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Instituto Superior Técnico, Lisbon, Portugal

November 2021

Abstract
Graphs are becoming increasingly larger, having
millions of vertices and billions (or even trillions)
of edges in some cases. As a result, it is becoming
harder and harder to fit the entire graph into
the main memory of a single machine. This may
lead to significant overhead by having to read the
graph from secondary storage. Thus leading to
an impact on the performance of queries and the
storage requirements of the system. It is relevant
to try to minimize the storage requirements of the
graph data without degrading the access time and,
ideally, even improving it. Current graph storage
systems store their graphs in an uncompressed
format, either in a shared architecture, leading to
high space overhead and the inability to store the
entire graph in main memory or a distributed ar-
chitecture, in which the entire graph is partitioned
over a cluster of machines and each machine stores
only a fragment of the graph in main memory. Our
solution extends a distributed graph processing
system to utilize a compressed representation of
a graph while still allowing to update the graph
data, all while maintaining the same processing
performance and ideally even improving it.

Keywords: graph representation, graph
databases, graph processing systems, optimization,
compression

1 Introduction
Graphs [6] are now more relevant than ever, be-
ing used in social networks [19, 16], biology [23],
the web [8, 17], cryptocurrency [3], and many more
fields (e.g., managing community clouds [7]). Their
popularity arises from the fact that they naturally
model problems that other data structures cannot.

Graphs are also becoming increasingly larger,
having millions of vertices and billions (or even tril-
lions) of edges in some cases [4, 9]. As a result,
the space requirements of a graph have increased.
It is becoming increasingly more difficult to fit the
entire graph into the main memory of a single ma-
chine. This may lead to a significant overhead by
having to read the graph from secondary storage.

Thus it is relevant to try to minimize the storage
requirements of the graph without degrading the
access time and, ideally, even improving it.

Current solutions store graphs in a uncompressed
format [22, 20, 12, 18, 11, 10, 14, 13]. By using a
lossless graph compression technique, it is possible
to store the graph in a compressed format that can
be stored in the main memory of a single machine
[2, 15, 21, 5]. All while maintaining the same per-
formance, or even better, when accessing the graph.

It also may be relevant to modify the graph, such
as adding or removing edges/vertices, without hav-
ing to reconstruct the entire graph. For example,
some popular graph algorithms (i.e, PageRank) re-
quire the attributes stored in the vertices/edges to
be mutated.

Thus, it is relevant to provide a solution that al-
lows for a fully dynamic graph that can add new ele-
ments without having to construct the entire graph
again.

Current solutions are centered in partitioning
graphs based on edges, to better distribute work
among computing nodes [22, 14]. This leads edges
to be assigned to unique partitions and vertices
to be replicated throughout various partitions. In
a worst-case scenario, a vertex would need to be
replicated throughout all partitions. This approach
is used because the number of edges is typically
much higher than the number of vertices, leading to
smaller storage requirements when replicating ver-
tices.

Our solution aims to tackle several shortcomings
that current solutions present, such as: i) Not being
able to store large graphs in main memory, requiring
access to secondary storage which is much slower; ii)
Storing graphs in a uncompressed format, leading to
worse processing performance than compressed rep-
resentations; ii) Immutable graphs that do not sup-
port removing or adding vertices/edges, requiring
the entire graph to be re-constructed when adding
new elements.

The main goal of this work is to design and
develop an extension to the storage component
of a relevant distributed graph processing system
so that the processed graph is made more space-
efficient by using a lossless compressed representa-
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tion. The solution should achieve similar perfor-
mance to the uncompressed version, ideally even
improving it. The solution should also allow for
the graph to be fully dynamic, by being possible to
mutate attributes and add new vertices and edges.

This paper is structured as follows: Section 2
presents a survey of the state-of-the-art work done
in graph processing systems, graph databases, and
optimized graph representations and processing. In
Section 3 we present the architecture of our so-
lution, in Section 4 we describe the evaluation
methodology and the results obtained for our im-
plementation, and in Section 5 we conclude our
thoughts on the topic.

2 Related Work
In this section, we present important work on the
topic of graph representation and graph processing.
We start by presenting relevant Graph Process-
ing Systems, focusing on how they handle graph
storage and processing, Graph Databases and
state-of-the-art Optimized Graph Representa-
tions and processing.

2.1 Graph Processing Systems
Graph processing systems are focused on iterating
an input graph and applying it transformations in
order to generate a new graph. Our survey focuses
on the storage components of these systems, since
most try to store the graph in main memory if possi-
ble, only using secondary storage when the graph is
too large, typically storing it in a type of serialized
format.

These systems do not typically require fine
grained access to the vertices and/or edges of the
graph, instead they iterate all, or some subset of
the graph components.

Some systems use a Shared architecture to store
the entire graph in a centralized location, allow-
ing multiple processors to access the same memory.
Given specialized hardware, this type of architec-
ture can achieve better results than distributed ar-
chitectures.

Another approach is Distributed architectures,
that partition the graph throughout a cluster of pro-
cessors, where each processor stores only a fraction
of the total graph.

Their programming model may also vary, typ-
ically either using a General Purpose model
not specifically made to handle graphs, Vertex-
Centric in which a a user defined function is ex-
ecuted in the context of each vertex or Graph-
Centric for models focused on performing compu-
tations in the context of a sub-graph.

The scheme used to partition a graph through
a cluster of computing nodes is typically either a
Vertex-Cut, which divides the graph by its ver-
tices and leads vertices to be distributed across mul-

tiple partitions and edges to be assigned to a unique
partition, or a Edge-Cut which similarly divides
the graph by its edges and leads to edges to be dis-
tributed across multiple partitions and the vertices
to be assigned to a unique partition. Since graphs
typically have many more edges than vertices, this
type of partitioning leads to higher space usage than
the vertex-cut partitioning.

In terms of dynamism, these systems typically al-
low for applying changes to the graph (i.e, adding
vertices, removing edges, etc), but only by trans-
forming an existing graph. This operation does not
necessarily mean that the graph is completely re-
constructed. Some systems avoid this by rebuilding
only the affected partitions.

An example of a relevant graph processing system
is the GraphX system. Spark’s API for graphs
and graph-parallel computation [22]. Data storage
is handled by Spark’s RDD which represents an im-
mutable collection of elements that allow for several
transformations (e.g., map, filter) and that can be
processed in a distributed fashion by splitting ele-
ments into various partitions and having different
machines in the cluster process different partitions.

2.2 Graph Databases
Graph database systems are similar to typical
databases, but have specialized formats to effi-
ciently store graphs. These systems also focus on
fine grained access to the vertices and edges of a
graph, allowing for complex queries to be made and
do not necessarily need to traverse the entire graph
for each query.

As such, the storage of the graph is made to be
very space efficient but also to allow for very low
latency when performing queries.

The architecture of these systems is typically
either Native when the system has an exclusive
preference to store graph workloads across its en-
tire stack. This leads to much better performance
when handling graphs, compared with more general
databases. Or Non-Native architectures when a
external data source, typically NoSQL, is used to
store the graph data in a non-optimized representa-
tion, leading to worse performance in general. The
data is typically translated from that storage model
(i.e., columnar, relational, document) as a graph,
which requires the database management system to
perform costly transactions to and from the primary
storage model.

The storage used by the database system pertains
to the location graph data is persisted. The most
relevant systems either store the graph data in File
system directly, including distributed file systems
such as HDFS, in a Key-Value Store where the ver-
tices and edges are stored by mapping their iden-
tifier to their attributes, or in a NoSQL Database
adapted to store graph data.
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Figure 1: Graph and its adjacency matrix and corresponding k²-tree.

The database can also be Distributed when the
graph is stored across multiple machines, or Cen-
tralized when the entire graph is stored in a single
machine. In some cases, where specialized hardware
is available, centralized systems may have similar or
even better performance than distributed ones.

An example of a relevant graph database is
Neo4J, a native graph database [10] platform used
to store, query, analyze and manage highly con-
nected data in property graphs, providing its own
query language (Cypher). Data is stored on disk
as linked lists of fixed-size records. Properties are
stored as a linked list of property records, each hold-
ing a key and value and pointing to the next prop-
erty.

2.3 Optimized Graph Representations

Optimized graph representations relate to repre-
sentations of graphs that are typically compressed
to reduce the memory requirements of the entire
graph. These representations typically make use
of compression and/or summarization techniques to
either reduce the memory need to store the graph or
reduce the number of existing vertices and/or edges
of the graph.

Some representations support attributed graphs
(property graphs) and some can also compress the
attributes alongside the rest of the graph. The di-
rection of the edges is also relevant for the represen-
tation, since some implementations support Undi-
rected edges and/or Directed edges, which re-
quire twice the number of edges.

The type of graph can also support at most a
single edge between two vertices (Simple) or mul-
tiple edges between the same two vertices (Multi-
Graph).

Most optimized graph representations do not al-
low for mutable graphs, since these typically require
more memory usage than their static counterparts.

An example of a relevant optimized graph rep-
resentation is the k²-tree (Figure 1), a compact
graph representation that takes advantage of sparse
adjacency matrices. Proposed by Brisaboa et al. [2]
the tree represents the structure of the graph adja-

cency matrix, where each node in the tree is rep-
resented by a single bit: 1 for internal nodes and
0 for leaf nodes, except in the last level where all
nodes are leaves and represent the bit values in the
adjacency matrix.

3 PK-Graph
Our solution extends the GraphX processing system
and make use of a k²-tree implementation to al-
low for a compressed representation of attributed
graphs in main memory. The GraphX system pro-
vides an abstraction over a graph, containing a view
of vertices, a view of edges and a view of edge
triplets, that correspond to the union of an edge
with its corresponding source and destination ver-
tices. All views are partitioned according to the
user. GraphX implements this abstraction by repli-
cating the vertices in the edge partitions, thus effi-
ciently performing a join between an edge and its
corresponding vertices. This abstraction is static
and does not allow for new vertices or edges to be
added. It is possible to update the attributes of ei-
ther vertices or edges, but because the underlying
Spark RDD (Resilient Distributed Datasets) are im-
mutable it presents a challenge to update the graph.
Our solution will provide the same three views while
maintaining a compressed fully dynamic represen-
tation of the graph, capable of adding new edges or
vertices as well as updating their attributes.

3.1 Overview

Figure 2 shows a diagram of the architecture
overview of our system and how it integrates with
the GraphX platform. The diagram shows in blue
the main classes of the GraphX implementation and
in green the main classes of our system.

The Graph class provides an interface for all ba-
sic graph operations, primitives used to implement
graph algorithms and access to the underlying ver-
tex and edge RDDs.

All graph operations are executed in a lazy and
distributed fashion, by propagating them through-
out a cluster of computing nodes and aggregating
the result in the driver program. Figure 3 shows
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«interface»
DynamicGraph[V, E]

Graph[VD, ED]

VertexRDD[VD] EdgeRDD[ED]
Edge[ED]

+ srcId: VertexId
+ dstId: VertexId
+ attr: ED

EdgeTriplet[VD, ED]
+ srcAttr: VD
+ dstAttr: VD

VertexRDDImpl[VD]

ShippableVertexPartition[VD]
+ index: VertexIdToIndexMap
+ values: Array[VD]
+ mask: BitSet

has

1

n

RoutingTablePartition
- routingTable: Array[(Array[VertexID], BitSet, BitSet)]

1

EdgeRDDImpl[VD, ED]

EdgePartition[VD, ED]
+ localSrcIds: Array[Int]
+ localDstIds: Array[Int]
+ data: Array[ED]
+ vertexAttrs: Array[VD]

has

1

n

GraphImpl[VD, ED]

ReplicatedVertexView[VD, ED]
+ hasSrcId: Boolean
+ hasDstId: Boolean

1

1

1

1

1
PKGraph[V, E]

PKEdgeRDD[V, E] PKEdgePartition[V, E]

K2Tree

1

PKReplicatedVertexView[V, E]

has
1 n

1

PKGraph

GraphX

Figure 2: Architecture overview of our system.

an example of how a graph operation can be dis-
tributed throughout a cluster.

Driver

Worker
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Graph.mapEdges()

map()

map()

map()
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EdgePartition 3

EdgePartition 4
EdgePartition 5
EdgePartition 6

EdgePartition 7
EdgePartition 8
EdgePartition 9

Graph (new)

Figure 3: Distributed graph work in a cluster

3.2 Vertices

The VertexRDD class provides a interface for vertex
specific RDDs, containing operations to iterate and
transform the underlying vertices of the graph. The
VertexRDDImpl contains the default GraphX im-
plementation of the VertexRDD class.

Our solution is focused mainly on compressing
the edges of the graph by use of a k²-tree, there-
fore the approach for storing the vertices remains
unchanged from the GraphX system.

The vertex partitions, where the actual vertices
are stored, are implemented by the ShippableVer-
texPartition that keeps them in a format ready to
be ”shipped” to their corresponding edge partitions
(see Figure 4b).

Each vertex partition keeps track of the routing
information for each of its vertices, to later be used
to determine to which edge partition to ship them
to. The mask bitset keeps track of all active ver-
tices in the partition. The vertex operations of a
partition are only applied to the active vertices.
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To access the vertices of a partition, we iterate all
set bits in the mask and retrieve the corresponding
vertex identifier and attribute (see Algorithm 3.1).

Algorithm 3.1 Algorithm to iterate the vertices of
a given partition

procedure iterate vertices(partition)
i← partition.mask.nextSetBit()
while i >= 0 do

vertexId← partition.index[i]
attr ← partition.values[i]
output V ertex(vertexId, attr)
i← partition.mask.nextSetBit()

3.3 Edges
The EdgeRDD class provides a interface for edge
specific RDDs, containing operations to iterate and
transform the underlying edges of the graph.

Our solution extends this abstraction, by
the PKEdgeRDD class, and provides a spe-
cific implementation of the edge partitions
(PKEdgePartition) using the compressed data
structure k²-tree to store the edges of the graph
(K2Tree).

The edge partitions are stored in the
PKEdgePartition class which provides op-
erations to iterate and transform the underlying
edges. The actual edges are stored in the K2Tree
class, which implements the k²-tree compressed
data structure as proposed by Brisaboa et al. [2].

Figure 4a shows the interface of one of our edge
partitions.

Every operation in the edge partition creates a
new instance with copies of the previous data and
any modifications applied, since this is the expected
behavior when changing the elements of an RDD.

The updateVertices operation receives an itera-
tor referencing cached vertices in the partition that
should be updated with new attributes. The re-
verse operation reverses all edges in the partition,
by switching the source vertices with the destina-
tion vertices. This operation is directly used by the
graph abstraction to perform its own reverse op-
eration.

The map operation applies a user function to
all edges stored in the partition. The filter opera-
tion filters both the vertices of an edge and the ac-
tual edge according to the user defined predicates.
The innerJoin operation performs an inner join
between two edge partitions.

The aggregateMessages operation is the prim-
itive used to implement all popular graph algo-
rithms. It implements a Pregel like messaging sys-
tem to exchange messages between the vertices of a
graph. Each vertex is capable of ”sending” a mes-
sage through an edge to another vertex. These mes-

sages are then aggregated and merged at each ver-
tex and collected after all messages have been sent.

The GraphX computing model also has the ability
to only ”activate” some vertices, meaning that only
the active vertices would be able to receive mes-
sages. Which vertices remain active are stored in
each edge partition and the non-active vertices are
skipped when aggregating messages. The activeness
requirements can then be specified as a parameter
of the aggregateMessages function.

The dynamic operations (addEdges and re-
moveEdges) can add or remove edges from the
partition. Although they are dynamic operations,
the edge partition does not need to be mutable,
since a new instance of the PKEdgePartition class
is returned as a result of these operations.

As stated previously, the edge partition uses a k²-
tree compress data structure to store the edges of
the graph. This data structure is capable of repre-
senting the edges of a graph in a very space-efficient
format. Our architecture only requires that the im-
plementation of this structure provides a method to
access and iterate its edges.

Algorithm 3.2 Algorithm to iterate the edges of
a given partition

procedure iterate edges(partition)
iterator ← tree iterator(kh, 0, 0,−1) . kh is

the size of the global adjacency matrix
i← 0
while iterator.hasNext() do

(localSrc, localDst)← iterator.next()
srcId← partition.local2Global[localSrc]
dstId← partitino.local2Global[localDst]
attr ← partition.edgeAttrs[i]
output Edge(srcId, dstId, attr)
i← i + 1

procedure tree iterator(size, line, col, pos)
if x ≥ |T | then . leaf node

if L[pos−|T |] = 1 then output (line, col)

else . internal node
if pos = -1 or T[pos] = 1 then

y ← rank(T, pos) · k2 . k²-tree rank
operation to find child node

for i = 0..k2 − 1 do
tree iterator(size/k, line ·

(size/k) + i/k, col · (size/k) + i mod k, y + i)

This will require iterating the k²-tree in a depth-
first fashion and calculating the line and column in
the adjacency matrix of each edge. Each line and
column will correspond to local vertex identifiers,
which then will need to be efficiently mapped to
global identifiers, as well as determining for each
edge its corresponding attribute. Algorithm 3.2
shows an example in pseudo code of a possible im-
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class PKEdgePartition[V, E] {

def updateVertices(iter: Iterator[(VertexId,

V)]): PKEdgePartition[V, E]

def reverse: PKEdgePartition[V, E]

def map[E2](f: Edge[E] => E2):

PKEdgePartition[V, E2]

def filter(

epred: EdgeTriplet[V, E] => Boolean,

vpred: (VertexId, V) => Boolean

): PKEdgePartition[V, E]

def innerJoin[E2, E3](

other: PKEdgePartition[_, E2]

)(f: (VertexId, VertexId, E, E2) => E3):

PKEdgePartition[V, E3]

def aggregateMessages[A](

sendMsg: EdgeContext[V, E, A] => Unit,

mergeMsg: (A, A) => A,

tripletFields: TripletFields,

activeness: EdgeActiveness

): Iterator[(VertexId, A)]

//// Dynamic operations.

def addEdges(edges: Iterator[Edge[E]]):

PKEdgePartition[V, E]

def removeEdges(

edges: Iterator[(VertexId, VertexId)]

): PKEdgePartition[V, E]

}

(a) Interface of the PKEdgePartition class.

class ShippableVertexPartition[VD] {

// Hash set of vertex IDs.

val index: VertexIdToIndexMap

// Vertex attributes.

val values: Array[VD]

// Mask of active vertices.

val mask: BitSet

// Routing information of each

// vertex to its corresponding

// edge partition.

val routing: RoutingTablePartition

}

(b) Interface of the ShippableVertexPartition class.

class PKReplicatedVertexView[V, E] {

var edges: PKEdgeRDD[V, E]

var hasSrcId: Boolean

var hasDstId: Boolean

}

(c) Interface of the PKReplicatedVertexView class.

class DynamicGraph[V, E] {

def addVertices(...): Graph[V, E]

def addEdges(...): Graph[V, E]

def removeVertices(...): Graph[V, E]

def removeEdges(...): Graph[V, E]

}

(d) Interface of the DynamicGraph class.

Figure 4: Relevant class methods of PKGraph.

plementation to access the edges of an edge parti-
tion by iterating its corresponding k²-tree.

In a similar fashion to the GraphX system, our so-
lution also uses a simple wrapper over an edge RDD,
provided by the PKReplicatedVertexView, that
handles the shipping of vertices to the underlying
edge partitions. Figure 4c shows the interface of
this class.

This class stores the underlying PKEdgeRDD
instance and keeps track of whether the view in-
cludes the attributes of both the source and desti-
nation vertices or if these are only partially shipped,
since in some cases these may be unnecessary.

3.4 Dynamism

The DynamicGraph interface exposes various
functions to both add and remove vertices and edges
from a graph. However, since the underlying Spark

RDDs are immutable, some partitions of the graph

will need to be rebuilt, or at the very least a new
copy of them will need to be made. This does not
mean that the entire graph will need to necessarily
be rebuilt, only the partitions which we are trans-
forming. Thus, adding or removing both vertices
and edges will require determining the partitions
affected, and only transforming these. Figure 4d
shows the interface of the DynamicGraph class.

The addVertices and addEdges functions add
new vertices and edges, respectively, to the graph,
returning a new graph instance in the process.

The removeVertices and removeEdges func-
tions remove the given vertices and edges from the
graph, also returning a new graph instance in the
process. Both of these functions work very simi-
larly to applying a filter over the graph, with the
slight optimization that only either the vertices or
the edges of a graph are affected, instead of always
having to filter both.
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All dynamic functions receive RDD instances as
parameters to allow for these operations to be dis-
tributed throughout a computing cluster.

3.5 Partitioning

Because GraphX processes the graph data in a dis-
tributed fashion, our solution will also need to ad-
dress the problem of how to partition the graph to
allow for spatial and computational efficiency.

The input graph is represented by two RDDs pro-
vided by the user, one representing the vertices
and another representing the edges (similar to the
GraphX implementation). For the case of edges, our
solution will interpret them as an edge adjacency
matrix that will be partitioned using a 2D parti-
tioning scheme [1] that splits the adjacency matrix
into several submatrices of equal size, each assigned
to a unique partition (see Fig. 5).
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Figure 5: Adjacency matrix partitioning scheme

In case the number of partitions is not a perfect
square the last column will have a different number
of rows than the others.

One problem with this distribution is that it leads
to poor work balance since, given a sparse adjacency
matrix, some partitions will have many more edges
than others. To overcome this, we shuffle the vertex
locations in order to evenly distribute them through
all partitions.

Like GraphX’s implementation, our solution will
also replicate the vertices in the edge partitions to
provide an efficient way to join the edges with their
respective vertices. Using this distribution we guar-
antee that any vertex is replicated at most 2×

√
|P |,

where |P | is the number of partitions to partition
the adjacency matrix by, since any vertex is repre-
sented by a line and a corresponding column in the
matrix, and every line and column intersect at most√
|P | partitions.

The described partitioning scheme is applied by
default, with no configuration required to the edges.
It is also possible for the programmer to specify a
different partitioning scheme by using the already
existing interface provided by Spark. For the ver-
tices we would default to the partitioning scheme
supplied by the user or, if no scheme was provided,
default to a uniform partitioning strategy such as
the one based on the hash of each vertex.

In cases where the graph becomes unbalanced,
the user can repartition the underlying vertex and
edge RDDs to either increase or decrease the number
of partitions, using Spark’s repartition function.
When increasing the number of partitions these will
be shuffled, which will incur a significant overhead
due to network communication between workers.
However, when decreasing the number of partitions
it is possible to avoid a shuffling phase by using
Spark’s coalesce function.

The GraphX platform already offers several par-
tition strategies, such as: EdgePartition2D, this
is the strategy described earlier and implements a
strategy that divides the adjacency matrix of the
graph into several blocks, as well as shuffling the
vertices of the graph to provide a more balanced
work distribution; EdgePartition1D, groups to-
gether edges with the same source vertex; Ran-
domVertexCut, distributes the edges based on
the hash code of both the source and destina-
tion vertex identifiers; CanonicalRandomVer-
texCut, is the same strategy as the RandomVer-
texCut but the direction of the edge is also taken
into account when performing the hash.

Our solution will also introduce a new partition
strategy, represented by the PKGridPartition-
Strategy class. This strategy is very similar to
the EdgePartition2D approach that already ex-
ists implemented in the GraphX platform. The main
difference between the strategies is that the vertices
won’t be shuffled, as to not change the data locality
of the edges, thus providing a more space efficient
representation of the entire graph in some cases, at
the cost of worse workload distribution in the clus-
ter.

3.6 Discussion
Our solution improves upon GraphX’s implementa-
tion by using a k²-tree to efficiently represent bi-
nary relations between two vertices, representing an
edge. More specifically, GraphX’s implementation
uses two arrays to store the local source and des-
tination vertex identifiers and a hash map to keep
track of all the direct neighbors of each vertex. Our
solution replaces all this by a k²-tree that can ef-
ficiently compute the direct and reverse neighbors
of any local vertex. GraphX does not provide any
mechanism to transform the graph by adding new
elements, while our solution will implement a dy-
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namic interface that allows to add and remove ver-
tices and edges.

4 Evaluation
To evaluate the implementation of our solution, we
performed various benchmarks in a cluster of com-
puting nodes, each node corresponding to a Spark
worker that keeps part of the total graph in main
memory.

We submitted several graph processing jobs to
the cluster, executing some basic graph operations
and some of the more popular graph algorithms,
using relevant graph datasets and analyze the gains
(penalties) our solution has in terms of storage com-
pression and processing.

4.1 Setup
The cluster was prepared using the AWS EMR ser-
vice, that allows to easily setup a cluster of Spark
workers. The cluster uses a single master node and
various worker nodes (see Figure 6). The actual
number of workers used will vary throughout each
test. Each machine in the cluster has a 4 core pro-
cessor with 16 GB of available main memory.

Worker 1 Worker 2 Worker N

...

Master
Job

Driver

Storage Node

Figure 6: Overview of the cluster used to execute
spark jobs.

The Spark jobs are submitted from a driver pro-
gram in a remote machine and the datasets are re-
trieved from AWS S3 buckets to be used in the jobs
executed in the cluster.

4.2 Datasets
The datasets used in the evaluation of our imple-
mentation are from the Network Repository and the
Stanford Large Network Dataset Collection. The
datasets chosen for the benchmarks are the follow-
ing:

• Youtube Growth (3M vertices, 12.2M edges)

• EU (2005) (863K vertices, 19M edges)

• Indochina (2004) (7M vertices, 194M edges)

• UK (2002) (18M vertices, 298M edges)

4.3 Memory Overhead
Our benchmarks show that the memory overhead
of the data structure of the graph remains the same
independent of the number of processors. This is
due to the fact that the number of partitions used,
chosen by Spark based on the size of the file where
the dataset was read from, remains the same. Fig-
ure 7 shows the results of the memory usage of the
entire graph with varying datasets.

Youtube Growth EU (2005) Indochina (2004) UK (2002)
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Figure 7: Results of the memory overhead for each
dataset

The results show, as did the micro-benchmark re-
sults, that our solution has significantly less mem-
ory overhead then the GraphX implementation. Al-
though our previous tests showed a reduction be-
tween 60% to 70% when compared to the GraphX

implementation, when testing the memory usage
of the entire graph the reduction now is between
30% to 50%, in part due to the partitioning of the
graph and the nature of the graph. The best per-
formance is obtained in web graphs, since these
have much higher edge clustering when compared
to other types of graphs. Furthermore, the number
of processors has no significant impact on the size
in memory of the graph.

4.4 Iteration
This workload iterates all edges of the graph and
applies a user function to each edge. The results
obtained are showed in Figures 8a, 8b, 8c, 8d.

Just like the previous tests, as the number of pro-
cessors increases, the iteration latency decreases.
Due to the GraphX implementation being much
more efficient at traversing all edges in an edge par-
tition, it achieves a lower latency compared to our
implementation, even using a more processing opti-
mized k value.

Overall, our implementation, in terms of itera-
tion latency, is between 15% to 40% slower than the
GraphX implementation, depending on the type of
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(a) YouTube Growth.
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(b) EU (2005).
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(c) Indochina (2004).
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Figure 8: Iteration latency results and vCPU counts for the chosen datasets.
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(b) EU (2005).
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(c) Indochina (2004).
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Figure 9: PageRank latency results and vCPU counts for the chosen datasets.

graph, obtaining better results for web graphs when
compared to social network graphs.

4.5 PageRank

For the PageRank algorithm, we observe simi-
lar patterns to the basic iteration test, with PK-
Graph’s latency approaching that of GraphX with
higher vCPU counts on the Indochina (2004) and
UK (2002) datasets. The latency results for PageR-
ank are depicted in Figures 9a, 9b, 9c and 9d. For
larger graphs, as the number of available proces-
sors increases, the latency of the graph operation
decreases.

4.6 Analysis

In this chapter we provided a detailed evaluation of
our implementation.

Overall our solution provides a significant reduc-
tion in memory usage, between 40% and 50% de-
pending on the k value used for the k²-tree, the type
of graph and the partitioning strategy employed. As
we are using a k²-tree as the compressed data struc-
ture, the more sparse the adjacency matrix of the
graph is, the better the compression.

Our implementation also provides a competi-
tive processing performance when compared to the
GraphX implementation, specially considering that
this current GraphX approach focuses mainly on
having the best possible processing performance by
keeping all edges in an array with no application of
compression techniques. The performance penalty
of PK-Graph decreases in inverse relation with the

complexity of the workload algorithm and the size
of the dataset. Nonetheless, while requiring less
memory (the resource harder to share across time
between workloads), results show that PK-Graph
incurs at times in a higher CPU usage than GraphX,
due to the increased graph processing complexity
over the compact data structure, as our iteration
algorithms are more demanding on it.

5 Conclusion
Graphs are now more relevant than ever, and its
becoming increasingly more important to keep the
entire graph in main memory to provide fast access
to the underlying data.

Our work focused on reducing the memory us-
age of graphs while still maintaining a competitive
processing performance.

The main goal of our work was to design and de-
velop an extension to the storage component of the
GraphX distributed graph processing system so that
the processed graph is made more space-efficient
by using the k²-tree lossless compressed represen-
tation, while also aiming to achieve similar perfor-
mance to the uncompressed version.

To achieve this goal we presented a survey of the
current state of the art on the storage components
of graph databases and graph processing systems,
as well as optimized graph representations with the
goal of reducing the memory footprint of the graph
while still maintaining fast access to uncompressed
data.

Our solution consisted in implementing an exten-
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sion to the GraphX graph processing system using
the k²-tree as the optimized graph representation in
a distributed setting. We described the architecture
of our solution in which we would make use of the
compressed data structure to implement the edge
partitions of the graph in the Spark ecosystem.

To reduce the memory usage of the overall graph
our solution made use of the k²-tree compress data
structure, capable of very efficiently representing
sparse adjacency matrices which are very common
in web graphs.

Finally, we performed a detailed evaluation which
evaluated the performance of our implementation in
a cluster of Spark workers and evaluated the perfor-
mance of the overall graph, using various datasets
to showcase the effectiveness of our solution in both
web and non-web graphs, as well as how our solu-
tion scales as the size of the graph and the number
of available processors increase.

Our evaluation concluded that our solution offers
a significant reduction in the memory usage of a
graph, specially for web graphs, while maintaining
a competitive processing performance when com-
pared to the GraphX implementation.
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