
Mecanismos para a Fiabilidade (Replicação, Tolerância a
Faltas, Checkpointing) de Execução de Tarefas em

Ambientes Cycle-Sharing

João Filipe Ramos Paulino

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática e de Computadores

Júri

Presidente: Professor Doutor Alberto Manuel Ramos da Cunha
Orientador: Professor Doutor Luı́s Manuel Antunes Veiga
Co-orientador: Professor Doutor Paulo Jorge Pires Ferreira
Vogais: Professor Doutor David Manuel Martins de Matos

Outubro 2010

Resumo

O particionamento de tarefas de longa duração em pequenas tarefas que são executadas par-

alelamente em varias máquinas pode acelerar a execução global da tarefa de longa duração.

Esta técnica foi explorada em Clusters, em Grids e mais recentemente em sistemas Peer-to-peer.

Contudo, a transposição destas ideias de ambientes controlados (e.g., Clusters e Grids) para am-

bientes públicos (e.g., Peer-to-peer) levanta alguns desafios quanto à sua fiabilidade: será que

um participante vai devolver o resultado da tarefa que lhe foi adjudicada ou vai falhar durante

a sua execução? E se devolver um resultado, será esse o verdadeiro resultado da tarefa ou serão

apenas dados aleatórios? Estes desafios exigem a introdução de mecanismos de verificação de

resultados e de checkpoint/restart que melhorem a fiabilidade dos sistemas de computação de

alto desempenho que envolvam a partilha de ciclos em ambientes públicos. Neste trabalho,

propomos e analisamos uma abordagem em duas vertentes: i) mecanismos de checkpoint/restart

que permitem mitigar a natureza volátil dos participantes; e ii) estratégias de verificação de re-

sultados que permitem aferir a correcção dos mesmos.

Abstract

The partitioning of a long running task into smaller tasks that are executed in parallel in sev-

eral machines can speed up the execution of a computationally expensive task. This has been

explored in Clusters, in Grids and lately in Peer-to-peer systems. However, transposing these

ideas from controlled environments (e.g., Clusters and Grids) to public environments (e.g.,

Peer-to-peer) raises some reliability challenges: will a peer ever return the result of the task that

was submitted to it or will it crash? and, even if a result is returned, will it be the accurate re-

sult of the task or just some random bytes? These challenges demand the introduction of result

verification and checkpoint/restart mechanisms to improve the reliability of high-performance

computing systems in public environments. In this paper, we propose and analyse a twofold

approach: i) checkpoint/restart mechanisms to mitigate the volatile nature of the participants;

and ii) result verification strategies to improve the reliability of the results.

Palavras Chave

Keywords

Palavras Chave

Tolerância a Faltas

Fiabilidade

Verificação de Resultados

Checkpoint/Restart

Partilha de Ciclos

Computação Pública

Keywords

Fault-tolerance

Reliability

Result Verification

Checkpoint/Restart

Cycle-sharing

Public Computing

Index

1 Introduction 1

1.1 Grid Computing . 1

1.2 Peer-to-peer . 2

1.3 Public Computing . 2

1.4 GINGER (Grid Infrastructure for Non Grid EnviRonments) 3

1.5 Objectives and Contributions . 4

1.5.1 Result Verification . 4

1.5.2 Checkpoint/Restart . 5

1.6 Document Structure . 5

1.7 Scientific Publications . 6

2 Related Work 7

2.1 Peer-to-Peer Systems . 7

2.1.1 Applications . 8

2.1.2 Architectures . 9

2.1.3 Network Overlay Centralization . 9

2.1.4 Network Overlay Structure . 12

2.2 Cycle-sharing . 13

2.2.1 Applications . 14

2.2.2 Architectures . 14

i

2.3 Result Verification . 15

2.3.1 Incorrect Results . 15

2.3.2 Techniques . 17

2.3.3 Reputation Mechanisms . 19

2.4 Checkpoint/Restart . 20

2.4.1 Implementation Approach . 20

2.4.2 Distributed Applications . 22

2.4.3 Non-determinism Support . 24

2.4.4 Enhancements . 24

3 Architecture 27

3.1 Architecture of GINGER . 27

3.2 Fault Model . 29

3.3 Result Verification . 29

3.3.1 Incremental Replication . 30

3.3.2 Replication using Overlapped Partitionings 31

3.3.3 Replication using Relaxed Partitionings . 31

3.3.4 Replication using Meshed Partitionings . 32

3.3.5 Random Sampling . 33

3.3.6 Samplication . 34

3.4 Checkpoint/Restart . 35

3.4.1 Through a Virtual Machine’s Running Image 36

3.4.2 Through the Result Files . 37

ii

4 Implementation 39

4.1 Simulator . 39

4.1.1 Participants . 40

4.1.2 Task . 41

4.1.3 Result Verification Strategy . 41

4.1.4 Simulation Results . 42

4.1.5 Example of a Simulation . 42

4.2 Deployment . 43

4.2.1 Application Manager . 44

4.2.2 Gridlet . 46

4.2.3 Atomic Result . 46

5 Evaluation 49

5.1 Result Verification Mechanisms . 49

5.1.1 Replication . 49

5.1.2 Incremental Replication . 50

5.1.3 Replication using Overlapped Partitionings 51

5.1.4 Replication using Meshed Partitionings . 52

5.1.5 Replication and Random Sampling . 53

5.1.6 Samplication . 55

5.2 Checkpoint/Restart . 56

5.2.1 Through a Virtual Machine’s Running Image 57

5.2.2 Through the Result Files . 59

6 Conclusions 63

6.1 Future Work . 64

iii

iv

List of Figures

2.1 Inverted client-server architecture in cycle-sharing systems. 15

2.2 Architecture of Cluster Computing On the Fly. 16

2.3 Example of an hash tree. 18

3.1 Architecture of GINGER. 28

3.2 The same work divided differently, creating an overlapped partitioning. 31

3.3 Overlapped tasks for relaxed replication. 31

3.4 Meshed partitioning using replication factor 2. 32

3.5 Meshed partitioning: results of the comparison points (1 means equal, 0 means

not equal). 33

3.6 Sampling for an image. 33

4.1 Evolution of the mean of the percentage of bad results accepted through 10000

simulations. 40

5.1 Correlation between the percentage of bad results accepted and the percentage

of colluders in the system for various replication factors (colluders return results

100% forged). 50

5.2 Amount of work performed using incremental replication with replication fac-

tors 3 to 9 in a varying number of colluders scenario (colluders return results

100% forged). 51

5.3 Amount of work performed using incremental and standard replication with

replication factor 3 in a varying number of faulty participants scenario. 52

v

5.4 Replication using Standard Partitioning Vs. Replication using Overlapped Par-

titioning, using replication factor 3 (colluders return results 100% forged). 53

5.5 Replication bi-dimensional Meshed Partitionings before rescheduling of work,

in a scenario where colluders return results 100% corrupted. 54

5.6 Replication and Random Sampling using replication factor 3 and different num-

bers of samples in scenarios with different amounts of colluders (colluders return

results 50% forged). 55

5.7 Result Verification - Samplication: percentage of wrong results accepted in a sce-

nario where return results 50% corrupted. 56

5.8 Result Verification - Samplication: average number of samples executed, using

various replication factors (colluders return results 50% forged). 57

5.9 Result Verification - Samplication: number of times the base work is executed,

considering the rescheduling (colluders return results 50% forged). 58

5.10 Checkpoint/restart through the result files: Previewing of a Ray-tracing result

at execution time. 61

vi

List of Tables

2.1 Peer-to-peer degree of centralization. 11

5.1 Checkpoint/restart through a virtual machine’s running image: checkpoint data

size using VirtualBox and Ubuntu Desktop 9.10. 59

5.2 Checkpoint/restart through a virtual machine’s running image: checkpoint data

size using 7zip compression. 59

5.3 Checkpoint/restart through the result files: time overhead during fault-free ex-

ecution. 60

5.4 Checkpoint/restart through the result files: time overhead pay-off during faulty

execution. 60

vii

viii

1Introduction
The execution of long running applications has always been a challenge. Even with the lat-

est developments of faster hardware, the execution of many long running algorithms is still

infeasible by common computers, for it would take months or even years. Even though super-

computers could speed up these executions to days or weeks, some cannot afford them. The

idea of executing this in several common machines in parallel was first explored in networks

or clusters of workstations (Sterling et al. 1995; Anderson et al. 1995), using dozens of dedi-

cated homogeneous machines locally interconnected. Later, grid computing systems explored

the opportunistic use of hundreds of heterogeneous machines owned by institutions. Most re-

cently, with public computing systems (Anderson et al. 2002; Larson et al. 2009), it became

possible to harvest spare CPU cycles present in thousands of machines owned by the general

public. Many public computing projects have been successful, and have shown that the general

public is willing to donate their CPU cycles to global causes. However, no project has success-

fully enabled the users to speed-up their long running applications. Ginger proposes to fill this

gap by merging grid computing, peer-to-peer and public computing.

1.1 Grid Computing

Grid computing aims at providing a virtual super-computer with increased capabilities at a low

cost. These systems are composed by well managed hardware (e.g., workstations) owned by

multiple institutions geographically distributed around the Globe. Mutka and Livny (Mutka

& Livny 1988) studied the patterns of activity of institutional workstations and observed that

they are idle up to 70% of the time. Grid computing makes good use of these idle cycles pro-

viding a high performance execution environment with no perceptive additional costs. Projects

like Globus (Foster & Kesselman 1996) and MyGrid (Costa et al. 2004) have studied the imple-

2 CHAPTER 1. INTRODUCTION

mentation of grid infrastructures that provide high-level meta-computing services enabling the

efficient development of applications. The Condor project (Litzkow et al. 1988) takes advantage

of CPU cycles present in idle workstations to speed up the work on the busiest ones.

1.2 Peer-to-peer

Peer-to-peer systems do not have a widely accepted definition. Many definitions can be found,

Clay Shirky (Shirky 2002) wrote:

“An application is peer-to-peer if it aggregates resources at the network’s edge, and those

resources can be anything. It can be content, it can be cycles, it can be storage space, it can

be human presence.”

Therefore, peer-to-peer systems are used to share resources like memory, CPU, storage, band-

width, and even human presence between peers located at the edges of the Internet. The major-

ity of the definitions agree on this point, the hot topic of discussion is the architecture. Consid-

ering the Client-Server model entities, the client and the server, we can define a peer saying that

it implements the functionalities of both client and server. In some systems, the peers rely on a

central server for support services (e.g., bootstrapping) or even for some basic operation func-

tions (e.g., indexing and searching). Some authors argue that there can be some central entity,

though the sharing of resources must be done directly between peers, others argue that in peer-

to-peer there is no central entity whatsoever. Apart from the definition, peer-to-peer systems

are characterized by their scalability, their ability to adapt to failures and their capability of

accommodating highly transient node populations while maintaining acceptable connectivity

and performance.

1.3 Public Computing

Public computing stems from the fact that the World’s computing power and disk space is no

longer exclusively concentrated in supercomputer centres and machine rooms. Instead, it is

distributed in the hundreds of millions of personal computers and game consoles belonging

to the general public. By combining ideas from grid computing and peer-to-peer systems, it is

possible to take advantage of idle resources of personal computers. Public computing emerged

1.4. GINGER (GRID INFRASTRUCTURE FOR NON GRID ENVIRONMENTS) 3

in the mid-90’s with projects like distributed.net (distributed.net 1997) and GIMPS (GIMPS

2010).

Public computing projects, so far, focus on mankind-related causes: Seti@home (Anderson

et al. 2002) analyses radio signals trying to find evidence of extraterrestrial life; Folding@home

(Larson et al. 2009) searches for the cures of diseases like cancer, Parkinson’s, Alzheimer’s,

etc. studying how proteins fold; distributed.net (distributed.net 1997) solves brute-force cryp-

tographic challenges exposing vulnerabilities; GIMPS (GIMPS 2010) searches Mersenne prime

numbers.

In order to motivate public to donate their spare cycles to such causes, these projects usu-

ally have public ranking tables or in some cases money prizes. Public computing projects

have attracted great attention from the general public, communities have been created around

the projects showing that the volunteers are willing to actively participate in these projects.

David P. Anderson (Anderson 2003) claims that it is expected that in the future many more

research projects will take advantage of volunteer execution and people will have to choose

which projects are worth to consume their cycles, these choices can condition the evolutionary

path of science in a democratic way.

Nonetheless, none of the high-performance computing systems developed so far enables

the general public to run their common desktop applications faster.

1.4 GINGER (Grid Infrastructure for Non Grid EnviRon-
ments)

GINGER (Veiga et al. 2007) proposed a network of favours where every peer is able to submit

its work-units to be executed on other peers and execute work-units submitted by other peers

as well. GINGER combines institutional grid infrastructures, distributed cycle sharing and

decentralized Peer-to-peer architectures. GINGER is able to run unmodified common desktop

applications, however not all applications are fit for distributed computing:

“ To be amenable to public computing, a task must be divisible into independent pieces whose

ratio of computation to data is high (otherwise the cost of Internet data transfer may exceed

the cost of doing the computation centrally). ” (Anderson 2003)

4 CHAPTER 1. INTRODUCTION

In order to be able to run an interesting variety of applications, GINGER proposes the concept

of Gridlet, a semantics-aware unit of workload division and computation off-load (basically the

data, and the code or a reference to it). GINGER is expected to run applications like audio and

video compression, signal processing related to multimedia content (e.g., photo, video and

audio enhancement, motion tracking), content adaptation (e.g., transcoding), and intensive

calculus for content generation (e.g., ray-tracing, fractal generation).

1.5 Objectives and Contributions

The migration of distributed computing systems from controlled environments (e.g., Clusters,

Grids) to public environments (e.g., Peer-to-peer) raises several challenges. While Clusters

and Grids make use of machines that 1) are managed by IT professionals, 2) have uptimes of

24 hours per day and 3) are trustful, Peer-to-peer faces issues of malicious behaviour, highly

transient participants and users without enough IT know-how.

This work analyses mechanisms that improve the robustness of public computing systems:

result verification strategies to determine the correctness of the returned results; and check-

point/restart mechanisms to minimize the negative impact of volatile participants.

1.5.1 Result Verification

The untrusted nature of the participants demands the verification of every partial result, the

returned results may be wrong due to the occurrence of a fault or malicious behaviour. The

system must be able to identify these bad results, discard them and ensure that a correct one

will be computed and accepted.

The techniques used to identify bad results incur considerable overhead. None of the result

verification techniques developed is able to ensure with 100% certainty that a result is correct,

though in some cases they can identify an incorrect one. The degree of certainty that a result is

correct usually grows along with the overhead the technique incurs. Therefore, a compromise

between the overhead and the reliability of the results can be found, this compromise must be

dynamically adaptable to the variable conditions/resources of the system.

1.6. DOCUMENT STRUCTURE 5

1.5.2 Checkpoint/Restart

The volatile nature of the participants can have a negative impact on the performance of the

execution. Once a task has been assigned to a participant, we have no guaranties whatsoever

that: 1) the participant is executing the task; 2) the participant will not fail/leave during the

execution. Upon detection of one of these, the system reschedules the task to another partici-

pant and waits for the results to be retrieved. The rescheduling may happen several times, or

possibly infinite times if no participant is available enough time to complete the task, leading

to the never ending of a task.

To overcome this issue, the majority of the high performance computing systems imple-

ment checkpoint/restart mechanisms. Checkpointing is the process of saving a running ap-

plication state to stable storage (e.g., to a file in the local disk). This file can be used later to

resume the application’s execution from the point when it was saved. This minimizes the loss

of the already performed work on the occurrence of a fault, allowing the rescheduling of the

remaining work only.

Providing a specific application with checkpoint/restart capabilities is always possible if

the application is being developed from scratch. However, in GINGER we face the challenge of

providing a wide range of already existing applications with these capabilities without modi-

fying them. Checkpointing systems may also enable the monitoring of the execution, the pre-

viewing of the results and the work migration (for matters of performance).

1.6 Document Structure

The next Chapter analyses the state of the art in the following areas: peer-to-peer, cycle-sharing,

result verification and checkpoint/restart. Chapter 3 describes: the GINGER overall architec-

ture; the faults and non-regular behaviour that must be handled; several result verification

strategies based in replication and sampling; and two checkpoint/restart enabling techniques,

through a virtual machine’s running image, and through the result files. Chapter 4 describes

our twofold implementation: a simulator that returns metrics that are used to evaluate the be-

haviour of the result verification strategies in environments with large populations; and a real

deployment that proves that our techniques are easily implementable. Chapter 5 makes an

evaluation of the proposed result verification and checkpoint/restart techniques considering

6 CHAPTER 1. INTRODUCTION

the benefits they provide against the overhead they incur. Chapter 6 concludes.

1.7 Scienti�c Publications

A preliminary version of this work was partially described in a scientific paper published

and presented at INForum 2010, under the title Exploring Fault-tolerance and Reliability in a

Peer-to-peer Cycle-sharing Infrastructure, and can be found at http://inforum.org.pt/

INForum2010/papers/computacao-distribuida-de-larga-escala/Paper106.

pdf.

http://inforum.org.pt/INForum2010/papers/computacao-distribuida-de-larga-escala/Paper106.pdf
http://inforum.org.pt/INForum2010/papers/computacao-distribuida-de-larga-escala/Paper106.pdf
http://inforum.org.pt/INForum2010/papers/computacao-distribuida-de-larga-escala/Paper106.pdf

2Related Work

This Chapter presents the state of the art of this work’s central topics. The next Section analy-

ses peer-to-peer systems (Ranjan et al. 2008; Barkai 2001; Androutsellis-Theotokis & Spinellis

2004). Section 2.2 describes cycle-sharing systems (Anderson et al. 2002; Larson et al. 2009).

Section 2.3 describes how result verification is done in public computing systems. Finally, Sec-

tion 2.4 explains the checkpoint/restart enabling techniques(Treaster 2005; Elnozahy et al. 2002;

Maloney & Goscinski 2009).

2.1 Peer-to-Peer Systems

Peer-to-peer lacks a consensual formal definition. Common users understand peer-to-peer as

the type of applications that allow them to be part of communities that cooperate by exchang-

ing files. Their perception is biased by the most popular peer-to-peer systems deployed over

the Internet so far. Projects like Napster (Napster 1999), KaZaA (KaZaA 2000) and BitTorrent

(BitTorrent 2003) have successfully enabled users to exchange files among themselves. More

generally peer-to-peer can be defined as the type of systems that take advantage of the re-

sources (i.e., content, CPU cycles, storage space, human presence) located in the edges of a

network (i.e., end user machines). These systems are composed by thousands of volatile par-

ticipants. Peer-to-peer systems are capable of accommodating transient populations with min-

imal impact on the core business of the system (i.e., the exchange of resources). The sum of

all the resources present in these systems often surpasses the resources owned by any institu-

tion. Therefore, the correct aggregation and use of these resources can unleash an enormous

potential.

8 CHAPTER 2. RELATED WORK

2.1.1 Applications

Peer-to-peer systems fall into one or more of the following application categories: Distributed

Computing, Content Sharing, Collaboration.

Distributed Computing Systems

These systems take advantage of computing power located at the edges of the network to

speed-up the execution of computationally expensive tasks. In order to prevent the user’s

frustration due to a lack of computational power, these applications usually execute as low pri-

ority processes or only when the computer is idle, acting like screen-savers (Anderson 2004).

All distributed computing systems work under the same assumptions: a computationally ex-

pensive task is divisible into smaller independent work-units; once these work-units have been

executed, their results can be aggregated producing the result of the long running task. This

parallelization of the computation leads to a better performance. Nevertheless, only some com-

putational tasks are appropriate to this model of execution and even if they are, they may not

have a visible speed-up if they have a low computation-transmission ratio (this ratio is ex-

plained in more detail in Section 2.2).

Examples of these are Seti@Home (Anderson et al. 2002), GIMPS (GIMPS 2010), dis-

tributed.net (distributed.net 1997), Folding@home (Larson et al. 2009). Nonetheless, some

authors disagree that these are Peer-to-peer systems, for the participants are cycle farms that

an institution explores. There is no actual exchange of resources, participants donate their spare

cycles to a cause they regard as legitimate. These projects usually attract their participants us-

ing other incentives, Section 2.2 explains these incentives.

GINGER (Veiga et al. 2007) is a Peer-to-peer Distributed Computing System that enables

the participants to exchange cycles among themselves, being every participant able to execute

tasks for other participants and submit his own tasks to be executed in participants as well.

Content Sharing Systems

These are the most popular peer-to-peer systems. These systems appeared as means to circum-

vent the servers inability to provide large files to multiple users simultaneously, given their

limited bandwidth. Considering a network composed by thousands of participants, a file can

2.1. PEER-TO-PEER SYSTEMS 9

be replicated from dozens to hundreds of times depending on its popularity. This replication

enabled users to download different parts of the same file from several users simultaneously,

creating a distribution system with no bandwidth bottlenecks. Content Sharing systems enable

their participants to exchange their files within a community.

The contents shared in these systems are usually digital media (e.g., music, films, books).

Napster (Napster 1999) was one of the first systems that distributed music in MP3 digital audio

format. KaZaA (KaZaA 2000) and BitTorrent (BitTorrent 2003) are examples of other peer-to-

peer systems that enable the distribution of content through the internet.

Collaboration Systems

These systems enable people to interact in real-time. The resource being shared is human pres-

ence. Since human presence is always located at the edges of the network, all instant messag-

ing and multi-player gaming can be considered peer-to-peer. Instant messaging, audio/visual

communication, and on-line gaming are examples of collaboration systems.

2.1.2 Architectures

Considering the Client-Server Model, there exist two entities: the Client, and the Server. The

client distinguishes itself from the server for always being the one that starts the communica-

tion. The client requests a resource from the server and the server replies with the required

resource. A peer implements both the functionalities of client and server (other definitions for

peer are node, or servent).

A peer-to-peer system is composed by a massive amount of interconnected symmetric

peers. Nevertheless, some peer-to-peer systems require other entities than the peers to operate:

super-peers or central servers.

2.1.3 Network Overlay Centralization

Considering the peer, super-peer, and central server entities, we can classify the peer-to-peer

systems in terms of their network overlay centralization into: Purely Decentralized, Partially

Centralized, and Hybrid Decentralized architectures.

10 CHAPTER 2. RELATED WORK

Purely Decentralized Architectures

These architectures are composed exclusively by peers: Every peer in the network implements

the same functionality. Peers communicate directly with each other, the exchange of resources

is done directly between two peers. This is peer-to-peer in its purest form: completely decen-

tralized without single points of failure. However, the location of participants or resources is a

challenging issue in these architectures.

Freenet (Clarke et al. 2001) uses a purely decentralized data storage system. Participants

contribute with storage space to provide a non-censurable network of contents. This is possible

given that these architectures have no single points of failure.

Partially Centralized Architectures

These architectures are composed by peers and super-peers. Super-peers are peers which have

been assigned to perform additional tasks while maintaining their basic peer functionalities.

They are chosen to become super-peers if they provide some abundant resource (e.g., band-

width). The additional tasks are usually aggregation of knowledge about the system in order

to improve performance (e.g., of searching). The exchange of resources is done directly between

peers and super-peers. Since super-peers are dynamically assigned, they do not constitute sin-

gle points of failure or scalability issues (if a super-peer fails, another peer is chosen to become

a super-peer).

In KaZaA peers with high bandwidth become super-peers that maintain an index of the

files located in a set of peers with lower bandwidth.

Hybrid Decentralized Architectures

These architectures are composed by peers and a central server. The exchange of resources is

done directly between two peers. The central server performs complementary, but essential,

tasks (e.g., bootstrapping, indexing of resources or participants). This central server enables

an efficient location of participants and resources. Nonetheless, the central server constitutes a

single point of failure and limits the scalability of the system.

In Napster all the indexing was stored in a central server. Peers queried the server for

2.1. PEER-TO-PEER SYSTEMS 11

file locations, to further download from. The central server was an issue to scalability and

constituted a single point of failure.

Beside these three degrees of centralization, there are other systems which are considered

by some authors as peer-to-peer systems. Seti@Home (Anderson et al. 2002) is on the frontier

that separates the Client-server model from the peer-to-peer model. In terms of architecture, its

approach resembles client-server since there is no communication or resource trading between

peers. Conceptually, it takes advantage from resources at the edges of the Internet and therefore

must be considered peer-to-peer.

D. Anderson has referred to the model as ”inverted client-server”, since the power resides

on the edges of the Internet, the central server only coordinates it. Even though the ”power” is

decentralized, it does not fit in the more increased degree of decentralization defined for peer-

to-peer systems, since there is no direct exchange of resources between the peers (peers provide

a resource to a central server).

Table 2.1: Peer-to-peer degree of centralization.

Table 2.1.3 resumes the peer-to-peer systems according to their overlay centralization cate-

gories.

12 CHAPTER 2. RELATED WORK

2.1.4 Network Overlay Structure

Peer-to-peer systems can also be classified having into consideration the way their network

overlay1 is structured. It basically defines the connections that exist among the peers in a peer-

to-peer system. Systems have been built with structured, unstructured, and hybrid network

overlay topologies.

Unstructured Systems

These systems create their overlay in an ad-hoc manner, not following any specific rules. A

peer is connected to a random set of other peers. The placement of content and info is not re-

lated to the network overlay. Peer-to-peer is all about resources, being these resources scattered

throughout the peers. We must be able to locate them. The usual searching mechanisms vary

from flooding, to other more elegant techniques (e.g., random walks, routing indexes). Never-

theless, these techniques have a limited scope which might become a problem when searching

for a rare item, though they work well for popular content. Unstructured systems are gener-

ally more appropriate for accommodating highly-transient node populations, since the over-

head incurred by a peer that joins or leaves the network is negligible. Napster (Napster 1999),

KaZaA (KaZaA 2000) are examples of unstructured systems.

Structured Systems

These systems create an overlay that obeys strict rules. A node knows and is known by a clearly

defined set of other peers. In these systems, there is a clear mapping between the identifiers of

a node/content and their location in the overlay. The mapping is done using hash functions,

creating a distributed hash table indexing structure. This indexing allows nodes and contents to

be located in the network within a few steps. However, the accommodation of highly transient

populations can generate a significant overhead, since the overlay has to be reorganized when

a peer joins or leaves the system. Another disadvantage of these systems is their inability in

locating content when an exact name or identifier cannot be provided. Chord (Stoica et al.

2001) and CAN (Ratnasamy et al. 2001) are examples of structured systems.

1The network overlay is the virtual network built on top of the real network.

2.2. CYCLE-SHARING 13

Chord was the first structured peer-to-peer system. Chord maps nodes and content using

the same hash function, positioning them in a ring shaped overlay. Each node is responsible

for maintaining a subset of the contents (or pointers to it), this subset is based in ranges of the

hashes of the identifiers (e.g., between the node identifier and its successor identifier).

Content-Addressable Network (CAN) is another structured peer-to-peer system. CAN

places nodes and content in a virtual n-dimensional Cartesian space. Each node is responsi-

ble for a zone of the space.

Hybrid Systems

These systems combine the previous systems exploring the advantages of both, while avoiding

their drawbacks. Building a system with two separate overlays (one structured and one un-

structured) is possible. However, this naive approach would generate high overheads. Pastry

(Rowstron & Druschel 2001) and Kademlia (Maymounkov & Mazières 2002) have developed

more elegant techniques that conciliate structured and unstructured models.

Pastry organizes the nodes in a circle according to their node identifiers, like Chord. It

routes a message to the node whose identifier has the longest common prefix. In addition, it

maintains a table with the closest peers identifiers and locations.

Kademlia assigns 160 bit identifiers to nodes and content using the SHA-1 function. The

overlay can be seen as a binary tree. Every node knows at least one node in each of its sub-trees.

This enables a node to find any other node in the network.

2.2 Cycle-sharing

Cycle sharing systems are distributed systems that execute a long running application in par-

allel in order to speed it up. These high performance computing systems are mostly composed

by non-dedicated machines. These systems emerged in institutional environments (Litzkow

et al. 1988) and were later transposed to public environments (Anderson et al. 2002). Some

problems that were already addressed in the institutional environments had to be reconfigured

to public environments (e.g., resource location). Other issues, like fairness, trust, incentives and

security are current research topics.

14 CHAPTER 2. RELATED WORK

2.2.1 Applications

Most of the Cycle-sharing systems developed so far focus on the execution of long running

tasks related to Human causes: Folding@home simulates the folding of proteins which may

lead to a better understanding and possible cure of certain diseases; Seti@home analyses radio

signals in order to find evidence of intelligent extraterrestrial life. Such projects have attracted

more attention than initially predicted, and show that the general public is willing to donate

their spare CPU cycles. They created communities around these projects/causes through fo-

rums, ranking tables, teams, statistics, that they believe resulted as a crucial incentive to the

participants.

Nonetheless, other applications are fit to the Cycle-sharing execution model like: ray-

tracing, fractal generation, video transcoding. To be amenable to distributed computation,

must be possible for the application to have its work partitioned in multiple tasks that exe-

cute separately. Plus, the applications must perform a considerable amount of execution over

a relatively small portion of data, otherwise the transmission cost would make the computing

non-profitable. This relation between the portion of data and the amount of computation is

called computation-transmission ratio and impacts the size of the tasks. For example, the POV-

Ray data is always the whole POV file, no matter if we want to calculate a pixel, a line or the

whole image. The amount of data to be transferred for calculating a pixel would produce a

low, non-profitable, computation-transmission ratio.

2.2.2 Architectures

The majority of the cycle-sharing systems developed are based on an inverted client-server

architecture. In these architectures, there is no communication between clients. All the clients

communicate with a central server only. These architectures are fit for projects that harness idle

cycles of hardware owned by the general public to perform computation related with global

causes. Figure 2.2.2 shows an inverted client-server architecture where a server communicates

with a group of heterogeneous machines.

Cluster Computing On the Fly (Lo et al. 2004) proposed a complex architecture where users

join communities depending on how they would like to donate their cycles. These communi-

ties are transformed into community-based overlay networks. Then, clients form a computer

2.3. RESULT VERIFICATION 15

Figure 2.1: Inverted client-server architecture in cycle-sharing systems.

cluster on the fly from these overlays. Figure 2 shows the architecture of Cluster Computing

On the Fly.

2.3 Result Veri�cation

To speed up the execution of long running algorithms, high performance public computing sys-

tems schedule jobs to be executed in other participants. These participants may not be trusted

and return wrong results. Verifying the correctness of the results is a very expensive task. An

exhaustive verification of these results would cause a major slowing down of the system, de-

feating its purpose. Therefore, the results must be verified using an affordable reliability level.

2.3.1 Incorrect Results

Wrong results can have different motivations. Taking into account their motivations they can

be distinguished into faulty (non-intentional wrong results) and malicious results (results that

are intentionally forged).

16 CHAPTER 2. RELATED WORK

Figure 2.2: Architecture of Cluster Computing On the Fly.

Faulty Results

These results have no motivation: they are originated by faults or byzantine behaviour. Al-

though they can generate unpredictable wrong results, both types usually produce incoherent

results that are relatively easy to identify, when compared with results that are intentionally

forged with malicious motivations.

Malicious Results

These results are intentionally created to harm the system. They are attacks that explore the

vulnerabilities of the system, causing it to work inappropriately. These results usually fall into

one of the following subcategories: cheating, isolated, collective.

Cheating malicious results are returned by cheating participants to receive credit for the

work they have not performed. These are only profitable to the malicious participant if the

cost of forging them is inferior to the cost of the task. The majority of the cycle sharing sys-

tems motivates participants through communities, teams, awards, and ranking tables. Some

participants are willing to corrupt their results to receive credit for work they did not perform

(Molnar 2000).

Isolated malicious results are forged by a malicious participant to discredit the system. This

forging usually takes into account possible vulnerabilities of the result verification mechanisms

2.3. RESULT VERIFICATION 17

and produces a forged result at any cost.

Collective malicious results intend to harm systems that use replication as means to verify

their results. To perform these, attacks several participants return the same bad result, max-

imizing the chances of this bad result being the one chosen in the voting quorums (Douceur

2002). This is know as collusion and requires communication between the malicious partici-

pants to identify if they are performing the same task.

2.3.2 Techniques

Several techniques have been proposed to identify bad results. Techniques vary in their com-

plexity, overhead, and effectiveness. However, no single technique can identify all the types

of bad results we have defined. Nevertheless, it has been demonstrated that these techniques,

combined with a reputation system, can improve the reliability of the results produced by the

system (Zhao et al. 2005).

Replication

One of the most effective methods to identify bad results is through redundant execution and

comparison between results. In these schemes, the same job is performed by N different partic-

ipants (N being the replication factor). The results are compared using voting quorums, and, if

there is a majority, the corresponding result is accepted.

Since it is virtually impossible for a fault or a byzantine behaviour to produce the same bad

result more than once, this technique easily identifies and discards the bad ones. However, if

a group of participants colludes, it may be impossible to detect a bad result. Another disad-

vantage of redundant execution is the overhead it generates, since every job is executed, at the

very least, three times.

Most of the public computing projects use replication to verify their results, it is a high

price they are willing to pay to ensure their results are reliable. Seti@Home (Anderson et al.

2002) and Folding@Home (Larson et al. 2009) use redundant execution and voting quorums to

verify their results.

Replication consumes, at the very least, three times more resources than the ones that are

actually needed to perform the execution in order to produce more believable results. When

18 CHAPTER 2. RELATED WORK

there is no collusion, it is virtually capable of identifying all the bad results with 100% certainty.

Hash-Trees

This technique is able to defeat cheating participants by forcing them to calculate a binary hash-

tree from their results, and return it with them (Du et al. 2004). The submitting peer only has

to execute a small portion of a job and calculate its hash. Then, when receiving results, the

submitting peer compares the hashes and verifies the integrity of the hash-tree. Figure 2.3.2

shows a hash-tree where the leafs are partitioned sequential results or the data to be checked,

the hash is calculated using two consecutive parts of the result concatenated, starting by the

leafs. Once the tree is complete, the submitting peer executes at random a small portion of the

whole work (the selected sample) that corresponds to a leaf. Then, this result is compared to

the returned result and the hashes of the whole tree are checked.

This dissuades cheating participants because finding the correct hash-tree requires more

computation than actually performing the required computation and producing the correct

results.

Figure 2.3: Example of an hash tree.

Hash-trees make cheating not worthwhile. They have a relative low overhead: a small

portion of the work has to be executed locally and the hash tree must be checked. However,

they do not dissuade malicious participants that are willing to forge their results at any cost.

2.3. RESULT VERIFICATION 19

Quizzes

This technique consists in assigning jobs whose result is known by the submitter a priori.

Therefore, these jobs can test the honesty of a participant. Cluster Computing On the Fly (Lo

et al. 2004) proposed two types of quizzes: stand-alone and embedded quizzes.

Stand-alone quizzes are quizzes disguised as normal jobs. They can test if the executing

node executed the job. These quizzes are only useful when associated with a reputation system

(see 2.3.3) that manages the trust levels of the executing peers. However, the use of the same

quiz more than once can enable malicious peers to identify the quizzes and to fool the repu-

tation mechanisms. The generation of infinite quizzes with known results incurs considerable

overhead.

Embedded quizzes are smaller quizzes that are placed hidden in a job: the job result is

accepted if the results of the embedded-quizzes match the previously known ones. Embedded

quizzes can be used with or without a reputation system. However, their implementation tends

to be complex in most cases. Developing a generic quiz embedder is a software engineering

problem that has not been solved so far.

2.3.3 Reputation Mechanisms

Reputation mechanisms (Kamvar et al. 2003; Zhao et al. 2005) are inherent to security and

are beyond the scope of this work. Nonetheless, they can improve the reliability of the re-

sults by influencing the scheduler, preventing the assignment of work to participants that are

considered malicious or least trusted (e.g., blacklisting, ranking). In order to do so, the rep-

utation mechanism relies on the information provided by the result verification mechanisms.

Although the result verification mechanisms accept results that are believed as correct within

a predetermined probability, they can sometimes identify wrong results with certainty. There-

fore, the better the information provided by the result verification mechanisms, the better the

reputation mechanisms effectiveness.

20 CHAPTER 2. RELATED WORK

2.4 Checkpoint/Restart

Checkpointing is a primordial fault-tolerance technique. Long running applications usually

implement checkpointing mechanisms to minimize the loss of work already performed when

a fault occurs. Checkpoint consists in saving a program’s state to stable storage during fault-

free execution. Restart is the ability to resume a program that was previously checkpointed. In

high performance computing systems, checkpoint/restart mechanisms are not only used for

fault mitigation, they enable these systems to migrate the jobs taking the best advantage of

the systems present resources (i.e., load balance). Migration (Cezário & Sztajnberg 2008) is the

resuming of an application that was checkpointed elsewhere (on another machine) and can im-

prove the performance of a high performance distributed computing system that is composed

by dynamic heterogeneous participants.

2.4.1 Implementation Approach

To provide an application with checkpoint/restart capabilities, three approaches must be taken

into account: Application-level, Library-level, and System-level.

Application-level Checkpoint/Restart Systems

These systems are built within the application code requiring a big programming effort. If the

applications are not developed from scratch to support checkpointing mechanisms, it may be

impossible to provide them with checkpoint/restart capabilities later. Since the programmer

knows exactly what needs be safely stored to enable the application to restart in case of failure,

application-level checkpoint/restart are usually more efficient. They achieve a better perfor-

mance, and lower checkpoint data size. Applications may either checkpoint at time intervals,

or constantly persist the important data. Since these systems do not use any operating system

support, they are portable2.

However, the previous approach has some drawbacks: it requires major modifications to

application’s source code (its implementation is not transparent to the application); the appli-

cation will take checkpoints by itself and there is no way to order the application to checkpoint

2Portability is the ability of moving the checkpoint system from one platform to another

2.4. CHECKPOINT/RESTART 21

if needed; it may be hard, if not impossible, to restart an application that was not initially

designed to support checkpointing; and it is a very exhaustive, and exhausting, task to the

programmer. This programming effort can be minimized using pre-processors that add check-

pointing code to the application’s code, though they usually required the programmer to state

what needs to be saved (e.g., through flagged/annotated code).

Seti@home (Anderson et al. 2002) and folding@home (Larson et al. 2009) use this imple-

mentation approach, the checkpointing mechanisms are built within their algorithms.

Library-level Checkpoint/Restart Systems

These consist in linking a library with the application, creating a layer between the application

and the operating system that provides checkpoint/restart capabilities. The major advantage

is that it is possible to create generic checkpointing mechanism that is able to checkpoint a vast

range of applications without having to modify them, while maintaining portability.

However, the existing implementations are not able to checkpoint a vast range of applica-

tions, the major challenge is that these systems cannot access kernel’s data structures (e.g., file

descriptors), so this layer has to emulate operating system calls. This layer has no semantic

knowledge of the application and checkpoints may be taken in the least appropriate moments

generating considerable sized checkpoints. This layer may also be responsible for a slowdown

in the performance of the application.

Libckpt (Plank et al. 1995) implemented a virtually transparent checkpointing mechanism

(there is a minimal amount of the application’s code that has to be modified). It provides a user-

level library that can be linked with user’s applications, providing them with checkpointing

mechanisms. It is not portable, it has been designed to execute on UNIX. Libckpt is only able

to provide checkpoint/restart capabilities to a limited scope of applications because it cannot

access system states maintained by the kernel.

The Condor distributed processing system (Litzkow et al. 1997) studied the possibility

of using these mechanisms to provide several applications with checkpoint/restart and even

migration capabilities.

22 CHAPTER 2. RELATED WORK

System-level Checkpoint/Restart Systems

These systems are built as an extension of the operating system’s kernel. They are more pow-

erful, since they can access kernel’s data structures (e.g., file descriptors). Checkpointing can

consist in flushing all the process’s data and control structures to stable storage (i.e., to a file

on the local disk). Since these mechanisms are external to the application they do not require

specific knowledge of the application, and they require none or minimal changes to the appli-

cation, so they are transparent to the application.

These approaches have the disadvantage of not being portable. The non-knowledge of the

application semantics leads to least efficient checkpoint data when compared with checkpoint

data generated by applications that checkpoint themselves (i.e., application-level). Plus, devel-

oping a kernel module that enables the checkpointing of any application is complex and the

implementations so far are only able to checkpoint some applications.

CRAK (Zhong & Nieh 2002), Checkpoint Restart As a Kernel module, is a Linux kernel

module that implements mechanisms that enable the checkpoint/restart of any application. It

requires no modifications to the user’s applications, but requires modifications in the operating

system. Therefore, it is transparent but not portable. It has access to all kernel states needed to

checkpoint an application correctly. Though it is one of the most complete checkpointing sys-

tems, it is far from being able to provide any application with checkpoint/restart capabilities.

We have described three approaches to provide an application with checkpoint/restart

capabilities. Library-level and System-level are valid approaches, the current deployments are

only able to checkpoint/restart a limited number of applications though. Application-level is

used in various genres of applications, not long running algorithms only, in which is desirable

to save state in case a fault occurs.

2.4.2 Distributed Applications

Various techniques have been proposed that enable the checkpointing of distributed applica-

tions. These techniques can be divided into coordinated checkpointing, uncoordinated check-

pointing and message-induced checkpointing.

2.4. CHECKPOINT/RESTART 23

Uncoordinated Checkpoint/Restart Systems

These systems try to find a match between the checkpoints taken by each of the processes to

create a global checkpoint (Elnozahy et al. 2002). Each of the processes can take checkpoints

independently. This is an advantage, because not all applications can checkpoint at any time.

Still, this technique has some drawbacks: there are chances of occurring domino effect3 (Bal-

doni et al. 1995); it may create checkpoints that are useless, as they are never chosen to be part

of a global state; and multiple checkpoints must be kept in storage, in order to choose the one

that fits the global checkpoint.

Coordinated Checkpoint/Restart Systems

In these systems, processes cooperate to create a global consistent checkpoint (Elnozahy et al.

2002; Chandy & Lamport 1985). This reduces the storage space required to save checkpoints,

since only one checkpoint is persisted at a given time. The major disadvantage of this ap-

proach is the amount of communication required to perform a global consistent checkpoint,

causing this technique to have scalability problems. The algorithms to perform coordinated

checkpointing vary in their complexity. Easy to implement techniques have high communi-

cation overhead. More complex techniques have been proposed to minimize this overhead,

such as: non-blocking checkpoint coordination, synchronized checkpoint clocks, and minimal

checkpoint coordination.

Communication-induced Checkpoint/Restart Systems

These systems combine coordinated and uncoordinated checkpointing methods in order to

avoid the domino effect and allow processes to checkpoint more autonomously (Elnozahy et al.

2002). The method works by appending checkpointing information to the application messages

(piggy-backing). This checkpoint information is used to determine whether the process must

take a checkpoint or not. This method does not require special coordination messages to be

exchanged between the processes, lowering the communication overhead.

3Domino effect is the impossibility of creating a global checkpoint from the local checkpoints taken, which may
cause the application to restart from the beginning.

24 CHAPTER 2. RELATED WORK

2.4.3 Non-determinism Support

To be able to checkpoint non-deterministic applications, the checkpointing system must im-

plement logging mechanisms. Non-deterministic events, such as the receipt of a message or

user input, must be recorded to the log, so they can be replayed later if needed. Three logging

mechanisms have been proposed: Pessimistic, Optimistic, and Causal.

Pessimistic Message Logging

These logging mechanisms log each event to stable storage before delivering it to the applica-

tion, assuming that a fault may occur between the event and the logging of that event (Elnozahy

et al. 2002). The advantages are simplified restart mechanisms and ease to identify the logged

events that can be discarded once a checkpoint has taken place. However, this produces high

overheads.

Optimistic Message Logging

These systems log the event to volatile storage instead of stable storage (Elnozahy et al. 2002).

The events are periodically flushed from memory to disk. This greatly reduces the overheads.

However, restart mechanisms are complex and events can be lost.

Causal Message Logging

These systems try to take advantage of the previous methods (Elnozahy et al. 2002): events

are stored to volatile storage, but are replicated to other processes or applications. It also peri-

odically flushes these events to stable storage. This method has a better performance than the

pessimistic method and avoids the loss of events of the optimistic method. However, events

may still be lost due to the failure of several processes or applications.

2.4.4 Enhancements

Checkpointing systems always incur overhead during fault-free execution. The major source

of overhead is stable storage access. In order to reduce this overhead, some enhancements have

been proposed.

2.4. CHECKPOINT/RESTART 25

Concurrent Checkpointing

Concurrent Checkpointing aims at reducing the time a process is blocked due to a checkpoint

operation (Elnozahy et al. 2002). While the process is being checkpointed, it remains blocked

so it cannot modify its memory. Concurrent checkpointing reduces the time a process remains

blocked by marking its memory copy-on-write. This allows the process to be unblocked during

the checkpointing.

Incremental Checkpointing

This technique avoids rewriting portions of the process state that did not change between

checkpoints (Feng & Lee 2006; Lawall & Muller 2000). Minimizing the amount of data to

be written lowers the time required to store the checkpoint. After the creation of a check-

point, state changes are logged incrementally. It is possible to lower the time interval between

checkpoints or, in extreme cases not to use it (i.e., propagate the program state changes to the

checkpoint as they occur). This has a constant, but small, overhead. At any time, the check-

point represents the current state of the application. There is no need for complex algorithms

for estimation of the perfect checkpointing interval, and none of the already performed work

is ever lost.

Diskless Checkpointing

This technique uses volatile memory to store checkpoints which provides decreased storage

times (Plank et al. 1998). This can be done using the same machine’s memory or using other

machine’s memory. However, the checkpointing data can be lost due to the failure of a com-

puter. To address this problem, the checkpointing data is periodically copied to persistent

storage or sent over the network to others (replication).

In this Chapter we have described Peer-to-peer systems: their applications; their architec-

tures; and how they can be categorized taking into account their network overlay centralization

and structure. We have introduces Cycle-sharing systems: their applications and architectures.

We have described the state of the art result verification and checkpoint/restart mechanisms.

In the next Chapter we describe our architecture.

26 CHAPTER 2. RELATED WORK

3Architecture

In this Chapter we describe our architecture. Section 3.1 presents the overall architecture of

GINGER. Section 3.2 describes the model of faults and non-regular behaviour that we must

tolerate and handle. Section 3.4 describes two complementary techniques that provide appli-

cations with checkpoint/restart capabilities. Section 3.3 details a number of result verification

strategies.

3.1 Architecture of GINGER

GINGER combines Peer-to-peer and Cycle-sharing technologies to enable every user to donate

their spare cycles, and use the spare cycles of other users as well.

GINGER’s middle-ware is able to run a vast range of unmodified desktop applications that

are fit to this model of computing, such as digital media compression/transcoding/enhance

and content generation (e.g., ray-tracing, fractal generation). In order to be able to run these

unmodified applications, GINGER proposes the concept of a Gridlet, a semantics-aware unit

of workload division and computation off-load (basically, a chunk of data and the operations

to be performed over it).

Figure 3.1 depicts a global view of the GINGER architecture. The GINGER layered middle-

ware runs in each of the participants, this layered architecture enables portability and extensi-

bility. Next, each of the layers is described:

• Application Adaptation Layer: is responsible for interacting with the actual unmodified

desktop applications, e.g., launch them, feeding the data inside gridlets, and collecting

results. This is the specific application adaptation layer, extending GINGER to support

new applications is done within this layer;

28 CHAPTER 3. ARCHITECTURE

Figure 3.1: Architecture of GINGER.

• Gridlet Management Layer: performs the tasks necessary to partition the long running

execution into several gridlets and reassemble the results later (using the above layer

for application specific details), this layer is also responsible for scheduling the task to

available participants;

• Overlay Management Layer: is responsible for maintaining the overlay network to ex-

change gridlets with other nodes. Maintaining the overlay consists in the constant dis-

covery and analysis of the presently available resources;

• Communication Services Layer: is responsible for carrying out the actual network trans-

fer.

Result verification and checkpoint/restart enabling mechanisms are part of the Gridlet

Management layer. The result verification strategies and checkpoint/restart policies are com-

pletely independent from the applications. They interact with the Application Adaptation

Layer for gridlet creation and retrieval of the results once they correctness has been checked.

3.2. FAULT MODEL 29

3.2 Fault Model

Public environments are composed by users without low IT know-how, heterogeneous hard-

ware and network conditions (possibly more prone to failures) and untrusted participants (pos-

sibly malicious). In order to improve the robustness of GINGER, we want to support various

faults and non-regular behaviour.

Checkpoint/restart mechanisms trigger the rescheduling of a new task that either resumes

from the last checkpoint or starts from the beginning of the task, if no checkpoint was taken

during fault-free execution, in any of the following scenarios:

• the participant makes an announced departure during the execution of a task;

• the participant fails the reply to a ping call (silent participants are considered failed);

• the participant takes too long to retrieve a checkpoint or a result (even if it replies to

the ping call, if it does not retrieve a checkpoint or result within a predetermined time

interval, it is considered failed);

Result verification mechanisms must be able to attenuate the impact of wrong results, pro-

viding additional reliability to the results produced by the system. They must be able to detect

bad results originated by faults and malicious behaviour, either isolated or collective, with a

predetermined probability. If a result is considered incorrect by the system, the system must be

able to reschedule the corresponding task to another participant until a result that is considered

as correct is retrieved.

3.3 Result Veri�cation

In order to accept the results returned by the participants, we propose a number of replication

approaches with some extra considerations, a complementary sampling technique, and the

merging of both techniques.

30 CHAPTER 3. ARCHITECTURE

3.3.1 Incremental Replication

The insight of assigning the work iteratively, according to some rules, instead of putting the

whole job for execution at once can provide some benefits with only minor drawbacks.

As an example of a rule, we can assign only the required redundant work for the voting

quorums to be able to accept it. The major benefit stems from the fact that a considerable

amount redundant execution is not even taken into consideration when the correct result is

being chosen by the voting quorums. For example, for replication factor 5, if 3 out of the 5

results are equal, the system will not even mind looking at the other 2 results. Then, those

could and should never have been executed. And if so, the overall execution power of the

system would have been optimized by avoiding useless repeated work.

Another example of a rule: no redundant work is ever in execution at the same time. This

has benefits in colluding scenarios. In these, the same bad result is only returned once the

colluders have been able to identify that they have the same job to execute. If a task is never

being redundantly executed at the same time, colluders can only be successful if they submit a

bad result and wait for the replica of that task to be assigned to one of them, enabling them to

return the same bad result. If that does not happen, the bad result submitted by them will be

detected and they may be punished by an associated reputation mechanism (e.g., blacklisted).

This would force the colluders to maintain records of the gridlets assigned to them during a

period of time and periodically exchange that information for collusion to be successful.

This technique can have a negative impact in terms of time to complete the whole work:

on the one hand, the incremental assignment and wait for the retrieval of results will lower the

performance when the system is not overloaded; on the other hand, if the number of available

participants is low, it can actually perform faster than putting the whole work for execution at

once. Therefore, the correct definition of an overloaded environment, taking into consideration

various factors (e.g., the number of available participants, the maximum number of gridlets,

etc.) makes possible for the system to decide whether to use this technique or not, enabling it

to take the best advantage of the current resources.

3.3. RESULT VERIFICATION 31

3.3.2 Replication using Overlapped Partitionings

Using overlapped partitioning, the tasks are never exactly equal, even though each individual

piece of data is still replicated with the predetermined factor. Therefore, it becomes more com-

plex for the colluders to identify the common part of the task, plus they must always execute

part of the task, even when they are trying to return forged results. Figure 3.2 depicts the same

work divided in in two different overlapped partitionings.

Figure 3.2: The same work divided differently, creating an overlapped partitioning.

These overlapped partitionings can use a random offset and require strong communication

among the colluders to identify the common part of the job. Although it is more probable for

colluders to have common parts of the tasks (since, for replication factor two, every task has

redundant parts in two other tasks, instead of one as in standard partitioning), these common

parts are smaller (part of a task, instead of the whole task).

3.3.3 Replication using Relaxed Partitionings

Overlapped partitioning can be implemented in a relaxed flavour, where only some parts of

the job are executed redundantly. This lowers the overhead, but also lowers the reliability

of the results. However, it can be useful if the system has low computational power available.

The behaviour of the malicious participants would be tricky, they are able to detect the common

part of the job, however they can never be sure that the non-common part is not being executed

redundantly. Figure 3.3 depicts a relaxed overlapped partitioning.

Figure 3.3: Overlapped tasks for relaxed replication.

32 CHAPTER 3. ARCHITECTURE

3.3.4 Replication using Meshed Partitionings

Some applications can have their work divided in more than one dimension. Figure 3.4 depicts

the partitioning of the work for a ray-tracer. Like the overlapped partitioning, it influences

the way colluders are able to introduce bad results: more points where they can collude, with a

smaller size too. This partitioning provides a number of points of comparison. This information

feeds an algorithm that is able to choose correct results according to the reputation of a result,

instead of using voting quorums.

Figure 3.4: Meshed partitioning using replication factor 2.

The algorithm for calculating the reputation of a result must take into account the compar-

ison points result (i.e., equal or not equal). Since the majority of the participants is expected to

be honest equal adds positive reputation and not equal adds negative reputation.

For the acceptance of the results, equal results are accepted on the fly (if at least one of the

tasks has a positive reputation), different results are disambiguated according to the reputation

of the two results. If the reputation is drawn, the portion of execution of the corresponding

result must be re-executed for voting quorum like disambiguation.

Figure 3.5 depicts the comparison point results of a two-dimensional work partitioned in

four independent tasks twice (replication factor 2) creating eight tasks (H1, H2, H3, H4, V1,

V2, V3 and V4). Using the comparison point indexes of Figure 3.4: results 1, 2, 3, 5, 6, 7, 13,14

and 15 would be accepted on the fly for being equal; in position 9 the chosen result is the one

returned in task V1 since it has reputation 2 against reputation -4 of task H3 (positions 10, 11,

4, 8 and 16 would be disambiguated in the same way); position 12 would require re-execution,

since both tasks H3 and V4 have equal negative reputation -4.

This algorithm can enable the use of low, possibly even, replication factors. Requiring

minimal portions of extra execution for disambiguation. Furthermore, in a system where the

majority of the participants is honest, the extra work is minimal and rare.

3.3. RESULT VERIFICATION 33

Figure 3.5: Meshed partitioning: results of the comparison points (1 means equal, 0 means not
equal).

Bi-dimensional tasks consume twice the resources (as replication factor 2), plus the re-

execution of small portions of work that were received but are either impossible to disam-

biguate or considered incorrect. In essence, it consumes the same base amount of work as in-

cremental replication with replication factor 3 (assign only enough work to win the quorums),

but the amount of results that require rescheduling is lower.

3.3.5 Random Sampling

Replication bases all its result verification decisions in results/info provided by third parties,

i.e., the participant workers. In an unreliable environment this may not be enough. Therefore,

local sampling can have an important place in the verification of results. Figure 3.6 depicts the

sampling of an image where a sample is a pixel.

Figure 3.6: Sampling for an image.

Sampling considers the local execution of a fragment, as small as possible, of each task to

be compared with the returned result. In essence, sampling points act as hidden embedded

quizzes without being hindered by the generation nor the identification issues described in the

related work. Sampling also enforces that the malicious participants execute part of the task for

34 CHAPTER 3. ARCHITECTURE

this to have any chance of being accepted. Although random sampling can only ensure that a

result is correct with a given probability (based on the size of the work, the number of samples

and the percentage of the work that is corrupted), it can identify wrong results with certainty

and deliver very useful information to a reputation mechanism.

3.3.6 Samplication

Replication and random sampling can be used sequentially to achieve higher reliability of the

results: the winning result of the voting quorums is considered correct if it matches a random

sample that was executed by the submitter. Furthermore, these techniques can be combined in

a more elegant manner that provides additional benefits without adding extra overhead.

The algorithm we propose is very simple: the next piece of pseudo-code describes how it

works:

1. Schedule redundant work, put the results in a bag;

2. IF(the bag is empty)

3. GOTO 1;

4. IF(all results in the bag are equal)

5. IF(random sample matches)

6. ACCEPT RESULT;

7. ELSE

8. remove all results from the bag;

9. GOTO 1;

10. ELSE

11. choose a sample within the mismatch area;

12. compare with all results;

13. remove results that mismatch the sample from the bag;

14. GOTO 2;

This algorithm provides a number of desirable properties:

• It only discards wrong results: if at least one of the results of the redundant work is

correct, this approach ensures that the mentioned result is the chosen one, and that the

3.4. CHECKPOINT/RESTART 35

honest participant will always receive credit for it, whereas using voting quorums, if

the correct result is not within a majority it is discarded, the honest participant does not

receive credit and might even be punished by the reputation mechanisms.

• It enables the identification of fault-prone participants and colluders: results that mis-

match samples are wrong, if more than one result are equal and wrong it is very likely

that they were returned by colluders;

• It enables the use of even replication factors (since it does not use voting quorums);

• The number of samples per task is low: if all results are correct, it only requires one

sample per task; the maximum number of samples used when there is no rescheduling is

R (R being the replication factor);

• Rescheduling only occurs if all the received results were wrong, which makes reschedul-

ing the desirable option.

To improve the reliability of the results, we have proposed various result verification

schemes. Incremental replication can reduce the overall amount of work required in the vot-

ing quorums. Overlapped partitionings difficult the colluders identification of the redundant

work. Relaxed partitionings are a viable option for scenarios with low computational power

available. Meshed partitionings employ stateless reputation mechanisms to decide the re-

sult that is accepted and enable even replication factors. Samplication is an algorithm that

makes elegant use of replication and sampling, enables even replication factors, and detects

faulty/malicious participants and colluders.

3.4 Checkpoint/Restart

In GINGER we want to provide a wide range of applications with checkpoint/restart capabil-

ities, while keeping them portable to be executed on cycle-sharing participant nodes that use

different platforms, and without having to modify them. Library-level is the only approach in

the related work that would fit. However, an approach simply stating these goals is still far

from being able to checkpoint a wide range of applications, and would require the recompi-

lation or replacement of libraries in the executing peers. Therefore, we propose two mecha-

nisms that will enable us to checkpoint/restart any application. Our first approach is through

36 CHAPTER 3. ARCHITECTURE

a virtual machine, which has some efficiency drawbacks but is able to checkpoint/restart any

application. Furthermore, we propose checkpoint/restart through the results, that will enable

some applications to checkpoint very efficiently.

3.4.1 Through a Virtual Machine’s Running Image

An application can be checkpointed if we run it on top of virtual machine with check-

point/restart capabilities (e.g., qemu (QEMU 2010), VirtualBox (VirtualBox 2010)), the appli-

cation’s state being saved within the virtual machine’s state. This also provides some extra

security to the clients, since they will be executing untrusted code with a high level of confine-

ment.

The major drawback of this approach is the size of the checkpoint data, incurring consid-

erable transmission overhead. To attenuate this: 1) we assume that one base-generic running

checkpoint image is accessible to all the peers; 2) the applications start their execution on top

of this image once it is locally resumed; and 3) at checkpoint time we only transmit the dif-

ferences between the current image and the base-image. Since the base image has to exist for

every participant, but it is never transmitted between participants it can be considered part of

the GINGER application.

Virtual disk formats fully support this differencing disk functionality along with compres-

sion (McLoughlin 2008), producing optimized differencing disk files that can be quickly trans-

mitted whereas the overhead of the transmission of the complete image for each checkpoint

would be unbearable.

Since we are transmitting a running image, we have to transmit not only the virtual disk

but also the volatile state. Differencing the volatile state is also an option, although there is no

actual deployment of differencing volatile states, several efficient differencing algorithms have

been proposed and can be used (Burns et al. 1997).

The checkpoint data size can be further reduced using optimized operating systems (just

enough operating system or JeOS), that boot only a small subset of services required to run

the applications, leading to smaller disk images and volatile states. And, finally, over all these

techniques compression is still an option to further reduce the overhead.

This approach does not have semantic knowledge of the applications and it cannot preview

3.4. CHECKPOINT/RESTART 37

results. However, we may be able to show some statistical data related to the execution and

highlight where changes have occurred. Checkpoints would be taken within predetermined

time intervals.

3.4.2 Through the Result Files

This technique will only be fit for some applications and demands the implementation of spe-

cific enabling mechanisms for each application, although without requiring modifications to its

code. The idea behind this technique is that the applications produce final results incrementally

during their execution. Therefore, if we are able to capture the partial results during execution

and resume execution from them later, such result files can actually serve as checkpoint data.

This creates a very efficient checkpointing mechanism for the results have to be transmitted

later anyway.

This technique can be implemented using two different approaches: by monitoring the re-

sult file that is being produced by the application; or by dividing the gridlet work into subtasks

in the executing peer. Monitoring the file while it is being written requires a daemon process

and requires the application to write the result to a file during, rather than, at the end of the exe-

cution. The division in subtasks requires the invocation of the application several times, which

may lead to a small delay in the overall execution. This division has to be done in the execut-

ing peer, breaking it in the submitter (i.e., create smaller gridlets) can lead to a non-profitable

computation-transmission ratio.

Since this approach has semantic knowledge of the application’s result it can checkpoint

whenever it is more convenient for the application (e.g., every 10 lines in an image written by

a ray-tracer); rather than at a predefined time interval. This awareness of the semantics of the

application also enables the monitoring of the execution’s progress and the previewing of the

results in the submitter.

In this Chapter we have described GINGER’s architecture, and we have defined our fault

model. For a more reliable result verification we have proposed incremental replication, repli-

cation with overlapped, relaxed and meshed partitionings, random sampling and a technique

that combines replication and sampling in an elegant manner. For mitigation of the volatile

nature of the participants we have proposed checkpoint/restart through a virtual machine’s

38 CHAPTER 3. ARCHITECTURE

running image and through the result files. In the next Chapter we describe our implementa-

tion.

4Implementation

In this Chapter we describe our implementation. Section 4.1 describes our simulator. The sim-

ulator enables us to perform statistical analysis of our result verification approaches behaviour

with large populations. Section 4.2 describes our real deployment, that proves that our result

verification and checkpoint/restart approaches are feasible.

4.1 Simulator

The simulator is a simple, non-communicant Java application that simulates a scenario where

an n-dimensional long running task is broken into work-units that are randomly assigned.

Among the participants, there is a number of malfunctioning participants that retrieve wrong

results and also a group of colluders that attempt to return the same bad result (based on

complete or imperfect knowledge, depending on the partition overlapping), in order to fool

the replication-based verification mechanisms.

The simulator returns several metrics that allow us to analyse the behaviour of our re-

sult verification strategies in different environments. The most important among the results

returned by the simulator is the percentage of bad results that were accepted by the system.

Since the simulator uses a random scheduler, the results returned by the simulator may vary.

Therefore, to accurately determine a result, it must be the mean of several simulations (e.g.,

2000 simulations). Figure 4.1 depicts the evolution of the mean of the percentage of bad results

accepted through to 10000 simulations. This confirms the significance of the obtained results,

since in a real deployment, the scheduling of the gridlets would also produces unpredictable

variations.

In order to run a simulation, we must set a number of options and parameters that define:

40 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Evolution of the mean of the percentage of bad results accepted through 10000
simulations.

the participants, the task, and the result verification strategy. These options and parameters are

described next.

4.1.1 Participants

For each simulation we must set the environment (i.e., the community of participants that will

execute the tasks). For that, we define the following parameters:

• Number of Participants: the total number of available participants of the system (e.g.,

1000);

• Number of Colluders: how many of the participants are part of a group of malicious

communicant participants (e.g., 50). These participants return the same bad result if they

are executing redundant work. We also have to define the percentage of work that is

colluded (e.g., 50%), enabling the simulation of imperfect identification of the common

work (and the maximizing of the chances of acceptance of a wrong result if the result

verification technique is sampling, for example);

• Number of Bad Workers: how many of the participants will retrieve isolated bad results,

4.1. SIMULATOR 41

simulating either isolated malicious or faulty behaviour (e.g., 100). The percentage of

work that is incorrect must also be defined (e.g., 75%).

4.1.2 Task

We must set the work size of the task. The size is defined in terms of atoms of execution (i.e.,

an indivisible portion of execution), an atom of execution of an image generation application is

the amount of execution that produces a pixel, for example. Tasks can be n-dimensional, since

they can be represented as an array of integers. If we are computing an image with resolution

800x600, our linear (one-dimensional size) would be 480000 atoms of execution (pixels), as to

our 2-dimensional approach it would be (800, 600).

The number of work units in which the long running task will be divided shall also be

provided, for the simulator to be able to partition the work.

4.1.3 Result Verification Strategy

The simulator allows the choice of several result verification strategies and corresponding pa-

rameterization. They are:

• Quorum based Replication: allows the simulation of replication with standard or over-

lapped partitionings (we must also provide the replication factor (e.g., 3));

• Meshed Replication: allows the simulation of our algorithm for meshed partitionings (we

have to provide an n-dimensional task);

• Random Sampling: allows us to simulate a stand-alone sampling strategy (we must pro-

vide the number of samples per work unit);

• Replication and Sampling: allows us to simulate a standard quorum based replication

followed by a sampling technique (i.e., the result chosen in the voting quorums is further

compared with a random sample, and is accepted in case it matches);

• Samplication: allows us to test our samplication technique (we must provide the replica-

tion factor).

42 CHAPTER 4. IMPLEMENTATION

4.1.4 Simulation Results

The simulator returns several results. Some results only make sense for some result verification

strategies. It returns:

• The amount of work actually performed: it considers the amount of work that is resched-

uled in some result verification schemes;

• The number of samples performed: the number of samples is variable in some techniques;

• The amount of wrong and right results accepted;

• The number of gridlets assigned to colluders, faulty/malicious and normal participants;

• The number of faulty/malicious and colluders that were detected.

4.1.5 Example of a Simulation

To run a simulation we define the task, the participants and the result verification strategy,

and then we can launch the simulation by invoking the method simulate. The following is an

example of the code to run a simulation.

Simulator sim = new Simulator();

// Participants

sim.setnParticipants(1000);

sim.setnColluders(700);

sim.setnFaulty(0);

sim.setPercentageWorkForgedByColluded(50);

sim.setPercentageWorkForgedByFaulty(0);

// Result verification strategy

sim.setReplicationFactor(3);

sim.setnSamples(0);

sim.setVerificationMode(Simulator.VerificationStrategy.REPLICATION_QUORUM);

4.2. DEPLOYMENT 43

// Task

sim.setnJobs(100);

int[] worksize = {10000};

sim.setWorkSize(worksize);

// Launch

SimulationResult simRes = sim.simulate();

simRes.printResults();

The simulator returns an object SimulationResult, which contains all the results. Each result

can be accessed independently through get methods, or we can print all the results. The code

above produced the following results:

*** SIMULATION RESULT ***

* Size of the Task: 10000

* Size Actually Performed: 30000 (300.0%)

* Number of Samples Performed: 0

* Size Bad Results Accepted: 8000 (80.0%)

* Size Good Results Accepted: 2000 (20.0%)

* Number of Gridlets assigned to Normal: 92 (30.666668%)

* Number of Gridlets assigned to Faulty/Malicious: 0 (0.0%)

* Number of Gridlets assigned to Colluders: 208 (69.333336%)

* Number of Faulty/Malicious detected: 0

* Number of Colluders detected: 0

4.2 Deployment

The deployment of this work is developed in two separate Java communicant applications,

the submitter and the executer. Having symmetric participants consists in launching both the

applications, or integrate them into one application. This implementation focuses on check-

point/restart through the results and result verification, while abstracting other project related

areas (e.g., resource discovery, scheduling, etc.).

44 CHAPTER 4. IMPLEMENTATION

To boot this system, we launch at least one submitter. The submitter boots itself, and creates

an interface where executers can register their location. Next, we launch a number of executers

providing them with at least one submitter’s location, the executer contacts the submitter and

provides its location (this abstracts resource discovery). The executers create an interface where

submitters can test their availability, an executer is available if it is not executing. Submitters

schedule work to the first available executer (this abstracts scheduling algorithms).

Both the executer and the submitter interfaces implement a ping method that enables fail-

ure detection. If an executer has no reachable submitters, it quits. If a submitter determines

that an executer is unreachable: a) if the executer was not executing for that submitter it is just

deleted from the list of executers; b) if it was executing, the submitter creates a recovery gridlet

(containing the remaining work, since the last checkpoint) and reschedules it, and finally the

submitter is deleted from the list of executers.

The major concern in implementing the checkpoint/restart and result verification tech-

niques is to keep the checkpoint/restart and result verification policies separated from the

application-specific adaptors. For being able to support a new application, we have to de-

velop application specific adaptors, which consists in specializing three classes: an Application

Manager, a Gridlet, and an Atomic Result.

4.2.1 Application Manager

The Application Manager is responsible for dividing a long running execution into several

executable gridlets and reunite their results. For some applications, it may also enable the

user to preview the results as they are received (e.g., an image being incrementally produced

by a ray-tracer). Using our checkpoint/restart method through the result files approach, it is

possible, not only to preview the tasks that already completed their execution, but also the ones

that are currently being executed.

It is necessary to extend the abstract class ApplicationManager and implement a constructor

and three other methods. The following code excerpt is the POV-Ray’s application manager.

class PovRayManager

extends ApplicationManager {

4.2. DEPLOYMENT 45

PovRayManager(String command)

throws ApplicationManagerException { /* */ }

int calculateWorksize() { /* */ }

Gridlet createGridlet(int offset, int worksize) { /* */ }

void submitResults(int offset, AtomicResult[] res) { /* */ }

}

The constructor receives a string as argument. This string is the command that invokes the

application (this is a simplification of the GINGER application invocation, used for this work

only).

For the generic application management to be able to partition any task, it must have access

to the total size of the long running task, this can only be calculated by the specific application

adaptors. Therefore, it must implement the method calculateWorksize that retrieves the total

size of the long running task, in terms of atoms of execution.

The createGridlet method receives the offset and the size of the task and returns a gridlet that

matches the corresponding portion of execution. Gridlets are created with a size defined by

generic application adaptors rather than the specific ones. This creation of gridlets on demand

enables:

• the implementation of application-independent partitioning policies, manipulating the

offset and worksize parameters;

• the creation of samples to be locally executed (a sample is a gridlet whose work consists

in an atom of execution);

• the creation of recovery gridlets, for both checkpoint/restart and result verification pur-

poses.

The submitResults method receives an offset and a variable number of ordered results in an

array. This method reassembles the results, and since it receives the updated results during the

execution, it can display a preview of the results already received.

46 CHAPTER 4. IMPLEMENTATION

4.2.2 Gridlet

The gridlets are created on demand by invoking the createGridlet method on a specific applica-

tion manager. Gridlets are aware of their own execution, and they perform it upon the invoca-

tion of the method execute. The following is an excerpt of the Pov Ray’s gridlet class.

class PovRayGridlet

extends Gridlet

implements Serializable, Runnable {

AtomicResult[] execute(int offset, int worksize) { /* */ }

}

The specialized Gridlet class must implement the Serializable and Runnable interfaces.

This enables transport by the Java RMI and allows it to perform a threaded execution at its

destination. Implementing the Runnable interface requires the implementation of the run

method (this method is implemented in the super class). The run method invokes the exe-

cute method manipulating its arguments, which enables the capture of partial results (making

sequential invocations of the application). These results are used as checkpoint data in our

checkpoint/restart through the result files based approach.

The execute method receives as argument the portion of execution to be executed (this is de-

fined through the offset and worksize parameters), the portion of execution to be checkpointed

is contained within the boundaries with which the gridlet was firstly created.

4.2.3 Atomic Result

The atomic result is just a container of result data (e.g., a pixel for image generation, a frame

for video enhancing). The atomic result class must specialize a method that enables the com-

parison with another result. The following piece of code is an excerpt of the PovRay’s Atomic

Result.

class PovRayAtomicResult

extends AtomicResult

4.2. DEPLOYMENT 47

implements Serializable {

boolean isEqual(Object obj) { /* */ }

}

The isEqual must be able to compare atomic results. For result verification purposes, the

comparison of results in replication schemes using standard partitionings can be done byte-

wise over raw data. However, this does not work for the other types of partitionings that we

described in the architecture, nor for the comparison of samples. The implementation of this

simple method enables all the result verification techniques studied in our work, while keeping

their policies transparent to the application specific adaptors.

Specializations of the Result class must implement the Serializable interface, for the Java

RMI mechanisms to be able to transmit these atomic results back to the submitter.

In this Chapter we have described our twofold implementation: the simulator and the de-

ployment. In the next Chapter we evaluated the result verification techniques and the check-

point/restart mechanisms proposed earlier.

48 CHAPTER 4. IMPLEMENTATION

5Evaluation
This Chapter presents the evaluation of the result verification and checkpoint/restart that were

proposed in Section 3. Mechanisms for fault-tolerance and reliability improve the robustness

of system at a cost. The major concern in our evaluation is the overhead incurred by these

mechanisms. Section 5.1 presents the evaluation of result verification mechanisms, and Section

5.2 the evaluation of checkpoint/restart mechanisms.

5.1 Result Veri�cation Mechanisms

Every result verification technique ensures that a result is correct with a predetermined prob-

ability. This probability usually grows along with the overhead incurred by the technique.

Therefore, any technique that minimizes the overhead and maximizes the probability of a re-

sult being correct is a step towards a more efficient (if it minimizes the overhead, maintaining

the probability) and more effective (if it maximizes the probability, maintaining the overhead)

result verification.

5.1.1 Replication

Standard replication using voting quorums can be fooled if a group of colluders determines

they are executing redundant work and agree to return the same bad result, forcing the system

to accept it.

The graphic in Figure 5.1 depicts that when the percentage of colluders is under 50%, the

greater the replication factor the lower the percentage of bad results accepted; when the per-

centage of colluders is above 50%, albeit a less probable scenario, replication actually works

against us.

50 CHAPTER 5. EVALUATION

Groups of colluders are usually expected to be minorities. However, we must take into

account that if they are able to influence the scheduler by announcing themselves as attractive

executers, the percentage of bad results could even be above what this graphic shows, for the

scheduler it uses is random.

Figure 5.1: Correlation between the percentage of bad results accepted and the percentage of
colluders in the system for various replication factors (colluders return results 100% forged).

5.1.2 Incremental Replication

Incremental replication assigns the work iteratively according to some rules, instead of putting

the whole work to execution at once. One of the rules that can be used is based on the insight

that assigning only the minimal amount of work necessary to win the voting quorums can re-

duce the overall amount of execution required to accept a result in the replication mechanisms,

while maintaining the probability that the accepted results are correct.

The graphic in Figure 5.2 depicts a scenario where only the minimal amount of work nec-

essary to win the voting quorums is assigned. Among the participants there is a group of

colluders that always return the same wrong result. If any of the results mismatches, the sys-

5.1. RESULT VERIFICATION MECHANISMS 51

Figure 5.2: Amount of work performed using incremental replication with replication factors 3
to 9 in a varying number of colluders scenario (colluders return results 100% forged).

tem assigns extra work for disambiguation of the voting quorums. As the graph depicts, if

the malicious group is small, as it is expected, the amount of work that has to be reassigned is

minimal. Even in the worst case (where 50% of the participants are colluders), the amount of

work performed is below the replication factor.

Although this technique improves the efficiency in terms of the amount of execution re-

quired, the late assignment of tasks can increase the overall time to perform the long running

task. Nonetheless, standard assignment is also susceptible of late assignments, if no majority is

gathered in the quorums.

Figure 5.3 depicts a comparison between the incremental assignment and the standard

assignment, using replication factor 3, in a scenario where a number of faulty participants

return results that always mismatch. The graphic shows that the amount of work converges

for high percentages of faulty participants. Incremental replication is always more efficient in

terms of amount of execution performed.

5.1.3 Replication using Overlapped Partitionings

Overlapped partitioning influences the way that the colluders introduce their bad results: it

produces more points where collusion may happen but also where it may be detected; the size

of each bad result is smaller, though. This happens because one task is replicated into more

52 CHAPTER 5. EVALUATION

Figure 5.3: Amount of work performed using incremental and standard replication with repli-
cation factor 3 in a varying number of faulty participants scenario.

tasks than using standard partitioning; therefore there is a higher probability of redundant

work being assigned to colluders; however they can only collude part of the task instead of the

whole task as using standard partitioning.

The graphic in Figure 5.4 depicts that overlapped partitioning is as good as standard parti-

tioning, in a scenario where the colluders are fully able to identify the common part and collude

it, while executing the non-common part (in theory possible, but in practice harder to achieve as

this may require global knowledge and impose heavier coordination and matching of informa-

tion among the colluders). This is the worst case scenario, therefore overlapped partitionings

can improve the reliability of the results depending on how smart the colluders are.

5.1.4 Replication using Meshed Partitionings

Meshed partitionings consider that some long running tasks can be divided in more than one

dimension (e.g., ray-tracing image (2D), video transcoding (3D)). This n-dimensional partition-

ings provide many points of comparison, this information that is used to calculate the reputa-

tion of a result. Result reputations are used to disambiguate different results that were returned

by redundant execution of the same task, lowering the amount of work that must be assigned

for disambiguation. Furthermore, it does not use voting quorums, enabling the use of even

5.1. RESULT VERIFICATION MECHANISMS 53

Figure 5.4: Replication using Standard Partitioning Vs. Replication using Overlapped Parti-
tioning, using replication factor 3 (colluders return results 100% forged).

replication factors.

Figure 5.5 depicts the percentages of good results accepted, bad results accepted, and re-

sults that were not yet accepted and need rescheduling for disambiguation. In this simulation

the colluders return results that are 100% forged, and bi-dimensional task partitioning is used

(i.e., replication factor 2). As depicted, the amount of bad results accepted is zero for a consid-

erable amount of colluders, the amount of work that has to be rescheduled grows along with

the number of colluders until the percentage of colluders reaches 50%, though.

This technique is more efficient using replication factor 2 than standard replication using

replication factor 3. Therefore, it has a more profitable ratio between the probability of an

accepted result being incorrect and the overhead incurred by the technique. However, its im-

plementation is a bit more complex than standard replication using voting quorums and it only

fits some applications.

5.1.5 Replication and Random Sampling

As mentioned in Section 3, to base all the result verification mechanisms in information pro-

vided by non-trusted third parties might not be enough. Therefore, we consider the use of

samples. In this section, we evaluate the use of sequential use of replication and sampling.

54 CHAPTER 5. EVALUATION

Figure 5.5: Replication bi-dimensional Meshed Partitionings before rescheduling of work, in a
scenario where colluders return results 100% corrupted.

Using this technique, once a result has been chosen in the voting quorums it is submitted

to a comparison with locally executed samples, chosen randomly. If the samples match, the

result is accepted; if not, the non-matching results are dropped out of the voting quorums and

recovery tasks are assigned and compared in the voting quorums again.

Figure 5.6 depicts the percentage of wrong results accepted using replication and sampling,

using replication factor 3. Colluders return results 50% incorrect. It is clear that random sam-

pling can have a very positive impact in the percentage of wrong results accepted, especially

when the group of colluders is small. The reason this percentage of wrong results is so low is

the following: once a wrong result has won the voting quorum, it means 2 or 3 results are to

be compared with the samples; if it won the quorum with 2 equally wrong results and we are

using 3 samples per task, it means we have 6 chances to hit a wrong sample result within the

50% portion of forged result.

This technique is, however, very wasteful, for it reschedules huge amounts of work and re-

quires the local execution of a considerable amount of samples. Rescheduling incurs overhead

in the amount of execution required, and the time to complete the long running task. The major

problem is that this technique does not use all the information that it receives: voting quorums

discard huge amounts of correct results.

5.1. RESULT VERIFICATION MECHANISMS 55

Figure 5.6: Replication and Random Sampling using replication factor 3 and different num-
bers of samples in scenarios with different amounts of colluders (colluders return results 50%
forged).

5.1.6 Samplication

Samplication is a technique that combines sampling and replication without using voting quo-

rums. It uses information from replication to decide where to choose samples, rather than

selecting samples randomly. It chooses the samples within a replication mismatch area and

discards the results that do not match the chosen sample. If there is no mismatch in replication,

it uses random sampling.

As seen in Figure 5.7, this technique is very effective, it keeps the percentage of wrong

results accepted very low, even for medium groups of colluders. Furthermore, this technique

also works with even replication factors.

The graphic in Figure 5.8 depicts the average number of samples per gridlet (including the

redundant ones). The amount of samples that are executed is very low, especially if the group

of colluders is small. Furthermore, the number of samples is very well behaved and can be

tightly controlled, making it very easy to find a compromise between the overhead and the

reliability of the results.

Figure 5.9 depicts number of times the base work is executed. The required amount of

work is almost the same as the replication factor requires, this means the rescheduling of work

56 CHAPTER 5. EVALUATION

Figure 5.7: Result Verification - Samplication: percentage of wrong results accepted in a sce-
nario where return results 50% corrupted.

is rare. It only makes a noticeable growth in scenarios with enormous groups of colluders.

Samplication is very well behaved technique due to its ability to disambiguate work using

samples instead of rescheduling it. It can establish a good compromise between the reliability

of the results and the incurred overhead incurred (locally by samples, and remotely by the

replication factor).

Furthermore, the comparison of a trusted result with the results returned by the untrusted

participants can accurately identify malicious isolated participants and members of a group of

colluders. This technique also ensures that if in the redundant work that is assigned there is a

correct result, that result will always be the one accepted, and the participant will receive credit

for it. Therefore, this technique is an accurate source of information that can feed a reputation

mechanism that influences the scheduler, improving the reliability of the results.

5.2 Checkpoint/Restart

Checkpoint/restart systems incur two different overheads: i) the extra time consumed to create

a checkpoint; and ii) the size of the checkpoint. The extra time spent creating a checkpoint

usually dictates the time interval between checkpoints (or the number of checkpoints per task),

finding a compromise between the performance slowdown during fault-free execution and

5.2. CHECKPOINT/RESTART 57

Figure 5.8: Result Verification - Samplication: average number of samples executed, using var-
ious replication factors (colluders return results 50% forged).

the loss of already performed execution due to the occurrence of a fault. The other aspect of

concern is the size of the checkpoint data: this is crucial if the checkpoint is to be transmitted

through the network (as is the case in our system).

5.2.1 Through a Virtual Machine’s Running Image

The most relevant issue of this checkpoint/restart technique is the size of the checkpoint data

to be transmitted. This is mitigated by the use of differential disk images, differential volatile

state, compression, and use of optimized operating systems.

Differential disks are a feature supported by the main virtual machine implementations

with specific disk image format files (e.g., QCOW2 (McLoughlin 2008)). The table in Figure 5.1

depicts the size of the checkpoint data to be transmitted attenuated with the use of differential

disk images. The differential disk is an efficient representation of the modifications made to

the virtual disk, these modifications are mostly the data written by the running application.

Therefore, their size depends mostly on the data written by the running application.

Differencing the volatile state is an interesting feature that is not yet supported by the

current virtual machine implementations. VirtualBox saves this volatile state in a complex, dy-

58 CHAPTER 5. EVALUATION

Figure 5.9: Result Verification - Samplication: number of times the base work is executed, con-
sidering the rescheduling (colluders return results 50% forged).

namic file (.SAV). Our effort to find redundancy between these SAV files was unsuccessful. We

believe this is due to the complex data representation of these files. Nonetheless, differencing

volatile states is still a valid technique to be further explored in other virtual machines that

represent their volatile data in a less complex manner, or even using raw representation of the

virtual machine’s memory.

Compression enables a more efficient representation of the data in terms of size. We have

applied compression to the previously referred checkpoints, the sizes of the checkpoints are

depicted in Table 5.2. Compression reduces the size of checkpoints (SAV and differential VDI)

in 50%.

The techniques used enable a more efficient representation of the checkpoint data using

virtual machines. We have reduced the data to be transmitted from the unbearable 2.8 GB of

running virtual machine state to 100 MB of transmittable checkpoint data. Ultimately, the size

of the checkpoints is mostly composed by the application’s disk written data and the memory

loaded data. Therefore, checkpoint size will depend on the application.

5.2. CHECKPOINT/RESTART 59

Table 5.1: Checkpoint/restart through a virtual machine’s running image: checkpoint data size
using VirtualBox and Ubuntu Desktop 9.10.

Table 5.2: Checkpoint/restart through a virtual machine’s running image: checkpoint data size
using 7zip compression.

5.2.2 Through the Result Files

Our result checkpointing approach is based in capturing results during the execution on the

participants and transmit those to the submitting participant incrementally. The incremental

transmission overhead is negligible since these results would be transmitted at the end of exe-

cution anyway.

Checkpoint/restart mechanisms incur some permanent overhead during fault-free execu-

tion. The table in Figure 5.2.2 depicts the checkpointing time overhead incurred for 4 different

rendering tasks using POV-Ray. The overhead of taking checkpoints using this technique is

incurred by the several sequential re-launches of the application. As shown, the overhead de-

pends on the duration of the task: taking 10 checkpoints during the execution of task 4 is almost

negligible, while taking 1000 checkpoints along the execution of task 1 is a complete overkill.

Checkpoint/restart mechanisms start paying-off when faults occur. The table in Figure

5.2.2 depicts the pay-off of the checkpoint/restart mechanisms in the presence of a fault. It

60 CHAPTER 5. EVALUATION

Table 5.3: Checkpoint/restart through the result files: time overhead during fault-free execu-
tion.

Table 5.4: Checkpoint/restart through the result files: time overhead pay-off during faulty
execution.

reflects 3 different scenarios that depend on when the fault occurs, determining the loss of

already performed execution and the cost of restarting it from the beginning on the approach

without checkpoints. For simplicity, the times using checkpoint consider an extra portion of

execution that corresponds to a checkpoint (this is the worst case scenario). Analysing this

table we conclude the following facts:

• 1000 checkpoints never pay-off for the considered tasks;

• 1000 checkpoints almost pays-off for task 4 in the fault occurring at 75% of execution

scenario and it is clear that it will pay-off for bigger tasks;

• 10 checkpoints pays-off for all tasks but the first one, in the scenario where the fault occurs

5.2. CHECKPOINT/RESTART 61

at 25% of the execution;

• 100 checkpoints is the clear median for the used tasks, the bigger tasks keep paying-off

whereas the smaller ones do not;

• 100 checkpoints is better than 10 checkpoints for task 4 in all the fault occurring scenarios;

• the best pay-off is for task 4 using 100 checkpoints, in the case a fault occurs at 75% of the

execution;

As a global conclusion of the efficiency of this checkpoint/restart technique: we can say it

can be used very efficiently by finding of a compromise between the duration of the task and

the number of checkpoints for each of the applications to be used.

Figure 5.10: Checkpoint/restart through the result files: Previewing of a Ray-tracing result at
execution time.

Furthermore, our technique enables the submitter to preview the results of the tasks that

were submitted by him. This is a very pleasant functionality for the users, since they can see

that the work they submitted is being executed. Although this seems like an extra functionality,

it can have a very positive impact on the acceptance of these systems by the public. Figure 5.101

depicts the previewing of 6 independent POV-Ray tasks executing.

In this Chapter we have evaluated the tecniques that have been proposed earlier. The next

Chapter concludes.

1The image depicted is based in a POV file subject to a Creative Commons - Lesser General Purpose License
(CC-GNU LGPL) and can be found in the POV-Ray Object Collection at http://lib.povray.org/

http://lib.povray.org/

62 CHAPTER 5. EVALUATION

6Conclusions
In this work we have explored fault-tolerance and reliability mechanisms to improve the ro-

bustness of high performance computing systems in public environments.

In Chapter 1 we briefly introduced the context these systems. We described the challenges

of these systems, the non-regular behaviour and faults that are expected and need to be handled

for they can reduce the performance or even cause these systems to work inappropriately.

We studied the state of the art in Chapter 2. We analysed peer-to-peer and cycle-sharing

for contextualization; and result verification and checkpoint/restart mechanisms as current

solutions for the specific challenges that this work explores and its shortcomings.

Chapter 3 introduced GINGER overall architecture, defined the faults and non-regular

behaviour to be supported, and introduced new ideas and techniques that could overcome

the shortcomings of the current solutions. To attenuate the volatile nature of the participants

we proposed checkpoint/restart approaches (through a virtual machine’s running image and

through the result files). To ensure that the results produced by these systems are reliable we

proposed new result verification techniques based in redundant execution and comparison

with locally calculated samples.

In Chapter 4 we described our implementation: a simulator that enables us to perform sta-

tistical analysis of result verification strategies defining environments with large populations,

and a real deployment that proves that our techniques are feasible.

Finally, in Chapter 5 we presented an evaluation of the techniques proposed earlier. We

evaluated our result verification strategies, as to their effectiveness (how high is the percent-

age of wrong results accepted) and to their efficiency (how much overhead it introduces). We

evaluated the overhead of our checkpoint/restart approaches, as to our through the result files

64 CHAPTER 6. CONCLUSIONS

approach we focused in the overhead introduced by taking checkpoints and to our approach

using a virtual machine we focused on the size of the checkpoint data.

We have studied the shortcomings of current solutions and we have proposed, imple-

mented and evaluated new approaches that improve the robustness high performance com-

puting systems in public environments.

6.1 Future Work

The techniques proposed in this work can serve as the basis of future work in these systems.

The result verification techniques that we studied can feed a reputation mechanism that

influences the scheduler. This can improve even more the reliability of the results, as we do not

assign work to participants we believe are not reliable.

The checkpoint/restart mechanisms can be used not only for fault mitigation, but also to

improve the overall performance of the system through migration. The correct evaluation of

the present resources and prediction of the migration cost can determine if migration of a task

is profitable, and if so its implementation can rely on the checkpoint/restart mechanisms we

studied in this work to perform it.

Bibliography

Anderson, D. P. (2003). Public computing: Reconnecting people to science. In Con-

ference on Shared Knowledge and the Web.

Anderson, D. P. (2004). Boinc: A system for public-resource computing and storage.

In GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,

Washington, DC, USA, pp. 4–10. IEEE Computer Society.

Anderson, D. P., J. Cobb, E. Korpela, M. Lebofsky, & D. Werthimer (2002). Seti@home:

an experiment in public-resource computing. Commun. ACM 45(11), 56–61.

Anderson, T. E., D. E. Culler, D. A. Patterson, , & the NOW team (1995). A case for

now (networks of workstations). IEEE Micro 15, 54–64.

Androutsellis-Theotokis, S. & D. Spinellis (2004). A survey of peer-to-peer content

distribution technologies. ACM Comput. Surv. 36(4), 335–371.

Baldoni, R., J.-M. Hélary, A. Mostefaoui, & M. Raynal (1995). On Modeling Consis-

tent Checkpoints and the Domino Effect in Distributed Systems. Research Report RR-

2569, INRIA.

Barkai, D. (2001). Technologies for sharing and collaborating on the net. In P2P ’01:

Proceedings of the First International Conference on Peer-to-Peer Computing, Washington, DC,

USA, pp. 13. IEEE Computer Society.

BitTorrent (2003). Free, open source file-sharing application effective for distributing

very large software and media files. In http://www.bittorrent.com/.

Burns, R. C., A. C. Burns, & D. D. E. Long (1997). A linear time, constant space dif-

ferencing algorithm. In In Performance, Computing, and Communication Conference (IPCCC,

pp. 5–7. IEEE International.

65

http://www.bittorrent.com/

66 BIBLIOGRAPHY

Cezário, J. & A. Sztajnberg (2008, July). Introdução de um mecanismo de checkpoint-

ing e migração em uma infra-estrutura para aplicações distribuı́das. In V Workshop de

Sistemas Operacionais (WSO’2008).

Chandy, K. M. & L. Lamport (1985, February). Distributed snapshots: determining

global states of distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75.

Clarke, I., O. Sandberg, B. Wiley, & T. W. Hong (2001). Freenet: A distributed anony-

mous information storage and retrieval system. Lecture Notes in Computer Science 2009,

46–66.

Costa, L. B., L. Feitosa, E. Araujo, G. Mendes, R. Coelho, W. Cirne, & D. Fireman

(2004). Mygrid: A complete solution for running bag-of-tasks applications. In In Proc. of

the SBRC 2004, Salao de Ferramentas, 22nd Brazilian Symposium on Computer Networks, III

Special Tools Session.

distributed.net (1997). Distributed.net: Node zero. In http://distributed.

net/.

Douceur, J. R. (2002). The sybil attack. In IPTPS ’01: Revised Papers from the First

International Workshop on Peer-to-Peer Systems, London, UK, pp. 251–260. Springer-Verlag.

Du, W., J. Jia, M. Mangal, & M. Murugesan (2004). Uncheatable grid computing. In

ICDCS ’04: Proceedings of the 24th International Conference on Distributed Computing Systems

(ICDCS’04), pp. 4–11.

Elnozahy, E. N. M., L. Alvisi, Y.-M. Wang, & D. B. Johnson (2002). A survey of

rollback-recovery protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–

408.

Feng, T. H. & E. A. Lee (2006). Incremental checkpointing with application to dis-

tributed discrete event simulation. In WSC ’06: Proceedings of the 38th conference on Winter

simulation, pp. 1004–1011. Winter Simulation Conference.

Foster, I. & C. Kesselman (1996). Globus: A metacomputing infrastructure toolkit.

International Journal of Supercomputer Applications 11, 115–128.

GIMPS (2010). Great internet mersenne prime search. In http://mersenne.org.

http://distributed.net/
http://distributed.net/
http://mersenne.org

BIBLIOGRAPHY 67

Kamvar, S. D., M. T. Schlosser, & H. Garcia-Molina (2003). The eigentrust algorithm

for reputation management in p2p networks. In WWW ’03: Proceedings of the 12th interna-

tional conference on World Wide Web, New York, NY, USA, pp. 640–651. ACM.

KaZaA (2000). Download music, free music downloads. In http://www.kazaa.

com/.

Larson, S. M., C. D. Snow, M. Shirts, & V. S. Pande (2009, Jan). Folding@home and

genome@home: Using distributed computing to tackle previously intractable problems

in computational biology. Technical Report arXiv:0901.0866.

Lawall, J. L. & G. Muller (2000). Efficient incremental checkpointing of java pro-

grams. In DSN ’00: Proceedings of the 2000 International Conference on Dependable Systems

and Networks (formerly FTCS-30 and DCCA-8), Washington, DC, USA, pp. 61–70. IEEE

Computer Society.

Litzkow, M., M. Livny, & M. Mutka (1988, June). Condor - a hunter of idle worksta-

tions. In Proceedings of the 8th International Conference of Distributed Computing Systems, pp.

104–111.

Litzkow, M., T. Tannenbaum, J. Basney, & M. Livny (1997, April). Checkpoint and mi-

gration of UNIX processes in the Condor distributed processing system. Technical Report

UW-CS-TR-1346, University of Wisconsin - Madison Computer Sciences Department.

Lo, V., D. Zappala, D. Zhou, Y. Liu, & S. Zhao (2004). Cluster computing on the

fly: P2p scheduling of idle cycles in the internet. In In Proceedings of the IEEE Fourth

International Conference on Peer-to-Peer Systems, pp. 227–236.

Maloney, A. & A. Goscinski (2009). A survey and review of the current state of

rollback-recovery for cluster systems. Concurr. Comput. : Pract. Exper. 21(12), 1632–1666.

Maymounkov, P. & D. Mazières (2002). Kademlia: A peer-to-peer information system

based on the xor metric. In IPTPS ’01: Revised Papers from the First International Workshop

on Peer-to-Peer Systems, London, UK, pp. 53–65. Springer-Verlag.

McLoughlin, M. (2008). The qcow2 image format. In http://people.gnome.

org/˜markmc/qcow-image-format.html.

http://www.kazaa.com/
http://www.kazaa.com/
http://people.gnome.org/~markmc/qcow-image-format.html
http://people.gnome.org/~markmc/qcow-image-format.html

68 BIBLIOGRAPHY

Molnar, D. (2000). The seti@home problem. In ACM Crossroads: The ACM Student

Magazine.

Mutka, M. W. & M. Livny (1988). Profiling workstations’ available capacity for re-

mote execution. In Performance ’87: Proceedings of the 12th IFIP WG 7.3 International Sym-

posium on Computer Performance Modelling, Measurement and Evaluation, pp. 529–544.

Napster (1999). Stream music, download mp3s, top songs, buy music - napster. In

http://free.napster.com/.

Plank, J. S., M. Beck, G. Kingsley, & K. Li (1995, January). Libckpt: Transparent

checkpointing under Unix. In Usenix Winter Technical Conference, pp. 213–223.

Plank, J. S., K. Li, & M. A. Puening (1998). Diskless checkpointing. IEEE Trans. Parallel

Distrib. Syst. 9(10), 972–986.

QEMU (2010). Qemu is a generic and open source machine emulator and virtualizer.

In http://wiki.qemu.org/.

Ranjan, R., A. Harwood, & R. Buyya (2008). Peer-to-peer-based resource discovery

in global grids: a tutorial. Communications Surveys & Tutorials, IEEE 10(2), 6–33.

Ratnasamy, S., P. Francis, M. Handley, R. Karp, & S. Schenker (2001). A scalable

content-addressable network. In SIGCOMM ’01: Proceedings of the 2001 conference on Ap-

plications, technologies, architectures, and protocols for computer communications, New York,

NY, USA, pp. 161–172. ACM.

Rowstron, A. & P. Druschel (2001, November). Pastry: Scalable, decentralized ob-

ject location and routing for large-scale peer-to-peer systems. In IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware), pp. 329–350.

Shirky, C. (2002). Clay shirky’s writings about the internet. In http://www.

shirky.com/writings/napster_speech2.html.

Sterling, T., D. J. Becker, D. Savarese, J. E. Dorband, U. A. Ranawake, & C. V. Packer

(1995). Beowulf: A parallel workstation for scientific computation. In In Proceedings of the

24th International Conference on Parallel Processing, pp. 11–14. CRC Press.

http://free.napster.com/
http://wiki.qemu.org/
http://www.shirky.com/writings/napster_speech2.html
http://www.shirky.com/writings/napster_speech2.html

BIBLIOGRAPHY 69

Stoica, I., R. Morris, D. Karger, M. F. Kaashoek, & H. Balakrishnan (2001). Chord:

A scalable peer-to-peer lookup service for internet applications. In SIGCOMM ’01: Pro-

ceedings of the 2001 conference on Applications, technologies, architectures, and protocols for

computer communications, New York, NY, USA, pp. 149–160. ACM.

Treaster, M. (2005). A survey of fault-tolerance and fault-recovery techniques in par-

allel systems. ACM Computing Research Repository (CoRR 501002, 1–11.

Veiga, L., R. Rodrigues, & P. Ferreira (2007, May). Gigi: An ocean of gridlets on a

‘grid-for-the-masses´. In IEEE International Symposium on Cluster Computing and the Grid -

CCGrid 2007 (PMGC-Workshop on Programming Models for the Grid). IEEE Press.

VirtualBox (2010). An x86 virtualization software package developed by sun mi-

crosystems. In http://www.virtualbox.org/.

Zhao, S., V. Lo, & C. GauthierDickey (2005). Result verification and trust-based

scheduling in peer-to-peer grids. In P2P ’05: Proceedings of the Fifth IEEE International

Conference on Peer-to-Peer Computing, pp. 31–38.

Zhong, H. & J. Nieh (2002, November). Crak: Linux checkpoint / restart as a kernel

module. Technical Report CUCS-014-01, Department of Computer Science. Columbia

University.

http://www.virtualbox.org/

	Introduction
	Grid Computing
	Peer-to-peer
	Public Computing
	GINGER (Grid Infrastructure for Non Grid EnviRonments)
	Objectives and Contributions
	Result Verification
	Checkpoint/Restart

	Document Structure
	Scientific Publications

	Related Work
	Peer-to-Peer Systems
	Applications
	Architectures
	Network Overlay Centralization
	Network Overlay Structure

	Cycle-sharing
	Applications
	Architectures

	Result Verification
	Incorrect Results
	Techniques
	Reputation Mechanisms

	Checkpoint/Restart
	Implementation Approach
	Distributed Applications
	Non-determinism Support
	Enhancements

	Architecture
	Architecture of GINGER
	Fault Model
	Result Verification
	Incremental Replication
	Replication using Overlapped Partitionings
	Replication using Relaxed Partitionings
	Replication using Meshed Partitionings
	Random Sampling
	Samplication

	Checkpoint/Restart
	Through a Virtual Machine's Running Image
	Through the Result Files

	Implementation
	Simulator
	Participants
	Task
	Result Verification Strategy
	Simulation Results
	Example of a Simulation

	Deployment
	Application Manager
	Gridlet
	Atomic Result

	Evaluation
	Result Verification Mechanisms
	Replication
	Incremental Replication
	Replication using Overlapped Partitionings
	Replication using Meshed Partitionings
	Replication and Random Sampling
	Samplication

	Checkpoint/Restart
	Through a Virtual Machine's Running Image
	Through the Result Files

	Conclusions
	Future Work

