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Abstract

GraalVM is a novel Java VM implementation designed to achieve better performance (throughput, memory,
and start-up latency) that can also be used to support applications that mix application code written in different
programming languages. Currently, in GraalVM, Serverless functions cannot be executed concurrently within the
same language runtime. Photons [§] proposed automatic data isolation to allow sharing the language runtime.
However, Photons relies on bytecode manipulation at load time to enforce data isolation, which is undesirable
for maintainability and performance reasons and it still allows functions to share the same heap space, leading
to inefficient memory management, and causing performance and latency overheads. The goal of this work is to
study and take advantage of GraalVM Native Image unique features, such as (i) Java ahead of time compilation,
providing very low startup time, and (ii) Isolates, a separate allocation area that can be attached to functions in
order to support the implementation of thin Serverless functions in GraalVM native image. This can be achieved
by incorporating Photons in the GraalVM architecture and implement them while taking advantage of Isolates and

ahead of time compilation.
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1. Introduction

The increasing level of abstraction provided by Cloud
providers, initiated by the shift from Infrastructure as a
Service (IaaS) to Platform as a Service (PaaS), has led to
the development of Function as a Service (FaaS) solutions
that now is offered through Serverless platforms. These
platforms allow programmers to write small stateless func-
tions, containing only the necessary logic code and which
are executed only when a request for the invocation of the
function arrives. Such approach aims at reducing costs by
charging costumers only during the time the function is
actually being run [6]. This makes Serverless desirable for
asynchronous and event-based workloads that don’t have
demand for continuous operation, resulting in cost savings
when no events are occurring since the customer is only
billed when the functions are being invoked. Serverless is
also more elastic than other lower level platforms, as the
platform will scale the amount of workers along according
to the incoming invocation rate automatically, being able
to handle large bursts and sporadic invocations equally
well.

Serverless has a similar paradigm to Remote Procedure
Call (RPC) which was a popular paradigm in distributed
systems for invocation of functions with the code located
in a remote server [I4]. But, unlike Serverless, RPC re-
quires a Server to be online to process the function invo-
cation, not having the same potential for elasticity and
resource freeing during idle time.

Current Shortcomings Serverless functions are typ-
ically executed in virtualized environments, specifically,
containers. In a typical scenario, every function execu-
tion creates a container with the function code, executes
it, and then the container is destroyed. The overhead is
quite significant, reaching hundreds of milliseconds to start
a container. To solve this problem, which is commonly
referred to as ”cold start”, serverless platforms keep con-

tainers alive after execution finished for a set amount of
time; if more executions of the same function arrive while
the container is still alive, it can be reused, skipping the
cold start. Still, when no ”warm container” is available,
the cold start is unavoidable.

Photons [8] aims to allow execution of concurrent re-
quests in a container, while also introducing a global cache
to share common data that can be used by the function
executions. By allowing concurrent execution in contain-
ers and sharing data, less memory is used overall and cold
starts are also greatly reduced for workloads with high
concurrency.

However, Photons doesn’t enforce a strict memory sep-
aration - all functions execute in the same heap and the
memory separation that Photons employs is actually built
upon bytecode manipulation at class load time. This has
many downsides, such as introducing performance and se-
curity issues due to the modification of classes while the
application is running. It makes the modified code harder
to debug. Further, it also introduces a big dependency on
the bytecode manipulation framework and conflicts with
other bytecode manipulation techniques that the applica-
tion might be using.

Contributions The main goal of this project is to im-
prove application execution in FaaS scenarios, by achiev-
ing a stricter data isolation than the original Photons [§]
design while providing similar memory benefits when ex-
ecuting applications with high concurrency degrees.
Thus, we present Photons@Graal. By using GraalVM
Native Image Isolates as means of providing data isola-
tion, it provides disjoint heap allocation through the Iso-
late API, enabling a strict memory isolation of each task
execution. It also greatly reduces Garbage Collection ac-
tivity and overhead in low memory task scenarios, in which
Isolates are simply destroyed at the end of the execution
without any Garbage Collection being carried out during



the execution.

Photons@Graal allows Graal functions to have multiple
concurrent executions within the same runtime by hav-
ing each function invocation thread attach to an Isolate.
Data isolation between concurrent function executions is
ensured due to Isolates having disjoint heaps, making it
impossible for function invocations to interfere with the
memory of other function invocations.

In order to evaluate and tune the implementation of
Photons@Graal, we will integrate with Apache Open-
Whisk, which is an Open-source Serverless framework and
is the backbone of the proprietary service IBM Cloud
Functions, possibly with added proprietary code. This al-
lows us to replicate a Cloud Serverless environment using
local machines with a system that is highly customizable,
which is needed to be able to create and use a custom
Runtime that supports Photons@Graal. With some mod-
ifications we can also allow OpenWhisk to forward con-
current requests to a single runtime which isn’t normally
available in Cloud environments.

We perform both synthetic and realistic workload
benchmarks, using some selected functions that are meant
to represent multiple types of functions that are widely
used in Serverless platforms to assess the quality of the
solution when comparing with some existent systems.

2. Related Work
In this section we present the most relevant work related
to the main topics at hand.

2.1. Serverless

Serverless computing is a new distributed application ar-
chitecture in which applications are composed by a col-
lection of small logic units, functions. It aims for an
even more fine-grained architecture design and manage-
ment than microservices, putting the line of separation
at the function level. In serverless, the programmer only
needs to manage the function code that he wants to ex-
ecute; all the infrastructure, even up to the web servers
running the code, is managed by the provider of the plat-
form being used, which is typically done in a public cloud.
Besides, serverless platforms are built to be extremely elas-
tic, ensuring that applications can scale up rapidly to ac-
commodate load bursts and down if no requests are being
received.

2.2. Language Runtime-Level Virtualization

We are looking for a finer-granularity virtualization than
the one provided by Lightweight Virtualization such as
Docker containers, which only guarantees that an applica-
tion runs in an isolated process, it provides no guarantee
for isolation of concurrent executions within that process.
To guarantee that concurrent executions within a single
Java runtime are properly isolated we leverage GraalVM
Native Image.

GraalVM is a novel Virtual Machine (VM) that allows
interoperability between multiple programming languages
such as Java, JavaScript, Python, C, Rust and many oth-
ers in a shared runtime. It includes runtime components
such as a JVM, Node.js and LLVM runtimes to allow ex-
ecution of programming languages that require these run-
time environments and also includes interpreters for inter-
preted languages such as Python, Ruby and JavaScript.
Although the polyglot features of GraalVM are interest-
ing, it is not the focus of this work. The most important
GraalVM component is the Native Image, a technology

developed to reduce Java startup time, initializing the ap-
plication at build time by loading all classes that belong
to the application and to the Java Runtime Environmnet
(JRE). To avoid loading unnecessary artefacts, only reach-
able classes and methods are loaded from the code being
compiled. This approach assumes that everything is al-
ready known at build-time, so, no runtime modifications
are expected. The resulting artefact of the build, the na-
tive image, is a native executable that can be run only on
the operating system and hardware that built the image
[15].

A feature that GraalVM Native Image provides that
is crucial for the success of this work are Isolates, which
provide ability to run tasks within a disjoint heap that is
created on demand. Due to the strict memory isolation,
Isolates can’t access any sort of shared memory, requir-
ing programmers to gather data from external sources or
copying it into the Isolates. The only memory that can be
shared is the ahead-of-time compiled code. Since Isolate
code executes within a separate heap, garbage collection
can run only on Isolates that need collection, reducing
Garbage Collection (GC) overhead on the application.

2.3. Relevant Systems

Photons is a framework that allows concurrent server-
less function executions to be co-located in a single docker
container, attempting to improve several inefficiencies in
today’s public cloud platforms, such as the high number
of cold starts due to the single concurrent invocation per
container policy and high memory utilization due to every
container requiring some application state, such as ma-
chine learning model for example, in Photons this model
is shared by all invocations in the same runtime. Through-
out the document, we might reference this system as Pho-
tons@QHotSpot to help differentiate with Photons@Graal.

To ensure that Photons remains as secure and fault tol-
erant as current clouds are, the concurrent invocations in
the same runtime must not access or alter other functions
memory, they need to be isolated. Since baseline Java
doesn’t provide any means of isolation, Photons developed
a proxy that intercepts user code at bytecode load time
and using bytecode manipulation. Static fields, methods
and initialization blocks are properties of a class, being
application-wide, this breaks isolation. Every time a func-
tion is executed in a runtime, a bytecode transformation
is made to change the static fields to be related to the
specific invocation instead of global.

To avoid memory leaks by having reachable unused
memory, the local static fields resulting of the bytecode
manipulation are stored in weak tables, which is a con-
cept that keeps a value reachable as long as there are
strong references to it. When a function finished execution
the references to the static fields get out of scope and the
mechanism of the weak table marks them as unreachable,
then, garbage collection will ensure that they are disposed
and no memory leak occurs.

Photons also provides a memory sharing mechanism re-
sembling a global cache, a shared object store that is a
simple key-value map that all photons can read and write
to. It’s useful to share data that is used by all invocations,
such as machine learning models, reducing overall memory
usage.

SEUSS (Serverless Execution via Unikernel SnapShots)
[7] attempted to reduce high function initialization cost
present in the cold start problem of containerization-based
serverless by using unikernel [I0] snapshots that have al-



ready initialized runtimes for multiple language runtimes,
providing a much faster startup time. In unikernels,
the application and other system components (file sys-
tem, networking) are packaged in a single address space.
SEUSS uses UC’s (Unikernel Contexts), which are cus-
tom Unikernels that contain a language Runtime, such as
Node.js or Python that is configured to import and run
function code. This architecture allows for extremely fast
startup times of functions, between 3-8ms without using
too much memory in caches when comparing with con-
tainer provisioning which normally take from 500ms-3s.

SOCK [12] also aims to reduce cold start initialization
cost by using Zygote provisioning, in which new processes
are forked from the main process, the Zygote, that already
has imported libraries that are needed by the application
and done some initialization work, reducing the initial-
ization work needed to be done by the child processes.
This means that the system must maintain a set of Zygote
processes with the different sets of preinstalled packages,
which could prove difficult in an environment with many
different types of applications being executed. SOCK is
based around the Python ecosystem.

SAND [4] aims to reduce startup latency and improve
latency in function chaining workloads, in which certain
functions are called after other type of functions finishes
computing. It provides strict application sandboxing by
providing isolated containers for invocations of different
applications and allows a less strict separation between
invocations of different functions of the same application,
encouraging some data sharing inside the container to re-
duce redundant memory usage. The result is that SAND
achieves fast startup times, reducing the total execution
time in function chaining workloads. But, the architecture
proposed doesn’t limit the sandboxed application and they
might compete for resources, diminishing performance.
SAND also relies on process forking to achieve fast startup
times, being incompatible with runtimes that don’t have
native forking such as Java and Node.js.

3. Architecture
In this section we describe our proposal for Photons using
GraalVM Native Image.

Just like regular functions on the Public Cloud, a Pho-
ton@Graal runs in a container, ran by a container en-
gine such as Docker. The striking difference is that Public
Cloud functions don’t allow concurrency in each function,
so, for every concurrent function invocation a new con-
tainer has to be created. In Figure [1| we show a simple
view of a cloud running a Photon@Graal function. To
support concurrent invocations, the cloud must provision
extra containers, as many as the concurrency of the re-
quests, but in the Photon@Graal function this is not nec-
essary as the framework will simply allocate more isolates
for these requests in a single container.

This architecture allows that a single Photon@QGraal ex-
ecute functions concurrently in the same Java runtime,
aiming at reducing the excessive cold starts due to the high
amount of containers required to initialize for highly con-
current workloads. Each concurrent function invocation
will have its execution associated with an Isolate which en-
sures a separate heap from the other Isolates and greatly
reduces memory usage when compared with the common
scenario of scaling horizontally to process the incoming
load by provisioning more containers with fresh runtimes.

Multiple
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Figure 1: Overview of a Cloud using a Photon@Graal.

With this architecture, we aim to achieve a better so-
lution at providing data isolation and faster startup than
the original implementation of Photons[8], which had data
isolation but still allowed the functions execution to share
the same heap.

An inherent benefit from using GraalVM’s Native Im-
age tool is that we use Ahead-of-Time compilation to pre-
initialize our application at build time. This makes it pos-
sible to have extremely fast startup times, making cold
starts faster than regular Java function cold starts. Native
Image also has a much smaller baseline memory footprint
than a regular Hotspot JVM based application.

3.1. Function Runner Library

Photons@Graal is delivered as a library that integrates
with the Native Image APIs. It manages Isolate lifecycle
automatically without the users of the library needing to
manually intervene. It also manages all the data transfers
from and to Isolates, which need to be translated to and
from C types.

This library will be based on reflection, to allow any
regular function to be executed seamlessly in serverless
fashion. The user only needs to provide the Class Fully-
Qualified Name (FQN), the method name and the values
to use as parameters for the function to be invoked.

To make use of GraalVM Isolates we need to use the
provided API to:

e Create and destroy Isolates;

e Create handles for data being copied into or out of an
Isolate;

e Mark methods that are Isolate entry-points with ap-
propriate annotation.

3.2. Isolate Management

To have Isolates available exclusively for each function in-
vocation, we need to have an algorithm to manage these
Isolates. We decided on going for a caching algorithm, that
doesn’t attempt to delete isolates for every invocation.
There are a few reasons for this, first of all, we found out
by doing some performance tests, that constantly delet-
ing isolates by keeping them only for one invocation is
expensive and can slow down the application if it is under
considerable load and we also experienced some problems
with functions that use HT'TP Clients to invoke REST
APIs, the isolate deletion mechanism has some issues. It
may become stuck if there are some threads that ignore
interrupts or if resources are not properly closeable, as the
mechanism only attempts to interrupt all running threads
and waits for them to finish.

The data structure used to implement
this  cache should be a  Thread-safe Java
java.util.Map implementation, such as


https://docs.oracle.com/javase/8/docs/api/java/util/Map.html

java.util.concurrent.ConcurrentLinkedQueuel

Since there’s a possibility that multiple threads attempt
to fetch a valid isolate, we needed to use a Thread-safe
implementation here. In order to guarantee that the
system doesn’t attempt to cache a absurdly large number
of Isolates, the Function Runner library requires that
a maximum number of Isolates is provided through
configuration file. We keep the Isolate identifier in the
cache, which is used to either attach the Isolate to a
Thread that wants to use it, or to destroy it.

The caching algorithm described in Algorithm [I] allows
us to not lose performance in scenarios with a high number
of invocations and to have a stable environment, although
with a drawback which is increased memory usage. The
Algorithm has two procedures, one to fetch a valid Iso-
late to execute a function (Get Isolate), which is called
on receiving a function invocation, and one to release an
Isolate from the current Thread after finishing the invoca-
tion (Release Isolate). The Get Isolate procedure works
by attempting to fetch a valid Isolate to attach to from
the cache, if no result is obtained, then a new Isolate is
created, else we attach the current Thread to the returned
Isolate by it’s id. The Release Isolate procedure works
by first detaching the Isolate from the current Thread,
then checking if the cache has space for the Isolate, if it
has then the Isolate id is stored in the cache, if not, it is
asynchronously destroyed to not affect the latency of the
function invocation.

Algorithm 1 Isolate Management Strategy

. constants
MAX_ISOLATES, Compile-time constant
end constants
isolate_id_cache « []
procedure GET ISOLATE
isolate_id < isolate_id_cache.poll()
isolate <— NULL
if isolate_id 1S NULL then
isolate < newlsolate()
else
isolate < attachCurrentThreadT olsolate(isolate_id)
end if
return isolate
13: end procedure
14: procedure RELEASE ISOLATE(isolate)

==

15: detachlsolateFromThread(isolate)

16: if isolate_id_cache.size() < MAX_ISOLATES then
17: isolate_id_cache.add(isolate.getId())

18: else

19: isolate.destroyAsync()

20: end if

21: end procedure

3.3. Function Orchestration

To use Photons@Graal we either need a photon-enabled
cloud provider, which doesn’t exist yet, or use any open
source serverless platform to orchestrate function invoca-
tion. This can be done using one of the open source Server-
less frameworks available such as OpenWhisk, OpenFaaS
or Fn.

Independently of what serverless platform is chosen to
integrate Photons@QGraal, some work will be necessary to
implement a compatible GraalVM Native Image unit to
run the serverless functions. In OpenWhisk for example,
there are Docker Images with a Java 8 runtime, but noth-
ing exists yet for GraalVM Native Image.

In Figure [2| we describe a Photon@Graal deployment
using OpenWhisk. It can handle the the scaling of Pho-
tons@Graal based on the continuous assessment of the
CPU load. By virtue of employing a custom built Na-
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Figure 2: Photon@Graal Enabled Cloud. Using Open-
Whisk as the serverless platform, this example works in a
Private Cloud setting. OpenWhisk handles the scaling of
Photons@Graal depending on the current load and using a
custom built Native Image Runtime for OpenWhisk, each
Runtime can execute multiple functions concurrently.

tive Image Runtime, each Runtime is able to concurrently
execute multiple functions.

The custom runtime is very similar to the base Java
runtime. It contains a simple HTTP Server than pro-
vides the /init and /run endpoints, which are part of
the OpenWhisk Action interface [3]. This HTTP Server
processes incoming requests using an unbounded Thread
Pool that scales according to the number of requests. For
each request, it extracts the function parameters from the
request JSON payload and deserializes it into Java Ob-
jects, it then dispatches the work to the Function Runner
library described in Section [3.1] which will fetch or cre-
ate a valid isolate, execute the function with the provided
arguments and return the result to the client.

But, having a custom runtime that can process mul-
tiple concurrent requests is not enough. OpenWhisk by
default does not allow a single runtime to process concur-
rent requests, it needs to be configured to do so. After
configuring the custom OpenWhisk deployment to allow
concurrent requests, the developer just needs to configure
for the function the maximum concurrency that he wants
to allow.

4. Implementation

In this chapter we discuss the details of integrating with
GraalVM Native Image APIs and integrating our solution
into a compliant OpenWhisk Runtime. We also discuss
some of the tools used to collect metrics from inside the
application and the challenges faced.

4.1. GraalVM Native Image Integration

One of the challenges of this work was to integrate with
GraalVM Native Image APIs, to manage Isolates and use
them to execute code with isolated memory. Since Native
Image APIs are low-level, we can’t send regular Java Ob-
jects into isolates, all Objects being sent between isolates,
inputs or outputs must be converted to basic C types. To
simplify these operations, we built a module with some
common types converters, with a simple interface that re-
ceives the Isolate and the Object, and returns the con-
verted handle. It fetches the appropriate converter by
looking at the class of the received object and selecting
the most applicable Converter and converts the received
Object.


https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html

4.2. Apache OpenWhisk Integration

After implementing the module that manages the Isolates
and provides an interface to run functions in its own Iso-
late, we needed to integrate this with the OpenWhisk run-
time standard.

The custom runtime is based on OpenWhisk Java
8 runtime available at https://github.com/apache/
openwhisk-runtime-java. We upgraded it to Java 11
and replaced the code running mechanism with our Func-
tionRunner module described in Section Bl The code
is available at https://github.com/davidfrickert/
openwhisk-faas-graalvm-base.

The standard OpenWhisk Java functions have a com-
mon, generic OpenWhisk-specific code and a separate
JAR with the function Code. When starting a new con-
tainer for a function, OpenWhisk initializes it by send-
ing the JAR to the initialization API - that is part of
the OpenWhisk Java Runtime. This makes the startup
quite slow since before the function can start processing
requests, it needs to do this initialization step, but it does
allow for a clear separation between the platform-specific
code and the function code.

Since GraalVM Native Image requires an ahead-of-time
build, we can’t initialize functions during the runtime,
so, we opted for a different method. To create a Pho-
tons@Graal enabled function that can be deployed in
OpenWhisk, we need to generate the native image exe-
cutable by building the function along with the custom
OpenWhisk Runtime that we developed.

We used GraalVM Java Agent to generate the required
configuration files, most importantly the configuration for
reflection. This Java Agent records all the actions on the
Java VM that perform lookup of classes, methods, fields,
use JNT (Java Native Interface) calls or request proxy ac-
cesses [2]. The Agent then generates files that need to
be used during build time of the Native Image, most im-
portantly for Reflection, Serialization, JNI and Resources.
These configurations are very important to be properly
configured as without them, the application may fail at
runtime unexpectedly. Since our framework depends on
Reflection to execute the functions and on Serialization
to transfer data to and from Isolates, these configurations
are necessary to be properly configured for the stability of
the application.

By running the application in normal JVM mode with
the Java Agent and invoking functions, the agent can an-
alyze which classes are needed for reflection and used for
JNT or proxy accesses. Since our application has code that
only runs in Native Image mode - such as the code for
Isolate Management, we had to implement some logic to
make the isolate managing code not run while in normal
JVM mode to run this agent. Due to the impossibility of
running the Isolate Management code with the agent, we
had to manually edit the reflection configuration file with
classes that the library depends on.

4.3. Metrics Collection

Since we chose Prometheus as the metrics server, which
scrapes applications for metrics instead of the applications
pushing the metrics to the server, we had to find an alter-
native method to send the metrics to Prometheus. Since
our functions may be ephemeral and not last long, and the
number of functions available and their endpoints are not
deterministic, it was unfeasible to have Prometheus scrape
the functions for the metrics. To counteract this problem,

Prometheus has the PushGatewayE system which enables
applications to push metrics to this intermediate system
that Prometheus scrapes the data from.

To collect metrics inside the functions, we integrated
Micrometer|into our custom OpenWhisk Runtime. With
Micrometer, we can measure custom metrics with vendor-
neutral code, having Prometheus-specific code only in the
code that sends the metrics to PushGateway. We col-
lected data for the Memory usage, Execution Time
and Current / Max Concurrent Requests.

To collect metrics on the cluster, we used cAdviso|
which is an open-source tool developed by Google that
collects data on running containers, such as CPU usage,
memory usage, etc. These metrics are then collected
by our Prometheus instance and visualized in Grafana.
Since both our OpenWhisk and the functions run on con-
tainers, these metrics can be used to fine-tune both the
OpenWhisk deployment (increase or decrease number of
instances of certain components) and to monitor Open-
Whisk and the functions.

5. Evaluation

To evaluate our solution, we aim at gathering some metrics
to compare the original Photons implementation, which
offered no strong memory isolation between concurrent re-
quests, and a traditional Serverless framework, that forces
concurrent function invocations to be handled in separate
containers and language runtimes.

We study the following metrics: i) Throughput, mea-
sured by the number of requests processed in a time frame;
ii) Latency, measured on the client’s side, represented by
the time the client perceives that it to took process a single
request; iii) Memory Usage, measured for each container
and as a global cluster-wide metric; iv Cold Starts, i.e.,
the number and time to start a new execution environ-
ment.

We believe these metrics represent the most important
performance indicators of a Serverless platform and we
intend to study Photons@Graal’s impact on each of these
metrics.

Evaluation Environment To evaluate Pho-
tons@Graal, we needed a setup similar to a Cloud
that could be deployed in local servers. As we have men-
tioned before, we chose Apache OpenWhisk platform. We
used a virtual machine allocated with 32 virtual cores
and 32GB of RAM as the machine to host OpenWhisk,
based on a physical machine with a Intel(R) Xeon(R)
Gold 6138 CPU @ 2.00GHz, that has a total of
40 virtual cores and 64GB of total RAM. We also
used a smaller virtual machine, with 8 virtual cores and
16GB of RAM with some tools needed for the functions,
such as MongoDB and MinlO. This smaller machine also
contains our tools for metrics collection and visualization:
Prometheus and Grafana.

We deployed OpenWhisk using a slightly modified ver-
sion of the base ansible deployment available at https://
github.com/apache/openwhisk/tree/master/ansible.

We chose to use the recommended setup which includes
1 nginx instance, 1 controller instance, 1 kafka instance, 1
CouchDB instance and 3 invokers. The component that is
most important that it is replicated is the invoker, which is
the component that handles the life-cycle of the function

Thttps://github.com/prometheus/pushgateway
2https://micrometer.io/
3https://github.com/google/cadvisor
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containers and forwards and receives the invocations to
the functions. We also attempted to increase the number
of available CouchDB and Controller instances but didn’t
get any noticeable improvement, these are mostly only
replicated for fault-tolerance.

Workloads In this subsection we will introduce the
functions that will be used throughout the experiments to
evaluate the system. These functions represent common
use-cases for Serverless usage and were based on functions
already used in previous work, such as in the Photons pa-
per [8].

File Hashing: Serverless is being used in distributed
data processing, in which data is split in chunks and then
processed in parallelizable serverless functions. To simu-
late this kind of workload, we fetch a small file from an
external object storage such as S3E| or MinI and apply
a hash function to it;

REST API: We test a simple function serving as a
REST API that provides a resource. It receives some pa-
rameters and passes them to a back-end database. This
serves as a benchmark for functions that execute quickly
without using much resources;

Video Encoding: Another possible use case for server-
less is video transformation, previous work has explored
this idea [, [@], by chunking a video in smaller parts
and applying a serverless function to each chunk with
extremely high concurrency a video can be transformed
much faster than in a regular single file transformation.
We aim to test this by chunking a large video in small
files and having each function invocation fetch the appro-
priate file chunk from an external object storage, process
the file with the function desired and submit the output.
A typical case study in embarrassingly parallel workloads
in distributed computing [I1];

Sleep: To test the overhead of the infrastructure we
propose a function that sleeps for a set amount of time.
This is useful because we know exactly how long the func-
tion itself took to execute, the remaining time is overhead
in the serverless platform and infrastructure.

To run the workloads described above to test our so-
lution we will deploy a modified version of OpenWhisk
that can support GraalVM Native Image runtimes as de-
scribed in Figure Then, we will also do the same ex-
periment with the original Photons [§] OpenWhisk envi-
ronment, and with a regular OpenWhisk deployment with
plain OpenJDK Java functions that do not support con-
currency.

We will test multiple levels of concurrency in the invo-
cations to see how our solution behaves at low, medium
and high levels of concurrency when compared to Photons
and OpenJDK Java. It will also important to know how
many concurrent invocations Photons@Graal can execute
before performance starts to deteriorate and compare the
same metric with Photons.

Overall Methodology In order to obtain the data for
the plots that will be presented in the next sections we had
to collect it using the metrics system that was described
in Section 3l

For Throughput, we used a metric that counted the
number of processed requests and then used PromQL, the
Prometheus Query Language to calculate the throughput

4https://aws.amazon.com/s3/
Shttps://min.io/

by simply calculating the sum of the request rate over all
active functions.

For Latency, we collected the execution time of all in-
vocations as a metric and then specifically calculated the
Tail Latency as the 90th percentile of the metric using
PromQL.

For Memory Usage, we relied on cAdvisor to
collect the metrics of the containers and used the
container_memory_usage_bytes metric, that represents
the total memory usage of the container, including the
memory used by the container’s kernel and the applica-
tion.

Finally, for Cold Starts, we relied on the presence of
OpenWhisk’s initTime to know if a cold start happened
and how long it took. This is described more in-depth in
Section [5.11

For each experiment, we ran it 3-5 times, to guaran-
tee that the results don’t variate too much, and used the
results of the last experiment.

5.1. Evaluating Photons@Graal Cold Starts in Cluster-
Wide Deployment

One of the theoretical gains of Native Image over tradi-
tional Hotspot Java Runtimes is the much faster startup
due to the Ahead-of-time compilation that produces an
application that starts up almost instantly, compared to
Hotspot applications that are quite slow to start due to
the JVM having to load the classes and optimize the gen-
erated code with the JIT compiler, operations that in the
Native Image are done in the build phase.

Methodology We simulated a competitive environment
in our OpenWhisk deployment by creating multiple func-
tions and having sporadic executions for each of the func-
tions, forcing cold starts to be happening often.

In order to know that a cold start was happening we
took advantage of the verbose results when invoking a
function with the blocking parameter, which outputs a
big payload with metadata such as initTime, which is
only available in the payload if the invokation required a
cold start of a runtime. It represents the time that Open-
Whisk took to initialize a function and doesn’t contain
the time spent in the internal OpenWhisk components and
the time spent provisioning the container, which both take
non-negligible time and are the same in both systems since
both depend similarly on Docker containers.

Video Processing
Hotspot 28:7%
Video Processing
Photons@Graal
REST API
Hotspot

REST API
Photons@Graal
File Hashing 35%

o
File Hashing
Photons@Graal
Sleep
Hotspot | 12:9% s5%

Sleep
Photons@Graal 84.1%

0% 20% 40% 60% 80% 100%

0-50ms 100-250ms 500-1000ms
= 50-100ms 250-500ms 12s

- 23
- >3

Figure 3: Distribution of the duration of cold starts of
the selected functions deployed in a Photons@Graal and
Hotspot Runtime in OpenWhisk



Results In Figure we show a distribution of the
time each function takes to start in Hotspot and Pho-
tons@Graal platforms. Since Photons@Graal takes advan-
tage of the Ahead-of-time compilation, functions running
in this platform achieve extremely fast startups, having
overall 90% of the startups under 100ms. On the other
hand, Hotspot functions are quite slow to initialize, most
taking at least 1 second and a big chunk of them taking
over 2 seconds. Since HotSpot runtimes need to initial-
ize the function JAR along with the Runtime and load
all required classes while starting it is considerably slower
than Photons@Graal, which compiles and loads the classes
during the AOT build phase. These results show the suit-
ability of Native Image-based applications for Serverless,
as big chunk of the startup-time is eliminated, allowing for
sporadic latency-sensistive functions to have faster overall
execution.

5.2. Evaluating Photons@Graal with Synthetic Bench-
marks

mmm baseline - Photons@Graal
additional concurrent invocation - Photons@Graal
= baseline - Hotspot
mmm additional concurrent invocation - Hotspot
baseline - Photons@Hotspot
additional concurrent invocation - Photons@Hotspot

175 MB

150 MB

125 MB

100 MB

75 MB

memory requirement

50 MB.

25MB

filehashing
function

rest api video processing

Figure 4: Memory requirements of Hotspot, Pho-

tons@Hotspot and Photons@Graal functions

In this section we explore some synthetic experiments
by sending a constant invocation rate (i.e., a constant
workload) for function handlers. These experiments were
done using the Apache Benchmark [I] tool, which is a sim-
ple CLI (Command Line Interface) that allows an HTTP
Server to be benchmarked. This tool can be configured
to run for N number of requests or a specified amount of
time, it can also be configured to send concurrent requests
up to the specified level of concurrency. This enables us
to test the multiple functions with various levels of con-
currency and see how they perform. In order to use this
tool with OpenWhisk, we call OpenWhisk’s HTTP API
directly to invoke the functions.

Figure [4] contains a representation of the baseline and
incremental concurrent invocation memory requirements
of functions deployed in traditional Cloud environments,
represented as Hotspot, functions deployed in a Pho-
tons@Hotspot environment and functions deployed in a
Photons@Graal environment. The baseline represents
the maximum memory usage detected in the synthetic
benchmarks, and the additional concurrent invocation rep-
resents the average memory requirement of an additional
concurrent request. In the case of the Hotspot environ-
ment, each runtime doesn’t allow concurrent requests, so,
OpenWhisk has to start up a new container for each
concurrent invocation received - total_mem_hotspot =
baseline_mem * concurrency Photons@Hotspot and Pho-
tons@Graal both support handling concurrent requests

in a single runtime, making the additional memory load
much smaller. Photons@Hotspot’s additional memory re-
quirements are entirely application dependent, as we can
see that the sleep function has no additional requirements
since it does nothing, but filehashing has a visible increase.
Since Photons@Graal depends on Isolates, for each addi-
tional concurrent invocation we are creating (or reusing) a
small heap that has memory requirements even if the ap-
plication does nothing. Due to some problems with Pho-
tons@Hotspot, we could not run the REST API and Video
Processing functions as we had runtime errors executing
these functions related to Javassist.

—— sleep

—— filehashing

—— rest api

—— video processing
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Figure 5: Tail latency of Photons@Graal functions with
increasing level of concurrency allowed per container.

In Figure 5, we explore the impacts of allowing increas-
ing level of concurrency in a single runtime, to see if we
would have performance gains or losses. In order to per-
form this experiment, we used the same script mentioned
in the beginning of this section with a slight modification
- on each iteration of the script, we change the function
parameters in OpenWhisk to be able to process more re-
quests concurrently, starting at 1 and moving to 2, 4, 6,
8, etc... The request rate arriving to the OpenWhisk clus-
ter for the whole experiment is always constant, the only
variable is the number of requests that we allow each con-
tainer to process. By increasing this value, we require less
containers to be spawned to process the same load.

We observed a small loss of performance in functions
with little application logic, such as rest api call and video
processing. The rest api function only executes a rest api
call to a MongoDB server with the provided credentials
and is usually very fast (around 30ms), and ends up de-
grading as the concurrency level is increased, up to around
100ms at the highest level of concurrency measured. The
file hashing function experienced a much different scenario
than the other functions, the performance increased as
the concurrency increased. This function fetches a remote
file from MinlO and performs the hashing purely in Java
code. This increase of performance can be explained on
network usage optimization. Each invocation of this func-
tion fetches a 4MB file from MinlO, considering that this
experiment is constantly invoking these functions, this file
is being download over and over in up to 16 different pro-
cesses. As the concurrency enabled within each container
is increased, this file is still being downloaded at the same
rate, but in fewer processes. The video function fetches a
remote file from a MinlO server as well and executes a shell
script using the binary tool ffmpeg to lower the resolution



of the file. The majority of the processing here is executed
outside of the Java runtime, explaining the slight perfor-
mance degradation as the concurrency increases. Another
reason that explains the difference between this function
and the file hashing function, is that due to the compute
intensity of running ffmpeg, the file is only 100KB, 40
times smaller than the file used in file hashing, making
the network gains not as relevant.
5.3. Evaluating Photons@Graal with Azure Traces
Cluster-Wide Benchmarks

To evaluate Photons@Graal in a more realistic scenario,
we used a public data-set that consists of real-world traces
of Serverless functions executed in Azure Functions [13].
These traces contain data on the memory usage, execution
duration and number of executions per each minute in a
24h interval.

For each of our 4 functions, we searched the data-set for
a function with similar memory requirements and with a
number of invocations that would fit the resources of the
system in the first 60 minutes, the time of the experiment.

To simulate competition in the cluster and stimulate po-
tential cold starts due to removal of containers, for each
function that we wanted to test, we created multiple func-
tions in OpenWhisk, running the same code and the same
trace. The number of functions created varies according
to the requirements of each function and the number of
requests of the trace selected, going from 20 (video pro-
cessing) to 60 (sleep).

Since we could not get all functions running in Pho-
tons@Hotspot system, we opted to do the experiments of
this section only with regular Java Hotspot functions and
Photons@Graal functions.

Each Section presented below will present the results of
the experiment for one of the functions listed in Section
Beware that the time represented in the graphs is merely
for reference, it doesn’t represent the exact time that both
experiments were done. The experiments for the functions
deployed using Hotspot and Photons@Graal were not run
at the same time. They are just displayed in the same
time-frame for comparison.

Sleep Function Due to the nature of the Hotspot func-
tion configuration, mimicking Cloud setups, it does not
allow concurrent invocations within a single runtime, so,
in Figure [6] we can see a steady growth in the number of
cold starts in Hotspot mode. As the requests arrive in the
system, if at any moment there’s more than 1 concurrent
requests, OpenWhisk needs to start a new container to
process any extra request. Since there’s a limited num-
ber of containers that can be running in the cluster, the
startup of a container may mean that another must be
shut down, causing cold starts to happen quite often.

In the Photons@Graal mode, we see a different scenario,
a steady growth in cold starts for the first 5 minutes while
the various OpenWhisk functions are being initialized, and
then the growth stops. Since this system allows concurrent
requests to be processed in a single runtime, in most cases,
a single runtime is enough for a function, which means that
it’s quite unlikely OpenWhisk will start new containers for
concurrent requests.

When looking at the tail latency of both platforms in
Figure[7] that is measured on the client side, it’s apparent
that in the case of Hotspot platform the tail latency suffers
from the cold starts. Since cold starts are quite expensive
due to having to create a docker container which isn’t
normally fast plus initializing the function as we’'ve seen
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Figure 6: Cold start count over time - Sleep function.
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in Figure [3| is also slow in an Hotspot platform, the tail
latency can go from 6 to 10 seconds depending on the load
on OpenWhisk. Since Photons@Graal only experiences
some cold starts at the beginning of the experiment, the
tail latency overall is quite good.

In Figure |8 we can see the evolution of the memory
used solely by the function containers in the cluster over
time. The memory used is significantly higher in Hotspot
functions, due to the higher number of runtimes required
to process all the incoming invocations due to the inabil-
ity to process concurrent requests within a single run-
time. Since the trace that was selected for this function
varies the number of requests over time, there are times
where the memory usage goes up and down, due to the
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Figure 12: Cluster memory over time - File Hashing.
File Hashing Function The results for the Cold Start
count metric of experiment shown in Figure [L0] show that
in the Hotspot mode, the system experienced a much
higher number of cold starts as expected. The increase
of cold starts over time is linear in Hotspot platform, this
is due to the trace selected having a linear distribution
of requests, which all the replicated functions deployed in orsoegs | .
OpenWhisk follow. Due to the constant competition in J ‘

0.500 req/s
[, \

the cluster, cold starts happen often in Hotspot platform. wasores |
The tail latency experienced in the Hotspot-based func- et / ‘

tion remains steadily high during most of the experiment — oot e - s e

due to the common cold starts. Since there is high com-

petition for space for containers in the cluster, cold starts

can take very long. Since Photons@Graal is not affected

by cold starts due to being able to handle the load by pro-
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Figure 13: Throughput over time - File Hashing.

cessing concurrent invocations, the tail latency remains 175K
low during the experiment, with only a slight increase in 150K ==
the beginning, due to the initial cold starts. 125K )

1K

The throughput of the cluster is very similar between
the two platforms as expected, since processing power

750

Cold start count

should be largely the same between Hotspot and Pho- w00 e
tons@Graal considering the high rotation of HotSpot con- 0
tainers. .
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REST API Function In this function, we experienced Figure 16: Cluster memory over time - REST APL

a high number of cold starts in Hotspot mode function

compared to Photons@Graal function, this can be seen in

Figure [T4] Due to this high level of cold starts during the exper-
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Figure 17: Throughput over time - REST API.

iment, the tail latency experienced by clients invoking
functions is constantly high for Hotspot mode function.
In Photons@Graal since most of the runtimes are main-
tained alive during the whole experiment, there is only a
slight spike of tail latency in the beginning of the experi-
ment due to the starting of the initial containers, during
the rest of the experiment, the tail latency stays low. The
data can be seen in Figure

Due to the linear trace selected, the memory usage ex-
perienced during the experiment stays high for Hotspot.
This is due to a constant demand of concurrent invoca-
tions during the experiment which causes a high number
of containers to be spawned, showing a much increased
memory usage than Photons@QGraal which uses a limited
number of containers which are enough to handle the load.
The data can be seen in Figure

The throughput experienced is very similar between the
two functions. This is expected since Photons@Graal did
not aim to improve the compute performance compared
to Hotspot. The data can be seen in Figure

The results recorded for this function are very similar to
the results of File Hashing described in Section [5.3] This
is mostly due to the trace selected being the same, as the
memory requirements of both functions are very similar
which is the selector argument for our script that selects
a compatible trace.

Video Processing Function The trace selected by our
script for this function is quite different from the others,
due to this function having higher memory requirements.
The trace has periods with high number of requests and
periods with little to no requests.
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Figure 18: Cold start count over time - Video Processing.

We can see that in the periods with high number of
requests, the tail latency of the Hotspot-based function is
high and the cold start count increases and in periods with
a lower number of requests, the tail latency is more or less
the same, or sometimes lower than Photons@Graal-based
function. This can be validated by viewing the Figures
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and The tail latency in periods of high load is up to
30 times higher in Hotspot compared to Photons@Graal.

In terms of memory, the scenario is very similar to the
one described in the other functions, having high overall
memory usage on the Hotspot-based functions, which dips
slightly in periods with lower requests due to OpenWhisk
removing unnecessary containers but is still overall more
than 10 times higher than the memory used by the func-
tion in Photons@QGraal.

The throughput during the experiment was very similar
between the two platforms, but during periods of high load
Photons@Graal ended up having a slightly higher through-
put. The trace selected for this function contained some
sections where the client would invoke the function up to
5 times concurrently, which in the case of Hotspot means
that if the function doesn’t have 5 runtimes ready to pro-
cess, it will have to start them up, which takes much longer
than what happens in Photons@Graal which requires a
single runtime to process those 5 concurrent requests.

6. Conclusions

With Photons@Graal, we provided a framework to deploy
functions that can be executed concurrently within the
same runtime, reducing memory usage due to the lower
number of containers that are provisioned and having
faster cold starts due to the pre-initialization that Native
Image does at build time with AoT compiling. We pro-
vided a stronger isolation of the function execution con-

10



texts which each have its own isolated Heap space, allow-
ing the framework to control the amount of memory it
wants to reserve for each function execution, compared to
Photons where all invocations share the same Heap space
and there is no control on each execution memory usage.
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