
Advanced Sampling in Stream Processing Systems

Nikola Koevski

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Lúıs Manuel Antunes Veiga, Prof. Rodrigo Seromenho Miragaia
Rodrigues

Examination Committee

Chairperson: Prof. Daniel Jorge Viegas Gonçalves
Supervisor: Prof. Lúıs Manuel Antunes Veiga

Member of the Committee: Prof. Nuno Manuel Ribeiro Preguiça

November, 2016

Acknowledgements

The work here presented is delivered as final thesis report at Instituto Superior Técnico

(IST) in Lisbon, Portugal and it is in partial fulfillment of the European Master in Distributed

Computing belonging to promotion of 2014-2016. The Master programme has been composed

of a first year at IST, a second year’s first semester at Royal Institute of Technology (KTH) and

for this work and last academic term, based at the research lab INESC-ID Lisbon.

The work presented here is the final thesis report of the European Master in Distributed

Computing at Instituto Superior Técnico (IST) in Lisbon, Portugal. The curriculum of the

Master programme, which started in 2014 and concluded in 2016, was constituted of the first

two semesters at IST, a third semester at the Royal Institute of Technology (KTH) and the last

semester at the INESC-ID research lab in Lisbon, where this work was developed.

This work wouldn’t have been possible without my two supervisors, Lúıs Veiga and Rodrigo

Rodrigues, to whom I owe enormous gratitude. I am also especially thankful to the helpful

advice of Sergio Esteves, who helped me through the hurdles of this work.

I am thankful to my parents, their support and their belief in the decisions I have made.

Furthermore, I thank my whole family, who have always been there, to partake in my happiness,

as well as to help with any difficulties I have had in these last two years.

Finally, I am thankful to all the professors from IST and KTH, especially my programme

coordinators Lúıs Eduardo Teixeira Rodrigues and Johan Montelius respectively. They showed

me what professionalism and dedication means and I will always be grateful for the time and

input they supplied in order to expand my knowledge and capabilities.

November, 2016, Lisbon

Nikola Koevski

–To my parents

Abstract

The Big Data Revolution has caused an exponential growth in the amount of data that is

generated. This growth, in turn, triggered an expansion in the methods with which this data

is turned into valuable information. As the size of the data increased, so did the definition for

fast and efficient data processing methods change. The batch processing methodology couldn’t

cope with the increased number of data sources and the rate at which they provide data. From

this, a new method of processing data emerged, called stream processing.

Stream Processing is the new paradigm in data processing. It provides an efficient approach

to extract information from new data, as the data arrives. However, spikes in data throughput,

can impact the accuracy and latency guarantees stream processing systems provide. In order

to cope with this data expansion, the system needs to be capable to scale its resources to meet

this increased demand in resources. However, this may not be possible. Thus, an alternative is

to reduce the amount of data. Currently, there are two methods of data reduction compatible

with stream processing systems, load shedding, and sampling.

This work proposes data sampling, a type of data reduction, as a solution to this problem.

It provides a user-transparent implementation of two sampling methods in the Apache Spark

Streaming framework. Furthermore, a framework is implemented for the development of addi-

tional sampling methods. The results show a reduced amount of input data, leading to decreased

processing time, but retaining a good accuracy in the extracted information.

Resumo

A revolução do Big Data causou um crescimento exponencial na quantidade de dados que

são gerados. Este crescimento, por sua vez, provocou uma expansão na quantidade de métodos

com que estes dados são transformados em informação valiosa. À medida que a velocidade de

geração dos dados acelerou, assim também foi com a definição de métodos de processamento de

dados mais rápidos e eficientes. A metodologia de processamento em lote (batch) não é capaz de

lidar com o cada vez maior número de fontes de dados e ritmos a que estes são gerados. Assim,

um novo método de processamento de dados surgiu, denominado processamento de streams.

O processamento de streams é o paradigma mais recente para processamento de dados.

Oferece uma abordagem eficiente para extrair informação dos novos dados, assim que estes são

recebidos. Contudo, picos no débito de entrada dos dados podem ter impacto prejudicial no

cumprimento de garantias de precisão e latência oferecidas pelos sistemas de processamento de

streams. Para lidar com esta expansão dos dados, o sistema tem de ser capaz de ser escalável em

termos de recursos. No entanto, os recursos não são ilimitados. Assim, uma alternativa consiste

em reduzir a quantidade de dados processada. Actualmente, existem dois métodos de redução

de dados consistente com os sistemas de processamento de fluxo, load shedding e sampling.

Este trabalho propõe amostragem dos dados (sampling), como forma de reduzir o volume

de informação a tratar, de modo a solucionar este problema. Oferece uma implementação trans-

parente para o utilizador de dois métodos de sampling na framework Apache Spark Streaming.

É também implementada uma framework para o desenvolvimento de métodos de sampling adi-

cionais. Os resultados mostram que a redução do volume de dados de entrada leva à redução

dos tempos de processamento, mas mantendo boa precisão na informação extráıda.

Palavras Chave

Stream Processing

Sistemas de Computação aproximados

Redução de dados

Amostragem

Apache Spark

Keywords

Stream Processing

Approximate Computing Systems

Data Reduction

Sampling

Apache Spark

Index

1 Introduction 3

1.1 Context . 3

1.2 Motivation . 4

1.2.1 Current Shortcomings . 5

1.3 Goals and Contributions . 5

1.4 Document Structure . 6

2 Related Work 7

2.1 Approximate Query Systems . 7

2.2 Stream Processing Systems . 10

2.3 Sampling Methods . 11

2.4 Contributions . 14

3 Solution 15

3.1 Use case example . 15

3.2 Details on the Apache Spark Streaming Distributed Architecture 16

3.3 Sampling Algorithms . 19

3.3.1 Congressional algorithm . 21

3.3.2 Distinct Value algorithm . 25

3.3.3 Algorithm Summary . 27

3.4 Software Architecture . 27

i

3.4.1 Implementation Details . 28

3.4.2 Platform Specific details . 28

4 Evaluation 35

4.1 Experimental Configuration . 35

4.1.1 Assessment Criteria . 36

4.2 Benchmarks and Assessment . 36

4.2.1 Metrics used . 36

4.2.2 Assessment goals . 37

4.3 Apple NASDAQ Tweets . 37

4.3.1 Discussion and analysis . 37

4.4 US Technology Companies Stock . 40

4.4.1 Discussion and analysis . 40

4.5 New York Taxi logs . 42

4.5.1 Discussion and analysis . 42

4.6 Online Retailer . 45

4.6.1 Discussion and analysis . 45

5 Conclusions 51

5.1 Conclusions . 51

5.2 Future Work . 51

Bibliography 56

ii

List of Figures

2.1 Sampling as a Mediator of Constraints . 12

3.1 The Music Videos Category and it’s subcategories on a video sharing website with

number of views per video . 16

3.2 An Apache Spark Streaming DStream representation and an operation example

over a DStream . 17

3.3 Basic Architecture of Batching module in Spark Streaming 18

3.4 Batch Generation in Spark Streaming . 19

3.5 Basic Architecture of Batching module in Spark Streaming with Sampling 28

3.6 Component Diagram of Spark Streaming with added Sampling Components . . . 29

3.7 Class Diagram of the OnePassSample Interface and the implemented algorithms 32

4.1 Results of data processing for the Apple NASDAQ Tweets: (a) Processing Time

Speed Up, (b) Memory Variation, (c) Sampling Error 38

4.2 Results of data processing for the US Technology Companies Stock: (a) Processing

Time Speed Up, (b) Memory Variation, (c) Sampling Error 41

4.3 Results of data processing for the Taxi Logs: (a) Processing Time Speed Up, (b)

Memory Variation, (c) Sampling Error . 43

4.4 Results of data processing for the Online Retailer Transactions: (a) Processing

Time Speed Up, (b) Memory Variation, (c) Sampling Error 46

iii

iv

List of Tables

3.1 API modifications and Method Signature changes 30

4.1 Congressional Algorithm Results Summary . 49

4.2 Distinct Value Algorithm Results Summary . 49

v

vi

Acronyms

IoT Internet of Things

API Application Programming Interface

FIT Feasible Input Table

RDDs Resilient Distributed Datasets

DStream Distributed Stream

1

2

1Introduction
1.1 Context

Information has become the new currency in today’s world. In order to gain more infor-

mation, more and more data needs to be collected. However, this enormous amount of raw

collected data is not inherently useful by itself. In order to gain practical information, the data

needs to be properly processed and analysed.

In the past, information from this data was extracted with the help of data mining. Although

effective, data mining had a big drawback. At that time, computers simply were not capable

of processing all of the data in the time required for it to be valuable. Since information

extraction was constrained by hardware limitations, many reductions and optimizations had

to be performed over the data. The advent of commodity hardware allowed data processing

to overcome this hardware obstacle. Furthermore, now that cheap hardware was available,

constraints on the size of collected data had been significantly lowered. This resulted in a

heavy increase in the volume of data, as well as the velocity with which it was collected. As a

consequence, the need of a new paradigm in the field of data processing became evident.

The Big Data Revolution was a natural step forward in the data processing field. Big Data

can be described with the ”5 Vs” model 1. First is the volume, or the amount of data that

is available for processing. Next is velocity, or the speed with which these volumes of data

are produced. Third, variety describes the diversity of the sources from where this data is

generated. Next, veracity deals with the accuracy, or quality, of the data that sources generate,

and the capability of Big Data systems to process this data. Finally, value represents the ability

to convert the generated data into valuable information. Big Data processing enabled vast

amounts of raw data to be rapidly transformed into useful data and insights of patterns and

1Bernard Marr, ”Big Data: The 5 Vs Everyone Must Know”, https://www.linkedin.com/pulse/20140306073407-
64875646-big-data-the-5-vs-everyone-must-know, (August 3, 2016)

4 CHAPTER 1. INTRODUCTION

future trends. In contrast to data mining, Big Data operates over whole data sets without

having to sacrifice the amount of processed data to decrease the resulting delay. However, the

way data is processed in Big Data systems led to the development of two different trends in Big

Data processing.

When the Big Data paradigm first appeared, there already existed big data sets, which in the

era of data mining had never been processed as a whole. Vast amounts of additional information

and insights could be wrought out of this old data. Thus, the first trend of Big Data processing

was to extract information from these big batches of data. Google’s MapReduce paradigm, and

its open-source implementation, Apache Hadoop (White, 2009), sparked a plethora of Big Data

processing platforms, which constantly find new approaches of extracting information from the

data they process. Since data in these systems is first accumulated and then the accumulated

batches of data are processed, they are called Batch Processing systems.

However, as data throughput became higher, it became evident that the additional step of

storing the data for batch processing impacts the latency of the results. This caused a new

trend of Big Data processing to occur, where processing is done directly on the data stream of

the producer of data, leading to the development of Stream Processing systems (Akidau et al.,

2015).

1.2 Motivation

As mentioned in the previous section, lowering prices of hardware, as well as the improve-

ment in hardware efficiency and network bandwidth have vastly increased the volume of data

available for processing. In addition, data throughput has also significantly increased. Moreover,

with the rise of the Internet of Things, as well as the increased dependence on the results of

Big Data processing, the time interval in which results are considered fresh has become much

shorter. This gave rise to the popularity of Stream Processing systems.

In spite of the advantage of stream processing, it has become apparent that the speed at

which data is produced began to outpace the speed with which this data is processed.

Stream processing applications are constrained by the processing power of the hardware

and by the time interval in which the results they provide are considered relevant. Since the

hardware cannot keep track with the amount of data that is arriving in real-time, data starts to

1.3. GOALS AND CONTRIBUTIONS 5

build up in waiting queues. As a consequence, processing latency is increased, leading to delays

in the results, which in turn may decrease the value they hold. Additionally, if a waiting queue

fills its capacity, it may cause newly arrived data items to be dropped, producing an error in

the results and, in extreme cases, may cause the system to run out of memory and crash.

An obvious solution to the problem is to add more machines to the cluster. This would

provide the systems additional resources to cope with spikes in data throughput. As such, by

increasing the size of data that is allowed through the system, this may alleviate the latency in

the results (Das et al., 2014). Another alternative is to use controlled data reduction methods

like load shedding (Tatbul et al., 2003, 2007; Tatbul and Zdonik, 2006; Sun et al., 2014).

1.2.1 Current Shortcomings

However, adding additional machines to the cluster may not be possible, since the cost of

further increase in resources might be undesirable. Although increasing the data throughput

of the system would enable for more data to be processed, this would increase the processing

time, thus adding more latency to the results. Finally, even though load shedding is effective, it

works by discarding data as it passes through the system. Because of this, it may skew the data

distribution, lowering the result accuracy. In contrast, sampling (Krishnan et al., 2016; Goiri

et al., 2015) decreases data size by producing a subset retaining the relevant characteristics of

the whole data set. This provides smaller resource requirements and lower latency, but keeps a

good accuracy on the result.

Despite the relative youth of stream processing and the Big Data paradigm as a whole,

the problem of data size versus processing power is not a new one. It can be noted that data

generation simply caught up with the advance of hardware and a recurrence of the problem that

data mining was facing in the past can be seen.

1.3 Goals and Contributions

The goal of this work is to study how advanced sampling techniques can be used as a

data reduction method in stream processing systems. For these purposes, a single-point, user-

transparent sampling framework was implemented. The framework is coupled with the stream-

ing library of the Apache Spark framework (Zaharia et al., 2013). Furthermore, by using the

6 CHAPTER 1. INTRODUCTION

sampling framework on top of Spark Streaming, two sampling algorithms were implemented to

enforce data reduction. Finally, an evaluation of the solution’s performance is carried out and

the incurred advantages and costs of this usage in advanced sampling techniques in the accuracy

guarantees of systems like Spark are discussed.

The result is an early-stage data reduction in the workflow, leading to a smaller processing

load, and shorter execution times, while keeping a low result error.

1.4 Document Structure

The remaining structure of this document is organized as follows. The next chapter, Chap-

ter 2, provides an overview on the current stream processing platforms, sampling methods and

existing approximate computing systems developed with these platforms and methods. Next,

Chapter 3 provides a description of the platform used for the solution, together with a general

definition of its design and a detailed explanation of the implementation. Chapter 4 gives a

description of the metrics and benchmarks used to evaluate the work. Furthermore, it provides

a detailed discussion and analysis of the benchmark results. Finally, Chapter 5 gives a summary

of the main points of this work and discusses future work.

2Related Work
The solution described in this work is an approximate computing system. As such, it

intersects the area of data reduction, by using advanced sampling techniques, with that of data

processing platforms.

2.1 Approximate Query Systems

As mentioned in the previous chapter, the by-product of increased data generation, during

the Big Data revolution, was that data processing systems couldn’t cope with this heightened

processing demand.

It has been established that for high rate streaming data, where transmission bandwidth

and hardware resources are limited, maintaining a fast response time for queries and a summary

of the data is much more preferable than trying to process the whole data that arrives (Duffield,

2016). In order to accommodate these requirements approximate computing systems have been

developed. The goal of these systems is to employ various data reduction techniques to achieve

a good balance between result processing time and accuracy, resource constraints and preserving

data set characteristics (Cormode and Duffield, 2014).

Several of these systems have been developed on top of current popular Big Data processing

platforms. These approximate computing systems use two approaches in data reduction. Many

such systems employ load shedding to reduce the arriving data. This is done by probabilistically

dropping certain data items. Another option is utilizing sampling techniques to reduce the size

of the data.

While both methods have the same goal, load shedding works by cleaning the original data

set of unimportant items. Thus, it focuses more on the data items and their importance, in-

stead of the data set as a whole. By discarding each item based on certain pre-defined rules, its

implementation can be more flexible, allowing for multiple points of data reduction. However,

8 CHAPTER 2. RELATED WORK

because it doesn’t take into consideration how discarding data influences the data distribution,

load shedding has to adjust for error after it occurs. As a consequence, load shedding imple-

mentations have a higher overhead for calculating the error adjustments and have to provide

data structures to keep the state of the load shedding operators. On the other hand, sampling

focuses on the greater picture. It analyses the whole data set and probabilistically selects which

items to include in a reduced set, so the data distribution is kept. As a result, sampling has to

be performed at a single point in the application workflow. In addition, since sampling takes

into consideration the data distribution of the data set, it attempts to provide the lowest error

possible from the start.

The work by (Babcock, Datar, Motwani, et al., Babcock et al.) proposes a load shedding

approach to approximate computing. The authors propose to distribute load shedding operators

that would be able to discard data at any point of the system’s workflow. This is done in order

to minimize the error of the system, since discarding data in the beginning might introduce a

higher data skew in the final, reduced data set. However, by introducing multiple points of data

reduction, the probability of higher error is increased if the sampling rate of the load shedders

is not properly balanced.

The work of (Tatbul et al., 2003) extends the Aurora framework (Carney et al., 2002) by

employing the techniques suggested in the previously mentioned work. The solution tightly

integrates load shedders into their system and employs a graph structure called a Load Shed-

ding Roadmap (LSRM) to make its load shedding decisions. This alleviates the problem of

improperly balanced sampling rates, but is a less flexible and much more intrusive solution. The

implementation of the solution required changes in the workflow of the Aurora system. More-

over, the Aurora data processing system is not a distributed system, and, additionally it is only

a prototype meant for academic research.

The authors of (Tatbul et al., 2007), as in the work on the Aurora approximate computing

solution, propose a load shedding technique. This is implemented on the Borealis distributed

processing engine (Ahmad et al., 2005), which is an update on the Aurora system towards a

distributed system architecture. The solution addresses load shedding in a distributed environ-

ment, where the output of query operators may split into multiple downstream operators of the

query path. This work allows for the usage of load shedders in this distributed environment by

utilizing an advanced planning technique. Although this resolves some of the problems with the

2.1. APPROXIMATE QUERY SYSTEMS 9

solution implemented on Aurora, it introduces additional overhead in computation by employing

the advanced planning technique. Furthermore, a data structure, called a Feasable Input Table

(FIT) has to be kept throughout the execution of the query for the planning technique to be

effective.

Another work on the Aurora/Borealis systems is (Tatbul and Zdonik, 2006). Similarly to the

above mentioned works, it utilizes load shedding as a data reduction technique. The authors of

this solution propose dividing the input data stream into windows. The system further encodes

information to keep or discard about each window. If a spike in data throughput occurs, load

shedders in the query path may probabilistically discard windows according to the encoded data

sent by the system.

Similarly, the system (Sun et al., 2014) based on the Apache Shark (Engle et al., 2012) data

warehouse system, uses load shedding by discarding blocks. The solution presents a fine-grained

blocking technique that reorganizes the data tuples into blocks and generates metadata for each

block. By evaluating this metadata, the system can choose which blocks to process and which

to discard. However, as this solution is intended for a data warehousing system, it would require

most data to be available in advance and thus is not a good solution for a stream processing

system.

IncApprox (Krishnan et al., 2016) is built on top of a more established data processing

platform, Apache Spark (Zaharia et al., 2010). Similarly to the solution described in this work,

IncApprox uses sampling to reduce the input data. Additionally, it utilizes the incremental com-

puting paradigm to increase the efficiency of the system. The solution uses Stratified sampling

as an advanced sampling technique to sample over an already stored batch of data and generate

a new, sampled batch. Next, it utilizes Spark’s caching mechanism to save the intermediate

results, so it can allow for incremental computation. However, doing sampling on an already

stored batch introduces additional computation in the system. This way the system has to

spend resources to store data that will be discarded and additionally, to sample data that is

distributed throughout multiple nodes with Spark’s RDDs.

The ApproxHadoop (Goiri et al., 2015) system employs both methods of data reduction.

It uses multi-stage sampling as the first stage of data reduction and adds task dropping as

a load shedding approach for the second stage. On the other hand, the system extends the

Hadoop (White, 2009) framework, so it is optimized to work with more traditional data stores

10 CHAPTER 2. RELATED WORK

and not with streamed data.

The BlinkDB system (Agarwal et al., 2013) is built on top of the Hive Query Engine (Thusoo

et al., 2009). As a result, this approximate query engine can integrate with both Apache Hadoop

and Apache Spark. Similarly to IncApprox, it uses the Stratified sampling technique to provide

data samples. Additionaly, it adjusts the sample size dynamically by considering response time

and accuracy requirements. However, as with ApproxHadoop and (Sun et al., 2014), it is

intended for more traditional data warehouses and not for streamed data.

The work in Fluxy (Esteves et al., 2015) aims at enhancing resource efficiency and perfor-

mance of dataflows comprising Hadoop jobs, by providing probabilistic guarantees on bounds of

data divergence, resulting from predicting the cumulative error caused by avoiding consecutive

dataflow executions.

2.2 Stream Processing Systems

At the moment of writing, there is an abundance of data processing platforms. Many of

the currently popular data processing frameworks employ in-memory processing to decrease

processing time and increase performance.

Foremost among these new frameworks is Apache Spark (Zaharia et al., 2010). Spark

provides a streaming API called Spark Streaming to ease the development of stream processing

applications. Since Spark was originally developed as a batch processing engine, its stream

library implementation utilizes this batch oriented architecture. Spark Stream implements a

batching module which aggregates the data into micro-batches which can then be processed as

a regular Spark batch application. However, this solution introduces a delay while the data is

accumulated into batches.

The relatively recent Apache Flink framework (Carbone et al., 2015) provides similar fea-

tures to Apache Spark, including both batch and stream processing libraries. The difference is

that, at its base, Flink has a streaming dataflow engine. A streaming data flow engine performs

true streaming, meaning that each data element is immediately processed through the streaming

application. Even though this is a faster implementation, it becomes an obstacle when trying to

sample the data, since most sampling methods need to first build a sample set and then forward

this set for processing.

2.3. SAMPLING METHODS 11

Apache Storm (Toshniwal et al., 2014) is a distributed real-time computation system, whose

processing engine has similarities with Flink’s. Although, as with Apache Flink, it provides

“real” real-time stream processing, it lacks any batch processing capabilities making it difficult

to integrate sampling.

Apache Samza is another stream processing platform. The difference from the previous two,

as well as Apache Spark, is that it is much more tightly integrated with Apache Kafka (Garg,

2013) for communication/messaging and Apache Hadoop YARN (Foundation, 2016) for resource

management. Moreover, as Storm and Flink, Samza works on individual data elements, proving

sampling difficult to implement on this platform. In contrast to Spark, it usesd a streaming

dataflow engine, as the two previusly mentioned platforms. Thus, it performs true streaming,

immediately processing each data element. As mentioned before, this becomes an obstacle when

trying to sample data, since most sampling methods need to first build a sample set.

2.3 Sampling Methods

In the area of sampling, extensive research has been done on the usage of advanced sampling

techniques in data stream environments.

The work by (Cormode and Duffield, 2014) describes the advantages of sampling in stream

environments and an overview of sampling implementations in streaming. As seen in Figure 2.1,

the authors describe sampling as a moderator of constraints. Sampling reduces the strain on

hardware resources like bandwidth, CPU and memory. At the same time, it provides assurances

regarding the result accuracy and the speed at which that result is obtained. Finally, with

sampling, the resulting data set retains the data characteristics of the original data set, allowing

for the original patterns and insights to be represented in it as well.

In (Hu and Zhang, 2012), a detailed description of sampling algorithms that can be adapted

to stream environments is given. As with the above mentioned work, the authors here suggest

that one-pass sampling algorithms are most appropriate for adaptation to streamed data. This

type of algorithms can generate a sample from a single pass over a given data.

The Bernoulli sampling algorithm is the simplest of the sampling algorithms. It provides

a fast, uniform sampling method, thus sampling each item with equal probability. However,

12 CHAPTER 2. RELATED WORK

Figure 2.1: Sampling as a Mediator of Constraints

2.3. SAMPLING METHODS 13

Bernoulli sampling requires the size of the data to be known in advance, something that may

not be possible for streamed data.

Reservoir sampling (Vitter, 1985), as Bernoulli sampling, is a uniform sampling algorithm.

In contrast to the previous method, this sampling algorithm can generate a sample in a single

pass over the data. Furthemore, the data size does not need to be know beforehand, or to be

bound at all. Additionally, it provides a bounded error, but due to its uniform nature, similarly

to Bernoulli sampling, may skew data distribution.

Concise and Count sampling (Gibbons and Matias, 1998) are sampling methods based on

Reservoir sampling. Both improve upon the previous method, providing better accuracy. How-

ever, the Concise sampling algorithm continues to use uniform sampling, thus not removing the

data distribution skew problem. On the other hand, the Count sampling algorithm employs a

biased sampling method which removes the issue of skew. But, in contrast to the Reservoir and

Concise methods, Count sampling does not provide error bounds.

Distinct Value sampling (Gibbons, 2001) is an algorithm of the Reservoir scheme. DV

sampling is highly used for estimating the number of distinct values in a data set, so query

optimization can be performed. It provides good accuracy with a low, bounded error of 0-10%.

Although, as an algorithm that uses uniform sampling, it should introduce data distribution

skew, it removes this problem by providing an upper bound on the number of items a single

value can have in the sample, and randomly maps values to hashed values, so a uniform selection

of original data is admitted in the sample.

The Congressional sampling(Acharya et al., 2000) algorithm was developed as a sampling

algorithm for group-by queries. It is a hybrid of the uniform and biased sampling methods. As

such, it gains the faster sampling time inherent to uniform sampling techniques. Furthermore,

it performs a three-stage sampling process that allows for lower-occurring items to be included

in the sample, thus providing a biased method to remove the problem of data skew. Finally, it

provides a fixed error bound of maximum 10%.

Another one-pass sampling algorithm is Weighted sampling (Chaudhuri et al., 2001). The

method samples each data item with a separate probability. Like Count sampling, it is a biased

sampling method, thus able to handle the issue of skew in the data distribution of the sample.

Nevertheless, Weighted sampling does not provide a bound of the error. Moreover, it requires

information about the weights of the data items in advance, which introduces additional overhead

14 CHAPTER 2. RELATED WORK

2.4 Contributions

This work was benefited by multiple past works on the topic of data reduction techniques.

The work of (Hu and Zhang, 2012) provides an extensive overview of sampling techniques in data

stream environments. Furthermore, it gives a thorough analysis on which sampling techniques

to use depending on different requirements.

Next, the works of (Acharya et al., 2000) and (Gibbons, 2001) were used to implement the

sampling methods used for data reduction in this solution.

Summary

This chapter provided and overview of related works on the topic that this solution covers.

First, it describes several approximate computing systems that share the same goal as this work.

Next, the two areas that construct the field of approximate computing systems are detailed. An

overview of the current stream processing platform is presented and finally, a description of

additional sampling techniques that can be adapted to streamed data was given.

The next chapter introduces the architecture of the system, as well as its implementation

details.

3Solution
Chapter 2 described the work in data processing platforms and data reduction techniques.

Furthermore, it describes approximate computing systems, the result of using data reduction

methods in data processing systems. The solution proposed in this work represents an approxi-

mate computing system. This section first gives a use-case example to motivate a scenario where

approximated operation would be more efficient over the standard operation of a data process-

ing system. Second, it describes the basic architecture of Apache Spark Streaming, the system

selected for the solution implementation. Third, an explanation of the choice of algorithms is

given, and the operation of the selected two algorithms is defined. Finally, the chapter expands

upon the platform-specific details of the implementation of the solution.

3.1 Use case example

A good example of a stream processing application is one that ranks the top N videos by

category on a video-sharing website. Figure 3.1 shows the music category of such a video sharing

website, together with several music subcategories. The top N ranked videos would need to be

renewed at a short interval, for example, every minute. Thus, the streaming application might

use a 1 minute sliding window interval. The application would need to recalculate the views

for each video, every minute, which might belong to multiple categories and furthermore, the

subcategory ranking would also need to be calculated. As the website becomes more popular,

video views become more numerous, thus increasing the data input of the video ranking stream

processing application. As the data throughput becomes higher, the system needs to utilize

more resources in order to cope with this increase of videos and categories. Because the system

receives a more substantial amount of data to be processed, the processing time of the data is

also increased. Hence, the system has to start queuing new information about video views while

taking longer time to process the currently viewed videos. The higher this processing latency,

the later the new data is processed. As a consequence, the application may start reporting older

16 CHAPTER 3. SOLUTION

Figure 3.1: The Music Videos Category and it’s subcategories on a video sharing website with
number of views per video

videos as the current top ranked videos. In the worst case, the waiting queue may overflow,

causing the data processing system to crash and the the video categories feature to become of

the website to become simply unavailable.

3.2 Details on the Apache Spark Streaming Distributed Archi-

tecture

As mentioned in the introduction of Chapter 3, Apache Spark was selected as the plat-

form to implement the solution. Spark is a mature data processing framework. As a platform

that performs processing in-memory, thus speeding up processing times, it is widely used as a

replacement and upgrade on Apache Hadoop’s MapReduce framework.

Furthermore, Spark Streaming implements stream processing as a continuous series of batch

processing jobs. Spark Streaming provides a high-level abstraction of the stream, called a

Discretized Stream or DStream. As seen in Figure 3.2a, the DStream is composed of continuous

series of micro-batches, represented by Spark’s RDD. Micro-batches are the reason Spark does

not provide “true” real-time stream processing, instead each micro-batch is processed as a regular

Spark batch application, as can be seen on Figure 3.2b. However, a spike in data throughput

3.2. DETAILS ON THE APACHE SPARK STREAMINGDISTRIBUTED ARCHITECTURE17

(a) The Distributed Stream abstraction in Spark Streaming

(b) Data Processing Operation over a DStream in Spark Streaming

Figure 3.2: An Apache Spark Streaming DStream representation and an operation example over
a DStream

can cause an increase in the batch size, leading to a delay in batch processing.

Moreover, Spark’s modular design allows it to integrate with a multitude of different tech-

nologies, from Hadoop’s HDFS for distributed storage, YARN or Apache Mesos for resource

management, to providing libraries for connecting with data sources like SQL, Apache Kafka,

Cassandra, Kinesis, Flume as well as Twitter.

These data sources provide a continuous stream of data which Spark Streaming processes.

As seen in Figure 3.3, the data is admitted into the system through the Receiver module,

represented as step 1 in the Figure. The Receiver provides Spark the flexibility to connect with

data sources beyond the ones mentioned previously. Moreover, as shown on step 2 of Figure

3.3, it allows data items to be pre-processed before being admitted into the workflow. The

Receiver then accumulates the data into blocks through the Receiver Supervisor, by forwarding

the data items (step 3) to the Block Generator of the Supervisor, show in step 4. When a data

block achieves a certain size, the Receiver Supervisor proceeds to push the completed block to

18 CHAPTER 3. SOLUTION

Figure 3.3: Basic Architecture of Batching module in Spark Streaming

memory, as shown in step 6 through the Receiver Block Handler. The Receiver Block handler

then generates a block id, which is returned in a BlockInfo object to the Receiver Supervisor

(step 7). When the Supervisor receives this block information, it packages it with the block size

and generates the block’s meta-data, in step 8. In step 9, this meta-data is forwarded to the

Receiver Tracker and is put into a waiting queue until it is assigned to a Batch job in the final

step.

Next, Figure 3.4 depicts the continuation of the data flow through the batch job generation

from the generated block meta-data. Every Spark application is built around a SparkContext

object. This object provides information on how to connect to a cluster, contains application

specific information and provides methods for generating RDDs. Spark Streaming provides a

wrapper to the SparkContext 1, called a StreamingContext 2, which provides streaming capa-

bilities to the application. The StreamingContext provides batch job generation through the

Job Scheduler 3. The scheduler contains a JobGenerator class that utilizes a recurring timer to

generate micro-batches at a user-defined interval, as seen in step 0 of Figure 3.4. Each time the

timer runs out, a generateJobs method is called (step 1). This method then proceeds to call a

block allocation method at the Receiver Tracker, which returns all the block meta-data that it

has waiting in its queue (step 2). The generateJobs method then continues on to encapsulate

this meta-data into a single batch job and submits this job for scheduling through a method

of the JobScheduler, as seen on step 3 in the figure. The job is then scheduled for execution

in the user-defined application. The length of the batch interval determines the size of the

1”Initializing Spark”, https://spark.apache.org/docs/1.2.0/programming-guide.html#initializing-spark, (Au-
gust 8, 2016)

2”Initializing StreamingContext”, https://spark.apache.org/docs/1.2.0/streaming-programming-
guide.html#initializing-streamingcontext, (August 8, 2016)

3”Job Scheduling”, https://spark.apache.org/docs/latest/job-scheduling.html, (August 8, 2016)

3.3. SAMPLING ALGORITHMS 19

Figure 3.4: Batch Generation in Spark Streaming

micro-batches which are then processed by a user-defined streaming application.

3.3 Sampling Algorithms

Before the framework implementation, several sampling techniques from the uniform and

biased sampling group methods were considered. By consulting (Cormode and Duffield, 2014; Hu

and Zhang, 2012), the desired properties for the algorithms were determined and the following

list of criteria were used for selecting the sampling methods:

1. Provide a fixed-size sample with a single pass over the data.

2. Prevent data distribution skew when sampling.

3. Provide accuracy guarantees for the sampled subset.

4. Provide timeliness guarantees for the sampling algorithm.

20 CHAPTER 3. SOLUTION

The first criteria provides a requirement that the algorithm will be capable of generating

a sampled data subset with a pre-defined size by passing the original data set only once. This

is the most important thing when sampling a data stream, since data items arrive only once

and the final size of the data stream may not be known. The Bernoulli uniform sampling

scheme doesn’t satisfy this requirement. Bernoulli sampling methods require that the size of the

original data set is know before-hand. Furthermore, they don’t provide an upper bound on the

sample size. The Biased sampling scheme doesn’t always satisfy this requirement as well. Biased

sampling methods require additional information to provide sampling, similarly provided before-

hand as with the Bernoulli scheme. For streamed data, this may not be possible. Finally, the

Reservoir uniform sampling scheme satisfies this criteria completely. It provides a reservoir data

structure, which ensures a fixed-size of the sample. Furthermore, it will continuously sample the

data stream until data items run out, independently of the size of the data stream.

The second criteria establishes that the sampling algorithm needs to implement techniques

that will prevent the distortion of the data distribution of the original data set. This is important,

since by only sampling highly occurring data items, the final sample might have a lack of rare data

items, thus skewing the results of the application that uses this sampled set. Uniform sampling

methods introduce this problem, since with these methods, there is an equal probability for

each data item to be included in the sample. As mentioned before, this will enable higher

occurring items to be allowed more easily into the sample, while less occurring items to have a

decreased presence in this subset, which leads to data distribution skew. As a consequence, the

Bernoulli and Reservoir sampling schemes don’t satisfy this criteria. On the other hand, the

Biased sampling schemes satisfy this criteria. Biased sampling algorithms sample each data item

with a different probability, thus providing a more accurate admission of differently occurring

data items in the sampled set. This keeps the data distribution of the original data set in the

sample and prevents skew.

The third criteria deals with the accuracy provided by a sampling algorithm. Even though

sampling algorithms strive to produce a sample that is representative of the original data set,

some level of error is introduced nonetheless. Thus, sampling algorithms that provide a bound on

the error that they produce are more desirable than algorithms that can produce an arbitrary

sized error. Because of the uniform sampling method that Bernoulli and Reservoir sampling

methods utilize, they tend to produce a higher error than Biased sampling methods. However,

3.3. SAMPLING ALGORITHMS 21

accuracy depends on the algorithm-specific implementation as well, thus a general judgement of

which methods provide bounded errors cannot be determined and is left to be evaluated with

each algorithm.

The last criteria provides a requirement for the time with which a sampling algorithm

generates a sample. In a streamed environment, where data items can arrive at an extremely

high rate, the speed with which an algorithm can sample and produce a sampled subset is highly

important. A slower sampling process may cause congestion in the workflow of the application

and cause more problems than it tries to solve. Since uniform sampling methods sample each

data item with equal probability, algorithms that use the uniform sampling method are faster

than Biased sampling algorithms which require additional information, so each data item’s

probability can be determined. Thus, algorithms that implement the Bernoulli, or Reservoir

sampling schemes are faster than those that implement a Biased sampling method.

To summarize, the first criteria eliminates algorithms that implement the Bernoulli sampling

scheme. Although the Reservoir sampling scheme satisfies the first and fourth criteria, it fails

to prevent data distribution skew and the uniform nature of its sampling method lowers the

accuracy of the results. In contrast, Biased sampling methods satisfy the second and third

criteria, but fail the fourth criteria. Thus, a solution was to select algorithms that rely on the

reservoir sampling method of generating samples, but also use biased sampling techniques that

can counter the data distribution skew and improve accuracy.

3.3.1 Congressional algorithm

Congressional sampling (Acharya et al., 2000) is an efficient method of performing sam-

pling when data is partitioned in groups. The algorithm attempts to maximize the accuracy

of a sample on a given set of group-by keys. A considerable number of data processing appli-

cations, foremost the MapReduce paradigm, use data grouping by key in order to implement

their algorithms. Congressional sampling is a Reservoir sampling scheme, providing a one-pass

algorithm for performing the sampling operation. Thus, it provides a fast, single pass method

of generating a sampled set, satisfying the first criteria for selection. The algorithm, inspired by

the organisation of the United States Congress4, where the Congress consists of two differently

4”Two Bodies, One Branch”, https://www.visitthecapitol.gov/about-congress/two-bodies-one-branch,
(September 18, 2016)

22 CHAPTER 3. SOLUTION

organised bodies, the House and the Senate, implements a three-stage sampling technique. The

first, House, stage allows for item groups to be represented proportionately to their size in the

data set. The second, Senate, stage assigns equal space to each group, while the last stage

attempts to even out the sub-group representations in each group. By doing this, the algorithm

uses a biased sampling technique at a higher level of the sampling process. On the other hand,

each item is sampled with uniform sampling. However, the probability that it will be sampled

in the House, Senate or Congress stage is different. Because of this, Congressional sampling is a

hybrid of uniform and biased sampling. By guaranteeing that both large and small groups will

be represented in the sample, the algorithm satisfies the second criteria for selection. By using

this hybrid type of sampling, the method also addresses the poor accuracy obstacle introduced

by uniform sampling, providing a bounded error of maximum 10%, satisfying the third criteria.

Finally, the algorithm introduces an efficient method of calculating the sample slots that each

group is assigned, as well as a decision-making method for picking the best of the House, Senate

and Congress sets for the final sample. This, coupled with the sampling efficiency of uniform

sampling, satisfies the last criteria for selection. The Congressional algorithm only requires two

parameters for a correct execution. The first parameter is the sample size, while the second

is a list of the attributes to group by. This allows for a simple and user-friendly usage of the

algorithm. Algorithm 1 shows the algorithm for Congressional sampling.

In the first part, the algorithm performs the three stages of sampling. First, it performs a

House (standard uniform reservoir) sample over all of the data. Since in this stage every item

is sampled with the same probability, higher occurring items will be more likely to be present

in the sampled set. Next, a Senate sample is performed, which assigns an equal slot of the

sample size to each group. When a group slot is full, uniform reservoir sampling is performed,

which may replace an item in the sample slot with a newly arrived item. The uniform reservoir

sampling algorithm is described in Algorithm 2. Finally, a Grouping sample is performed.

Since when grouping by key, several key attributes can be used, the grouping method samples

an item for each attribute in the group set. As with the senate sample, an equal slot of the

sample size is assigned to each value of an attribute. Correspondingly, when an attribute value

slot is full, uniform reservoir sampling is performed to try to replace a sampled item with a

newly arrived item.

When a certain event occurs, for example, the end of the batch interval in Spark Streaming,

3.3. SAMPLING ALGORITHMS 23

Algorithm 1 Congressional algorithm

1: initialize(sampleSize, group)
2: for all item ∈ dataStream do
3: sampleCount← 0
4: houseSample← ∅
5: senateSample← ∅
6: groupingSample← ∅
7: if batchInterval>0 then
8: doHouseSample(item)
9: doSenateSample(item)

10: for attribute ∈group do
11: doGroupingSample(item, attribute)
12: end for
13: else
14: getFinalCongressionalGroups(groupingSample)
15: calculateSlots(houseSample,senateSample, groupingSample)
16: scaleDownSample()
17: sampleCount← 0
18: houseSample← ∅
19: senateSample← ∅
20: groupingSample← ∅
21: end if
22: end for

Algorithm 2 Uniform Reservoir Sampling algorithm

1: initialize(reservoirSize, itemCount)
2: Reservoir ← ∅
3: while item ∈ dataStream do
4: if itemCount<reservoirSize then
5: Reservoir.push(item)
6: else
7: position← Random(0, itemCount)
8: if position<reservoirSize then
9: Reservoir[position].replace(item)

10: end if
11: end if
12: end while

24 CHAPTER 3. SOLUTION

the sample can be built. To build the sample, first the groups in the Grouping sample need

to be defined. In order to do this the slot size for each group is recalculated from the attribute

samples of that group.

GroupSlotSize =
S

mT
∗ Ng

Nh
(3.1)

Equation 3.1 shows the equation, where S is the sample size, mT is the number of distinct

attribute values, Ng is the number of items in the attribute value slot that belong to the same

group, Nh represents the total number of items in the attribute value slot. From these four

parameters, the size of the sample S impacts the processing time of the application, as well as

the sample error. Thus, a smaller sample size would produce a larger decrease in processing

time, but also an larger increase in error. On the other hand, the mT , Ng and Nh show how

many groups are present in the data set and impact memory consumption. Large mT and Nh

values mean that more memory will be used for the data structures which keep track of all

the groups. However, a large value of the Ng parameter means that a high number of items

of an attribute overlap a certain group, resulting in a higher computation overhead in the slot

calculation. Additionally, a combination of very small values for the S and Ng parameters and

high values for the mT and Nh parameters may lead to much higher inaccuracy. This can result

in a group slot size smaller than one, which may remove a whole group from the sampled set.

The group slot is re-calculated for each attribute value of the group and the maximum value

calculated, together with the corresponding attribute sample is submitted as the sample for that

group.

In the next stage, the group sizes of the House, Senate and Grouping samples are evalu-

ated and the final slot size for each group is calculated from the House, Senate and Grouping

samples.

SlotSizeG = S ∗
maxt∈SamplesStG∑

t∈Samples StG
(3.2)

In Equation 3.2, S is the sample size, maxg∈GSg is the size of the largest slot for a group

from the House, Senate and Grouping samples and it is divided by the sum of all the slot sizes

(House, Senate, Grouping) for that group. Finally, each group is re-sampled with uniform

reservoir sampling to generate a sample slot with the new size.

3.3. SAMPLING ALGORITHMS 25

By employing three different sampling techniques, the Congressional algorithm prevents

the introduction of skew in the sample data distribution. By using the House sample, which

allocates more space for larger groups, it allows frequently occurring items to enter the sample.

On the other hand, the Senate sample, by providing equal sized sample slots for each group,

allows smaller groups to enter the sample. Finally, by using the Grouping sample, the algorithm

optimizes the attribute representations inside each group.

3.3.2 Distinct Value algorithm

As its name suggests, the Distinct Value sampling method approximates the number of

distinct values of an attribute in a given data stream. As with the previous algorithm, deter-

mining the distinct values of a certain attribute is frequently used in the optimization of the

computation flow. The algorithm implements the reservoir sampling scheme, thus fulfilling the

first requirement for selection. Although it uses uniform sampling, by employing a random

mapping of item values to hashed numbers, the algorithm provides a method to obtain a more

proportional selection of the items in the data set, thus satisfying the second criteria. This

is explained more thoroughly in the explanation of the algorithm below. In addition, the DV

sampling algorithm provides a low, 0-10% relative error, while providing a low space require-

ment of O(log2(D), where D is the domain size of the attribute values. This satisfies the final

requirement for selection.

Algorithm 3 presents the Distinct Value algorithm. Besides the sample size, the algorithm

requires two additional parameters. The second parameter, called the threshold parameter,

determines the maximum number of items that can be allowed in the sample reservoir per

attribute value. The third parameter is the domain size, representing the number of possible

values that can occur for the selected attribute. Furthermore, the algorithm uses a level variable,

which controls which values are allowed to be sampled.

The algorithm works as follows. As each data item arrives, the domain size is used to

generate a hash integer value of the item’s attribute value. Next, if the hashed value is at least

as large as the current level, an attempt to put the item in the appropriate hash value slot is

performed. If the slot size is smaller than the threshold value, the item is simply placed in the

slot. Otherwise uniform sampling is performed over the data item, as described in Algorithm 2.

This can result in the new item replacing an item currently in the slot. When the items in the

26 CHAPTER 3. SOLUTION

Algorithm 3 Distinct Value algorithm

1: initialize(sampleSize, threshold)
2: level← 0
3: sampleCount← 0
4: Sample← ∅
5: CountMap← ∅
6: for all item ∈ dataStream do
7: hashV alue← dieHash(item)
8: if hashV alue ≥level then
9: if Sample(hashValue) <threshold then

10: Sample(hashValue).add(item)
11: CountMap(hashV alue) =CountMap(hashV alue) + 1
12: sampleCount = sampleCount + 1
13: else
14: Sample(hashValue).sample(item)
15: end if
16: end if
17: if sampleCount>sampleSize then
18: sampleCount = sampleCount−Sample(level).count
19: Sample(level).remove
20: level = level + 1
21: end if
22: end for

sample exceed the sample size, the slot whose value equals the current level number is removed

from the sample and the level is incremented. The DV algorithm requires a hash function,

called a dieHash, to be used in order to map the attribute values to hashed integer values. By

randomly mapping the attribute values to hashed values and only allowing hashed values equal

or greater than the current level to enter the sample, the algorithm ensures that the sample

contains a uniform selection of the scanned portion of the data stream. As an addition, the

threshold value prevents frequently occurring values from filling up the sample and prematurely

incrementing the level. This prevents the occurrence of skew in the sample’s data distribution.

From the above mentioned algorithm parameters, the sample size influences the processing

time and accuracy of the application. As the value of the sample size decreases, the processing

time is decreased, but a larger error is possible. Specifying the correct value of the data set

domain size is very important. An incorrect domain size value will lead to improper mapping of

values to hashed numbers in the dieHash method, resulting in additional computing overhead.

However, the threshold value can have much higher impact on memory consumption and accu-

racy, and thus, its calculation is very important. The author of the paper that describes the

3.4. SOFTWARE ARCHITECTURE 27

Distinct Value sampling algorithm suggests Equation 3.3 to calculate the threshold value.

Threshold =
SampleSize

50
(3.3)

Since the threshold size determines how many items are allowed per attribute value, the

parameter can severely impact memory consumption. In addition, because the over-filling of

the reservoir is connected to the threshold, incorrect values to this parameter can lead to more

frequent evictions of reservoir slots and increments to the level parameter, leading to a higher

processing time.

3.3.3 Algorithm Summary

The previous two sections described the two selected sampling algorithms, how they work

and the parameters on which they depend for correct execution. Even though both algorithms

satisfy the criteria mentioned above, each has its own advantages and disadvantages. The

Congressional sampling algorithm requires a simple input from the user. It needs only the

sample size and the attributes to group by. However, the implementation of the algorithm

is more complicated and sets a higher space requirement. This is because it needs to set up

additional data structures for the House, Senate and Grouping samples which it later combines

in a single sample. In contrast, the implementation of the Distinct Value algorithm is much

more simple. It requires only a single reservoir for its sampled data, thus having a much lower

space requirement. However, the Distinct Value algorithm requires two additional parameters to

be provided by the user. Since the threshold and domain size parameters can greatly influence

the performance of the algorithm, the user has to know the data set really well, and has to take

great care in setting these parameters. This makes this algorithm less user-friendly than the

Congressional algorithm.

3.4 Software Architecture

The micro-batch abstraction is what allowed a seamless integration of the solution with

Spark Streaming. Figure 3.5 shows the sampling framework implemented as an extension of the

the Receiver module, called a Sampling Receiver.

28 CHAPTER 3. SOLUTION

Figure 3.5: Basic Architecture of Batching module in Spark Streaming with Sampling

3.4.1 Implementation Details

The components of the framework can be seen on Figure 3.6, where the new components are

coloured with red. The framework intercepts each data item through the SamplingReceiver class

before it is stored. Here the item is passed through a class implementing the OnePassSample

interface. Currently, there are two algorithms implementing this interface, the Congressional

and Distinct Value sampling algorithms. One of these sampling algorithm classes samples each

arriving data item and keeps the sampled items in a HashMap until the sample is requested by

the Sampling Receiver class. Similarly to the job generation class described in Section 3.2, the

Sampling Receiver class utilizes a recurring timer. The interval of the recurring timer is defined

to be smaller than the user-defined interval of the application. This is done in order to allow for

blocks to be built from the sampled data and stored in memory before the job generation timer

calls for a new batch to be created.

When the Sampling Receiver timer runs out, the Sampling Receiver obtains the sample from

the sampling class, restarts the timer and uses the methods provided by the Receiver to pass

the sampled data to the Receiver Supervisor. The Supervisor uses the sampled data to generate

blocks, thus continuing a standard batching operation. As a result, the old functionality of the

batching module remains unaltered.

3.4.2 Platform Specific details

As mentioned in the previous section, the center of the framework is the Sampling Receiver

class. This class extends the Receiver class, thus a Sampling Receiver object can be passed

as an argument of the receiverStream() method of the Streaming Context. Table 3.1 shows

3.4. SOFTWARE ARCHITECTURE 29

Figure 3.6: Component Diagram of Spark Streaming with added Sampling Components

30 CHAPTER 3. SOLUTION

the changes done in the Receiver class API and its method signatures. The SamplingReceiver

provides a new constructor. In addition to the StorageLevel parameter, which determines how

RDDs are stored, the constructor requires the length of the batch interval, the sampling algo-

rithm class to be used for sampling and the port on which the message server will listen on.

Furthermore, the class overloads the Receiver’s onStart() and store(T) methods. While there

are no changes to the method signature of the onStart() method, it is overloaded in order to

start a thread which runs the interval timer class, STimer, which sends the sampled items to the

Receiver Supervisor and resets the sampling class object. Furthermore, the onStart() method

starts the message server that is used to communicate with the Streaming Context and provide

the sampling error. The store() method is overloaded so that calls to it pass its argument to

a sample method of the specified sampling algorithm class instead of the Receiver Supervisor.

Additionally, two more methods are added to the API. The storeSample method is called by the

STimer class to perform the sample generation of the sampling class and pass this data set to

the Receiver Supervisor. Next, the STimer class calls the newSampler() method, which resets

the sampling class, preparing it for the new data. As well as the Receiver class, the Sampling

Receiver class uses type parameters to define the type of the data that is received, but it requires

an additional type parameter to define the sampling class that is being used.

Table 3.1: API modifications and Method Signature changes

Receiver SamplingReceiver

Receiver(StorageLevel)

SamplingReceiver(StorageLevel,
BatchInterval,
SamplingClass,
MessageServerPort)

onStart() onStart()

store(Item) store(Item)

/ storeSample()

/ newSampler()

A feature for defining sampling classes is implemented through the OnePassSample inter-

face is provided. Figure 3.7 shows the properties and methods defined by the interface, as well

as the additional methods and fields defined by the implementing algorithms.

The inteface defines the sampleSize, sample and itemCount properties. The sampleSize

property is a number which defines the size of the sampled data set. The itemCount property

is used to count the total number of items that pass through the sampling algorithm. This is

3.4. SOFTWARE ARCHITECTURE 31

used in uniform sampling to determine if an item will be allowed in the sample or not. Finally,

the sample property is a List object that contains the final set of items after they pass through

the sampling algorithm.

In addition to the above mentioned properties, the OnePassSample interface defines several

methods. The singleSample(Item) method should implement sampling when a single item is

passed to the algorithm. The listSample(List < Item >) method is intended to implement

sampling on a list of items. The getSample() method should return the final sample list after

all the desired items have passed through the algorithm and the calculateError() method should

calculate and return the sample error of the sampled data set. Additionally, the getSampleSize()

and setSampleSize(Integer) methods are provided to implement the getting and setting of the

size of the sample. The getCount() method should return the current number of items that have

passed through the algorithm and the reset() method should reset the data structures of the

sampling class for the sampling of data items for a new batch. Finally, a doBefore() method has

been added which should be used to provide users with additional transformations or filtering

decisions on data items.

As mentioned, the interface can be used for implementing additional one-pass sampling

algorithms, which can be used in the Sampling Receiver class. The two sampling algorithms

mentioned before were implemented by using this interface.

The Congressional sampling algorithm is implemented as a template class. It uses type

parameters to define the type of the data being sampled as well as the type of the group-

by keys. In addition to the data structures provided by the OnePassSampling interface it

implements, the class keeps a List object of the attributes it should group by. Furthermore,

the implementation uses HashMaps to represent the house, senate and grouping reservoirs.

The Spark-specific Tuple2 data structure is used in the grouping reservoir HashMap in order

to enable the keeping of each separate attribute sample. Finally, a get(item, key) method is

required to be overloaded so it can provide the attribute value of a given item.

An optimisation of the algorithm is performed by determining the largest sample size of a

group while the group size of the grouping sample is calculated. In addition, the sum of the

group samples is also calculated in this step. Thus, the algorithm is shortened by one step and

the computation in the next one is simplified.

The Distinct Value sampling algorithm is implemented as a template class as well and

32 CHAPTER 3. SOLUTION

Figure 3.7: Class Diagram of the OnePassSample Interface and the implemented algorithms

it requires the type of the data being sampled to be defined as a type parameter. In addition

to the interface-defined properties, it keeps the algorithm-specific threshold and level values.

Furthermore, it utilizes the dvCounter HashMap to keep track of all the passed items per

value and the corresponding reservoir HashMap.

Since the dieHash function of the Distinct Value algorithm described in the work by (Gib-

bons, 2001) can only work with integer values, an optimisation was performed. The DV algo-

rithm in the solution implements a more general dieHash function that employs the Random

class and a HashMap to map the attribute values to random integer values. Thus, the algorithm

is not constrained to working on target attributes of type integer.

Summary

This chapter provided a use-case example where the solution described in this work is

applicable. It continued on to introduce the inner workings of the Spark Streaming platform and

the components of the platform that were used in the implementation of the system. Next, a set

of requirements for the sampling techniques to be used with the system was defined and the two

3.4. SOFTWARE ARCHITECTURE 33

selected algorithms were described. Finally, a more detailed explanation of the implementation

was given together with a report of the platform specific methods and data structures used.

The next chapter discloses the experimental evaluation performed by using the solution

described in this chapter.

34 CHAPTER 3. SOLUTION

4Evaluation
This chapter describes the experimental configuration that was used for the evaluation of the

solution. Next, the solution is evaluated by using accuracy as a qualitative metric and memory

usage and throughput as quantitative metrics. First, the assessment criteria are explained.

Second, the benchmark applications used in the evaluation are described and the attained metrics

for each benchmark application are discussed. Finally, a summary of the gathered results is

provided.

4.1 Experimental Configuration

For the experimental evaluation a single server was used. The configuration of the server was

a 8-core, 2.93GHz Intel i7 with 12GB of memory running a 64-bit Ubuntu 14.04 LTS operating

system.

On the sofware side, version 1.6.0 of Apache Spark was used. The input data was streamed

locally through the Netcat Linux command line tool 1, provided with the operating system.

Data items from the data set files were streamed to Apache Spark every 10 milliseconds.

A lightweight console application, Jvmtop 2 was used to measure the heap memory usage

of the benchmark applications.

Each of the benchmark applications was run for 25 batch processing intervals, resulting in

a total application runtime of 10 minutes. The applications were first run in normal mode,

to acquire the metric values of a normal run. Then, each was run in sampled mode, with a

sample size of 2, 5, 10 and 25%. It should be mentioned that for the DV sampling method,

several values for the threshold parameter were tried. This was done to confirm that Equation

3.3 would provide correct values even in a streamed environment. Since even small changes

1Giovanni Giacobbi, ”Netcat”, http://netcat.sourceforge.net/,(August 8, 2016)
2”Jvmtop”, https://github.com/patric-r/jvmtop, (August 8, 2016)

36 CHAPTER 4. EVALUATION

in the threshold value showed much larger changes in the measurement of the metrics, it was

important to examine it. The experiments showed that the specified threshold equation provided

the optimal threshold value for each sample size. At the end of each run, the total execution

time and error estimate of each batch was collected and the average value for the metrics

was calculated. The same was done for the heap memory usage of the application during the

execution.

4.1.1 Assessment Criteria

In order to gain a better understanding of the acquired gains of the implemented system,

three assessment criteria were used. From them, two are performance metrics, evaluating the

speed-up in processing time and the variation in memory consumption. The last is an error

metric, estimating the relative error in the generated sample of the benchmark applications.

4.2 Benchmarks and Assessment

In order to better test the performance of the system, four distinct benchmark applications

were used. The goal was to measure the execution of the work with data sets with different data

distributions.

4.2.1 Metrics used

The metrics used for the evaluation of the work include the benchmark applications’ total

execution time, memory consumption and the sample error. All of the metrics are expressed

in percentages. For the sampling error metric, the relative percent error was calculated. For

the execution time and memory consumption, the relative number representation was to show

the general difference between a normal execution and a sampled execution of a benchmark

application. Thus, a more generic conclusion can be deduced from the evaluation results from

the various applications that were run.

4.3. APPLE NASDAQ TWEETS 37

4.2.2 Assessment goals

There were several assessment goals to be achieved through the evaluation results. The first

goal was to show the speed up of the total execution time on a sampled run of a benchmark

application over a normal run of the same. The second was to analyse the differences in memory

consumption between the sampled and normal runs. Next was to evaluate the size of the error

a sampled run would incur and assess if this decrease in accuracy is acceptable. Finally, by

doing an overlap of the taken metrics, the goal was to find the optimal values for the sampling

parameters of the two sampling algorithms used.

4.3 Apple NASDAQ Tweets

The first benchmark application is based on the example provided from the UC Berkeley

AMPLab website3. It does an analysis over a data set of Apple NASDAQ tweets4.The total size

of the data set was 50MB, containing 282.786 tweets. The tweets were taken over a time interval

of 79 days, from March 28th, 2016, to June 15th, 2016. The application provides an insight of

the top ten language speaking groups that post statuses on Twitter connected to Apple stocks.

4.3.1 Discussion and analysis

As mentioned before, the Apple NASDAQ tweets data set contains 282.786 tweets, amount-

ing to 50 MB of data. By using the previously mentioned streaming configuration, an average

ingestion rate of 1300 data items was received per second. Figure 4.1 depicts the measurements

taken for the Congressional, as well as Distinct value sampled executions of the application. The

results show the variation in percentage of the sampled over the normal execution.

As can be seen in Figure 4.1a, the speed up in total execution time is improved over the

normal execution time in both sampling algorithms. The Congressional sampling runs showed

that the speed up for this algorithm is inversely proportional to the sample size, providing a

22% speed up for the 5% sample size, a 21% speed up for the 2% sample and a 10% and lower

3”Real-time Processing with Spark Streaming”, http://ampcamp.berkeley.edu/3/exercises/realtime-
processing-with-spark-streaming.html, (June 10, 2016)

4FollowTheHashTag, ”One hundred NASDAQ 100 Companies – Free Twitter Datasets”,
http://followthehashtag.com/datasets/nasdaq-100-companies-free-twitter-dataset/, (June 10, 2016)

38 CHAPTER 4. EVALUATION

0,00

5,00

10,00

15,00

20,00

25,00

30,00

2 5 10 25 30

Sp
ee

d
 U

p
 (

%
)

Sample Size (%)

Congressional Speed Up (%) DV Speed Up (%)

(a) Tweets Speed Up

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

2 5 10 25 30

M
em

o
ry

 V
a

ri
a

ti
o

n
 (

%
)

Sample Size (%)

Congressional Memory Variation (%)

DV Memory Variation (%)

(b) Tweets Memory Variation

0

0,5

1

1,5

2

2,5

3

2 5 10 25 30

Er
ro

r
(%

)

Sample Size (%)

Congressional Error (%) DV Error (%)

(c) Tweets Sampling Error

Figure 4.1: Results of data processing for the Apple NASDAQ Tweets: (a) Processing Time
Speed Up, (b) Memory Variation, (c) Sampling Error

4.3. APPLE NASDAQ TWEETS 39

speed up in processing time for the 25%, 10% and 30% samples. On the other hand, the Distinct

Value algorithm executions reported a high speed up in the sample size interval between 5% and

25%, providing a 27% speed up for the 25% sample, 22%, 16% and 10% speed up for the 10%,

5% and 2% samples correspondingly. As the sample size increased, it showed a smaller speed up

of 6% for the 30% sample size. In addition, the sampling operations of both algorithms took up

less than 1% of the total execution time. The Distinct Value algorithm was faster taking up less

than 0.5% of the total execution time for all sampling sizes, while the Congressional algorithm

maintained an average of 1% of the total execution time for its sampling operations. From the

obtained performance values, it can be seen that the Distinct Value algorithm provides higher

processing speed ups than the Congressional algorithm. However, the Congressional algorithm

outperforms the DV algorithm for the smaller sample sizes of 2% and 5%.

Shown on the plot in Figure 4.1b is the memory variation of the sampling algorithms over

the normal execution of the application. From the plot lines, it can be seen that as the sample

size decreases, both algorithms use up more memory than a normal run. The Congressional

algorithm uses up the most memory, with an additional 70% more memory for the 5% sample

size, while the Distinct Value algorithm utilizes up to 63% additional memory for the 2% sample

size. The reason for this is that the sampling operations in the algorithms have to increase to

cope with the decreased sample size.

The sampling error can be seen on Figure 4.1c. Both algorithms report a 0% error rate for

all of the sample sizes. An exception is the 2% sample size of the Distinct Value algorithm. This

is due to the sample size being too small to be efficient for this algorithm, since the sampling

method utilizes the threshold value to control how many data items are admitted in the sample

and the level value to evict sampled slots from the sample. For such a small sample size, none of

the threshold values proved to be efficient and sample slots were evicted at a faster rate, leading

to a higher error. Together with the reported values in the plots on Figures 4.1a and 4.1b, it

can be concluded that the 2% sample size is not as efficient for the algorithm on this benchmark

application.

In conclusion, while both algorithms consume more memory than a normal execution, the

Distinct Value evaluates better. The DV algorithm provides higher speed ups than the Congres-

sional algorithm, while providing a 0% error, the same as the Congressional sampling algorithm,

with the 2% error being an exception due to the extremely small sample size.

40 CHAPTER 4. EVALUATION

4.4 US Technology Companies Stock

The second benchmark application uses a stock analysis application5 as a guide. It does

data analysis over a data set of the US stock market6. The data set size is 786 MB, numbering

7.103.833 items and contains rows of the stock values of the top forty US technology companies.

The earliest data in the data set is from February 7th, 2016 and the latest, at the time of

download, was from July 8th, 2016. By analysing this data, the application shows the company

that had the largest positive growth in stock value in a given sliding window interval.

4.4.1 Discussion and analysis

The Stock data set provides an average ingestion rate of 1800 data items per second when

streamed over the configuration described in section 4.1. In Figure 4.2 a comparison of the

sampled execution metrics can be seen over the normal execution.

Figure 4.2a depicts the execution time speed up of the Stock benchmark application. In both

plot lines, it can be seen that the highest speed up is gained between the sample size interval

of 5% and 25%. The sampling operations for both algorithms were taking up an average of 1%

of the total execution time, with the Distinct Value algorithm being slightly faster. The speed

up starts decreasing with sample sizes bigger that 25%. The highest speed up is provided by

the Distinct Value algorithm, with a 34% for the 25% sample, and 21% speed up for the 10%

sample size. The Congressional sampling algorithm provides a high, 30% speed up for the 10%

sample size, with 25% and 21% speed ups for the 5% and 25% samples accordingly. However,

the execution time of the sampling algorithms is even slower than the normal execution times for

the 2% sample size. This shows that a 2% sample size, for this benchmark application, causes

a larger computation overhead with a frequent re-sampling of data items in the reservoir.

The plot lines on Figure 4.2b show the memory variation of the sampled application runs. As

can be seen, both algorithms show that, with sampling, less memory is used, steadily increasing

the memory consumption as the sample size is increased. As shown with the plot lines, the

Congressional algorithm uses less memory, in general, than the DV algorithm, using 42% and

5James Phillpotts, ”Real-time Data Analysis Using Spark”, http://blog.scottlogic.com/2013/07/29/spark-
stream-analysis.html, (June 10, 2016)

6Quandl, ”Wiki EOD Stock Prices”, https://www.quandl.com/data/WIKI/documentation/bulk-download,
(June 10, 2016)

4.4. US TECHNOLOGY COMPANIES STOCK 41

-30,00

-20,00

-10,00

0,00

10,00

20,00

30,00

40,00

2 5 10 25 30

Sp
ee

d
 U

p
 (

%
)

Sample Size (%)

Congressional Speed Up (%) DV Speed Up (%)

(a) Stock Speed Up

-70,00

-60,00

-50,00

-40,00

-30,00

-20,00

-10,00

0,00

10,00

20,00

30,00

2 5 10 25 30

M
em

o
ry

 V
a

ri
a

ti
o

n
 (

%
)

Sample Size (%)

Congressional Memory Variation (%)

DV Memory Variation (%)

(b) Stock Memory Variation

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

2 5 10 25 30

Er
ro

r
(%

)

Sample Size (%)

Congressional Error (%) DV Error (%)

(c) Stock Sampling Error

Figure 4.2: Results of data processing for the US Technology Companies Stock: (a) Processing
Time Speed Up, (b) Memory Variation, (c) Sampling Error

42 CHAPTER 4. EVALUATION

41% less memory for the 10% and 25% sample sizes appropriately. For the same sample values,

the DV algorithm uses 2% and 28% less memory than the normal execution runs.

Figure 4.2c shows that although the 2% sample size uses the least memory of the experi-

mental runs, it produces results with very large errors. Thus, as with the previous benchmark

application, the 2% sample size proves to be inefficient, with 581% error for the DV algorithm

and nearly 35% for the Congressional algorithm. The error reports significantly lower values for

the larger sample sizes, reporting 6.5% for the 5% and 10% samples, and 0.5% and 0% for the

25% and 30% samples of the Congressional algorithm. The Distinct Value algorithm shows a

high error value of 62% for the 5% sample, but decreases the error to 2% for the 10% sample

and 1% for the 25% and 30% sample sizes.

From the plots in Figure 4.2 it can be concluded that the algorithms show a more efficient

execution for larger data sets. However, better-than-normal execution is gained in the sample

size interval of 5% to 25%, with the Congressional sample providing better all-round metrics

than the Distinct Value algorithm.

4.5 New York Taxi logs

The Databricks-provided example7 is used as the basis of the last benchmark application.

The purpose of the application is to perform an analysis over a data set of New York taxi logs8.

It is a 7.388.307 log data set, with a size of 1.7 GB. The data was collected over a period of

one year, from January 1st, 2013, to December 31st, 2013. By processing this data set, the

application provides the most used payment type in taxi rides in New York city.

4.5.1 Discussion and analysis

By using the configuration described in section 4.1, the New York City Taxi Log data set

provides an average ingestion rate of 1790 items per second. Figure 4.3 plots the measurements

taken from the application’s normal and sampled executions.

7Databricks, ”Logs Analyzer Application”, https://databricks.gitbooks.io/databricks-spark-reference-
applications/content/logs analyzer/app/index.html, (June 10, 2016)

8NYC Taxi and Limousine Commission, ”NYC Taxi Trip Data 2013 (FOIA/FOIL)”,
https://archive.org/details/nycTaxiTripData2013, (June 10, 2016)

4.5. NEW YORK TAXI LOGS 43

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

2 5 10 25 30

Sp
ee

d
 U

p
 (

%
)

Sample Size (%)

Congressional Speed Up (%) DV Speed Up (%)

(a) Taxi Log Speed Up

-50,00

-40,00

-30,00

-20,00

-10,00

0,00

10,00

20,00

30,00

40,00

2 5 10 25 30
M

em
o

ry
 V

a
ri

a
ti

o
n

 (
%

)

Sample Size (%)

Congressional Memory Variation (%)

DV Memory Variation (%)

(b) Taxi Log Memory Variation

0,00

0,50

1,00

1,50

2,00

2,50

2 5 10 25 30

Er
ro

r
(%

)

Sample Size (%)

Congressional Error (%) DV Error (%)

(c) Taxi Log Sampling Error

Figure 4.3: Results of data processing for the Taxi Logs: (a) Processing Time Speed Up, (b)
Memory Variation, (c) Sampling Error

44 CHAPTER 4. EVALUATION

In Figure 4.3a, it can be seen that both algorithms provide an execution time speed up

that steadily decreases as the sample size is increased. However, the Distinct Value algorithm

provides higher speed up values than the Congressional algorithm, with a 30% speed up for the

2% sample size and 28%, 13% and 11% for the 5%, 10% and 25% samples accordingly. The

Congressional algorithm provides the highest, 15% speed up for the 5% sample, and 7%, 8%

and 11% for the corresponding 2%, 10% and 25% sample sizes. The sampling operations of

the algorithms took up 0.5% of the total execution time for the 2% Distinct Value sample and

steadily increasing to a 1% of the total execution time for the 30% sample. For the Congressional

algorithm, the fraction of time that was taken up by the sampling operation was larger than the

DV algorithm, starting with a low, 0.5% for the 2% sample, but increasing to 9% for the 25%

and 30% samples.

Figure 4.3b shows the plots for the memory variation of the algorithms for this benchmark

application. While both algorithms show a faster execution time, they use up more memory

to achieve this speed up. The Congressional sampling uses the most additional memory, 31%,

with the 25% sample, while the Distinct Value algorithm follows closely, with 30% for the same

sample size. Additional memory is used with the 10% and 30% samples, where the Congressional

algorithm consumes 24% and 17% more memory, and the Distinct Value algorithm consumes

5% and 8% more memory accordingly. An exception is the 5% sample of the DV algorithm,

which uses 20% less memory, and the 2% sample size which uses 45% less memory than a normal

application run for the Distinct Value sample and 23% less memory for the Congressional sample.

However, this memory efficiency by the 2% Distinct Value sample run costs this execution a

2% lower accuracy compared to the 0% error rates of the rest of the experimental runs of both

of the algorithms, as seen on Figure 4.3c.

In conclusion, the Distinct Value algorithm provides better performance in all of the metrics,

with higher speed ups, lower additional memory usage and 0% error. However, as with the

previous benchmark applications, it shows a low accuracy with very small sample sizes.

4.6. ONLINE RETAILER 45

4.6 Online Retailer

The last benchmark application processes the data of a UK-based online retailer (Chen

et al., 2012). As the previous benchmark, it uses the Databicks example9 as a guide. The

data set size is 30 MB, numbering 541.909 items and contains all the transactions that occurred

between December 1st, 2010 and December 9th, 2011. The output of the application shows the

top ten countries that have the most customers on the retailer’s web site.

4.6.1 Discussion and analysis

The Online Retailer benchmark application receives an average ingestion rate of 1770 data

items per second with the provided experimental configuration. During the sampled executions

of the application the measurements seen in Figure 4.4 were taken.

Figure 4.4a shows the execution time speed up of the sampling algorithms. Both, the

Congressional and Distinct Value algorithms show considerably better execution times in the

sampling size interval between 10% and 30%. The Congressional algorithm shows better per-

formance with 31%, 23% and 20% speed up for the corresponding 25%, 10% and 30% samples,

while the Distinct Value algorithm reports a 26%, 19% and 18% speed up for the appropriate

values. Speed up is present, but decreasing outside of this interval, with the Congressional

sampling algorithm continuously showing a 16% and 19% speed up for the 5% and 2% samples,

while the Distinct value algorithm shows a lower, 2% and 9% speed up for these sample values.

For both algorithms, the time that was occupied by the sampling operations averaged 2.4% of

the total execution time for all of the sample sizes.

However, Figure 4.4b shows that the Congressional algorithm achieves the gain in speed

up at the cost of higher memory usage in the previously mentioned interval. It uses up 29%

more memory for the 25% sample size, 4% more memory for the 10% sample, and 1% additional

memory for the 30% sample. On the other hand, the sensitivity to lower sample sizes of the

Distinct Value algorithm depicts a higher memory usage for the lower sample sizes, with a

maximum additional memory usage of 66% for the 5% sample size, and a more efficient memory

usage than the normal execution for the bigger sample sizes, showing a 15% memory decrease

9Databricks, ”Logs Analyzer Application”, https://databricks.gitbooks.io/databricks-spark-reference-
applications/content/logs analyzer/app/index.html, (June 10, 2016)

46 CHAPTER 4. EVALUATION

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

2 5 10 25 30

Sp
ee

d
 U

p
 (

%
)

Sample Size (%)

Congressional Speed Up (%) DV Speed Up (%)

(a) Retail Speed Up

-60,00

-40,00

-20,00

0,00

20,00

40,00

60,00

80,00

2 5 10 25 30

M
em

o
ry

 V
a

ri
a

ti
o

n
 (

%
)

Sample Size (%)

Congressional Memory Variation (%)

DV Memory Variation (%)

(b) Retail Memory Variation

0,00

50,00

100,00

150,00

200,00

250,00

300,00

2 5 10 25 30

Er
ro

r
(%

)

Sample Size (%)

Congressional Error (%) DV Error (%)

(c) Retail Sampling Error

Figure 4.4: Results of data processing for the Online Retailer Transactions: (a) Processing Time
Speed Up, (b) Memory Variation, (c) Sampling Error

4.6. ONLINE RETAILER 47

for the 25% sample. The reason for this performance of the DV algorithm is the nature of the

algorithm, which causes a more frequent level increase for smaller sample sizes, thus evicting

sample slots at a faster rate. However, the Congressional algorithm uses less additional memory

than the DV algorithm.

The error rate for the sampled executions is shown on Figure 4.4c. The plots show that

the algorithms provide a low error for most sample sizes. As with the previous benchmarks,

the results of the 2% sample size shows that very small sample sizes are not suitable and cause

higher error rates of 255% for the Congressional algorithm, and 67% for the Distinct Value

algorithm. The Congressional sample lowers this error to 9% for the larger sample sizes, while

the DV algorithm provides 18% error for the 5% sample, and 0% for the larger sample sizes. As

a result, the Distinc Value algorithm provides better accuracy for this bencchmark application.

When summarized, these results show that for this benchmark application, the Congres-

sional sampling algorithm provides better performance than the Distinct Value algorithm. It

provides higher speed ups, with lower additional memory usage and low error.

Summary

In this chapter, the experimental evaluation made over the solution presented in this work

was detailed and the gathered results were discussed. Tables 4.1 and 4.2 show a summary of

the collected results of the metrics for both algorithms.

From Table 4.1, it can be seen that the Congressional sampling algorithm provides significant

speed ups in execution time for the 5%, 10% and 25% sample sizes for all of the benchmark

applications and positive values in speed up for the 2% sample. In addition, the error rate at

most of the sample runs is decidedly low. With two exceptions, the maximum error mounts

to 10%, but generally shows a 0% error. However, in most of the benchmark applications, this

efficiency in execution time and low error is gained at the cost of higher memory usage. By

using the results, it can be concluded that the Congressional sampling algorithm can be used for

most sample sizes. While the 2% and 5% sample sizes show a higher error rate, they continue

to provide a high processing speed up, but additionally incur less additional memory usage than

the higher sample sizes.

The Distinct Value algorithm results shown in Table 4.2 depict a different picture. Speed

48 CHAPTER 4. EVALUATION

ups in execution time can be noticed in the 10% and 25% sample sizes, additionally reporting

a low error rate. The 2% and 5% samples, show a mixed view of the speed up data, providing

several high speed ups in processing time, but also some very low, and negative values. These

two sampling sizes provide a better performance in memory usage, with decreases in memory

consumption of up to 57%. However, this decrease in memory is done at the cost of accuracy,

providing error rates as high as 581%. On the other hand, the 10% and 25% sample sizes

have provided good, or low additional, memory usage. Combined with the all-round better

performance in processing time and error rates, it can be seen that the Distinct Value algorithm

performs better for larger sample sizes and the performance improves when using large data sets.

In the case of streamed data, getting higher ingestion rates would improve the performance of

this algorithm.

When combining the data from both tables, it can be concluded that when smaller sample

sizes are needed, it is better to use the Congressional sampling algorithm. It provides a high

processing time speed up of up to 25% for the 2% and 5% sample sizes. In addition, it provides

up to 45% lower memory consumption than a normal run, and low error values. As the sample

size increases, Congressional sampling can still be used, but it starts to provide lower speed

ups in processing time, with an average of 13% speed up between the sample sizes of 10% to

30%. In these cases, it is better to use the Distinct Value sampling algorithm which provides a

18% average for the before mentioned interval. In addition, in this interval, the Distinct Value

algorithm provides less additional memory consumption than the Congressional algorithm and,

furthermore, shows a lower error rate, averaging to 2% error. Both algorithms showed that

the sampling operations that they perform, take up a small, less than 3%, fraction of the total

execution time, with Congressional sampling being slightly slower due to the larger complexity

of the algorithm.

The following chapter completes the thesis by presenting the conclusions gained during the

development of this solution and its evaluation. Furthermore, additional discussion is provided

for future work on the solution.

4.6. ONLINE RETAILER 49

Table 4.1: Congressional Algorithm Results Summary

Congressional Algorithm

Sample Size (%)
Stock Data Twitter Data Log Data Retail Data

Speed Up (%)
2 -19.52 21.88 7.08 19.39
5 25.50 22.18 15.53 16.22
10 30.78 4.74 8.53 23.40
25 21.20 10.98 10.97 31.04
30 2.70 3.61 0.18 20.00
Sample Size (%) Memory Variation (%)
2 -37.17 46.57 -22.84 -45.79
5 5.84 70.41 1.06 -20.48
10 -41.16 27.70 24.86 4.59
25 -42.56 5.44 31.45 29.87
30 -22.32 3.53 17.09 0.72
Sample Size (%) Error (%)
2 34.97 0.00 0.00 255.92
5 6.55 0.00 0.00 9.81
10 6.55 0.00 0.00 10.05
25 0.57 0.00 0.00 9.60
30 0.00 0.00 0.00 9.24

Table 4.2: Distinct Value Algorithm Results Summary

Distinct Value Algorithm

Sample Size (%) Stock Data Twitter Data Log Data Retail Data
Speed Up (%)

2 -14.43 10.31 30.78 9.07
5 1.02 16.64 28.11 2.77
10 21.40 22.61 13.88 19.10
25 34.08 27.29 11.05 26.40
30 6.88 6.70 8.55 18.79
Sample Size (%) Memory Variation (%)

2 -57.21 63.72 -45.79 -30.86
5 21.69 14.85 -20.48 66.30
10 -2.45 19.03 4.59 18.86
25 -28.05 3.76 29.87 -15.49
30 -1.56 3.68 8.43 -12.86
Sample Size (%) Error (%)

2 581.76 0 2.00 67.018
5 62.33 2.4 0.00 18.3836
10 2.87 0 0.00 0
25 1.82 0 0.00 0
30 1.50 0 0 0

50 CHAPTER 4. EVALUATION

5Conclusions
5.1 Conclusions

The system implements the approximate computing paradigm by leveraging the advantages

of sampling as a data reduction technique. It utilizes the modularity of the Apache Spark

framework to create a seamless merging of this established data processing platform with the

sampling framework provided by this solution.

The system provided a user-transparent sampling framework that provides two features.

First, it enables the rapid development of one-pass sampling algorithms in Apache Spark. Sec-

ond, it provides a sampling module for the usage of the sampling algorithms in stream processing

applications. Finally, two advanced sampling techniques were incorporated in Spark by using

the sampling framework. The Congressional and Distinct Value sampling methods cover a wide

area of use-cases in the field of data processing.

The system showed that current data processing systems can still benefit from advancements

made before the Big Data Revolution. The experimental results indicate that the system can

be employed in heavy data stream environments and provide up to 34% faster execution time,

while maintaining a low error bound and limited memory overhead.

5.2 Future Work

Although the system is fully functional for stable data streams, the introduction of a variable

arrival rate in the data stream may impact the accuracy of the results. This is because the sample

size would maintain a fixed value while the amount of data fluctuates.

Future work may address the implementation of a self-adjusting sample size depending on

the error measurement and processing time. This may be further expanded by recording the

results of prior executions to remember the best parameters of a sampling algorithm and adjust

52 CHAPTER 5. CONCLUSIONS

these parameters for each future job. Additionally, allowing the definition of QoS thresholds for

error and accuracy overheads would gain the best resource usage for the best available speed

up. Finally, a module to detect resource usage and shift the execution of an application from

normal to sampled mode would provide the optimal performance and resource utilization.

Bibliography

Acharya, S., P. B. Gibbons, and V. Poosala (2000). Congressional samples for approximate

answering of group-by queries. In Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’00, New York, NY, USA, pp. 487–498. ACM.

Agarwal, S., B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica (2013). Blinkdb:

Queries with bounded errors and bounded response times on very large data. In Proceedings

of the 8th ACM European Conference on Computer Systems, EuroSys ’13, New York, NY,

USA, pp. 29–42. ACM.

Ahmad, Y., B. Berg, U. Cetintemel, M. Humphrey, J.-H. Hwang, A. Jhingran, A. Maskey,

O. Papaemmanouil, A. Rasin, N. Tatbul, et al. (2005). Distributed operation in the borealis

stream processing engine. In Proceedings of the 2005 ACM SIGMOD international conference

on Management of data, pp. 882–884. ACM.

Akidau, T., R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma, R. Lax,

S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle (2015, August). The dataflow

model: A practical approach to balancing correctness, latency, and cost in massive-scale,

unbounded, out-of-order data processing. Proc. VLDB Endow. 8 (12), 1792–1803.

Babcock, B., M. Datar, R. Motwani, et al. Load shedding techniques for data stream systems.

Citeseer.

Carbone, P., A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas (2015). Apache

flinkTM: Stream and batch processing in a single engine. IEEE Data Engineering Bulletin.

Carney, D., U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,

N. Tatbul, and S. Zdonik (2002). Monitoring streams: A new class of data management

applications. In Proceedings of the 28th International Conference on Very Large Data Bases,

VLDB ’02, pp. 215–226. VLDB Endowment.

53

54 CHAPTER 5. CONCLUSIONS

Chaudhuri, S., G. Das, M. Datar, R. Motwani, and V. Narasayya (2001). Overcoming limi-

tations of sampling for aggregation queries. In Data Engineering, 2001. Proceedings. 17th

International Conference on, pp. 534–542. IEEE.

Chen, D., S. L. Sain, and K. Guo (2012). Data mining for the online retail industry: A case

study of rfm model-based customer segmentation using data mining. In Journal of Database

Marketing and Customer Strategy Management - Volume 19, No. 3, pp. 197–208. 10. Accessed:

2016-08-10.

Cormode, G. and N. Duffield (2014). Sampling for big data: A tutorial. In Proceedings of

the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’14, New York, NY, USA, pp. 1975–1975. ACM.

Das, T., Y. Zhong, I. Stoica, and S. Shenker (2014). Adaptive stream processing using dynamic

batch sizing. In Proceedings of the ACM Symposium on Cloud Computing, SOCC ’14, New

York, NY, USA, pp. 16:1–16:13. ACM.

Duffield, N. (2016). Sampling and interference problems for big data in the internet and beyond.

Rutgers University - DIMACS.

Engle, C., A. Lupher, R. Xin, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica (2012).

Shark: Fast data analysis using coarse-grained distributed memory. In Proceedings of the

2012 ACM SIGMOD International Conference on Management of Data, SIGMOD ’12, New

York, NY, USA, pp. 689–692. ACM.

Esteves, S., J. a. N. Silva, J. a. P. Carvalho, and L. Veiga (2015, May). Incremental dataflow

execution, resource efficiency and probabilistic guarantees with fuzzy boolean nets. J. Parallel

Distrib. Comput. 79 (C), 52–66.

Foundation, A. S. (2016). Apache hadoop yarn. https://hadoop.apache.org/docs/r2.7.1/

hadoop-yarn/hadoop-yarn-site/YARN.html. Accessed: 2016-08-07.

Garg, N. (2013). Apache Kafka. Packt Publishing.

Gibbons, P. B. (2001). Distinct sampling for highly-accurate answers to distinct values queries

and event reports. In Proceedings of the 27th International Conference on Very Large Data

Bases, VLDB ’01, San Francisco, CA, USA, pp. 541–550. Morgan Kaufmann Publishers Inc.

https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/YARN.html

5.2. FUTURE WORK 55

Gibbons, P. B. and Y. Matias (1998). New sampling-based summary statistics for improving ap-

proximate query answers. In Proceedings of the 1998 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’98, New York, NY, USA, pp. 331–342. ACM.

Goiri, I., R. Bianchini, S. Nagarakatte, and T. D. Nguyen (2015). Approxhadoop: Bringing ap-

proximations to mapreduce frameworks. In Proceedings of the Twentieth International Confer-

ence on Architectural Support for Programming Languages and Operating Systems, ASPLOS

’15, New York, NY, USA, pp. 383–397. ACM.

Hu, W. and B. Zhang (2012). Study of sampling techniques and algorithms in data stream

environments. In Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International

Conference on, pp. 1028–1034. IEEE.

Krishnan, D. R., D. L. Quoc, P. Bhatotia, C. Fetzer, and R. Rodrigues (2016). Incapprox: A

data analytics system for incremental approximate computing. In Proceedings of the 25th

International Conference on World Wide Web, WWW ’16, Republic and Canton of Geneva,

Switzerland, pp. 1133–1144. International World Wide Web Conferences Steering Committee.

Sun, L., M. J. Franklin, S. Krishnan, and R. S. Xin (2014). Fine-grained partitioning for

aggressive data skipping. In Proceedings of the 2014 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’14, New York, NY, USA, pp. 1115–1126. ACM.

Tatbul, N., U. Çetintemel, and S. Zdonik (2007). Staying fit: Efficient load shedding techniques

for distributed stream processing. In Proceedings of the 33rd International Conference on

Very Large Data Bases, VLDB ’07, pp. 159–170. VLDB Endowment.

Tatbul, N., U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker (2003). Load shedding

in a data stream manager. In Proceedings of the 29th International Conference on Very Large

Data Bases - Volume 29, VLDB ’03, pp. 309–320. VLDB Endowment.

Tatbul, N. and S. Zdonik (2006). Window-aware load shedding for aggregation queries over data

streams. In Proceedings of the 32Nd International Conference on Very Large Data Bases,

VLDB ’06, pp. 799–810. VLDB Endowment.

Thusoo, A., J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and

R. Murthy (2009, August). Hive: A warehousing solution over a map-reduce framework.

Proc. VLDB Endow. 2 (2), 1626–1629.

56 CHAPTER 5. CONCLUSIONS

Toshniwal, A., S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,

K. Gade, M. Fu, J. Donham, et al. (2014). Storm@ twitter. In Proceedings of the 2014

ACM SIGMOD international conference on Management of data, pp. 147–156. ACM.

Vitter, J. S. (1985, March). Random sampling with a reservoir. ACM Trans. Math. Softw. 11 (1),

37–57.

White, T. (2009). Hadoop: The Definitive Guide (1st ed.). O’Reilly Media, Inc.

Zaharia, M., M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica (2010). Spark: Cluster

computing with working sets. In Proceedings of the 2Nd USENIX Conference on Hot Topics

in Cloud Computing, HotCloud’10, Berkeley, CA, USA, pp. 10–10. USENIX Association.

Zaharia, M., T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica (2013). Discretized streams:

Fault-tolerant streaming computation at scale. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, SOSP ’13, New York, NY, USA, pp. 423–438.

ACM.

	Introduction
	Context
	Motivation
	Current Shortcomings

	Goals and Contributions
	Document Structure

	Related Work
	Approximate Query Systems
	Stream Processing Systems
	Sampling Methods
	Contributions

	Solution
	Use case example
	Details on the Apache Spark Streaming Distributed Architecture
	Sampling Algorithms
	Congressional algorithm
	Distinct Value algorithm
	Algorithm Summary

	Software Architecture
	Implementation Details
	Platform Specific details

	Evaluation
	Experimental Configuration
	Assessment Criteria

	Benchmarks and Assessment
	Metrics used
	Assessment goals

	Apple NASDAQ Tweets
	Discussion and analysis

	US Technology Companies Stock
	Discussion and analysis

	New York Taxi logs
	Discussion and analysis

	Online Retailer
	Discussion and analysis

	Conclusions
	Conclusions
	Future Work

	Bibliography

