preemption
once a task is launched, but the idea was proposed and put into consideration for future exten-
sion. Providing a preemptive version of Fair and Capacity scheduler is on the roadmap for our
future work.

Pause and Resume can also be used in other common task scheduling algorithms that have
not yet been seen in Hadoop. The Shortest Remaining Time First scheduler (Silberschatz et al.
1998) is a well-known OS-task scheduler that aims at optimizing the average response time of
tasks. Periodically, the OS scheduler checks the estimated remaining time of tasks, and preempt
the currently running task for shorter one if needs. The idea can also be applied to the Hadoop
scheduler, where shorter jobs will receive resources before longer ones. However, preempting
Hadoop tasks (and jobs) can be extremely expensive in term of wasted CPU cycles and time,
if smaller jobs keeps arriving. The waste-free preemption mechanism introduced in this thesis
can be leveraged to provide better utilization of resources.

Waste-free preemption is a powerful tool for resource control. We expect to investigate
more in the usability of this feature to not only improve performance of Hadoop in normal
situations, but also in other cases, such as task failure or node failure.

IVEvaluation and Conclusion

7Evaluation

In order to prove the efficiency of Pause and Resume preemption mechanism, we present the
result from selected experiments. The goal is to demonstrate how the Preemptive Locality-
driven scheduler manages to help jobs under failures. For this purpose, we concern about the
execution time of jobs that suffer the failure, as well as their localities.

7.1 Experimental setup

Cluster setup

We continue to use Grid5000 for our experiment. The size of the cluster and the specification
of each node remains the same (1 Master + 20 Slave nodes).

Hadoop setup

The comparing Hadoop version is still the 1.2.1 current stable release. Each node is now
equipped with only 2 Map and 2 Reduce slots, as in the default value. The number of Re-
duce tasks for each job is set at 20 in order to trigger preemption. HDFS parameters remain at
replication factor of 2 and chunk size of 128MB. For timely reason, the expiry time is set at 30
seconds. Speculation is turned off for correct evaluation of Pause and Resume’s efficiency.

Jobs

For simplicity, we only run 2 jobs of WordCount application with the same input size of 30GB.
Failure is injected at 150 seconds to maximize the number of failed tasks from job 1.

7.2 Overview results

Execution time

Figure 7.1 shows the finishing time of each job in the 4 different schedulers: the three default
schedulers of Hadoop (FIFO, Fair and Capacity scheduler) and Preemptive Locality-driven
scheduler (PLS). There is little difference in the total execution time of the two jobs (represented

54 CHAPTER 7. EVALUATION

Figure 7.1: Finish time of jobs with different schedulers

by the finishing time of the seconds job), but the trend is that PLS has to pay the most time to
finish the set of jobs. However, PLS shows good improvement in the finishing time of job 1 -
the job that suffers from the failure. PLS only requires 256.4 seconds to finish job 1, roughly
14 seconds (5.2%) faster than in Capacity and about 20 seconds (7.2%) when compare to FIFO
scheduler. Fair scheduler performs poorly on this metric, as jobs share the resources of the
cluster. In fact, job 1 takes more time to finish than job 2 does in Fair scheduling. This can be
explained by the fact that job 1 starts first and has more failed tasks than job 2.

To further understand about the efficiency of PLS, as well as the actual behavior of Pause
and Resume preemption feature, we perform the same experiment with 3 different flavors of
PLS. We omit completely the preemption function of PLS and mimic the FIFO scheduler in a
flavor called FIFO*. FIFO* still has to pay the overhead of allowing Pause and Resume at any
time (this overhead will be discussed later). The Kill-PLS uses the Kill primitive provided by
Hadoop instead of Pause and Resume. Finally, the PLS that leverages the Pause and Resume
function is also included.

Figure 7.2 compares the execution of Hadoop with different flavors of PLS. The FIFO*

7.2. OVERVIEW RESULTS 55

Figure 7.2: Execution with different flavors of PLS

enjoys the best performance due to the fact that there is no killing or preemption overhead.
Tasks are launched and finish naturally without any waste work (from killing) or delay (from
splitting and re-launching a task).

Though witnessing some degradation in the total performance, Kill-PLS and PLS gain
some improvement in term of Job 1’s execution time. Both of Kill and Preemption finish the
first job faster than that of FIFO*, in the order of roughly 19 (11.2%) and 7 (2.5%) seconds, re-
spectively. Kill-PLS outperforms the other 2 competitors thanks to the fact that kill command
can instantly rescue the slots from currently running tasks, while preemption command needs
to pay some delay so that running tasks can save the states and release the slots. However, PLS
manages to save some work from preempted tasks. PLS only requires an extra 102 seconds to
finish the second job, compared to 120 seconds in Kill-PLS (an improvement of 15%).

Data locality of the first job

Figure 7.3 shows the locality of the first jobs in the three different flavors. FIFO* has the lowest
value of data locality (90.4%) due to the fact that failed tasks are assigned regardless of locality.

56 CHAPTER 7. EVALUATION

Figure 7.3: Locality of the first job

Kill-PLS and PLS observe higher locality in Map tasks and equal each other with the values of
94.8% and 95.4%, respectively. This means PLS manages to improve the locality of Map tasks by
almost 5%. Out of 12 failed tasks (tasks that were initially launched on the failed node), FIFO*
assigns all 12 tasks remotely (rack-locally), while Kill-PLS and PLS assigns only 3 remotely (as
in table 7.1).

FIFO* Kill-PLS PLS
0/12 (0%) 9/12 (75%) 9/12 (75%)

Table 7.1: Number of local re-executed tasks

Overhead of preemption

To facilitate the preemption feature, Hadoop needs to pay some extra overhead. Map tasks
need to compare the current key with the allowed range of that task, at each input key. Reduce
tasks, though little, also need to check for signal from the Task Tracker if it needs to stop once
in a while. However, experiments show that this overhead is rather small: Figure 7.4 shows
that the 3 different implementations (the original FIFO, the FIFO*, and the PLS) have similar
execution time.

In fact, the Map tasks in the preemption-supported version indeed requires longer time
to finish compared to that of original version. To measure this overhead, we take the average
execution time of only Map tasks from the first wave of execution (40 tasks). During the first
wave, there were no Reduce tasks, and all the Map tasks were local. The average value will
reflect the overhead accurately. Table 7.2 proves that the execution overhead is at the level of 1
second for each tasks.

7.3. ZOOM IN THE TASKS EXECUTION 57

Figure 7.4: Overhead of preemption in normal cases

Original Mod Fifo
Time 23.65 24.61 (+4%)

Table 7.2: Overhead on Map tasks

7.3 Zoom in the tasks execution

We present the execution graph of all tasks throughout the course of jobs to illustrate the dif-
ferences in scheduling between the three flavors of PLS, as well as to verify the effectiveness of
preemption.

58 CHAPTER 7. EVALUATION

Figure 7.5: FIFO*’s execution of job 1

Job 1

Figure 7.5 shows the execution of all tasks from Job 1 in FIFO*. The yellow lines represent Map
task, green lines represent Reduce tasks, and red lines represents irregularly finished tasks. The
Map phase is clearly divided into waves. The first wave consists of 40 tasks (equals to the total
number of Map slots in the clusters) and is rather regular: tasks start and finish at similar time.
Failure is injected at 150s, and is discovered at around 185s. Since the expiry time is set at 30s,
there is a 5s difference due to the fact that Hadoop does not continuously check for failed Task
Tracker. In fact, it only checks for failed Task Tracker every expiry time/3 = 30/3 = 10 seconds.
Upon Task Tracker failure discovery, all the Map tasks on that Task Tracker are declared failed
and re-executed. Although the discovery of failure happens at around 185s, there is one red task
that lasts till the end of other Reduce tasks. This red task is actually the Reduce task that was
running on the failed Task Tracker. For running failed tasks, Hadoop keeps them in a certain
queue, launches a Task Clean Up task of the same type before moves the failed tasks to failed
queue. Since there is no free Reduce slot at the moment of failure discovery, the failed Reduce
task has to wait until one of the Reduce tasks finishes. This awaiting time can be significantly
long if the Reduce tasks last long.

Figure 7.6 illustrates the execution of job 1 in PLS. The failed Reduce task is re-launched
earlier thanks to the preemption of 1 Reduce task from job 2 (as we can see later). The re-
execution of failed Map tasks is also more regular: Preemption allows failed running tasks to

7.3. ZOOM IN THE TASKS EXECUTION 59

Figure 7.6: Preemption’s execution of job 1

be relaunched quickly rather than having to wait for tasks to finish. The early launching of
failed tasks (especially Reduce tasks) in this implementation greatly improves the execution
time.

Figure 7.7 illustrates the execution of Job 1 in Kill-PLS. There is only one difference when
compared with PLS: the red Reduce task finishes faster. This is because Kill primitive is faster
in acquiring slot than preemption.

60 CHAPTER 7. EVALUATION

Figure 7.7: Kill-PLS’s execution of job 1

7.3. ZOOM IN THE TASKS EXECUTION 61

Job 2

Figure 7.8: Fifo*’s execution of job 2

While the execution of job 2 in FIFO* (Figure 7.8) does not contain any red task, PLS’s
execution of job 2 contains 1 red task. It is the Reduce task that was chosen to be preempted.
This results in another ”second wave” of Reduce task that starts at around 120s. (FIFO has only
one ”second wave” Reduce task that starts after the completion of any of the Job 1’s Reduce
tasks).

It is also possible to observe some irregularly short Map tasks from Job 2 in PLS (those that
end around the 50s). These are the tasks that were preempted to give slot for failed Map tasks
from Job 1. Since the preemption mechanism used with Map task is splitting rather than ”Pause
and Resume”, those tasks are considered ”normally completed” and are colored yellow. Some
other short tasks are observed about 20 to 30 seconds after that: they are the second half of the
split Map tasks. We award priority to once-preempted tasks to be executed on node with local
data over normal tasks to avoid the waste in transferring unused data.

The execution of job 2 under Kill-PLS resembles that of PLS, except for the fact that there
are some red tasks. These are tasks that were killed to save slot for failed tasks from job 1.

62 CHAPTER 7. EVALUATION

Figure 7.9: PLS’s execution of job 2

Figure 7.10: Kill-PLS’s execution of job 2

8Conclusion

The unprecedented growth in data center technologies and services in the recent years opens
new opportunities for data-intensive applications in the Cloud. Many MapReduce-like frame-
works have been introduced as services. MapReduce in the Cloud provides a cost-effective way
for smaller businesses to take advantages of this simple yet powerful programming paradigm.
However, users have to pay the cost of for failures, which have become a norm rather than an
exception. Thus, Fault-tolerance for MapReduce becomes a topic that attracts much interest
from both academy and industrial institutes.

This thesis addresses the problem by investigating the fault-tolerance mechanism of
Hadoop, a popular implementation of MapReduce. It presents some results to illustrate
Hadoop’s behavior under different situations. The intent was to confirm the mechanism and
analyze the drawbacks of how Hadoop handles failures.

We proposed the design of a new feature for Hadoop: the waste-free preemption function.
By allowing a task to preserve its state and release the slot in a timely manner, Hadoop can
have more control over resources. This in turn will help increase the performance of Hadoop
under the occurrence of failure. The preemption feature was implemented not only with the
intention of improving performance under failure, but also to open new possibilities for further
improvement under other circumstances.

Finally, we evaluated the effectiveness of the new feature considering some basics metrics
such as execution time and data locality. In this work, we compare the original Fifo scheduler
with a preemptive version. Experiments show that our new feature improves the execution
time of Hadoop jobs when failure occurs. Although the preemption mechanism imposes some
overhead, if wisely used, it can greatly improve Hadoop’s performance.

Future work

Our work suffers from some problems regarding the usability, as well as efficiency. Firstly,
the Reduce Pause and Resume mechanism should be further extended to allow preemption
during Reduce phase. This allows a more fine-grained control over the Reduce tasks. Secondly,
it would be interesting to evaluate the cost of preempting a Reduce task, in comparison with
Killing. Killing instantly releases the slot, but wastes the effort, while Preemption may take
sometime before the slot is released. Also, upon resuming, Reduce tasks also require some
extra time to load up the data from local storage. These two delays add up and in some cases,

64 CHAPTER 8. CONCLUSION

it is more beneficial to decide to Kill rather than Preempt a Reduce task.

Thirdly, the scheduler can try to provide locality to Reduce tasks, in the sense that placing
a Reduce task on the node that has the most data (or has the potential to have the most data)
would be better. This can be achieved by calculating the number of Map Output on each node,
and the possibility to have another Map Output on each node for every pending Map task.

Finally, it would be interesting to evaluate the efficiency of the preemption feature with
different schedulers other than the default FIFO. The Fair scheduler can make use of this feature
in providing fair share to pools: traditionally the Fair scheduler has to kill tasks to rescue slots
for under-shared pools. Waste-free preemption will be helpful in this situation, especially when
the share is constantly changing (due to the arrival of new jobs).

Bibliography

Ahmad, F., S. Lee, M. Thottethodi, & T. Vijaykumar (2012). Puma: Purdue Mapreduce
benchmarks suite.

Amazon. Amazon elastic MapReduce. http://aws.amazon.com/

elasticmapreduce/.

Amazon. Amazon web services. http://aws.amazon.com/.

Ananthanarayanan, G., S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan, &
E. Harris (2011). Scarlett: coping with skewed content popularity in mapreduce clusters.
In Proceedings of the sixth conference on Computer systems, pp. 287–300. ACM.

Apache. Apache Hadoop Welcome page. http://http://hadoop.apache.org.

Bicer, T., W. Jiang, & G. Agrawal (2010). Supporting fault tolerance in a data-intensive
computing middleware. In Parallel & Distributed Processing (IPDPS), 2010 IEEE Interna-
tional Symposium on, pp. 1–12. IEEE.

Borthakur, D. (2010). Facebook has the world’s largest Hadoop clus-
ter! http://hadoopblog.blogspot.fr/2010/05/facebook-has-worlds-

largest-hadoop.html.

Chandra, A., R. Prinja, S. Jain, & Z. Zhang (2008). Co-designing the failure anal-
ysis and monitoring of large-scale systems. ACM SIGMETRICS Performance Evaluation
Review 36(2), 10–15.

Chen, Y., A. Ganapathi, R. Griffith, & R. Katz (2011). The case for evaluating mapre-
duce performance using workload suites. In Modeling, Analysis & Simulation of Computer
and Telecommunication Systems (MASCOTS), 2011 IEEE 19th International Symposium on,
pp. 390–399. IEEE.

Czajkowski, G. (2008). Sorting 1pb with mapreduce. Google, Blog. Available at google-
blog. blogspot. com/2008/11/sorting-1pb-with-mapreduce. html. Last accessed on January 7, 2012.

Dailymail (2011). Web chaos: Amazon Cloud failure crashes major websites
Playstation network goes AGAIN. http://www.dailymail.co.uk/sciencetech/

article-1379474/.

Dean, J. (2006). Experiences with mapreduce, an abstraction for large-scale compu-
tation. In PACT, Volume 6, pp. 1–1.

65

http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/
http://http://hadoop.apache.org
http://hadoopblog.blogspot.fr/2010/05/facebook-has-worlds-largest-hadoop.html
http://hadoopblog.blogspot.fr/2010/05/facebook-has-worlds-largest-hadoop.html
http://www.dailymail.co.uk/sciencetech/article-1379474/
http://www.dailymail.co.uk/sciencetech/article-1379474/

66 BIBLIOGRAPHY

Dean, J. (2009). Large-scale distributed systems at google: Current systems and fu-
ture directions. In Keynote speech at the 3rd ACM SIGOPS International Workshop on Large
Scale Distributed Systems and Middleware (LADIS).

Dean, J. & S. Ghemawat (2008). Mapreduce: simplified data processing on large
clusters. Communications of the ACM 51(1), 107–113.

Dinu, F. & T. Ng (2012). Understanding the effects and implications of compute
node related failures in hadoop. In Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing, pp. 187–198. ACM.

Fox, A., R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin,
& I. Stoica (2009). Above the clouds: A berkeley view of cloud computing. Dept. Electrical
Eng. and Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS 28, 13.

Google. Google app engine. https://cloud.google.com/.

Gottfrid, D. (2007). Self-service, prorated supercomputing fun! http:

//open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-

computing-fun/.

Grid5000. Grid5000 Home page. https://www.grid5000.fr/mediawiki/

index.php/Grid5000:Home.

Jindal, A., J.-A. Quiané-Ruiz, & J. Dittrich (2011). Trojan data layouts: Right shoes for
a running elephant. In Proceedings of the 2Nd ACM Symposium on Cloud Computing, SOCC
’11, New York, NY, USA, pp. 21:1–21:14. ACM.

Ko, S. Y., I. Hoque, B. Cho, & I. Gupta (2010). Making cloud intermediate data fault-
tolerant. In Proceedings of the 1st ACM symposium on Cloud computing, pp. 181–192. ACM.

Lai, E. (2013). Companies are spending a lot on Big Data. http://sites.tcs.com/
big-data-study/spending-on-big-data/.

Lampitt, A. (2012). Big data visualization: A big deal for eBay. http:

//www.infoworld.com/d/big-data/big-data-visualization-big-deal-

ebay-208589.

Liu, L., Y. Zhou, M. Liu, G. Xu, X. Chen, D. Fan, & Q. Wang (2012). Preemptive
hadoop jobs scheduling under a deadline. In Semantics, Knowledge and Grids (SKG), 2012
Eighth International Conference on, pp. 72–79. IEEE.

Logothetis, D., C. Olston, B. Reed, K. C. Webb, & K. Yocum (2010). Stateful bulk
processing for incremental analytics. In Proceedings of the 1st ACM symposium on Cloud
computing, pp. 51–62. ACM.

Microsoft. Microsoft azure. https://azure.microsoft.com/.

https://cloud.google.com/
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
http://sites.tcs.com/big-data-study/spending-on-big-data/
http://sites.tcs.com/big-data-study/spending-on-big-data/
http://www.infoworld.com/d/big-data/big-data-visualization-big-deal-ebay-208589
http://www.infoworld.com/d/big-data/big-data-visualization-big-deal-ebay-208589
http://www.infoworld.com/d/big-data/big-data-visualization-big-deal-ebay-208589
https://azure.microsoft.com/

BIBLIOGRAPHY 67

Pastorelli, M., M. Dell’Amico, & P. Michiardi (2014). Os-assisted task preemption for
hadoop. arXiv preprint arXiv:1402.2107.

Pinheiro, E., W.-D. Weber, & L. A. Barroso (2007). Failure trends in a large disk drive
population. In FAST, Volume 7, pp. 17–23.

Rao, B. T., N. Sridevi, V. K. Reddy, & L. Reddy (2012). Performance issues of hetero-
geneous hadoop clusters in cloud computing. arXiv preprint arXiv:1207.0894.

Rezaei, A. & F. Mueller (2013). Sustained resilience via live process cloning. In Parallel
and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th
International, pp. 1498–1507. IEEE.

Roe, C. (2011). The Growth of Unstructured Data: What to do with all those
Zettabytes? http://www.dataversity.net/the-growth-of-unstructured-

data-what-are-we-going-to-do-with-all-those-zettabytes/.

Schroeder, B. & G. A. Gibson (2010). A large-scale study of failures in high-
performance computing systems. Dependable and Secure Computing, IEEE Transactions
on 7(4), 337–350.

Schroeder, B., E. Pinheiro, & W.-D. Weber (2009). DRAM errors in the wild: a large-
scale field study. In ACM SIGMETRICS Performance Evaluation Review, Volume 37, pp.
193–204. ACM.

Seo, S., I. Jang, K. Woo, I. Kim, J.-S. Kim, & S. Maeng (2009). HPMR: Prefetching and
pre-shuffling in shared mapreduce computation environment. In Cluster Computing and
Workshops, 2009. CLUSTER’09. IEEE International Conference on, pp. 1–8. IEEE.

Silberschatz, A., P. B. Galvin, G. Gagne, & A. Silberschatz (1998). Operating system
concepts, Volume 4. Addison-Wesley Reading.

Tan, J., X. Meng, & L. Zhang (2013). Coupling task progress for mapreduce resource-
aware scheduling. In INFOCOM, 2013 Proceedings IEEE, pp. 1618–1626. IEEE.

TCS. Size matters: Yahoo claims 2-petabyte database is world’s biggest, busiest.
http://www.computerworld.com/s/article/9087918/.

Thusoo, A., J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu, &
R. Murthy (2010). Hive-a petabyte scale data warehouse using hadoop. In Data Engineer-
ing (ICDE), 2010 IEEE 26th International Conference on, pp. 996–1005. IEEE.

Wang, Y., J. Tan, W. Yu, X. Meng, & L. Zhang (2013). Preemptive reducetask schedul-
ing for fair and fast job completion. In Proceedings of the 10th International Conference on
Autonomic Computing, ICAC, Volume 13.

http://www.dataversity.net/the-growth-of-unstructured-data-what-are-we-going-to-do-with-all-those-zettabytes/
http://www.dataversity.net/the-growth-of-unstructured-data-what-are-we-going-to-do-with-all-those-zettabytes/
http://www.computerworld.com/s/article/9087918/

68 BIBLIOGRAPHY

Zaharia, M., D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, & I. Stoica
(2010). Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In Proceedings of the 5th European conference on Computer systems, pp. 265–278.
ACM.

Zhu, H. & H. Chen (2011). Adaptive failure detection via heartbeat under hadoop.
In Services Computing Conference (APSCC), 2011 IEEE Asia-Pacific, pp. 231–238. IEEE.

	I Introduction and Background
	Introduction
	Motivation
	Contribution
	Our contribution
	Document structure

	Background and Related Work
	Hadoop framework
	Map Reduce programming paradigm
	Execution overview
	Apache Hadoop

	Hadoop scheduling
	FIFO scheduler
	Fair scheduler
	Capacity scheduler

	Fault tolerance in Hadoop
	Task Tracker failure
	Job Tracker failure
	Speculative tasks

	II Fault Tolerance Assessment in Hadoop
	Hadoop fault tolerance mechanism
	Detection of failed tasks
	Declaring Map output lost
	Declaring a Reduce Task faulty

	Failure handling and recovery
	Speculative execution
	Life cycle of a Task

	Systematic Assessment of Hadoop Performance Under Failures
	Experiment settings
	Hadoop under stress
	Hadoop under failure

	Related Works

	III Algorithmic Solution
	Pause and Resume A waster free preemption mechanism
	Wait or Kill: Hadoop's dilemma
	Pause and Resume: a waste-free preemption mechanism
	Map task preemption
	Reduce task preemption
	Pause
	Resume

	Preemptive locality-driven scheduler
	Design of the Preemptive Locality-driven scheduler

	Discussion about usability

	IV Evaluation and Conclusion
	Evaluation
	Experimental setup
	Overview results
	Zoom in the tasks execution

	Conclusion

