
Resource discovery over Peer-to-Peer networks for the creation of

dynamic virtual clusters

Carlos Paulo Ferreira Santos

Dissertation submitted to obtain the Master Degree in

Information Systems and Computer Engineering

Jury

Chairman: Prof. João Emílio Segurado Pavão Martins

Supervisor: Prof. Luís Manuel Antunes Veiga

Co-supervisor: Prof. João Nuno de Oliveira e Silva

Members: Prof. David Martins de Matos

October 2012

2

Acknowledgements

I would like to thank my supervisor, Luis Veiga, for still believing in me

and helping me finish this work through all hardships.

I would also like to thank my mother and my close friends for being

there for me.

Last, but definitely not least, I would like to thank my friend Irja for

helping me get through all bad moments, as well as being around for

the good moments. I would not be here without you.

3

4

Resumo

A importância da computação paralela e distribuida tem crescido nos

ultimos anos e a quantidade de tráfego em redes peer-to-peer tem

aumentado continuamente. Os métodos que estas aplicações usam

para manter a escalabilidade e atingir os seus objectivos podem ser

usados para melhorar a performance dos actuais sistemas baseados

em grids de forma a facilitar a criação e manutenção de clusters

virtuais dinâmicos, permitindo que estes possam atingir tamanhos

superiores ou funcionar de forma mais eficiente. Pretendemos

basear-nos nos pontos fortes dos sistemas peer-to-peer de forma a

criar um sistema capaz de dinâmicamente criar ou ajustar clusters

virtuais para a execução de aplicações distribuidas, permitindo dessa

forma uma maior disponibilidade destes mesmos clusters e ao

mesmo tempo diminuir os recursos computacionais desperdiçados.

Palavras-chave: Peer-to-peer, Grid computing, Virtual clusters,

Cycle-sharing

5

6

Abstract

The importance of cycle-sharing and distributed computing has

grown in the past years and the amount of internet traffic over peer-

to-peer networks is increasing. The methods that peer-to-peer

applications use to maintain scalability and perform their goals can

be used to improve upon current grid systems to facilitate the

creation and maintenance of dynamic virtual clusters allowing them

to grow further or perform better. We intend to draw upon the

strengths of peer-to and grid systems to create a system capable of

dynamically creating or adjusting virtual clusters for the execution of

distributed applications, thus allowing for higher cluster availability as

well as lessen the wasted computational resources.

Keywords: Peer-to-peer, Grid computing, Virtual clusters,

Cycle-sharing

7

8

Index

Table of Contents
 1 Introduction .. 2

 1.1 Current Shortcomings .. 3

 1.2 Objectives .. 4

 1.3 Document Structure ... 7

 2 Related Work .. 8

 2.1 Peer-to-Peer ... 8

 2.1.1 Unstructured P2P ... 9

Napster ... 9

FastTrack ... 10

 2.1.2 Structured P2P .. 11

Chord ... 12

CAN ... 13

Pastry ... 14

Kademlia .. 15

 2.2 Grid systems .. 18

MPI .. 21

Globus .. 22

Condor ... 23

Folding@home .. 25

Seti@home .. 25

LHC Computing Grid .. 25

 2.3 Analysis of the field .. 26

 2.3.1 The grid and p2p convergence ... 26

 2.3.2 Cloud Computing ... 27

 2.3.3 Virtual Clusters ... 28

Summary .. 30

 3 Solution .. 31

 3.1 Network System .. 31

 3.2 Resource Discovery Protocol .. 33

 3.3 Cluster setup .. 35

 3.4 Further detail and Implementation Issues ... 37

Main steps in resource discovery .. 38

Cluster Deployment ... 41

Simulation .. 41

Messages used ... 43

Summary .. 45

 4 Evaluation .. 46

 4.1 Join and leave .. 46

 4.2 Candidate gathering .. 50

 4.3 Dynamic cluster forming ... 52

9

 4.4 Message size .. 54

 4.5 Size of the local data ... 56

 4.6 Comparison to other P2P-Based systems .. 57

Message routing ... 57

Size of Local State ... 59

Request satisfaction ... 59

Performance under load ... 64

 5 Conclusion .. 68

10

Illustration Index
Figure 1: System overview...31

Figure 2: The entering of a node into the network...32

Figure 3: Virtual appliance deployment...36

Figure 4: Changes in the overlay and its clusters...36

Figure 5: Node representation in variant B..39

Figure 6: Possible node representation of clock speed in variant C.......................40

Figure 7: Our class model..42

Figure 8: Join message...43

Figure 9: Candidate collection message...43

Figure 10: Candidate list message..44

Figure 11: Cluster formation message..44

Figure 12: Successful join message ..45

Figure 13: Number of messages taken for a Join message....................................47

Figure 14: Average number of messages taken for join message..........................48

Figure 15: Number of messages taken for a Join message with churn..................49

Figure 16: Number of messages taken for a candidate gathering message............51

Figure 17: Number of messages taken for a cluster forming message...................52

Figure 18: Comparison of messages required for growing candidate numbers.....53

Figure 19: Comparison of message routing in different systems...........................58

Figure 20: Average request satisfaction per overlay occupation, 100 000 nodes. .61

Figure 21: Average request satisfaction per overlay occupation, 10 000 nodes... .62

Figure 22: Average request satisfaction per overlay occupation, 1000 nodes.......62

Figure 23: Average request satisfaction per overlay occupation, 100 nodes.........63

Figure 24a: Join message comparison..65

Figure 24b: Join message comparison...65

Figure 25a: Candidate gathering message comparison..66

Figure 25b: Candidate gathering message comparison..67

1

 1 Introduction

In the ever-evolving modern world, one of the few constant facts of the

computer industry has been growth. This growth manifests itself both in terms of

computationally more demanding applications as well as a higher availability of

computational resources.

One would think these patterns of growth would neatly overlap, yet that is not

so. A high amount of computer cycles are being wasted at all times all over the

world, and yet, at the same time there are applications that have a strict demand

for computational power that requires more than a simple computer's effort to

satisfy.

Over the past 20 or so years, several approaches to this problem have been

created. Initially most heavy computational processes were handled by

supercomputers and mainframes, but this solution was both expensive and

inherently generated inefficiency.

With the passing of time the concept of a computational cluster became the

norm. A group of machines, similar both in hardware and software specifications,

but also connected by high-throughput and high-availability networks, solely

dedicated to the solving of a common problem through the usage of distributed

and shared computing mechanisms.

2

 1.1 Current Shortcomings

However, while locally capable of providing for the needs of any entity requiring

such form of computational power, the several existing approaches still failed to

provide a solution except for the most wealthy and stable of companies[9]. The

common user was still without a solution, the vast resources of the internet were

still not being used, and above all, there was still a high amount of computational

power that was wasted, not only during idle times in computer clusters, but also

in the raw untapped power of millions of personal computers and other

computational devices (such as the ever popular portable cellphones, hand-held

devices, etc.) all over the world connected to the internet[26].

Several partial solutions appeared with the passing of time, each focusing on a

certain approach and method to solve the challenges required to implement a

platform that would both maximize computational power available as well as

minimize resource waste.

The concept of distributed and parallel computing itself is one of the interesting

points that evolved alongside the clustering paradigm. Cycle-sharing and Grid

computing are different approaches to this concept, each with their own goals

and constraints. These constraints that still prevent the public from having access

to proper clustering tools. In a way, public computing and computer clusters are

still like two islands in a sea, totally separate, due to the lack of tools to overcome

such constraints. Should a tool arise that could allow for the dynamic creation

and alteration of clusters based on a peer-to-peer network, we could finally reach

the goal of allowing the computational power of clusters to the general public.

3

 1.2 Objectives

Our goal is to design a system based on a public, peer-to-peer overlay network of

nodes representing computers offering or needing resources that can on a per-

request basis locate a list of the best candidates for the creation of a virtual

cluster from the nodes present in the network. With this list we will make a

choice of the exact machines that will be part of the cluster and finally create the

cluster itself, always maintaining the capability of adjusting its size or members.

This system must be able to:

• Allow the soft and controlled entrance and exit of nodes from the

network.

• Locate resources in useful time, ensuring that if a resource exists, it can

be found

• Take into consideration each machine's specifications including CPU type,

clock speed, core availability as well as available bandwidth

• Allow each request to specify QoS1-level metrics to refine the search and

provide the best candidates for a cluster.

• Be capable of finding a cluster of the appropriate size and specifications

to meet the needs of the request

• Maintain a high level of scalability and reduced bottlenecks/points of

failure.

• Create and maintain a cluster from heterogeneous machines if necessary

• Initiate a cluster dynamically, at request execution time

1 Quality-of-service

4

In order to do this, we will create an approach that involves both a P2P2-based

protocol for resource discovery, a P2P-based node handling system and an

application for the deployment of the code to be executed on the recently

created virtual cluster.

This will solve the major issues highlighted in the previous section, our approach

will perform such tasks in an efficient way, making use of resources located not

only in fixed, easy to access networks but mainly via perishable networks like the

internet. We will present a system that allows a user to share local resources, set

up QOS levels in several aspects in order to locate a machine or group of

machines currently available that best fits the execution of an application as well

as actually relaying the execution of the application in that machine or virtual

cluster.

To achieve this, there are three main problems to solve. The first of those lies

with the nature of the network wherein we will locate our resources. The

internet is not without fails and faults, and even though its reliability (and

availability) has greatly increased in the past years, we cannot assume a node

present at a time to be available at another time.

Our system must be able to allow a node to make itself known and announce its

available resources without generating an exponential amount of control

messages in order to ensure a capacity for scaling.

The second issue is directly linked with the first one. Our protocol must be able to

locate resources that have been announced that fit the criteria defined in the

QoS specifications. The same care must be shown in order to avoid flooding the

network, but also we have to pay attention to the amount of time spent locating

the “perfect” resources (that match the request's specifications exactly), and

whether locating them is feasible.

2 Peer-to-peer

5

The third and final issue appears once we have obtained a list of candidates for

execution of the required application. From that list, we will have to choose a

machine or group of machines that can better satisfy the QoS requirements and

start a virtual cluster for the execution of the code. Those resources will have to

be reserved, execute the code, the results of the execution must be gathered and

assembled and then the resources should be freed, to be reused. This can be

achieved by using an appropriate tool (like a small applet or virtual appliance)

that is dynamically deployed onto the machines of the selected nodes.

In further detail, our resource-discovery protocol will be based on a structured

peer-to-peer approach and will be oriented towards locating machines that can,

either partially or fully, satisfy the QoS-level metrics presented by the request.

These metrics can include characteristics such as the machines' number of CPUs,

their CPU availability, available RAM, storage space, network latency and/or

bandwidth available, among others.

The system we will design for handling the entrance, exit and maintenance of

nodes in the network will be based in a peer-to-peer approach to ensure a low

amount of overhead generated by control messages. It will have to maintain the

data on resources, node availability and characteristics in order to sustain the

node network's health as well as feed the resource discovery protocol.

Finally, the prototype application will both serve to deploy the code to be

executed onto the target dynamically created cluster and provide an interface for

the use of our proposed system.

This work was carried out within the scope and partially supported by national

funds through FCT – Fundação para a Ciência e a Tecnologia, under projects

PTDC/EIA-EIA/102250/2008 and PEst-OE/EEI/LA0021/2011.

6

 1.3 Document Structure

We have discussed the objectives of our own approach in Section 1.1 A global

analysis of previous approaches will be presented in Chapter 2. Such analysis will

be accompanied by a brief evaluation and analysis of a few strengths and

weaknesses of such approaches, what they are lacking and where they succeed.

Chapter 3 contains the description of our implementation and how we overcome

the difficulties of our approach while capitalizing on the strengths of our program

to solve the two major issues ahead of us. We evaluate the system implemented

in Chapter 4 through several methods, analyzing its practical results and both

comparing it against our own expectations as well as some other already existing

systems. This document wraps up with Chapter 5 where we present a short

reflection of the results of our labor and the impact the solution could have in the

current computing environments.

7

 2 Related Work

Isaac Newton once said “If I have seen further it is only by standing on the

shoulders of giants.“ and we are in the same position. Our work is based on

gradual evolution in the field, both in the academic world and in the computer

industry. In this chapter we will describe the evolution in two main fields within

which our work is based. The first one is regarding resource discovery in peer-to-

peer/grid networks while the second one relates to the creation of dynamic

clusters itself.

The following subsections contain an analysis of the origin and evolution of those

technologies, as well a analyze why they succeeded and failed.

 2.1 Peer-to-Peer

Peer to peer (or more commonly P2P) is a concept where resources are shared

among several nodes in a network, be those resources tasks, information or

storage. The networks based on this concept can be both structured and

unstructured. We will first give an example of unstructured ones.

These systems share responsibilities amongst the nodes and allow for far greater

resource availability than existed in previous single-point or centralized

approaches.

A peer to peer system is characterized by its level of decentralization, which is

how distant from the ideal that all nodes in the network are equal. This affects

not only the homogeneity of the nodes in the network but also the degree of

scalability and performance issues that might arise.

8

Another important point in these systems is resource discovery, or the method

for which a node discovers other nodes/resources in nodes. This can greatly

affect the performance of a system, to the point of actually making it unusable in

practice.

One issue concerning these systems is the joining and leaving of nodes from the

network. This is directly tied to its level of decentralization, but is independent

enough that merits mentioning. Although it has only a partial impact on

scalability, it can greatly hinder the performance of a system if not handled

correctly.

 2.1.1 Unstructured P2P

This concept was first made famous by the application Napster that quickly

accrued upwards of 80 million files shared between 1999 and 2001[27]. Napster,

however, is unlike more modern P2P implementations in the fact that it was a not

a fully decentralized technology, using superservers to direct and control

entrance into the network, resource discovery and node publication, among

other tasks.

Napster

Napster uses in fact a Hybrid Decentralized Architecture[5] which uses the

aforementioned superserver in addition to normal peer nodes in a network. This

particular feature is one of the weaknesses of this type of approach offering an

individual point where failure or fault greatly compromises the P2P network, as

well as offering a bottleneck that can greatly affect scalability of the system.

9

This approach in fact limits one of the strong points of P2P systems: scalability.

More modern approaches use one of two different P2P types, which vary exactly

in the equality of peers within the network. A Partially Centralized Architecture[5]

[12], such as the one used by the FastTrack protocol (as used in KaZaa or ED2K

based systems[15]) is based on the existence of some peers that accumulate

more responsibility than that of the usual client, and thus also have tasks of

control and organization of the network.

FastTrack

 Unlike Napster's approach, the lack of a central server means there is no

bottleneck, and the tolerance for fails and faults is much higher. The sudden

absence of one of these superpeers does not compromise the network. If it is

necessary, a new superpeer can be elected to take the place of the previous one,

or in some cases another already existing superpeer can take over for the absent

one. In any case, these peers are required to present certain characteristics in

order to be promoted to a superpeer, both in terms of computational power as

well as bandwidth available to them.

The final type of P2P system is the Purely Decentralized Architecture[12][1]. This

system presents true equality among peers, not using superpeers or centralized

servers. For a new node to join a network of this type, he simply needs to know

the address of a node already in the network, and the system itself

accommodates for the new node and spreads the information of its existence.

While this may seem to offer less bottlenecks than the previous two types, there

is an issue with resource discovery.

10

Due to the lack of nodes with the responsibility of containing information on the

resources present in the network, a much higher amount of control messages

might be required in the system.

Traditionally the spreading and discovery of resources was handled by flooding

the network. The evolution of these systems started using other methods such as

random walks [20] and Distributed Hash Tables[17][11] (as seen in the

Bittorrent[23] protocol and several of the structured networks present in the

following subsection 2.3.)

 2.1.2 Structured P2P

Unlike the peer to peer based systems described in the previous subsection,

structured peer to peer architectures use a rigid organization to govern the nodes

within the network. This well-defined structure allows some knowledge over the

nodes to be passed onto their itself as well as both ensure that resource locating

algorithms do not flood the network and that if a resource exists, it is found in a

well-known and predictable number of steps[14].

Examples of systems that use a structured peer to peer approach are for

example, Chord [8] and CAN [4]. There are some systems such as Pastry [19] and

Kademlia [16] that use portions of both unstructured and structured systems, but

in their essence function as structured approaches. The great advantage these

approaches have over an unstructured approach is the control over node joining

and content that lies within the node structure, ensuring both a lower amount of

control messages as well as faster (or at least more certain) searches.

11

Chord

Chord was one of the first structured peer to peer systems, developed at MIT,

and uses a Distributed Hash Table to store pairs of keys and values. Each node

stores all values for any keys he is responsible for, and the system enforces how

each key is given to each node.

Resource discovery in Chord takes two steps: first you locate the node that is

responsible for the key, then you locate the key (and appropriate value) in such a

node. Like many structured approaches of this type, the nodes in Chord are

structured in a figurative directed circle. Each node has another node as a

successor and one as a predecessor in the circle.

In order for chord to function, the system uses a consistent-hashing system to

generate a unique identifier with a length of N bits. The maximum number of

nodes in a Chord circle is 2n nodes, and each of these is responsible for a number

of keys equal to the total number of keys divided by the number of nodes.

To ensure safe departure from the network, each node has not only information

of its successor, but also information on a few of the following nodes, ensuring

that the circle is not broken upon network or node failure. Whenever a new node

joins the network, the responsibility of each node is recalculated to ensure an

even distribution of keys.

12

CAN

CAN (short for Content Addressable Network) is another DHT-based structured

P2P system. Unlike chord, the nodes are not sorted in a circular fashion. CAN

interprets the node space as a N-Dimensional axial system.

Nodes are assigned coordinates as if they were a point in the axial system and

each node is assigned a partition of the total dimension that the node becomes

responsible for.

Each node contains a list of its neighbor nodes as well as their IP addresses and

maintains this information in a routing table of sorts. Also unlike Chord, a node's

entrance into the network causes not a calibration of the whole weight, but only

a split in one of the spaces assigned to a node. The new node contacts a node

already present in the network and discovers a node (either by picking random

coordinates in the system) that is responsible for a certain amount of space. That

node splits his space into two between itself and the new node, and informs the

neighboring nodes of the new responsibilities. The information is then

propagated across the network.

This small change causes a much smaller amount of overhead (when compared

to Chord) in networks with high amounts of nodes and keys, but conversely does

not guarantee that the keys are evenly distributed as Chord does.

The process for a node's departure from the network is more complex. There has

to be a control mechanism that periodically probes the nodes for livelihood.

Once a node leaves the network, its space is merged with one of its neighbor

nodes and that information is once again propagated to the merged node's

neighbors and the network.

13

To ensure that the routing protocol in CAN is obeyed, the choice of which

neighbor gets the responsibility over the space previously assigned to the node

that left follows strict rules regarding the shape of the final space. If no merge is

possible, then the neighbor node with the smallest space is assigned

responsibility over the departed node's space as well.

The actual of a resource is handled based on the resource's coordinates in the

axial system. From any node, you simply move the request onto the neighboring

node that is in the direction of the resource's , and the request moves forward in

this fashion until the is finally reached.

Pastry

Pastry is in many ways similar to Chord. Nodes are also arranged in a circle, and

the system also uses a Dynamic Hash Table to store key-value pairs. The main

difference between the two are the Ids that each system handles.

Pastry uses a 128-bit ID setup that represents a position in the circle. Node IDs

are assigned at random and on top of the circular node setting pastry uses an

external routing overlay network. This overlay maintains information on node

“proximity” (be it through the existence of a low amount of hops between them,

low latency, etc) in a list of neighbor nodes.

14

Each node also maintains a list of leaf nodes which are the closest nodes to itself

in terms of node ID, totally disregarding the metric. The routing list basically looks

at each 128 bit key as a length of digits or characters as if it were a string, and

sets farther nodes (in terms of the metric) to strings that have only 1 of the digits

or characters in common to it, while nodes “closer” might share more characters

in common. For example, given a node with key ABCD, the node FGHD is farther

away than the node CBCD.

The actual routing of a message takes multiple steps. If a node wants to send a

message to a certain key, that node sends it directly to that space. The node with

the ID closest to it on the circle then scans its leaf nodes to check for the key

being present there. Should it be there, the message is delivered. Should the key

be absent, the node's routing table is consulted to attempt to find a node with

the a longer string in common with the target key.

This structure allows real life constraints such as bandwidth and round trip times

to determine proximity in nodes, which can greatly increase the performance of

such a system.

Kademlia

Kademlia[16], like Chord and Pastry before it, also uses a Dynamic Hash Table,

but in this case the hashing is directly tied to the IDs of the nodes. In a Kademlia

network, resource location is an iterative, gradual approach. Every step of this

process attempts to find “closer” nodes to the target key, and proximity is

determined by a simple hashing of node IDs.

15

Each of these steps ensures that either a better match is found, or that either the

node is absent or that we've found the key being procured. Another large

differentiating feature in Kademlia is that the distance of nodes is kept in lists by

each node. There is one list for each bit in the node ID, so if there were 32 bits in

such an id, there would be 32 lists kept in each node. The first one contains the

nodes farthest away from this one, and each subsequent list contains nodes

closer. These lists are updated as nodes are encountered, which generates a very

low overhead and keeps the routing list fresh.

For ease of reference, we will provide a comparison table between the systems

described above, containing a few of the main characteristics of each.

We define overhead in this table as the amount of control and system messages

necessary to maintain the correct state of the system, its nodes and the

resources available. Ideally in a single-machine system, these are nearly

nonexistent. The lower the overhead resulting from these messages, the

smoother the system scales with a growing number of nodes.

This is a defining point of any system, as it can determine the capability of our

system to accompany a large growth in the number of nodes. The control

messages usually stem from resource requests and finds, file transfers, among

others.

Also, when referring to “servers”, these are specialized machines, not selected

from normal nodes, and multiple in number, as opposite to super-peers which

can sometimes be drawn from the normal node pool. These specialized machines

are centralized in fashion and predetermined by the system itself before the

network overlay is established.

16

Name P2P type Level of

Decentralizat

ion

Resource Types of

nodes

Overhead

Napster[27] Unstructured

Hybrid

decentralized

Central

Server

Server-

side

Peers,

server

Small

Direct

Connect

Unstructured

Hybrid

decentralized

Servers Server-

side

Peers,

servers

Medium

Kazaa Unstructured

Partially

Decentralized

Super-peers Super-

peer

controlled

flood

Peers,

super-

peers

Large

Edonkey[15] Unstructured

Partially

Decentralized

Super-peers Super-

peer

controlled

flood

Peers,

super-

peers

Large

Freenet Unstructured

partially

decentralized

Super-peers Super-

peer

controlled

flood

Peers,

super-

peers

Large

Gnutella Unstructured

partially

decentralized

Super-peers Super-

peer

controlled

flood

Peers,

super-

peers

Large

Ares Unstructured

partially

decentralized

Super-peers Super-

peer

controlled

flood

Peers,

super-

peers

Large

Chord[8] Structured Fully

Decentralized

2-step

search by

nodeID

and key

Peers Medium

17

CAN[4] Structured Fully

Decentralized

Routing by

neighbor

peers

Peers Small

Pastry[19] Structured Fully

Decentralized

Peer

overlay

and

nodeID

Peers Small

Kademlia[16] Structured Fully

Decentralized

Iterative

list search

Peers Small

 2.2 Grid systems

Grid computing is the process of using computer resources from disparate

locations and architectures to join together in order to overcome a non-trivial

computational challenge[33]. It is somewhat related to traditional computer

clusters in the sense that it uses several machines to solve a computational

problem, but the similarities end there.

Grid computing utilizes resources spread throughout several organizations and/or

individuals instead of all belonging to the same organization. In addition to this,

machines in a grid system are not required to have similar specifications, which is

common in cluster systems[3].

In fact, the most common tools at the disposal of a Grid System are physically and

geographically distant computers joining together in a loosely coupled way over

networks that span from LANs, to WANs, to the internet itself. By harnessing the

collective power of these machines, one can create virtual supercomputers

capable of handling much more complex tasks.

18

The immediate comparison to traditional cluster systems shows pros and cons on

both sides. The typical cluster system can take a greater advantage of the

machines at its disposal, but requires a large investment in planning and

hardware. Cluster systems by definition may are only limited the machines

available and the network connecting them, but can join together a much larger

amount of machines and thus derive more computational power from them.

One of the more modern details regarding Grid systems is the usage of

established middleware to deploy (and possibly partition) or integrate with the

code to be executed among the machines that will perform that task, thus

reducing the system's need to focus on that point.

In its essence, a Grid System is a type of distributed computing, or more precisely

a type of parallel computing that uses whole machines it has low direct physical

control over, connected through networks that the system also has low control

over. The following table will show a small comparison over the three types of

systems mentioned above.

Supercomputer Computer cluster Grid system

Number of

machines

1 Many Many

Machine specs
Several similar

processors

Several similar

machines

Many different

machines

Connection type High speed bus Reliable LAN/WAN LAN/WAN/Internet

Machine owner
Single organization Single organization Single organization

or Multiple owners

Owner investment High investment High investment Low to high

19

investment

Performance

potential

High High Average to very

high

Duration of service Long term Long term Task oriented

Overhead Nearly nonexistent Small Medium

Resource wasting Idle periods Idle periods Very small

Grid systems as a whole have been used in the solving of several computationally

intensive problems in several ares of science and academics, from the discovery

of new medicine and drugs to the execution of complex mathematical

calculations.

One of the advantages of this approach is that the individual machines that form

the grid can be purchased independently of each other, on a per-need basis, and

later be used in the virtual supercomputer created by the grid. The obvious

advantage here lies with the low initial cost and investment if the requirements

are not too extreme. [25]

Many small companies requiring higher computational power were for several

years barred from attaining it due to the steep initial investment costs inherent to

the acquisition of a supercomputer or the creation of a cluster. Grid systems

present themselves as the cost-effective solution as well as having the potential

for very high computational performance.

However, not all is advantageous when it comes to Grids. Due to the very nature

of the machines involved, individual nodes cannot be relied upon as machines in

a cluster can. Not only can the nodes themselves be unreliable, the network

connecting them may present failures as well. To prevent compromising the job

being done, the system must apply strict measures to prevent a single machine's

20

failure or absence from critically affecting a job that is underway.

A certain type of distributed computing that is a particular form of grid systems is

what is called Cycle-scavenging[7] (sometimes called cycle-stealing or public

computing). This is what is behind the many well-known volunteer computing

programs like Folding@home and Seti@home. The latter one has in the past

years changed its system to use BOINC, one of the several grid-oriented

middleware applications available.

The applications using cycle-scavenging are typically installed in a voluntary

fashion by the machine's owner and run when the computer itself is idle. There is

little cost to the machine's owner, and these applications serve purposes of

general interest. The main goal of reducing idle times in computers is achieved by

these applications, but still the goal of allowing supercomputing to be accessible

to the general public is still unsatisfied.

However, grid computing is becoming more mainstream than simple cycle-

scavenging programs. CERN has become a great proponent of Grid systems and

there are several initiatives throughout Europe that aim to further the Grid

system's evolution.

We will now present a more closer look at some examples of systems using grid

technologies as well as cycle-scavenging/public computing.

MPI

Message Parsing Interface is a protocol specification designed to allow computer

processes to communicate with each other. It was first announced in draft form

in 1994 and aimed at being used in distributed and parallel computing in systems

where the costs for accessing remote memory are too high[29] due to the way

they are connected.

21

It is easy to see the importance such a protocol can have in distributed

computing systems like clusters and grids, and the impact MPI had can quickly be

seen in the fact that even though it is not considered a standard, it has all but

become a de facto one in today's parallel and distributed computing world, being

used in large amount of the appropriate systems.

Being only a specification, MPI allows several implementations to exist, in several

programming languages as well as having two different versions, with different

scopes. MPI-1.2 (commonly shortened to MPI-1) is more focused on the actual

message passing while MPI-2 also includes parallel I/O, dynamic process

management and remote memory operations[28].

MPI-1 focuses mostly on topology, communication and synchronization between

processes. It achieves this by using unique objects and concepts (e.g. process

barriers) for each specialized situation, from using “communicator” objects to

handle multiple processes to mechanisms aimed at passing a message from a

particular process to another (or broadcasting it to all other). It also defines

specific data types for usage with the specification.

Globus

The Globus toolkit[13] is a set of open source tools for the creation of computing

grids. It was developed from 1995 onwards by an international association that

eventually came to form the Globus Alliance in 2003.

22

It has a specialized tool for resource management called GRAM[2] (Globus

Resource Al and Management protocol). GRAM can handle most basic job-

related functions as well as more advanced functions such as managing

credentials and monitoring the status of resources. GRAM receives a job as a

single submission directed at a single computational resource and can provide

not only input files but also output files for the result.

For the management of credentials and security, Globus uses a tool called GSI

(Grid Security Interface). GSI ensures that data is not tampered with, can be

authenticated and is read only by those that have a responsibility with it. Within

the Globus toolkit a legacy tool called MDS-2 (Monitoring and Discovery Services)

for the monitoring of computer resources in the grid, but support for this tool is

scheduled to be stopped and the tool removed from the kit.

Condor

Condor[10] is a software framework for distributed computing aimed at

distributing the workload over a dedicated cluster of computers, but may also be

used to draw unused computer cycles from idle machines. It was developed in

the University of Wisconsin in Madison as a means to tackle the problems

inherent to distributed computing.

One of Condor's advantages is the seamless integration of heterogeneous and

disparate resources, from clusters to regular desktop computers. This in part

derives from the developer's strong focus in the philosophy of flexibility as a

requirement for a system of this type.

The Condor system uses a component called Condor-G as an interface to

communicate with Grid resources (and also Cloud resources). Its name derives

from that of Globus (mentioned further in this document) which was the Grid

creation method Condor used at first.

23

Condor supports the MPI specification but also has a proprietary library called

Master Worker. MW is aimed at tasks that require a substantially higher degree

of parallelism.

Boinc

Boinc is a Grid middleware application developed in the Berkeley University of

California in 20022. its original goal was as a platform to support Seti@home but

it quickly outgrew that goal and started being used in a more widespread fashion

around the world. According to statistics publicized monthly, the Boinc-powered

virtual supercomputer has risen above 4 000 Tera flops (average) of

computational power3, spread out over more than 20 different projects.

This is more than twice the fastest supercomputer available at the time of writing

this document (the Jaguar-Cray XT5 HE, at approximately 1750 Tera flops4), which

is a number that not only proves the efficiency and potential of Grids, it also

shows their rapid exponential growth, reaching this peak in only 6 years.

If we consider peaks of performance instead of averages, the Boinc virtual

supercomputer has achieved over 5 400 Tera flops.

Boinc itself is a free mechanism for anyone that wishes to start a volunteer

computing system, and is mostly used for scientific purposes and is currently the

largest open Grid system in existence.

2:BOINC website, http://boinc.berkeley.edu/

3: BOINC statistics http://boincstats.com/stats/project_graph.php?pr=bo

4: Top 500 Supercomputer List http://www.top500.org/lists/2010/06

24

Folding@home

Folding@home is a cycle-scavenging system designed in the Stanford University

in California in 2000 to model protein folding in order to gain insight over several

diseases and medicine5.

Much like any cycle-scavenging system, it relies on a user installing its client in a

machine so that it can access the machine. It has achieved a peak of 5 600 Tera

flops but averages out at approximately 5 000 Tera flops divided over seven

different “cores” of research, each with their own peculiarities.

Seti@home

Seti@home is a cycle-scavenging system released in 1999 destined to scan data

obtained in the Arecibo astronomical observatory in order to attempt to find

hints at the existence of extra-terrestrial life6.

From 2005 onwards, Seti@home started using the Boinc platform instead of its

own proprietary system. It is currently averaging approximately 730 teraflops, or

approximately 17% of the Boinc virtual supercomputer.

LHC Computing Grid

As mentioned above, CERN has embraced Grid systems as an answer to the large

computational power required to interpret the immense amount of data being

gathered from the LHC experiments[6].

5: Folding@home http://folding.stanford.edu/English/License

6: Seti@home http://seticlassic.ssl.berkeley.edu/about_seti/about_seti_at_home_4.html

25

It was started at the end of 2008 and currently has participating nodes spread

over three continents and contains machines of over 140 different institutions.

 2.3 Analysis of the field

Having looked at several examples of related work, we need to look into our

system's direct relationships to those examples, as well as their future heading

given the current technological conjecture.

 2.3.1 The grid and p2p convergence

At the current point of time, peer to peer systems and grid systems are largely

independent. They were, after all, developed independently and aimed to solve

different goals. Yet, the evolution of both systems may show a confluence

between them in the near future[18].

As grid systems grow, scalability issues will require them to start using tools

commonly used in peer-to-peer systems to avoid bottlenecks and slowdowns as

well as possible points of failure. On the other hand, as peer to peer systems

become larger in size and attempt to claim more possible uses, they too start

using structured models commonly seen in Grid systems.

One could say that eventually there will cease to be any distinction between the

two types of systems, and that a single, common architecture will be present to

fulfill the goals of both systems: resource sharing (be it in terms of computational

power, data storage, or data itself) and the avoidance of resource wasting. How

soon it happens is still unknown, but it is a near certainty of modern advances.

26

 2.3.2 Cloud Computing

One unavoidable concept in today's distributed computing world is that of cloud

computing. The company Amazon is one of the entities most responsible for the

appearance of the concept of cloud computing.

It came to be during the company's internal hardware system restructure, an

action whose goal was to minimize the wasted computational resources inherent

to the company's everyday work.

A company study showed that sometimes only 10% of the machine's total

capacity was being used. During attempts to solve that, the idea of a pool of

computational resources evolved into the modern notion of the cloud. Of course,

had it remained simply a tool for the internal use of the company, the cloud

would not be a topic as well known as it is today. In 2006, Amazon started to

provide cloud computing to the outside public8.

A more careful look at the cloud shows it using concepts already present both in

grid systems, cluster systems and public computing, but with a different

implementation and a more restricted set of premisses.

From the point of view of a regular user, cloud computing seems to solve all the

tasks we set forth to achieve with this work, but after careful analysis, it is not so.

Cloud computing as it is currently pictured ends the client user's control after the

request is made and any decision on the cluster is done without the client user's

interference. While it does add to general agility for typical use, it denies the user

the capacity of adjusting the clusters to his own needs.

8: The Amazon elastic cloud, http://aws.amazon.com/ec2/

27

Furthermore, the cloud is still closed in the sense that the machines providing the

computational capabilities will not request more capacity themselves, and that a

typical user cannot provide his own unused computer cycles to someone else.

These points are strong enough that a niche for our work exists, and this niche is

substantial enough that it warrants a solution, a proper answer to the issue at

hand.

 2.3.3 Virtual Clusters

The concept of a virtual cluster[24] is tied directly to that of the traditional

computer cluster. Originally, clusters were groups of similar computers belonging

to a single organization in order to either improve performance by spreading

computational load, diminish network load impact by spreading traffic around or

ensuring a higher availability of data. These computers were traditionally

connected by high-bandwidth networks, had similar specifications and were

closely monitored and under strict organization.

Virtual clusters deviate from tradition by being more loosely coupled and not

necessarily physically close to each other. In addition, the biggest diverging point

is that while clusters are permanently assigned to their particular job, machines

participating in a virtual cluster might be performing that job only a shorter

period of time, being released afterward.

In addition to the constraints and concerns already present in the creation of a

normal cluster, some additional issues arise when we observe the creation of

dynamic virtual clusters. Some of those issues stem from the difference in

networks present between the nodes of the cluster while others arise from the

lack of homogeneity between nodes.

28

The network connecting the machines itself adds additional focus points. In

applications that require a hefty amount of data transfer between them, high

bandwidth may be required, and that can influence the performance of the

virtual cluster, while on the other hand if a small amount of data is passed

amongst nodes, but it is done fairly often, a globally low latency becomes the

priority.

Additionally, the necessity for the cluster to be dynamic or elastic, that is, being

able to alter its size or nodes at will, requires control mechanisms aimed at

allowing departure and entrance into the cluster as well as job management and

handling throughout the changing node network. This management must be able

to provide strict control of the resources within the cluster.

A bottom-up approach to virtual clusters would lead us first to the actual creation

of the cluster. Krsul [32] described a way to create virtual clusters by using virtual

machines. A single virtual machine image would be cloned throughout the

machines belonging to the cluster. This virtual machine would then receive a

directed acyclical graph containing configuration instructions and with them the

machine would be set up. Foster [31] provided a solution to the same problem by

introducing the concept of a virtual workspace. This virtual workspace is nothing

but another virtual machine which instead receives its configuration instructions

as an argument and then is deployed to the actual physical resources in the

cluster.

While both above solutions are fine for a low number of machines, they would

not scale well with a sufficiently high number of machines, and alternatives for

larger clusters were created [30]. Here, the deployment itself is accelerated by

means of virtual disk caches (and other techniques) which contain any and all

required software, thus greatly hastening the initial deployment.

29

Past the initial deployment step, the existence of a virtual cluster requires

managing of jobs and resources. To do so, a virtual cluster requires the existence

of a Resource Managing System (RMS) that can assign jobs, extract job results,

control node absence and presence, maintain the integrity of the computational

exercise being done and ensure the general stability of the virtual cluster[21].

To do so, the RMS must, upon reception of a request, estimate the impact the

request would have on each machine, and then generate a plan for job

distribution and handling amongst the machines in the cluster. In addition, the

RMS must also provide the security aspect of a request, by authenticating

credentials and ensuring data confidentiality within the cluster.

Summary

In this chapter we presented several existing systems and briefly explained the

essential points in how they function. For both grid and peer-to-peer systems, we

emphasized their strengths and weaknesses, drawing lessons from the way they

capitalize on the former and mitigate on the later, in order to inspire, properly

define and fine tune our system. We shall now proceed to describe our solution

and how it was influenced by preexisting work in the next chapter.

30

 3 Solution

The design presented in this paper focuses on three individual parts as

mentioned in Chapter 2. In this chapter we will provide a more detailed look into

both our system and the inherent protocol it uses to achieve its goals. In general

our system will provide means for a new node to join a network in order to be

able to utilize resources on remote computers as well as allow his own resources

to be used by remote requests.

 3.1 Network System

Figure 1: System overview

The figure above shows the overview of our system and a general outline of the

several actions in a typical request. To be able to perform these actions, the three

individual parts (the peer-to-peer network system, the resource protocol and the

clustering virtual application) of our work must interact and communicate

amongst themselves in well-defined ways.

A more detailed description of these parts and their interfaces will now be

depicted.

31

Our system is based on a structured peer-to-peer network of nodes. We choose

this type of network to allow quick and efficient of resources and swift routing to

specific nodes, thus promoting scalability and still maintaining the decentralized

architecture. We will model our system in PeerSim, providing the added

functionality for node joining and leaving as well as resource availability control

and job request specification.

The system will allow a machine to join a network by simply knowing the IP or

address of a node already in the network (as depicted in Figure 2), and will

accommodate the new node in its overlay. Both the departure of a node (loss of

available resources) and the joining of one (increase in available resources) will

be propagated throughout the network in a controlled way in order to not flood

the system.

Figure 2: The entering of a node into the network.

32

 3.2 Resource Discovery Protocol

The actual submission of a job request can be accompanied by several quality of

service metrics. A request can be made for a cluster of a specific number of

computers and values to each of the QoS metrics can be provided with the

request to later allow our resource discovery protocol to refine the list of

candidates and correctly estimate the machines that best fit the requirements of

the request. For instance, we could request a cluster composed of 6 machines

where we would give a very high weight to a low latency in the network

connections between them as well as the individual machines' CPU type and

number of cores, in order to accommodate an application with low size messages

being swapped among the machines in the cluster.

After a request is submitted, our resource protocol sets in, working on the node

network maintained by our system and will attempt to locate resources that

either fit the request's QoS metrics completely, or at least locate machines that

partially fit the request, all the while maximizing their adaptation to the task.

Considering the heterogeneous nature of the nodes in the network, it is most

likely that only partial matches can be found[22], but the capacity for this

protocol to maximize the cluster's capacities to fit the request are a crucial point.

Thus, we allow each node to, upon request submission, specify minimum

thresholds for both partial and global resource satisfaction.

The protocol itself will be modeled in the form of Java classes tailored to fit our

system using PeerSim for simulation purposes. The protocol's work has two

steps. In the first step, the protocol must locate a list of potential candidates from

within the nodes present in the network and grade them considering the metrics

provided in the request. It must then select the best candidates from that list.

33

The candidate gathering is carried out by examining every node in a certain

neighborhood of the “ideal” node in each of its axis (which represent node

characteristics) in three steps. The depth at which each of these four nodes tries

to find viable candidates is specified in the request.

In the first step, the requesting node sends a message to each of the ideal nodes

in each of the four axial characteristics. These traverse the overlay via the usual

CAN method, being relayed to the neighbor node that is in the direction the

message needs to take.

After this message is delivered to the nodes in whose neighborhood we will

check for candidates, the second step begins. Each of these nodes will begin

gathering candidates in a vicinity around it that is limited by the request's

specifications. This is handled by the node looking at a number of candidates in

both directions of each axis of the N-dimensional space. After getting the number

of candidates requested by the originating node in each of these directions, the

final step begins.

 This third and lest step starts by compiling the list of the nodes chosen as

candidates. After this list is compiled, the proper message is sent back to the

originating node with the information of each potential candidate.

We could implement the system driven by reducing the number of messages, in

which case there would be less messages exchanged, but a much lower chance

of satisfying a request's QoS specifications, or instead opt to always try and fill up

the list of candidates, which in turn increases the number of messages required

per request. Had we chosen the first option, we would have a lower number of

candidates as node occupation increased, meaning we could be presenting only

half (or even less) of the expected candidates. With a much lower number of

candidates, we might be forced to select sub-optimal nodes for the cluster.

34

We opted to use the second approach which will have an impact that can be seen

in section 4, where we examine request satisfaction. In addition, we could have

“busy” nodes remove themselves from the network, which would allow much

faster gathering of candidates, but this would significantly increase the number

of messages in the network, which would compromise scalability. The exact

increase would depend on the number of clusters and the number of members in

a cluster, but for a 4-node cluster, it would require 8 more messages in the

network. If we had 50% occupation in a 100 000 node overlay, all with 4-node

clusters, we would indeed have seen tens of thousands of additional messages.

It is easy to see that such an increase in the number of messages would

compromise our system's scalability and our performance under load as well.

 3.3 Cluster setup

After the machines that will be a part of the cluster are selected, our virtual

appliance will then be deployed onto each of those machines. This application

will be a small virtual machine capable of receiving configuration instructions as

an argument, and will be also responsible for the execution of the code.

For each machine, the configuration instructions will either be responsible for

setting up the execution of the clustered application code (either via library, e.g.,

MPI or deploying a full system virtual machine with OS and application, e.g.,

using Xen or QEMU) or contain instructions to connect to a third machine that

will act as the cluster's coordinator. After the cluster is fully deployed and set up,

the execution of the job begins. Upon its completion, the node chosen as

controller or RMS must collect the results and deliver them to the machine that

initiated the request.

35

Figure 3: Virtual appliance deployment

The system itself evolves over time, and as such the machines present in the
overlay network can change, as well as the clusters in it and even the machines
belonging to each cluster. Figure 4 represents the same sample of the overlay in two
different moments in time.

Figure 4: Changes in the overlay and its clusters.

36

 3.4 Further detail and Implementation Issues

To implement our resource discovery protocol we will address a number of

options that can be later compared regarding completeness, efficiency and

scalability. We can opt for a decentralized method with flooding via neighboring

nodes and random walks (Variant A), which is a method used in several existing

systems that use unstructured peer-to-peer overlays. This approach is both

simple and effective, but might not be the most efficient one.

Additionally we can use an approach similar to that of CAN (Variant B), where

resources are located by obtaining from the resource key its respective set of

coordinates in the N-Dimensional space. After obtaining the resource's

coordinates, getting to the resource is a question of forwarding the request to

the neighboring node that is in the direction of the set of coordinates.

This second approach will require a more strict placement of resources. In order

for the location to help us, we must have to set similar machines in similar

spaces, thus ensuring that should we require, for example, several machines with

3000 MHz of CPU, 2 GB of available RAM and low latency between them, we can

know where in the space to look.

In order to avoid two machines falling into the same space, there must be a

certain degree of leeway in the exact coordinates. Two machines with the exact

same components might end up at coordinates X,Y,Z and X+-α,Y+-β,Z+-γ. We will

now provide a simple depiction of the progress of the resource location protocol

in this approach.

37

Main steps in resource discovery

-Locate the coordinates of a resource from its characteristics and key;

-From the local node's coordinates, locate the neighboring node that lies in the

direction of the coordinates of the resource we obtained in the previous step;

- If the resource is located in that node's space, stop, if not, we locate the next

neighboring node that is in the direction of the coordinates;

- We then repeat the previous two steps

In Figure 5 we can see an example of the representation of a few nodes in a

coordinate system such as this one. For the sake of simplicity, we will only use

two dimensions, one for the number of cores and the other for each core's clock

speed, but any amount of characteristics can be presented in a N-dimensional

space.

The table below shows the characteristics of the nodes that will be present in

Figure 5.

38

Node Clock Speed

(MHz)

Number of

cores

Available

Bandwidth (Mb)

RAM

(MB)

Latency (ms)

1 2000 2 12 2000 55

2 2500 2 30 2000 43

3 3000 2 8 4000 118

4 3500 8 100 8000 45

5 3000 4 30 4000 61

Figure 5: Node representation in variant B

Each circle represents a node in this section of the overlay, and each node's

location in the 2-dimensional space tells us of the node's characteristics. By using

this information we can easily locate resources with specific characteristics.

A more advanced approach (Variant C) can extend the latter one, by using not

the exact position but the relative size of a resource in several 2-dimensional

planes. The more CPU a machine might have available, the larger the area it

occupies on that dimension in the coordinate space, and thus the higher chance

a random coordinate might fit it.

39

0 2 4 6 8 10 12 14 16

1500

2000

2500

3000

3500

4000

Number of cores

C
lo

c
k
 s

p
e

e
d

With this approach, the crucial point is not the node's location in the space, but

rather its size relative to the others. We will show the same nodes used in the

example above, this is a possible representation of these nodes in regards to

clock speed.

Figure 6: Possible node representation on variant C regarding clock speed

The relative size would ensure that any resource location request aimed at a

random point in the N-dimensional space would have a higher chance to locate

resources with a higher or better characteristic. In this case, the biggest issue

would be the empty space, which although CAN already partially deals with the

matter, is something we must deal with.

40

Node 1

Node 2

Node 3

Node 4

Node 5

In this approach, the location of a resource is, for each plane (we represent each

characteristic as a 2-dimensional axis), we create a random 2-dimension

coordinate. The machines with more processing power, or more bandwidth, or

more RAM, or less latency (size can in this case be inversely related to the latency

shown in the network) are more likely to be chosen than the others. This can

greatly accelerate resource location and maximize resource occupation in the

network.

Cluster Deployment

To facilitate cluster setup we will adhere to the Open Virtualization Format (OVF)

standard. This will allow us to utilize .OVA files that can be customized from

preexisting templates in order to allow us to refer our virtual appliance to

resources located on virtual disks containing the application to be executed.

These packages can be extended with configuration data to be accessed by the

virtual machine post-deployment.

Simulation

We will structure our system on top of PeerSim using classes developed to handle

node entrance and exit, as well as common resource discovery requests and job

execution requests (as depicted in Figure 7).

41

To properly test the system's performance, we will also include a small scripting

engine capable of receiving scripts containing basic tasks performed by simulated

nodes as well as its periodicity (in seconds or ticks). For example, we might have

a script that makes 2 random machines leave the overlay every 20 seconds and

have 3 random machines join every 30 seconds, plus one cluster request with a

random number (with limits) of machines with random characteristics.

Our scripting engine will be fed with scripts containing the actions described

above. This same engine will then forward the action to the appropriate handler,

the node entrance and exit module in case of node presence chance in the

overlay or the resource discovery protocol in the case of a job request.

Both the resource discovery protocol and the scripting engine itself will be

capable of outputting information on the simulated outcome. This output can

already be in a format that our virtual appliance can interpret and execute or it

might simply be a description of the change in the overlay. Such a change can be

the creation, disbanding or altering of a cluster, for example.

Figure 7: Our class model

42

Messages used

In our system there are several types of messages, each with their own structure.

The first one encompasses the Join and Leave messages. They both share the

structure shown in Figure 8 below. Within this message we find the identifiers of

both origin and target node, as well as the type definition and, for simulation

purposes, the counter for the number of hops, which would not be present in the

final system.

Figure 8: Join message

The second type of message is the one used in the candidate gathering process. It

has the structure one can see in Figure 9. It contains the same fields as the above

message, with the additional information for the maximum depth at which we

will look for candidates around each of the four “optimal” nodes.

Figure 9: Candidate collection message

43

Origin node ID Target node ID Message Counter Type

Origin node ID Target node ID Message Counter Type Candidate depth

The next type of message is the one seen when the candidate gathering process

is over and we have the list, to be sent back towards the origin node. It has the

structure one can see in Figure 10 below. Its fields are those present in a join

message, with the addition of the list of nodes selected as candidates.

Figure 10: Candidate list message

The fourth message type is the one used in the cluster forming process.

As seen below in Figure 11, it contains the basic 4 fields of the Join message, with

the additional fields of the list of nodes selected as members of the cluster, plus

the payload of the OVF file that will initiate the cluster's virtual machines. You can

see an example of this file in the annexes section.

Figure 11: Cluster formation message.

44

Origin node ID Target node ID Message Counter Type

List of candidates

Origin node ID Target node ID Message Counter Type

List of member nodes

OVF file

The final message type is employed after, and as a reply for a successful

join request. As seen below in Figure 12, it contains much more information than

the previous messages. As one can see, it contains the identifiers of each of the

immediate neighbor nodes, plus the boundaries of space assigned to this node.

The message counter is also present for simulation and evaluation purposes.

Figure 12: Join successful message

Summary

During the course of this chapter, we described our solution by present its overall

rational and then addressing each of its components. We detailed how we

approach each of the challenges before us and how we overcome those

challenges by using a structured peer-to-peer overlay to allow for greater

scalability while achieving our goals. We will now proceed to evaluate the

solution we implemented through several tests and simulations intended to

examine the key parts of our solution in situations similar to those of a real

system in the following chapter. We aim to demonstrate that the system is not

only capable of meeting its functional goals, but that it does so in a efficient and

scalable way.

45

Next BW node Next RAM node Next cores node

Previous BW

node

Previous RAM

node

Previous CPU SPD

node

Previous cores

node

Next CPU SPD

node

Lower BW

boundary

Lower RAM

boundary

Lower CPU

boundary

Lower cores

boundary

Upper BW
boundary

Upper RAM
boundary

Upper CPU
boundary

Upper cores
boundary

Message

number

 4 Evaluation

To evaluate our application, we need to demonstrate that it correctly satisfies its

requirements, and in an efficient manner, both in terms of achieving its goals and

in doing it as effectively as possible.

We will begin by analyzing the system's behavior in simulated scenarios (as

realistically as possible in a large population) , and show that the results match

the expected outcome for the proposed architecture as a whole, as well as for

each of its components and message protocols.

 4.1 Join and leave

First and foremost, we need to differentiate between behavior obtained in a

perfect network with stable machine presence and the behavior seen in a

network closer to the internet, where there is a large churn of machines both

leaving and joining the overlay.

In the first test, we measured the number of messages taken for any node to join

the network overlay when the number of nodes is maintained, for several sizes of

the overlay. As we can see in Figure 8, the distribution of message counts fits very

similar to a logarithmic expansion, which is coherent with the expected outcome

of Ω (n 1/d) where n is the number of nodes present in the overlay and d the

number of characteristic axis used, which in our case is 4. The leave process is

analogous to the join process. The node in question sends a message to a known

node, which then relays it to the neighbor nodes until it reaches the nodes that

will then be involved in the partition (or merge) action.

46

Each dot in Figure 13 below represents the result of a join request, with the

number of messages being displayed in the Y axis and the growing network

overlay size in the Y axis.

Figure 13: Number of messages taken for a Join message

X axis: Size of the network overlay, Y axis: Number of messages taken

For ease of comprehension, a line chart of the average number of messages sent

is also provided, wherein one can more easily notice the shape of the curve

47

Figure 14: Average number of messages taken for join message

X axis: Size of the network overlay, Y axis: Number of messages taken

The figures above both demonstrate the fundamental and expected advantage

that structured peer-to-peer systems have over other alternatives: The extensive

capacity to increase the size of the overlay without losing too much performance.

However, in reality networks are not as stable, specially in the case of the

internet, which is the main network we aim our architecture for. To more

correctly estimate the system's behavior in a network where nodes can (and will)

join and leave in a way we cannot predict, a test was prepared in a network with

nearly constant joins and leaves. For the vast majority of of cases, the behavior

will be exactly equal to the previous cases. However, in the rare case that one of

the nodes in the path the message should travel is disconnected from the

network after the message is emitted and before it reaches that point in the path

(or the destination node), the message will have to be resent. The message first

takes the path back to the origin node, starting from the node that detected the

leaving node, and the origin node will again transmit the message.

48

For larger overlays, the chance for this to happen becomes very low, but as you

can see in Figure 10, it can happen. An even rarer even would be a resent

message also detecting a node departing the network. We were unable to

replicate this event often enough, although it is certainly possible.

Below, in Figure 15, you can see the occasional messages that take much longer

than the regular time as seen in Figure 8. For example, instead of approximately

23 messages, we saw values of approximately 58 messages.

Figure 15: Number of messages taken for a Join message with churn

X axis: Size of the network overlay, Y axis: Number of messages taken

This figure displays our system's resilience to nodes leaving the network in an

unpredictable way, and how its negative impact is no greater than slightly

delaying the message delivery.

49

 4.2 Candidate gathering

The process for finding candidates that fit the specifications of the request

requires the exchange of more messages. In general, it can be divided into three

independent phases.

First, the node generating the request will send messages to the ideal node in

each of the axis representing the four characteristics present in the system. This

increases the number of messages by a factor of four, but also ensures a larger

diversity among nodes selected as candidates.

After each of these nodes receives the message, the second phase consists in

starting a small controlled flooding routine to each of its neighbor nodes,

repeating the process until each node has obtained a certain number of

candidates (which is determined in the configuration file, for example, 32

candidates).

In the final phase, each of the four nodes then sends a message to the requesting

node containing the candidate lists found independently. The first and last

process are quite similar to the handling of a join or leave message. The

collection of nodes requires a fixed number of messages, so it can be considered

a constant value. This would lead us to conclude that the sum of these processes

is O (n 1/d) + C or to simplify: O (n 1/d), where d is the number of axis, which in our

case is four, which once again is the expected result, in line with common

scalability criteria.

In addition, we should emphasize that unlike the join and leave messages, the

second part of the candidate gathering is not affected if a node leaves the

network and causes no messages to be retransmitted.

50

In Figure 16 we can see the distribution of messages in the candidate gathering

process for a candidate list depth of 4.

Figure 16: Number of messages taken for a candidate gathering message

X axis: Size of the network overlay, Y axis: Number of messages taken

It can be noted in the figure above that even in an unstable network and

attempting to obtain a candidate list of 128 different nodes, the number of

exchanged messages does not show explosive growth as it would in flood-based

methods.

51

 4.3 Dynamic cluster forming

The final type of message interaction implemented by our architecture is the

cluster creation message which occurs after the nodes which will be part of the

virtual cluster (either as controller or regular cluster members). This message is

similar to a join or leave, but only slightly bigger in size. Since we are only

concerned with the number of messages exchanged for now, we will focus on

that aspect and examine each message's size in the following subsections.

Figure 17 displays the average number of messages required in the final phase to

establish a cluster. In this case, we used candidate depth = 4 and cluster size = 4

(3 slave + 1 controller).

Figure 17: Number of messages taken for a cluster forming message

X axis: Size of the network overlay, Y axis: Number of messages taken

52

From this figure we can conclude that the distribution of the number of

messages in the “startup” phase of a cluster being set up shows the same

logarithmic curve as a join or leave message and that this number does not grow

with the final cluster size. This is due to the message being sent only to the

controller which will then guarantee the initiation of the cluster.

Another important aspect is exactly how much the number of messages required

grows with the number of candidates requested. In Figure 18 below we compare

the average number of messages taken in this process for 64, 128 and 256

candidates (depth 2,4 and 8, respectively).

Figure 18: Comparison of messages required for growing candidate numbers

X axis: Size of the network overlay, Y axis: Number of messages taken

53

We can see in this figure that the number of messages required for the gathering

of candidates grows with both the total size of the overlay as well as the number

of candidates we wish to gather for the final decision of which nodes will be

members of the cluster. Note that even at substantially high values such as 256

different candidates, the number of messages keeps its logarithmic properties,

hence supporting our claims of scalability.

 4.4 Message size

However, there are more factors that can influence the viability of an application

in the real world. We have dealt with the number of messages, but we must also

focus on the size of each message, as well as the size of the information required

to store in, and about, each node, as well as to be exchanged, in order for the

system to work.

We will begin by examining the size each message occupies. The first type of

message is the one associated with the Join event. This message contains two

“int” type variables corresponding to the type of join and the counter of the

number of messages, as well as two 128-bit fields representing the identifier of

the target node and the origin node in addition to their axial coordinates.

Considering in the Java language an “int” occupies 32 bits, this means that a join

message will have 320 bits or 40 bytes of size. However, due to limitations on the

simulation tool we used (Peersim) the tests were performed with a variable of

type CANNode for target node and origin node.

54

This increases the size of a message in our tests to 672 bits or 84 bytes. We

should note that the counter for the number of messages is only necessary for

testing purposes, and could be omitted in the real system.

The leave message is the exact same as this one, and is subject to the same

limitations when it comes to Peersim.

The second type of message is the one related to the candidate gathering

process. This message contains all the fields in the join message and in addition

there is the presence of another “int” variable representing the intended depth

of the search. This increases the size to 352 bits or 44 bytes in the system/704

bits or 8 bytes in Peersim.

After the candidates are gathered, the message containing the found candidates

is sent back towards the origin node. This message contains the basic “join”

message and in addition it has an array of node identifiers wherein all candidates

are gathered. For a depth of 4, this would mean up to 128 additional positions in

the array with size equal to the identifiers for a total of 16704 bits or 2008 bytes.

We had the option of instead allowing each candidate to send a message back to

the originating node of the request, but the additional weight of the larger

amount of messages would imply more network occupation as well as higher

total size of messages. In taking this option over the alternative we took, we

would increase the chance to overload the network when multiple concurrent

requests are present.

The next message type is the one related to the process of actually establishing

the final virtual cluster. This message contains the same elements as a “join”

message and an array with the identifiers of each of the nodes selected to

become members of the virtual cluster as “slave” machines.

55

The message is sent to the node chosen as controller which will then relay the

message to the individual slaves. This message also contains the markup

language code relative to the startup of the virtual machine that will execute the

cluster code. This can be of variable size. An example can be found in the annexes

section.

The final message type is the one sent as acknowledgment to a join message.

This is much simpler and contains the neighboring nodes identifier, the “space”

that the origin node is assigned after joining and the message counter, for testing

purposes. This brings the total size of this message up to 352 bits or 44 bytes.

 4.5 Size of the local data

We must also determine how much space is required of each node in order to

maintain the overlay's integrity and the system's functionality. With our

architecture, we require only that each node knows the location of each

neighboring node in each axis, plus the space the current node is assigned to

(possibly an extra neighbor in each direction to speed-up recovery when the

neighbor fails). This means a node needs a total of 8 ints (2 for each axis) and 8

CANNodes (again, 2 for each axis). This brings the total space assigned to

information about the overlay to 800 bits or 100 bytes.

Of course, in addition to this space, each node also needs to store its own

attributes in memory, which can be done with 4 more “int” variables, or 132 bits,

for a total of 932 bits or 117 bytes.

56

 4.6 Comparison to other P2P-Based systems

We have examined how our system performs in isolation, but an important part

of a system's viability is how it compares to other similar systems in existence.

We will perform this comparison focusing on analysis of each system's properties

with the aid of some quantitative data.

Message routing

In this comparison, one of the most important aspects is message routing. In the

table below we will give out a few example of systems and their message routing

methods.

System Type of network Number of

hops

How many nodes

receive the message

Gnutella Unstructured Variable All connected to the

super-peer

Chord[8] Ring-like topology O (log N) Message target only

Pastry[19] Self-correcting

proximity network

O (log N) Message target only

CAN[4] N-dimension space O (N 1/d) Message target only

Being a system based on a modified CAN, our message routing follows mostly

the same rules, as noticeable above. A direct comparison shows that systems

based on chord and pastry architectures scale slightly better with the size of the

network overlay. Unstructured peer-to-peer based systems will scale much

worse.

57

In practical terms, one could expect numbers in the millions of nodes without

noticeable performance issues. A network overlay of 1 million would cause our

system to take in average a number of messages in the mid-thirties, which

comparable to a number of around 23 for a 10000 node network means that

with an increase in network size of 100 times would only lead to an increase of

52% in the average number of hops taken to deliver a message.

Figure 19 below[34] shows a comparison between few of the systems

mentioned in relation to message passing.

Figure 19: Comparison of message routing in different systems

This figure shows the relative growth of the different types of message-routing

methods for some common peer-to-peer systems. While all three structured

systems display a logarithmic curve, their expansion is different due to

particularities of each system.

58

Size of Local State

Another aspect worth comparing is the local space occupied by each node in

order for the system to maintain functionality.

In the case of Chord-based systems, a node must maintain a finger table

containing m entries as node descriptors. Considering that Chord's network

overlay supports a number of nodes of 2m.[8]

From this information we realize that, unlike our system, chord requires

increasing local space of each node as the network size increases, while our

system is static.

Our system needs to store exactly two neighboring nodes for each axis.

Considering we use four different characteristic axes, we could consider that for

any network with more than 256 nodes, our system occupies less space. For a

network of 1 million nodes, Chord will require 20 node identifiers, while our

system will continue using only 8.

Request satisfaction

Another aspect we need to take into consideration is the system's capacity to

satisfy requests according to the specifications the user requires. One of the

goals of our system is to allow a request to specify the weight that each of the

four characteristics of a machine has in the choice of which candidates to select

for the final cluster. In addition to the weight of each attribute, a request can also

set eliminating characteristics, for example, one might choose to not want any

machine with less than 2 GHz of CPU clock speed to join the cluster (or more

than 4, for that matter).

59

Our system sorts the list of candidates according to each node's overall score,

eliminating any that do not fulfill the specific requirements. It then proceeds to

select as many nodes as required by the request in order from the sorted list.

This process of sorting is done using an algorithm with degree of complexity of Ω

n (log n). For a typical candidate depth of 4 (as used in our tests), this would

generate a candidate list of 128 different nodes (if this many nodes are available

in the overlay in the vicinity of the nodes controlling the space where the

request's ideal candidate exists).

In order to quantify the system's actual performance, it is important to determine

the percentage of requests that was satisfied either fully, partially or not satisfied

at all. To do so, we first created a standard distribution of nodes in our overlay

using commonly found machines. The table below explains the chance of each

node being created, for a grand total of 100 000 nodes.

Description Probability

4-core 3GHz 8 GB RAM 100 MBps 30,00%

2-core 2.5GHz 6 GB RAM 50 MBps 30,00%

2-core 2GHz 4 GB RAM 30 MBps 20,00%

Single-core 2GHz 2 GB RAM 6MBps 20,00%

We then proceeded to test the system above with a request for 4 2-core CPUs

with 2.5 GHz and 8 GB RAM (leaving network speed unchecked), and for all tests

wherein node occupation was below 60% we noticed that the requests were

satisfying 100% of the QoS metrics and only then did request satisfaction rate

started slowly dropping. You can see this in Figure 20 below.

60

Figure 20: Average request satisfaction per overlay occupation, 100 000 nodes

X axis: Occupation of the overlay (percentage of nodes already engaged in other clusters), Y axis:

Percentage of satisfied requests

Although this-close-to maximum load on the global capacity of the overlay will

not be frequent in real world applications, we decided to further test such

boundary situations under a smaller and more controlled overlay, for simulation

overhead reasons. Thus, we repeated the experiments with successively reduced

numbers of nodes (10000, 1000, and even 100), for simplicity, always with 25% of

nodes in each category, and issued the series of requests. This, with the goal of

verifying whether the overall results and findings mostly hold, regardless of

overlay size.

61

Figure 21: Average request satisfaction per overlay occupation, 10 000 nodes

X axis: Occupation of the overlay (percentage of nodes already engaged in other clusters), Y axis:

Percentage of satisfied requests

Figure 22: Average request satisfaction per overlay occupation, 1000 nodes

X axis: Occupation of the overlay (percentage of nodes already engaged in other clusters), Y axis:

Percentage of satisfied requests

62

Figure 23: Average request satisfaction per overlay occupation, 100 nodes

X axis: Occupation of the overlay (percentage of nodes already engaged in other

clusters), Y axis: Percentage of satisfied requests

In the case of the test with only 100 nodes, the system proceeded to select for

cluster members either machines of the first or second type until all were

exhausted (thus always meeting the request's specifications). When we hit

exactly 47% of occupation, we started seeing some requests coming up with a

less than ideal choice, but this only happened when all of the occupied nodes

were localized around the exact specifications of the request and all other nodes

were not occupied. The first performance drop seen was when all 25 machines of

type 1 were busy and 22 machines of type 2 were busy, thus leaving only 3

machines meeting the request's QoS metrics and having to use a below-

specifications machine as the fourth and last member of the cluster.

63

It is easy to see that the larger the scale of the overlay, the higher the occupation

has to be in order for a request to fail to be satisfied and, conversely, the better

the system performs. At lower overlay sizes, we begin to see requests being

fulfilled only partially at lower occupation percentages.

Performance under load

Another important aspect is the performance of the system when under not only

heavy churn, but also heavy occupation of resources. The behavior of a join

message is not affected by node occupation in clusters, as they are still part of

the overlay and can still relay a message. We could have opted to have nodes

leave the overlay when selected to join a cluster, but the extra message cost

makes this a worse approach.

In Figure 24a and 24b below you can see the behavior of a join in an overlay with

0% occupation and 50% occupation (respectively).

64

Figure 24a: Join message comparison. X axis represents the size of the overlay while Y axis

represents the number of messages taken.

Figure 24b: Join message comparison. X axis represents the size of the overlay while Y axis

represents the number of messages taken.

65

The same is seen in leave messages and cluster-forming messages. These behave

the same way. The biggest impact, however, is seen on messages of the

candidate gathering type. Each node that is occupied forces the system to expend

another message, so the number of messages required grows with occupation.

Below you can see a comparison between a request for candidates with queue

depth 4 with 0% occupation and 50% occupation. In Figures 25a and 25b below

you can see this exact behavior.

Figure 25a: Candidate gathering message comparison X axis represents the size of the overlay

while Y axis represents the number of messages taken.

66

Figure 25b: Candidate gathering message comparison X axis represents the size of the

overlay while Y axis represents the number of messages taken.

The Figures show the growth in messages required and the impact that node

occupation can have on this process. As node occupation reaches very high

percentages, the number of messages required grows substantially.

Summary

In this chapter we measured the system's performance not only in relation to what

we expected, before the implementation, but also in relation to other existing

systems that can be comparable to ours. We attempted to place the system in

situations we were likely to encounter in real systems so that we could draw

conclusions from the expected performance of the system. Such conclusions will

be presented in the next chapter, along with an overall evaluation of the viability

of our solution in today's computational paradigm.

67

 5 Conclusion

The amount of computational resources worldwide that sit idle for lengthy

periods of time while connected to a network is immense. By utilizing these

untapped resources we could harness a massive amount of computational power.

The increasing complexity of applications and computations required by the

typical home-user is growing and by providing such users with the means to

access computational power that typically was only accessible to large-scale

companies allows him to better and faster perform everyday computational

tasks, which is particularly useful for the most time-consuming ones.

The great obstacles to such an outcome are the lack of systems and architectures

capable of not only allowing local resources to be available to others, but also to

properly utilize remote resources and shape them into organized clusters capable

of adapting to the characteristics of the application to be executed.

We present in this thesis a system that can overcome such obstacles, a system

capable of efficiently locating remote resources, setup specialized clusters and

allow a high degree of control to the user, in the form of quality-of-service

metrics that specify in fine-grain exactly the characteristics that such a cluster

needs to best fit the application being ran. This system performs this in over a

peer-to-peer overlay of nodes in order to allow for greater scalability with a

growing number of nodes, as well as faster resource discovery.

Our evaluation methods, to which we subjected the system and architecture,

measured its performance both in isolation as well as when compared to other

systems.

68

We began by testing the number of messages taken by the system and how it

was affected by the size of the network overlay. As expected, even though the

number of messages required for each of the phases of request handling grew

with the overlay size, its growth was much slower than the growth of the

network itself. In fact, at 250 000 nodes in the network, we were seeing around

25 messages for a typical message routing from one node to another, meaning

0.01% of the size. As the number of nodes in the overlay increases, we will notice

even higher efficiency by our system. This indeed demonstrates that our system

can scale very efficiently with the overlay size, which is one of the main

requirements and expectations we had about the system.

We proceeded to examine the size of each message used in our system. Most of

the messages have a very small size, below 100 bytes, which implies that the

overall traffic in the overlay will not be significantly increased by the functioning

of the system. The exception, the message sent when the list of candidates is

completed, is substantially bigger, but still acceptable, and of course, the smaller

the number of candidates obtained, the smaller the message. We could have

opted for using multiple messages (one per candidate), which would greatly

reduce the size of the message, but it would multiply the number of required

messages by a large number and aggravate latency.

Having chosen one larger message, we ensure that we maintain a small number

of messages required for each request, also increasing our scalability by

diminishing the chance we will flood the bandwidth of the nodes in the overlay.

In addition, by choosing to obtain candidates around 4 different nodes instead of

only the ideal node, we increase the chance that different nodes will be chosen

as candidates for each request, as well as allow a small degree of parallelism that

speeds up the process slightly.

69

We then focused on the local storage size each node requires to maintain the

system's effectiveness. The local size, while for a smaller number of nodes

present in the overlay is slightly bigger than the space required for systems like

Chord or Pastry, does not grow significantly at all with the number of nodes in

the overlay, which is a substantial advantage over other systems. For very large

number of nodes in the overlay, our system occupies significantly less space.

While in fact local storage space has lowered in cost, it is still an advantage that

should not be ignored.

We also examined how our system would perform under higher overlay node

occupation numbers, to certify that our solution performs as expected even in

extreme situations that we could encounter in a real scenario. Even with very

high overlay occupation, our system scales very well, and only the node

gathering is substantially impacted.

All four points above could be considered essential for any system to be

considered viable and worthy of deploying after implementation. We ensured

that our system is up to the task with several evaluation measures that proved

how well the protocol performs, both in scalability, speed and effectiveness in

handling resources. We believe the architecture shown in this paper is thus

capable of providing a much needed tool to a substantial niche in today's

computer user world, furthering the state of the art in public distributed

computing and contributing to fulfill the basic two goals we set forth to reach: i)

providing common users with computational power far beyond what was

available in the past, and ii) efficiently managing resources in such a way as to

diminish resource wasting in today's interconnected world.

70

Future Work

However, the work in this larger scope project is far from finished. Several

aspects are worth additional research into optimization and some aspects require

an extra investment of time into design refinements:

• The messages exchanged are currently sent unencrypted and without any

form of security, be it authentication or certification of origin or validity.

• Peersim, while a handy tool for simulating a peer-to-peer overlay, cannot

effectively represent a real scenario, and lacks the robustness to handle

numbers of nodes into the high millions. Therefore a real deployment on

testbeds or even with voluntary users could result in more relevant data

concerning user's habits.

• Variation C of the overlay setup described in chapter 3 also merits further

investigation, but it would imply a more hierarchical overlay structure. It

would require certain nodes to behave as super-peers, which could only

apply in the case of either network service providers or maybe academic

labs or other large installations of PCs delivering the machines that would

perform this role.

In addition, for production purposes, a substantial degree of optimization and

testing should be undertaken in order to ensure the perfect performance of the

system.

71

Annexes

Example .OVF file

<?xml version="1.0" encoding="UTF-8"?>

<ovf:Envelope xmlns:ovf="http://schemas.dmtf.org/ovf/1/envelope" ovf:version="0.9">

 <References>

 <File ovf:id="file1" ovf:href="vmdisk1.vmdk" ovf:size="12345"/>

 </References>

 <Section xsi:type="ovf:DiskSection_Type">

 <Info>Virtual disks</Info>

 <Disk ovf:diskId="vmdisk1" ovf:fileRef="file1" ovf:capacity="1234567"

 ovf:format="http://www.vmware.com/specifications/vmdk.html#sparse"/>

 </Section>

 <Section xsi:type="ovf:NetworkSection_Type">

 <Info>List of logical networks used in the package</Info>

 <Network ovf:name="CAN Network">

 <Description>The network that the service will be available on</Description>

 </Network>

 </Section>

 <Content xsi:type="ovf:VirtualSystem_Type" ovf:id="Virtual App">

 <Info>Virtual App</Info>

 <Section xsi:type="ovf:ProductSection_Type">

 <Info>Application information and description</Info>

 <Product>Virtual App</Product>

 <AppUrl>http://${controller_node.ip}/</AppUrl>

 </Section>

 <Section xsi:type="ovf:VirtualHardwareSection_Type">

 <Info>512Mb, 1 CPU, 1 disk, 1 nic virtual machine</Info>

 <Item>

 <rasd:Caption>1 virtual CPU</rasd:Caption>

 <rasd:Description>Number of virtual CPUs</rasd:Description>

 <rasd:InstanceId>1</rasd:InstanceId>

 <rasd:ResourceType>3</rasd:ResourceType>

 <rasd:VirtualQuantity>1</rasd:VirtualQuantity>

 </Item>

 <Item>

 <rasd:Caption>512 MB of memory</rasd:Caption>

 <rasd:Description>Memory Size</rasd:Description>

 <rasd:InstanceId>2</rasd:InstanceId>

 <rasd:ResourceType>4</rasd:ResourceType>

 <rasd:AllocationUnits>MegaBytes</rasd:AllocationUnits>

72

 <rasd:VirtualQuantity>512</rasd:VirtualQuantity>

 </Item>

 <Item>

 <rasd:Caption>Harddisk 1</rasd:Caption>

 <rasd:InstanceId>22001</rasd:InstanceId>

 <rasd:ResourceType>17</rasd:ResourceType>

 <rasd:HostResource>disk/vmdisk1</rasd:HostResource>

 </Item>

 </Section>

 <Section xsi:type="ovf:OperatingSystemSection_Type" ovf:id="73" ovf:required="false">

 <Info>Guest Operating System</Info>

 <Description> Windows 2000 Advanced Server</Description>

 </Section>

 </Content>

</ovf:Envelope>

73

Bibliography

1: Schollmeier, R, A Definition of Peer-to-Peer Networking for the Classification of Peer-to-Peer

Architectures and Applications, 2002, Proceedings. First International Conference on Peer-to-Peer

Computing, 2001. IEEE

2: Foster, I; Kesselman, C; Lee, C; Lindell, B; Nahrstedt, K; Roy, A, A distributed resource

management architecture that supports advance reservations and co-allocation, 2002, 1999

Seventh International Workshop on Quality of Service, 1999. IWQoS'99

3: Buyya, R; Venugopal, S, A Gentle Introduction toGrid Computing and Technologies, 2005

4: S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, A scalable content-addressable

network, 2001, Proceedings of the 2001 conference on Applications, technologies, architectures,

and protocols for computer communications, ACM

5: Ghosemajumder, S, Advanced Peer-Based Technology Business Models, 2002, MIT Sloan School

of Management, Citeseer,

6: Jon Brodkin, Case Study: Parallel Internet: Inside the Worldwide LHC computing Grid, 2008,

Techworld

7: A.; Karaul, M., Kedem, Z., Wyckoff, P, Charlotte: Metacomputing on the Web, 1996, 9th

International Conference on Parallel and Distributed Computing Systems

8: I Stoica, R Morris, D Karger, and M Kaashoek, Chord: A scalable peer-to-peer lookup service for

internet applications, 2001, Proceedings of the 2001 conference on Applications, technologies,

architectures, and protocols for computer communications, ACM

9: STIMI, K.O., CLUSTER COMPUTING, 2008, COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

10: Thain, D; Tannenbaum, T; Livny, M, Distributed Computing in Practice: the Condor Experience,

2005, University of Wisconsin

11: Ghodsi, A, Distributed k-ary System: Algorithms for Distributed Hash Tables, 2006, KTH-Royal

Institute of Technology

12: Veiga, L; Rodrigues, R; Ferreira, P, Gigi: An ocean of gridlets on a ”grid-for-the-masses”, 2007,

Cluster Computing and the Grid, 2007. CCGRID 2007. Seventh IEEE International Symposium on

13: Foster, I; Kesselman, C, Globus: A metacomputing infrastructure toolkit, 1997, International

Journal of High Performance Computing Applications, SAGE Publications

14: %A Loguinov, D; Kumar, A; Rai, V; Ganesh, S, Graph-theoretic analysis of structured peer-to-

peer systems: routing distances and fault resilience, 2003, Proceedings of the 2003 conference on

Applications, technologies, architectures, and protocols for computer communications, ACM

15: ED2K, http://kent.dl.sourceforge.net/pdonkey/eDonkey-protocol-0.6.2.html eDonkey protocol

documentation, ,

16: P. Maymounkov; D. Mazières, Kademlia: A peer-to-peer informationsystem based on the xor

metric, 2002, IPTPS02 Peer-to-Peer Systems, Springer

17: Balakrishnan, H; Kaashoek, MF; Karger, D; Morris, R; Stoica, I, Looking up data in P2P systems,

2003, Communications of the ACM

74

18: Foster, I; Iamnitchi, A, On Death, Taxes, and the Convergence of Peer-to-Peer and Grid

Computing, 2003, University of Chicago

19: Rowstron, A; Druschel, P, Pastry: Scalable, decentralized object location and routing for large-

scale peer-to-peer systems., 2001, Microsoft Research LTD

20: %A Gkantsidis, C; Mihail, M; Saberi, A, Random walks in peer-to-peer networks: algorithms

and evaluation, 2006, Georgia Institute of Technology

21: Begnum, KM; Disney, M, Scalable deployment and configuration of high-performance virtual

clusters, 2005, International Journal of Applied Mathematics and Computer Sciences, Citeseer

22: Silva, JN; Ferreira, P; Veiga, L, Service and resource discovery in cycle-sharing environments

with a utility algebra, 2010, 2010 IEEE International Symposium on Parallel & Distributed

Processing (IPDPS), IEEE

23: Tamilmani, K, Studying and enhancing the BitTorrent protocol, 2003, Stony Brook University

24: Nakada, H; Yokoi, T; Ebara, T; Tanimura, Y; Ogawa, H; Sekiguchi, S, The design and

implementation of a virtual cluster management system, 2007, Proceedings of the first IEEE/IFIP

International Workshop on End-to-end Virtualization and Grid Management (EVGM2007)

25: Foster, I; Kesselman, C, The Grid: Blueprint for a New Computing Infrastructure, 1999, Morgan

Kaufmann Publishers

26: Nisan, N, The POPCORN Market – an Online Market for ComputationalResources, 1998,

27: Carlsson, B; Gustavsson, R, The Rise and Fall of Napster - An Evolutionary Approach, 2001, 6th

International Computer Science Conference on Active Media Technology, Springer

28: Gropp, W; Thakur, R; Lusk, E, Using MPI-2: Advanced Features of the Message Passing

Interface, 1999, MIT Press, 0-262-57133-1

29: Gropp, W; Lusk, E; Skjellum, A, Using MPI: Portable Parallel Programming with the Message-

Passing Interface, 1994, MIT Press, 0-262-57104-8

30: Nishimura, H; Maruyama, N; Matsuoka, S, Virtual clusters on the fly-fast, scalable, and flexible

installation, 2007, IEEE Computer Society

31: Keahey, K; Foster, I; Freeman, T; Zhang, X; Galron, D, Virtual workspaces in the grid, 2005,

Euro-Par 2005 Parallel Processing

32: Krsul, I; Ganguly, A; Zhang, J; Fortes, JAB; Figueiredo, RJ, Vmplants: Providing and managing

virtual machine execution environments for grid computing, 2005, Supercomputing, 2004.

Proceedings of the ACM/IEEE SC2004 Conference

33: Foster, I, What is the Grid? A Three Point Checklist, 2002, University of Chicago

34: M. Kelaskar , V. Matossian, P. Mehra, D. Paul, and M. Parashar, A Study of Discovery

Mechanisms for Peer-to-Peer Applications, 2002, Department of Electrical and Computer

Engineering, Rutgers University, Piscataway, NJ

75

