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ABSTRACT

Cloud Computing has been successful in providing large amounts
of resources to deploy scalable and highly available applications.
However there is a growing necessity of lower latency services
and cheap bandwidth access to accommodate the expansion of
IoT and other applications that reside at the internet’s edge. The
development of community networks and volunteer computing,
together with the today’s low cost of compute and storage devices,
is making the internet’s edge filled with a large amount of still
under utilized resources. Due to this, new computing paradigms
like Edge Computing and Fog Computing are emerging.

This work presents Caravela!? a Docker’s container orchestrator
that utilizes volunteer edge resources from users to build an Edge
Cloud where it is possible to deploy applications using standard
Docker containers. Current cloud platform solutions are mostly
tied to a centralized cluster environment deployment. So Caravela
employs a completely decentralized architecture, resource discov-
ery and scheduling algorithms to cope with: the large amount of
volunteer devices, volatile environment, wide area networks that
connects the devices and nonexistent natural central administra-
tion.
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1 INTRODUCTION

Cloud Computing is a mature platform that gained its momentum
due to its incredible advantages such as: resource elasticity, no
upfront investment for the consumers (pay what you use, utility
style), global access and more [10]. It is implemented with a set
of geo-distributed energy hungry data centers at the Internet’s
backbone, which causes high latencies from the network’s edge
to the cloud, and it amplifies the possibility of having expensive
bandwidth to reach it.

With the increase of IoT applications (as stated by CISCO [7]),
among others, the network’s edge is producing a lot of data, that
is pushed to the cloud for processing and/or storage. The problem

Caravela (a.k.a Portuguese man o’war) is a colony of multi-cellular organisms that
barely survive alone, so they need to work together in order to function like a single
viable animal.

2Code available at https://github.com/Strabox/caravela

is that it is expensive in terms of bandwidth to upload everything
to the cloud and for latency sensitive applications that need fast
replies the cloud is far away. The increase of community networks
(e.g. the GUIFLnet [2] with ~35K nodes and a steady growth of 2k
nodes/year) conjugated with the nowadays very powerful desktops,
laptops and even RPIs the network’s edge is filled with a lot of
resources that most of the time are under utilized. The Edge and Fog
Computing intend to leverage these resources to provide services
that are near the Internet’s edge. These new terms are not well
defined yet so we present, CISCO’s and Vaquero et al. definitions
that use these two new terms interchangeably:

Definition 1.1. CISCO [4]: Fog Computing is a highly virtualized
platform that provides compute, storage, and networking services
between end devices and traditional Cloud Computing Data Centers,
typically, but not exclusively located at the edge of network.

Definition 1.2. Vaquero et al [14]: Fog computing is a scenario
where a huge number of heterogeneous (wireless and sometimes
autonomous) ubiquitous and decentralized devices communicate
and potentially cooperate among them and with the network to per-
form storage and processing tasks without the intervention of third
parties. These tasks can be for supporting basic network functions
or new services and applications that run in a sandboxed environ-
ment. Users leasing part of their devices to host these services get
incentives for doing so.

CISCO’s definition (Def. 1.1) for Fog/Edge Computing clearly
mentions the space between the end user’s devices and the cloud
where a platform (potentially developed and backed up by their
solutions) could offer compute, storage and network capabilities
much closer to the user’s offering faster services and mediating the
communication with the cloud. Vaquero et al. definition (Def. 1.2)
is more specific than CISCO’s, it describes a completely decentral-
ized platform where the user’s own devices cooperate to offer the
compute, storage and network capabilities using sandboxed envi-
ronments, which makes it feel like the past Volunteer Computing
works like SETI@Home [1].

Our work follows the Vaquero’s definition line environment. Our
contribution consists in Caravela, a Docker container’s orchestra-
tor, similar to Docker Swarm?, but enhanced in order to be used
as an Edge Cloud platform. Our work targets the environment of
fog/edge computing where the amount of devices available is large,
heterogeneous, connected via wide area networks, churn is pre-
sented and there is a need to impose fairness rules to the users. This
requires a distributed and decentralized architecture, discovery and
scheduling algorithms to cope with the amount of nodes and users.

3https://docs.docker.com/engine/swarm/
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Due to the volunteer environment, a decentralized solution is rec-
ommended since there is no natural central administration. Current
Docker Swarm implementation targets small clusters (maximum
of 3k nodes as stated by its creators) of homogeneous machines in
a controlled environment used by a limited set of users where a
centralized solution is viable.

The rest of the paper is structured as follows. Section 2 de-
scribes briefly the fundamental and state of the art works in the
Edge Clouds, Resources Management and usage Fairness. Section 3
presents the architecture and the resource discovery and scheduling
algorithms that compose Caravela. Section 4 presents the evalua-
tion to our Caravela’s prototype comparing its performance with
an adaptation of the Docker’s Swarm and a naive random-based
approach. Finally, Section 5 wraps up the paper with our main
conclusions.

2 RELATED WORK

We present our related work in three different but complementary
topics to build an Edge Cloud: Edge Clouds is a broader but recent
topic, Resource Management that consist in discovering the re-
sources and schedule the computations or data into the system’s
nodes, and finally usage Fairness that cover topics for maintaining
a volunteer multi-user system fair for all the users without abuses
and violations.

2.1 Edge Clouds

Cloud@Home [8] work tries to provide a framework for the de-
velopment of an Edge Cloud, where the Volunteer Computing and
the Edge Computing intersect. The authors provide a high level
description of the system, where a centralized set of nodes would
control the resources of the volunteer nodes, discovering resources
and scheduling the user’s requests (via VMs deployment) in the
nodes. They soon state that when the amount of devices increased
above a given threshold, distributed and decentralized schedulers
would be needed to cope with the amount of devices, which is
exactly what we aim for in our work.

Autonomic Cloud [9] is a preliminary work in a P2P Cloud that
also target volunteer resources to build it. The authors were testing
the platform development on top of the Pastry DHT in order to find
resources and communicate in a scalable fashion for large networks
such as an Edge Cloud. They used OSGI bundles as a deployable
component in the nodes, which does not provide so good isolation
and security as a VM or even a Container for multi-tenant platforms.

2.2 Resource Management

Resource Bundles [5] work presents a resource discovery algorithm
for node’s current available #CPUs and RAM using an hierarchical
overlay of nodes. Some node’s are responsible for set of regular
nodes, designated by super nodes. These super nodes use a cluster al-
gorithm called multinomial model-based expectation maximization
in its regular nodes resource availability. This clustering algorithm
allows to aggregate the regular’s nodes available resources in a
compacted form while maintain a good degree of node’s individual
available resources. It allows to reduce the traffic in the network
when spreading the node’s resource availability. It has SPoF and
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Figure 1: Caravela’s mandatory node’s components.

bottleneck in the super nodes that are responsible for regular nodes,
although it is more scalable than centralized solutions.

Selimi et al. [12] work contains resource discovery and schedul-
ing algorithms that schedule services (sets of co-related containers,
e.g. micro services) in nodes with higher bandwidth available, in
the context of GUIFLnet community network. It only considers the
node’s available bandwidth for the discover and deployment. It uses
a centralized solution where the knowledge of the network and all
nodes is necessary. They use the K-means clustering algorithms
to group nodes by its geo-graphical position, then they calculate
the groups head nodes that maximize the bandwidth available with
its group’s nodes in order to discover the nodes with best links
connecting them. Finally they recalculate the groups formed early
but this time with the bandwidth information in order to group the
nodes with higher bandwidth available between them.

Docker Swarm is a Docker Container orchestrator that use a
centralized server/node (or set of replicated nodes) to control all the
other nodes, taking the scheduling decisions in a centralized way.
This approach is able to enforce global policies in the deployment
like consolidating the containers to maximize resource utilization
or spreading to offer better performance for the containers with a
similar distribution of load in the nodes. The centralized server is a
bottleneck to the system scalability and SPoF. It only consider the
node’s current availability of #CPUs and RAM.

2.3 Fairness

SocialCloud [6] is a centralized reputation system that looks for
user’s social network’s friends, friends of friends and so on in order
to provide a trustworthiness rank for the users. User’s that have a
higher trustworthy rank are preferable to realize trades, e.g. nodes
from users with high ranks are preferable to deploy container(s)
because they are more trustworthy. In the case of the SocialCloud
the centralized solution is a bottleneck and the network of friends to
rank the users is a bit restrictive in a system with tens of thousands
of users as an Edge Cloud.

Karma [15] work consists in a distributed and decentralized
reputation system that maintains user’s reputation as users interact,
e.g. in our case the user’s node receive a container from other user
to run, these interactions increase the users’ reputation if it all
happens smoothly or decreases it from the user that sabotage the
interaction. Edge Clouds with volunteer resources need this kind
of mechanisms to maintain the system usable without free-rides
and other attacks that otherwise would make the system unusable.



3 ARCHITECTURE

Caravela is a Docker container’s orchestrator that use the users’
donated devices to provide computational, storage and network ca-
pabilities to build an Edge Cloud. So it is mandatory for Caravela’s
nodes to have (See Figure 1):

e Docker’s Engine running;
e Caravela’s middleware running as daemon;
o To simplify each node should have static public IP address.

The following components are optional (out of the scope for
our work), because they are not mandatory to demonstrate Car-
avela’s resource discovery and scheduling algorithms scalability,
efficacy and efficiency, but they would be mandatory in a real life
deployment:

o A client for a highly distributed and decentralized file sys-
tem like IPFS [3] or BitTorrent [11]. It would be necessary
to transfer and maintain the container’s images in a scalable
way. We used DockerHub, a centralized public repository of
container’s images to demonstrate the Caravela’s prototype
basic functionalities.

o A client for a distributed and decentralized reputation sys-
tem, e.g Karma, to maintain user’s reputation in order to
control user’s abuses in the system like promising a certain
kind of resources but giving others.

e A client for a distributed and decentralized virtual currency
system, e.g. Bitcoin, to maintain user’s balance between its
contributions with devices/resources and its consume of the
other users resources.

Caravela provides a REST API for the users, allowing to interact
with its node’s daemons. We also developed an CLI tool to consume
the REST API facilitating the use of Caravela. This tool provides the
same syntax and a similar semantics to the Docker Swarm’s CLI
tool. The CLI allows the user to do the three fundamental operations
specified as follows:

e Deploy Container(s): Allow the user to deploy a container
in Caravela specifying its resources needs CPUClass, #CPUs
and RAM necessary. CPUClass is a binary value that we
use to classify the node’s performance (correlated with the
CPU speed). It also allows to do a Stack Deployment (Swarm
also allows it) which consist in deploying a set of correlated
containers in the system in one request, e.g. micro services.

o Stop Container(s): Stop containers releasing its resources
from the node where it was deployed.

e List Containers(s): List all the user’s containers running
and its respective details.

Note that in Docker Swarm there exist no notion of CPUClass
or CPU capabilities because it targets homogeneous clusters of
machines which is not the case of an Edge Cloud.

Now that we settled the prerequisites and operations of Caravela
we will describe how we manage all the nodes/devices that are part
of the Caravela in a distributed and fully decentralized way, helping
us to build scalable and efficient resource discovery and scheduling
algorithms.

Figure 2: Resources regions mapping in Chord’s ring.

3.1 Network Management

Caravela is built on top of a Chord [13] overlay, that consists in a
ring of node each one with a unique ID in a space of k-bits. Chord
provides one single operation: map a given key in a node, looking
for the node in average logz(N) hops with N being the network’s
size. Caravela use Chord to leverage this lookup operation in order
to find the resources necessary to deploy a container in a scalable
and efficient way for large networks.

Chord’s typical use consist in finding the node that contains some
data (e.g. files or chunks of files) hashing the content’s identifier/key
with a consistent hashing algorithm (e.g. SHA-1) to obtain a Chord’s
k-bits key. With the key the Chord’s client provide it to its lookup
mechanism that will return the IP address of the node with the
content. The consistent hashing provides a good dispersion of the
keys over the nodes balancing the load in the system which is
important in large networks.

When a user submit a container it specifies the resources that the
container needs in a form of a pair < (CPUClass; #CPUs); RAM >,
if the system does not find any node with that minimum of re-
sources available the user is notified of the error and can retry
later. We use Chord to find out what are the nodes that have
enough CPUs and RAM to run a user’s container, e.g. if a user
requests < (0; 2CPUs); 512MB > we need to find at least a node
with that amount of resources available in that moment. We look
for the node’s current available resources. So using the typical
approach for Chord, hashing the resources needed with SHA-1,
would result only in perfect matches, e.g. < (0, 1CPU); 256 MB >
and < (0, 1CPU); 300MB > would be mapped to completely differ-
ent nodes while its needs are very similar. Basically the equal-based
search of a typical Chord’s use must be replaced by a kind of range
query search.

To solve this problem we encoded the resources availability
of the nodes in its IDs. We divided the Chord’s ID/Key space (stat-
ically) in contiguous regions that represent different combinations
of resources. Figure 2 pictures an example of the resources encod-
ing in Chord’s ring. One region with < (0; 2CPUs); 512MB > label
means that the nodes that have IDs in that region are responsible
for node’s with resources availability of at least the specified in the
region’s label. In Section 3.2 we detail how we leverage this map-
ping. Figure 2 pictures larger regions for weaker combinations of
resources, this is by design, because in a real Edge Cloud we expect



that there are much more nodes offering weaker combinations. It
is natural that are more users offering small resources than large
resources.

3.2 Resource Discovery

Before introducing our resource discovery algorithm we introduce
some terminology used in the rest of the paper. Resources offer
(offer to simplify) consist in a data structure that contains:
e IP address of the node that have the specified resources
available;
e Node’s resources available < (CPUClass, #CPUs); RAM >;
e Node’s resources used < (CPUClass, #CPUs); RAM > (help-
ful for global scheduling policies);
o Offer’s unique ID (unique for its supplier only).
Each node has three roles depending on the action it is doing:
o Supplier: Node’s role when it is supplying its resources (via
offers);
e Buyer: Node’s role when it is searching for resources (via of-
fers) to deploy a container in behalf of the node’s owner/user;
o Trader: Node’s role when the it is mediating the supply/search
for offers.
From here onwards if we describe actions made by a trader, supplier
or trader is same as if it was node since each role as on-to-one
mapping with the node. Each trader is responsible for offers that
belong to the resource region where its ID belong. Suppliers publish
offers into traders and buyers search for offers in traders.

Algorithm 1: Supplier’s resource supplying.

Data: suppOf ferMap
1 Function SupplyResources(freeRes, usedRes):

2 regions < SuitableResourcesRegions(freeRes)
3 foreach of fer in suppOf ferMap do
4 of ferRegion < Region(of fer.TraderID)
5 if regions.Contains(of ferRegion) then
6 upOf fer « Of fer(of fer.ID, freeRes, usedRes)
7 UpdateOf fer(upOf fer)
8 regions.Remove(of ferRegion)
9 end
10 else

/* When node free resources decrease. */
suppO f ferMap.Remove(of fer.ID)

11 RemoveOf fer(of fer.ID)

12 end

13 end

14 foreach region in regions do
/* When node free resources increase. */
/* See Algorithm 2. */

15 CreateOf fer(freeRess,usedRes, region)

16 end

The Algorithm 1 is called by the supplier every time its free
resources change, e.g. due to container’s launch/exit in the node
consuming/releasing resources. A supplier provides its resources to
the buyers by creating N offers in the system, one for each of the

configured resource regions that represent less or equal resources
than the supplier’s current free resources (line 2). After that the
supplier iterates the offers it already has in the system and looks for
the regions where they are registered (lines [3-4]). Than we cross
reference the regions where we must create offers and the regions
from the offers where we already have them (line 5). The rest of
the algorithm is straightforward, if the supplier already have an
offer in the region an UpdateOffer message is sent directly to the
trader (the supplier saves the trader’s IP address when creates an
offer) in order to update the offer free/used resources (lines [6-8]).
This update will be important in Section 3.3 when we try to enforce
global policies in the container’s scheduling. If the supplier have
an offer in a region where its current free resources cannot handle
the requests for it, the supplier removes the offer from the trader
sending a RemoveOffer message (lines [11-13]). Finally if there
exist regions where the supplier does not have any offers, it creates
one offer in each region (lines [14-15]).

Algorithm 2: Supplier’s create offer algorithm.

Data: supplierIP
1 Function CreateOffer(freeRes, usedRes, destRegionRes):
2 newOf fer « Of fer(freeRes,usedRes, supplierIP)
3 destTraderID «— RandomID(destRegionRes)
4 traderIP « ChordLookup(destTraderID)
5 ok « CreateOf fer(traderIP, NodeInfo(), newOf fer)
6 if ok = true then

7 newOf fer.SetTraderIP(traderIP)
8 suppO f fersMap[newO f fer.ID] = newOf fer
9 return

10 end

11 return Error(“of ferCouldNotBeCreatedError’")

How a supplier creates/publishes a new offer? The supplier runs
the Algorithm 2. It starts by creating an offer object with the sup-
plier’s resource availability (line 2). After that it obtains a random
ID/key in the offer’s target resource region (line 3), the random is
used to distribute the load among the region’s traders. With the ID
it calls Chord to obtain the trader’s IP responsible for that ID/Key
(line 4). Finally it sends a CreateOffer message to the trader (line
5). The trader register the offer in its internal offer’s table and ac-
knowledges it. The supplier register the trader’s IP responsible for
the offer and also register the offer in its internal offer’s table (lines
(7-9D.

Now that we have the supplier providing the resources into the
system as the node’s available resources change, how can we dis-
cover offers for a container deployment request? The Algorithm
3 details how it happens, it receives the container’s necessary re-
sources. The algorithm have a maximum retry threshold defined
in the system configuration file (parameter MaxDiscoveryretries)
that is used to limit the times we try to search for the resources
(lines [2-3]). In a retry we start by generating a random ID/key
(again to distribute the load between region’s traders) in the region
responsible for the resources closest to the requested (line 4). Then
we use Chord to get the trader’s IP and, we send a GetOffers mes-
sage to it in order to obtain the trader’s registered offers. If the set



Algorithm 3: Resource discover algorithm.

Data: configs
1 Function DiscoverResources(resourcesNeeded):

2 retry < 0

3 while retry < configs.MaxDiscoverRetries() do
4 destTraderID «— RandomID(resourcesNeeded)
5 traderIP « ChordLookup(destTraderID)

6 resultOf fers «— GetOf fers(traderIP)

7 if resultOf fers != @ then

8 ‘ return resultOf fers

9 end

10 retry < retry +1

11 end

12 return @

of offers received is not empty we return them otherwise we retry
if the threshold was not reached.

Until now our algorithms rely on Chord’s lookup only when we
need to publish offers due to node’s resource availability increase
and when searching for offers. Chord’s lookup is the most expensive
network operation here with loga(N) (N being the network size)
so we avoid it at maximum. We will see in evaluation that we
configured the maximum retries of the discover resources algorithm
to only 1 obtaining a very interesting efficacy and efficiency in the
discovery process.

Due to the node’s crash (likely scenario in an Edge Cloud) a
trader could be giving offers from dead suppliers, and consequently
a supplier would think that its resources were available in the trader
but the trader was dead. To minimize this problem each trader re-
fresh an offer from time to time (sending a RefreshOffer message)
defined by Caravela’s parameter Re fresh;,;erpq- This way the
trader acknowledges the presence of the supplier and vice versa.
The parameter MaxRefreshessgijeq define how many refreshes a
supplier can fail before the trader removes the supplier’s offer, and
complementary the parameter MaxRe freshes,,;ss.q define how
many refresh a trader can fail before the supplier publish the offer
onto other trader (of the same region).

Why a supplier publishes its resource availability in several
regions instead of publishing it only in the highest one? Because
that way we would have little information per trader (one offer per
node only) which would decrease our efficiency and efficacy when
looking for resources due to the little information spread over too
many nodes.

3.3 Container’s Scheduling

Now that we have explained the resource discovery process, in this
section we describe how we implemented the container’s schedul-
ing on top of it. But before detailing the scheduling algorithm we
want to introduce the notions of global scheduling policy and
request-level scheduling policy.

Docker Swarm offers two global scheduling policies: binpack
and spread. When binpack is configured the system’s scheduler
tries to consolidate containers in few nodes, while providing the
container’s requested resources. Spread is the opposite of binpack,

its distributes the containers thinly by all the system’s nodes. These
policies are applied globally to all the requests scheduled in the sys-
tem and all the nodes respect the configured policy because every
node that joins Caravela receives a copy of the system configura-
tions. Caravela’s configurations are used to configure the bootstrap
nodes. All the other nodes that join it receive a copy of it.

Docker Swarm allows a stack deployment which consist in a
composite deployment request where a user can specify a set of
container to be scheduled together. This is a common case nowa-
days with micro services deployments. We also allow these stack
deployments in Caravela. We extend the stack deployments to al-
low request-level (or group level) scheduling policies, which
means a user can specify different scheduling policies for contain-
ers in the stack deployment. We developed the co-location and
spread request-level scheduling policies. The co-location schedul-
ing policy allows the user to specify that a set of nodes in the stack
deployment must be scheduled in the same node. The spread policy
might be used by the user specify container that must be deployed
in different nodes. Co-location is useful for components/containers
that communicate a lot or need low latency communications. Spread
is useful for robustness properties. The global scheduling policies
and the request-level ones are orthogonal, so the Caravela can be
consolidating (with binpack) while the user’s systematically request
all the containers to be spread (request-level spread) and vice versa.

Algorithm 4: Algorithm to schedule containers in nodes.

Data: globalSchedulingPolicy
1 Function Schedule(contConfigs, resourcesNeeded):

2 of fers « DiscoverResources(resourcesNeeded)
3 of fers < globalSchedulingPolicy.Rank(of fers)
4 foreach of fer inof fers do
5 contsStatus «—
Launch(of fer.SuppIP,of fer.ID, contConfigs)
6 if contsStatus != @ then
7 ‘ return contsStatus
8 end
9 end
10 return Error(“CouldNotScheduleContainersError’”)

Before explaining the complete algorithm that runs when a user’s
deployment request is submitted, we describe the algorithm (Alg.
4) that given a set of container’s configurations (one per container),
and the sum of all the resources necessary by all the containers, it
founds the suitable node for deploying them. The first thing the
algorithm does is to call the Algorithm 3 with the resources needed.
It receives a set of offers that can be used to deploy the container.
If the set of offers is empty we return an error to the user (line 10).
Otherwise we will rank the set of offers accordingly to the global
policy configured in Caravela (binpack or spread). The algorithms
used to rank* are a slightly adaptation of the used in Docker Swarm.
The adaptation introduces the CPUClass attribute in the ranking.
We do not present them here due to the space constraints. Lastly, the
algorithm iterates the ordered offers and sends a Launch message

4Node ranking algorithms available at:
https://github.com/docker/swarm/tree/master/scheduler/strategy
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to the supplier responsible for the offer. When the first supplier
that acknowledges the launch of the containers the algorithm exits
returning the information about the containers (container status)
deployed and the IP of supplier that will run them.

Algorithm 5: Buyer’s on request deployment algorithm.

1 Function OnDeploymentRequest (containersConfigs):
2 deploymentFailed «— false

3 colocatedResSum < NewResources(0,0)
4 colocatedConts, spreadConts, deployedConts «— @
5 foreach contConfig in containersConfigs do
6 if contConfig.GroupPolicy = “Co-location” then
7 colocatedResSum.Add(contConfig.Resources)
8 colocatedConts « colocatedConts U contCon fig
9 end
10 else
11 ‘ spreadConts « spreadConts U contConfig
12 end
13 end
/* Skipped if there are not co-located. */
14 contStatus «

Schedule(colocatedConts, colocatedResSum)

15 if contStatus = nil then
16 | return NewError(“DeployFailedError’’)
17 end
18 deployedConts < deployedConts U contStatus
/* Skipped if there are not spread. */
19 foreach contConfig in spreadConts do
20 spreadContRes < contConfig.Resources
21 contStatus « Schedule(contCon fig, spreadContRes)
22 if contStatus = nil then
23 deploymentFailed «— true
24 break
25 end
26 deployedConts « deployedConts U contStatus
27 end
/* Rollback the deployment if necessary. */
28 if deploymentFailed = true then
29 foreach cont in deployedConts do
30 ‘ StopContainer(cont.SuppIP, cont.ContID)
31 end
32 return Error(“DeployFailedError’”)
33 return deployedConts

With all the scheduling properties specified and how a set of
container are scheduled in a node we will now describe how it is
performed the complete request deployment algorithm incorporat-
ing the request-level policies too. Algorithm 5 describes the func-
tion called by the node’s buyer when the node’s own/user inject a
container(s) deployment request on it. The OnDeploymentRequest
function receives as parameter a non empty set of container’s con-
figurations (one per container) specify all the details for the con-
tainer: image’s key, container name, container’s arguments, port
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(a) Without super traders. (b) With super traders.

Figure 3: Super Traders usage.

mappings (Host:Container), resources necessary and group policy.
The algorithm starts by iterating all the configurations (line 7), if
the container has the co-location group policy active it sums the
container’s resources in an accumulator, and adds the configura-
tion structure in a list of the co-located containers (lines [8-10]).
If the container has the spread group policy configured, it adds it
to other list for the spread containers. The next part of the algo-
rithm consists in scheduling the co-located containers in one node.
To do this, it calls the Schedule function (recall Alg. 4) with the
container’s configurations and with the sum of its resources needs
(lines [16-20]). As we already showed when it returns with success
means that the containers are already being deployed in a node.
After the co-located containers are deployed, it needs to deploy the
spread containers. This is straightforward, by calling the Schedule
function one time per each spread container (lines [21-29]). Due to
the Schedule (Alg. 4) and DiscoverResources (Alg. 3) functions
that select random traders to obtain offers, with high probability
we obtain different nodes to deploy the spread containers. If any of
the container deployment fail we rollback all the others that were
already deployed by sending StopMessages to respective suppliers
and returning an error to the user (lines [30-35]).

Note that if a user does not specify the container group-policy
we assume it is spread. If it does not specify the resources necessary
to the container we assume the value designated in lowest resource
region. In the co-located containers we assume the CPUClass of the
target node to be 1 (highest available) if exist at least one co-located
container with it specified.

3.4 Optimization: Super Traders

Our discovery algorithm previously described (recall Alg. 3) selects
a random trader in the resource region it targets. When the system
is low on resources there are less offers in the traders so the chances
of targeting an empty trader is higher. This lead to two problems:
if the trader is empty our search for resources would fail and it was
needed a retry (automatically or done by the user), which would
affect the the resource discovery efficacy and efficiency; the second
problem is that our global scheduling policy is enforced accurately
if the buyer has many offers to rank and choose.

To mitigate these problems we devised a new way to chose a
trader of a resource region. Instead of choosing a random key from
the resource region, we choose a random key from a limited set
of keys evenly distributed in the region. The size of this set of
keys affect how we concentrate the CreateOffer and GetOffers
messages in more or less traders. In the end we are creating a kind
of super traders that would manage more offers than before, while
the other nodes would not manage any offer. Figure 3 pictures
the nodes receiving CreateOffer and GetOffers (colored arrows)
without and with super traders. The amount of super traders can



be controlled by configuration parameter SuperTradersgcor, €-8.
the value 7 for the parameter would mean that each super trader
would manage the same offers as 7 nodes.

4 EVALUATION

To evaluate our Caravela’s prototype we developed a cycle-based
simulator called CaravelaSim, due to the necessity of re-utilizing
ours complete Go’s code base of Caravela, and at same time test
the scalability of the prototype with thousands of nodes. Our sim-
ulations ran with 20s ticks and a duration of 360 ticks (2h of
simulation). Our simulator tested the real components of Car-
avela. We implemented the Chord’s protocol as it is in its paper,
except the background stabilization protocol, due to the simulation
overhead.

We developed two resource discovery and scheduling bench-
marks to compare with ours. A Docker Swarm centralized solution
adapted to work over Chord and a naive random approach also over
Chord, from now on designated by Swarm and Random respec-
tively. The Swarm uses a master node that receives the offers and
the deployment requests from all the nodes. This master node takes
into account all the offers/nodes when deploying containers so it
is a near “oracle” approach that allow us to obtain a near perfect
request satisfaction and the near perfect global policy enforcement.
The master node is the Chord’s node responsible for the key 0.
The Random approach is very simple, when a node receives a
deployment request it looks for a random key/node in Chord. If
the node has enough resources to accept the request, it sends the
Launch message immediately with the container(s)’s information,
otherwise the request is retried automatically by the system until
the maximum retries are achieved. When the maximum retries are
achieved it is considered a failed request and the user is informed.
This approach has minimal overhead and is used to verify that our
problem did not have a trivial solution. Our approach is designated
as Multi-Offer from here onwards.

We submitted the same request stream (deploy containers re-
quests and stop containers requests) to all the approaches in order
to maintain the evaluation fair. We submitted the system to a load
where at least 50% of its total resources would be used. After that the
request stream had more or less the same deploys and stops in order
to maintain the system in a near constant state of resource utiliza-
tion. We did this because because a real and well designed system is
always at least 50% utilized, otherwise it would be overdimensioned
or poorly used system.

The requests profiles (in terms of resources needs) contained 50%
of light requests (e.g. micro services deployments) the other 50%
were heavier requests (e.g. heavy applications or heavy background
tasks).

In the remainder of this section we present the results of our
evaluation. We gathered 4 main metrics to verify the scalability
(without nodes being bottlenecks) of the solutions and its discov-
ery and scheduling algorithms efficacy and efficiency. The met-
rics are: bandwidth consumed per node, RAM used per node,
amount of requests fulfilled with success (user satisfaction and
resource discovery algorithm efficacy), and the efficiency of the
deployment requests (assess discovery algorithm efficiency). We
tested the approaches with two network sizes 65,536 (a.k.a 64K)

and 1,048,576 (a.k.a 2?°) in order to test the approaches scalabil-
ity when the network grows 16 times. Note that we do not show
higher network sizes or the Swarm approach for the 22° network
because the simulations would take too many hours. Swarm simu-
lation time hints that its not scalable as we will show next.

4.1 Bandwidth consumed per node

Figures 4 and 5 show the distribution of the bandwidth consumed
per node (on receiving) over time. Note that the amount of outliers
represented in the quartile plots (these and the ones that follows) are
[7%-9.5%) of system’s total node (super traders). Figures depicts that
Swarm master node, the highest outlier (in 64K network), consume
500 times more bandwidth than the highest outlier in Multi-Offer.
With smaller networks we noted that the bandwidth consumed
by the master node double when the network size also doubled.
So, doing the extrapolation we checked that with 220 hetwork, the
master node would consume ~2.8TB of bandwidth in a month
span, which would be unbearable for a user due to ISPs fair usage.
Multi-Offer consumes a little bit more than Random, but would only
consume ~150MB in a month span. When the network scales
16 times the node’s bandwidth consumption only increased by a
factor of 1.2 per node (on average) which gives a great scalability
factor to Multi-Offer.

4.2 RAM used per node

Figures 6 and 7 pictures the distribution of the RAM used per node
over time. We only account for the Caravela’s data structures (with-
out Chord and WebServer structures) in order to check the overhead
of our solution. We can extract similar conclusions as the ones pre-
sented in the bandwidth consumption per node. Swarm’s master
node needs to save information about all the node’s participating in
order to schedule the container, it also needs to save the information
about each request scheduled in the system.

4.3 Deployment Request Efficacy

Figure 8 pictures the user’s deployment request fulfilled (cumula-
tively) over time. Swarm can fulfill 4% more requests than Multi-
Offer. Multi-Offer can maintain a good deployment efficacy with
a fully decentralized architecture. Multi-Offer in the end of the
simulation deployed ~24% more requests than Random. It is worth
to mention that the simulations ran with an automatic retry mecha-
nism for Random and Multi-Offer. The maximum retries for Random
was set to 3 and the Multi-Offer for 1. As we will show later the 3
retries of Random gives it a very inefficient resource discovery in
terms of network hops.

We also started to notice that random failed to deploy the re-
quests with higher resource needs, e.g. < (0;3CPUs);2GB > so
we devised a deployment request allocation efficacy metric pic-
tured in the Figure 9. The metric consists in the cumulative ratio
of totalResourcesAllocated [totalResourcesRequested over time. It
shows that Multi-Offer is near swarm which is good because due
to the centralized solution of Swarm it manifests a near-optimal
allocation efficacy because it knows all the nodes’ state. As expected
Random allocates much less resources than Multi-Offer. Random is
only useful for light requests.



18000 — 18000 —|

2e+07

- = =
< = =
£ = = 1
= =1 =1
T 9000 T 9000 = le+07 7
s 1 = 1
5 3 3
& & & |
[T llllili g
L g |
T T I T ' T
0 100 o 100 o 50 100
Tmle (minutes) Time (minutes) Time (minutes)
(a) Random (b) Multi-Offer (c) Swarm
Figure 4: Bandwidth used per node over time, in the 65K node’s network (Quartile Plots).
30000 — 30000 —
gzuoou B ézuoou B
= £
= z
5 3
] 1 g P
5 5 I
0 10000 — 010000
um iy T
T
100 0
Tlme (minutes) Time (minutes)
(a) Random (b) Multi-Offer
Figure 5: Bandwidth used per node over time, in the 1M node’s network (Quartile Plots).
E : R wooo000— .o
10000 woon—| i PR
= = il T -
£ £ £
T 6000 B 6000 g 16000000 7
=} = =
= = =
< 1 = =
I~ R I~ 2
T I | | 11t i
o "”H ”” ' . ” “”H S L e A A AR TR
'"'"T'TI"IT'1\"\T'7"77""T ........................................
T : \ — I e e e e
0 B 100 0 100 0 50 100

Time (minutes)

(a) Random

50
Time (minutes)

(b) Multi-Offer

Time (minutes)

(c) Swarm

Figure 6: RAM used per node, in the 65k node’s network (Quartile Plots).

4.4 Deployment Requests Efficiency

After we assess the deployment request efficacy, here we assess
how much it costs for each approach. Figures 10 and 11 picture
the distribution of sequential messages (hops), taken until the de-
ployment request succeeded or failed. Swarm as a constant cost of
3 messages because the master nodes saves the node’s IP making
the subsequent contacts direct. Multi-Offer highest outlier costs
less than Random’s median cost. It is also notable that Multi-
Offer cost has a small variance compared with Random. When

there are few free resources in the system, Random uses its re-
tries to achieve the deployment request efficacy that we showed
before, making its efficiency worst. This metric is important in Edge
Clouds due to the WAN networks that connects the nodes. More
hops/messages means higher latency between the user’s request
submission and the reply from the system telling the success or
failure of the request.

Due to space constraints we did not provide the plots with the
simulation of the Random approach with only 1 retry. With 1 retry
the deployment request efficiency became the same as Multi-Offer
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because it only uses one Chord lookup too. The problem was that

the deployment request efficacy we showed in Section 4.3 decreased.

Multi-Offer fulfilled ~70% more requests than Random.

5 CONCLUSION

Caravela was devised to serve as a fully decentralized Docker Cloud
to be deployed in an Edge Computing environment, where there are

tens of thousands of nodes participating, high latencies between the
nodes and no central administration. Its architecture and algorithms
verified to be close in terms of efficiency and efficacy to a centralized
“oracle” solution as our adaptation of Docker Swarm to Edge Cloud
environment, while maintaining its scalability even with 22° nodes.
A typical centralized solution is defeated by the scale. The Random
approach was scalable with a low overhead per node, but it had
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a low deployment request efficiency and efficacy. It also cannot
enforce the binpack global scheduling policy that is interesting to
leverage the maximum of the system/nodes.
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