
Startrail

Adaptative Network Caching for Peer-to-peer File Systems

João António Mateus Tiago

Thesis to obtain the Master of Science Degree in

Telecommunications and Informatics Engineering

Supervisors: Prof. Dr. Luı́s Manuel Antunes Veiga
Eng. David Miguel dos Santos Dias

Examination Committee
Chairperson: Prof. Dr. Ricardo Jorge Fernandes Chaves

Supervisor: Prof. Dr. Luı́s Manuel Antunes Veiga
Member of the Committee: Prof. Dr. João Nuno de Oliveira e Silva

October 2019

Acknowledgments

The completion of my master thesis remains as one of the toughest projects I have yet executed. Having
caught me in the roughest phase of my life, my initial investment to the project was hindered. It required
a tremendous amount of perseverance and determination to complete while working a full-time job. I
would have given up if it was not for the support of the people close to me and for this, I have to thank
you all.

To my beloved girlfriend, Joana Canhoto, you are my biggest motivation in life. You challenge me to
do better everyday. Hadn’t I met you, I’m sure I would not have finished the thesis. I have to thank you
for the countless hours of FaceTime, supporting me until we would both fell asleep.

A special thank you to my teacher and supervisor, Professor Luı́s Veiga, who has shown to have
incredible patience, giving me the time to finish my thesis. His availability for feedback, genuine interest
and excitement for the project made this all possible.

I want to massively thank my family for the support and for allowing me to go to college even when
the circumstances were not the best and we struggled so much.

To my friends, Henrique Sousa, Fábio Oliveira, João Antunes, Filipe Pinheiro, Renato Castro, João
Almeida, Letı́cia Ferreira, Igor Soarez, Cátia Pereira, Rui Silva, David Dias thank you for never stop
believing in me and for supporting me this whole time.

I also want to show my appreciation to my company, YLD, for supporting my investment to finish my
thesis. It is a pleasure to work at such amazing company.

i

Abstract

The InterPlanetary File System (IPFS) is a new hypermedia distribution protocol, addressed by con-
tent and identities. It aims to make the web faster, safer, and more open. The JavaScript implementation
of IPFS runs on the browser, thus benefiting from the mass adoption potential that the Web Browser
yields. Startrail takes advantage of the ecosystem built by IPFS and strives to further evolve it, making it
more scalable and performant through the implementation of an adaptive network caching mechanism.
Our solution aims to add resilience to IPFS and improve its overall scalability. It does so by avoiding
overloading the nodes providing highly popular content, particularly during flash-crowd-like conditions
where such popularity and demand grow suddenly. With this extension, we add a novel crucial key com-
ponent to enable an IPFS-based decentralized Content Delivery Network (CDN) following a peer-to-peer
architecture, running on a scalable, highly available network of untrusted nodes that distribute immutable
and authenticated objects which are cached progressively towards the source of requests.

Keywords: Caching, Peer-to-peer, Distributed File System, Content Distribution Network,
Decentralized Distributed Systems, Web Platform, JavaScript, IPFS

iii

Resumo

O InterPlanetary File System (IPFS) é um protocolo inovador para transmissão de hipermédia,
endereçada por conteúdo e identidades. Ambiciona tornar a web mais rápida, segura e acessı́vel.
A implementação do IPFS em JavaScript é capaz de executar num Browser, beneficiando assim do
potencial para adopção massiva que este consegue oferecer. O Startrail usufrui do ecossistema cons-
truı́do em volta do IPFS e pretende evolui-lo e melhorando a sua performance através da implementação
de um mecanismo de cache de rede adaptativa. A nossa solução pretende tornar o IPFS mais resili-
ente e aumentar a escalabilidade do sistema. Fá-lo prevenindo sobrecarregar nós que estejam a servir
conteúdo muito popular, especialmente quando sob condições tipo flash-crowd, onde a popularidade
e procura dos objectos cresce de forma muito repentina. Com esta extensão adicionamos ao IPFS
um inovador e crucial componente que é chave para viabilizar uma rede de distribuição de conteúdos
(CDN) descentralizada e entre-pares, operando sob IPFS, uma rede escalável, altamente disponı́vel
mesmo na presença de nós bizantinos. Esta distribuindo assim objectos imutáveis e autenticados, que
são progressivamente guardados na direção da origem dos pedidos.

Palavras-Chave: Caching, Redes entre pares, Sistema de Ficheiros Distribuido, Rede de distribuição
de conteúdo, Plataforma Web, JavaScript, IPFS

v

Contents

List of Tables xi

List of Figures xiii

Acronyms 1

1 Introduction 3

1.1 Motivation . 4

1.2 Goals and Contributions . 4

1.3 Document Organization . 4

2 Related Work 7

2.1 Content Sharing . 7

2.1.1 Architectures . 7

2.2 Content Distribution . 11

2.2.1 CDN Taxonomy . 11

2.3 Web Distributed Technologies . 14

2.3.1 The Web platform . 14

2.3.2 Peer-to-peer in the browser . 15

2.4 Relevant Systems . 18

2.4.1 Oceanstore . 18

2.4.2 CoralCDN . 19

2.4.3 PeerCDN . 19

2.4.4 IPFS . 19

3 Architecture 21

3.1 Use Case . 21

3.2 IPFS Architecture . 23

3.2.1 Objects . 23

3.2.2 Core’s Architecture . 23

3.2.3 Data Exchange . 24

3.3 Startrail’s Architecture . 25

3.4 Algorithms . 27

3.4.1 Message processing algorithm . 27

3.4.2 Popularity Calculation Algorithm . 28

3.5 Summary . 31

vii

4 Evaluation 33
4.1 The Testbed . 33

4.1.1 Testbed Architecture . 33
4.1.2 Deploying a network . 35
4.1.3 Interacting with the network . 35

4.2 Relevant Metrics . 37
4.3 Testing Setup . 38
4.4 Tests Results . 39
4.5 Variable Startrail percentages . 41
4.6 Summary . 42

5 Conclusion 43
5.1 Concluding remarks . 43
5.2 Future work . 44

Bibliography 45

viii

x

List of Tables

2.1 Distributed File Systems Overview . 10

4.1 Different testing condition for running network tests . 39
4.2 Testing conditions for the different percentage of Startrail nodes in the network 42

xi

List of Figures

2.1 Web P2P Networking . 15
2.2 Handshake comparison between TCP-only, TCP-with-TLS and QUIC protocols. 16
2.3 STUN Protocol operation . 17
2.4 TURN Protocol operation . 18
2.5 PeerCDN Hybrid Architecture . 20

3.1 Comparison between the Kademlia and Startrail’s caching systems 22
3.2 Illustration of the proposed Startrail flow . 22
3.3 Merkle DAG representing a file structure with deduplication of data blocks 23
3.4 IPFS Core’s Architecture . 25
3.5 Bitswap and kad-dht interaction when fetching a block from the network 26
3.6 Class diagram of Startrail’s Core and Popularity Manager 27
3.7 Execution flow inside the Startrail module . 28
3.8 Interaction between new block arrivals and sampling windows 29

4.1 Composition of the Startrail Testbed Kubernetes Pod . 34
4.2 Architecture overview of the testbed network . 35
4.3 Deployment process on a new network on the Startrail testbed 36
4.4 Classes diagram of the testbed CLI tool . 36
4.5 Testbed-cli orchestrating and monitoring Statrail testing cluster 37
4.6 95th percentile of request duration for the different testing scenarios 40
4.7 95th Percentile of memory usage on the different testing scenarios 40
4.8 95th Percentile of network usage on the different testing scenarios 41
4.9 Avg request duration vs. Startrail nodes percentage . 42

xiii

Acronyms

API Application Programming Interface. 23, 24

CDN Content Delivery Network. iii, 3

CI Continuous Integration. 34

CID Content Identifier. 22, 25, 27–31

CLI Command-line Interface. 23, 36

GC Garbage Collector. 31

HTTP Hypertext Transfer Protocol. 3, 4

IPFS InterPlanetary File System. 4

K8s Kubernetes. 34

P2P peer-to-peer. 3

TTL Time To Live. 21

1

2

Chapter 1

Introduction

In the early days, the Internet was basically a mesh of machines whose main purpose was to share
academic and research documents. It was predominantly a peer-to-peer (P2P) system. The Original
ARPANET [1] connected UCLA, Stanford Research Institute, UC Santa Barbara and the University of
Utah not in a client-server format, but as equal computing peers. Early popular applications of the
internet, FTP [2] and Telnet [3], were themselves client-server applications but since every host on the
Internet could FTP or Telnet to any other host, the usage patterns of the Internet were symmetric. In the
early Internet, computers connected to the network played an equal role, each capable of contributing
with as much as they utilised.

The Web enabling protocol, Hypertext Transfer Protocol (HTTP), presented by Sir Tim Berners-Lee,
had in nature a decentralized design. It was only due to network topology constraints, mainly NATs, that
users on World Wide Web lost the ability to directly dial other peers. Struggling to overcome obstacles in
interoperability of protocols, the gap between client and server nodes widen and the pattern remained.
Here, computers play either the role of a consumer - “client”- or producer - “server” - serving content to
the network. Serving a big client base required enormous amounts of server resources. In this model, as
demand grows, performance deteriorates and the system becomes fragile. The same number of servers
has to meet the demands of a larger and larger number of clients. Sharing the same server resources
with a growing crowd leads to server and network overload, causing performance degradation for each
client. Moreover, such architecture is inherently fragile. Every single source of content at the servers is
a single point of failure that can result in complete failure and lengthy downtime of the system.

To tackle such flaws, technologies like CDNs emerged to aggregate and multiplex server resources
for many sources of content. This way, a sudden burst of traffic could be more easily handled by sharing
the load. To further improve the quality of the service CDN providers were incentivized to move capacity
closer to clients. Such innovations made the early client-server mode a little more robust, but at consid-
erable cost. Still, despite its inefficiency, the client-server model remains dominant today and runs most
of the web.

3

1.1 Motivation

The InterPlanetary File System (IPFS)[4] seeks to revert the historic trend of a client-server only Web and
replace HTTP. It is a decentralized peer-to-peer content-addressed distributed file system that aims to
connect all computers offering the same file system (contents and namespace). Due to its decentralized
nature, IPFS is intrinsically scalable. As more nodes join the network and content demand increases, so
does the resource supply. Such a system is incredibly fault tolerant and, leveraging economies-of-scale,
actually performs better as its size increases. It uses Merkle DAGs[5][6], the concept of hash-linked
Merkle[7] data structures to provide immutable, tamper-proof objects that are content addressed.

However, there are some crucial Content Distribution Network (CDN) enabling features are lacking
in the InterPlanetary File System. In particular, the system lacks the capability of swiftly and organically
approximate content from the request path, reducing the latency felt by future requests. It also does
not prepare for the provider of an object to serve a sudden flood of requests, thus rendering content
inaccessible to some.

1.2 Goals and Contributions

The goal of this work is to, taking advantage of the ecosystem build by IPFS, develop an extension to
IPFS that implements an adaptive distributed cache that will improve the system’s performance, further
evolving it. We aim to:

• Reduce the overall latency felt by each peer;

• Increase the peer’ throughput retrieving content;

• Reduce the system’s overall bandwidth usage;

• Improve the overall balance in serving popular content by peers;

• Finally, improve nodes’ resilience to flash crowds.

Considering the above mentioned goals, such extension will yet make the overall system more re-
silient, allowing smaller entities to server large consumer basis. The gains in performance improve IPFS’
scalability.

Startrail can thus serve as a key enabling and core component for future deployment of IPFS-based
CDNs

Furthermore, the objective of this document is also to survey the major areas of research that are
relevant for the design of the proposed solution, as well as document the current state of the art regarding
these areas of study.

1.3 Document Organization

This document is organized as follows. In Chapter 2 we review the state of the art algorithms and
architectures used by the relevant systems. Chapter 3 describes the proposed solution: we start by

4

addressing the architecture of IPFS as a starting point to better understand the integration points of the
proposed solution. Next, we further describe Startrail’s architecture, its algorithms and data structures.
Chapter 4 describes the testbed platform used, all the relevant metrics and obtained results. Some
concluding remarks and extension proposals are presented in Chapter 5.

5

6

Chapter 2

Related Work

This chapter reviews relevant, related research work for designing features relevant to a distributed,
highly available and scalable, peer-to-peer Content Distribution Network. Such topics comprise: Content
Sharing Networks, Content Distribution Networks and Web Distributed Technologies.

2.1 Content Sharing

A Distributed File System is a file system that supports the sharing of files in the form of persistent
storage over a set of network connected nodes. Multiple users who are physically dispersed in a network
of autonomous computers share a common file system. The challenge is in realizing this abstraction in a
performant, secure and robust manner. In addition, the issues of file location and availability assume
significance. One way of increasing the availability is by using data replication and in order to increase
performance caching can also be used.

2.1.1 Architectures

Distributed File Systems may follow different types of architectures [8].

Client-Server Architecture The simples architecture is the Client-Server architecture that exposes a
directory tree to multiple clients (e.g. NFSv3 [9]). A communication protocol allows clients to access
the files stored on a server thus allowing a heterogeneous collection of processes running on different
operating systems and machines share a common file system. The clear problem with the Client-Server
architecture is that the total capacity of the system is limited by the capacity of the server. The server
is a single point of failure, meaning that in the case of a server crash, network outage or power cut the
whole system goes down. An approach to overcome some of these limitations is to delegate ownership
and responsibility of certain file system subtrees to different servers, as done by AFS [10]. In order to
provide access to remote servers, AFS allows for loose coupling of multiple file system trees (“cells”).
However this has reduced flexibility as the partitioning of a file system tree is static and changing it
requires administrative intervention.

7

Object-based File Systems like the Microsoft DFS (MSDFS) [11] and the Google File System (GFS)
[12], present a different approach. Metadata and data management are kept separated. A master
server maintains a directory tree and keeps track of replica servers. It handles data placements and
load balancing. As long as metadata load is much smaller than data operations (i.e files are large),
this architecture allows for incremental scaling. Adding data servers, as load increases, with minimal
administrative overhead.

These previously presented architectures are examples of asymmetric architectures. There is a
clear difference between client and server. Because of this difference, maintaining a highly available and
performant distributed file system presents huge costs in infrastructure. We need to consider that any
viable distributed system architecture must support the notion of autonomy if it is to scale at all in the
real world.

With the aim of solving this issue, symmetric architectures arise. Based on peer-to-peer technol-
ogy, every node on the network hosts the metadata manager code, resulting in all nodes understanding
the disk structures. Thus removing the single point of failure and enabling the system to grow continu-
ously.

Peer-to-Peer File Systems (P2P) are distributed systems consisting of interconnected nodes (peers).
These systems are fully decentralized and capable of accommodating transient populations of nodes.
They serve the purpose of aggregating resources such as content, CPU cycles, storage, and bandwidth
[13].

The following paragraphs synthesize the current state of the art regarding peer-to-peer organizations.

Overlay Network Structure In peer-to-peer networks structure means whether the overlay network
is created non-deterministically - ad-hoc - as nodes and content are added or whether its creation and
maintenance is based on a set of specific rules [14].

Unstructured P2P architecture. In this architecture, the system imposes no constraints on the links
between different nodes, and therefore the systems have no particular structure. Systems like Gnutella
1, Kazaa [15]employ this kind of overlay. The placement of content is completely unrelated to the overlay
topology. Although requiring little maintenance while peers enter and leave the system (i.e. churn), un-
structured P2P systems suffer from the lack of an inherent way to index data. Because of this, resource
lookup mechanisms consist of brute-force methods, like flooding, and random walk where the network
propagates queries. This property limits the networks ability to scale to very large populations. In or-
der to solve this problem systems like Napster and BitTorrent [16] use a hybrid centralized architecture,
where server maintains directories of information about registered users in the network. While lookups
are maintained by a single entity, file transferences are kept decentralized. Another similar approach
is taken by systems like Kazaa and Gnutella 0.6 2 which use the concept of ‘supernodes’. Peers with
sufficient bandwidth and computing power are elected supernodes. These nodes maintain the central
indexes for the information shared by local peers connected to them, and proxy search requests on be-
half of these peers. Queries are therefore sent to SuperNodes, not to other peers. Supernodes remain
single points of failure and redundancy techniques should be employed to prevent downtime.

Structured networks emerged as a way to address the scalability issues of unstructured systems.
In these networks, the overlay topology is tightly controlled and data is placed at precisely specified

1http://rfc-gnutella.sourceforge.net/
2http://rfc-gnutella.sourceforge.net/

8

http://rfc-gnutella.sourceforge.net/
http://rfc-gnutella.sourceforge.net/

locations in the overlay [17] . These systems provide a mapping between the data identifier and location,
in the form of a distributed routing table, so that queries can be efficiently routed to the node with the
desired data. Systems like Chord [18], Pastry [19] and Tapestry [20] use a Distributed Hash Table (DHT)
in order to quickly and consistently perform lookups. The Oceanstore Protocol [21] is then built on top of
the Tapestry DHT. In structured P2P systems each node is given a unique, uniformly distributed identifier
in a large numeric keyspace using a cryptographic hash function SHA1 [22]. This identifier determines
the position of the node in the hash ring where it becomes responsible for a segment, leveraging the
responsibility of forwarding messages to its ‘fingers’ (nodes that it knows the whereabouts). Kademlia
[23] organizes its nodes in a balanced binary tree, using XOR as a metric to perform the searches, while
CAN [24] introduced and a several dimension indexing system, in which a new node joining the network,
will split it’s share of the coordinate space with another node that has the most to leverage. Since there is
no centralized infrastructure responsible for placing new nodes, in structured P2P networks, the system
has to always verify that the newly generated node-id does not yet exist, in order to avoid collisions.
Another problem with this type of architecture is the overhead in maintaining the structure required for
efficient routing in the face of a very dynamic population (i.e churn).

Some relevant systems previously mentioned are further analized in table 2.1.1.

9

Table 2.1: Distributed File Systems Overview
Systems vs. Features Architecture Lookup Caching Load Balancing Data Replication Reference

NFS Client-Server Central Metadata Server Client-side caching * * [9]
AFS Client-Server Central Metadata Server Client-side caching Manual Manual, Read-only [10]
DFS Client-Server Central Metadata Server Client-side caching * * [11]

GFS Cluster-based Central Metadata Server Meta-data cached
on the client

Periodic load
redistribution on replicas

Replicated up to 3x
on diff. machines [12], [8]

IPFS Structured P2P DSHT
Peers that have fetched

content may serve it;
(and deduplication)

IDs uniform
distribution across

the key-space

Peers may ‘pin‘
objects to replicate

(off by default)
[4]

Kademlia Structured P2P DSHT
Push-based; Peers close

to the key that not
store the object

Load distributed
over the nodes that

cache/replicate objects

Periodic
Re-Replication of

k nodes
[23]

Oceanstore Structured P2P Tapestry’s DHT Peers cache pointers
to host node

Randomness for
load distribution

Multiple replicas
of same object [21]

• Architecture: What is the architecture of the system;

• Lookup: How data is located on the system;

• Caching: Systems’ caching techniques;

• Load Balancing: How requests are distributed across the system’s replicas;

• Data Replication: How or where is data replicated on the system

10

2.2 Content Distribution

With the ever-increasing Internet traffic 3 service providers work hard to maintain a high quality of ser-
vice. Popular Web services often suffer congestion and bottlenecks due to large demand. Such a
scenario may cause unmanageable levels of traffic, resulting in many requests being slowed down or
even dropped. To Safeguard themselves from such events, web services usually resort to CDNs.

Content Delivery Networks (CDNs) are networks of geo-distributed machines that deliver web con-
tent to users based on their geographic location.[25] CDNs can improve the speed of the content delivery
while also increasing the service availability at the cost of replicating it over several machines. When a
user requests for content hosted on a CDN, a server inside the network will redirect the request to the
replica that is closer to the user and deliver the cached content.

The three key components of a CDN architecture are the content provider, CDN provider, and end-
users. A content provider or customer is the one who delegates the URI namespace of the Web objects
to be distributed. The origin server of the content provider holds those objects. A CDN provider is a
proprietary organization or company that provides infrastructure facilities to content providers in order to
deliver content in a timely and reliable manner to a large number of end-users. End-users or clients are
the entities who access content from the content provider’s website.

In the next paragraphs, we will take a look at the various architectures and strategies CDN providers
use.

2.2.1 CDN Taxonomy

CDN Organization There are generally two approaches to building a CDN: overlay and network ap-
proach. Most commercial CDNs like Akamai [26], AppStream 4, Limelight Networks 5 follow the overlay
approach. Here, application-servers and caches are responsible for content distribution. Network el-
ements such as routers and switches play no active role in the content delivery. This makes up for a
simpler management. In the network approach, the provider also controls some network infrastructure
equipped with code for identifying specific application types and for forwarding the requests based on
predefined policies.

Content Selection and Delivery The right selection of content to be delivered is key to the effective-
ness of a CDN. An appropriate content selection approach can assist in the reduction of client download
time and server load. Content can be delivered to the customers in full or in partial. The simplest and
most straightforward approach is the full-site approach. Here, the whole set of origin server’s object is
stored at the surrogates. The latter takes on the former’s entire task of serving the object. The content
provider configures the DNS resolution such that all client requests to its Web site are served by the
CDN server. Although simple, this approach is not feasible considered the ever-growing size of Web
objects. While the cost of physical storage is decreasing, sufficient storage space on the edge servers
is never guaranteed to store all the content from content providers. Moreover, since the Web content is
not static, the problem of updating such a huge collection of Web objects is unmanageable.

3https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/

vni-hyperconnectivity-wp.html
4https://aws.amazon.com/pt/appstream2/
5https://www.limelight.com/

11

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://aws.amazon.com/pt/appstream2/
https://www.limelight.com/

On the other hand, partial-site selection and delivery is a technique in which surrogates only host
a portion of the whole object to deliver only the embedded objects - such as Web page images - from
the corresponding CDN. With partial-site content delivery, a content provider modifies its content so that
links to specific objects have hostnames in a domain for which the CDN provider is authoritative. Thus,
the base HTML page is retrieved from the origin server, while embedded objects are retrieved from CDN
cache servers. The Partial-site approach is better in the sense that it reduces the load on the origin
server and on the site’s content generation infrastructure. Plus, due to infrequent change of embed-
ded content, partial-site exhibits better performance. There are, though, many different techniques for
selecting which partial content to cache. The most straightforward one is empirical-based approach.
Here, the Website admin selects which content will be replicated to the edge servers. In the popularity-
based the most popular objects are replicated to surrogates. This technique is very time consuming
and reliable object statistics are not guaranteed since the popularity of each object varies significantly.
Furthermore, such statistics are not often available for newly added content. In Object-based approach,
content is replicated, in units of objects, to the surrogate that gives the higher performance gain. This is
a greedy technique and has a high complexity that makes it hard to implement in real applications. In
the cluster-based approach content is grouped either on correlation or access frequency and is repli-
cated in units of content clusters. When clustering, there may be a maximum number of clusters or a
maximum cluster diameter. The choice of content to cluster can be either users’ sessions-based or
-based. In the former, the users’ navigation sections which show similar patterns have their pages clus-
tered together. In the URL-based approach, the most popular objects are identified from a Web site and
are replicated in units of clusters where the correlation distance between every pair of URLs is based on
a certain correlation metric. Experimental results show that content replication based on such clustering
approaches reduce client download time and the load on servers. But these schemes suffer from the
complexity involved to deploy them.

P2P systems like IPFS [4] and BitTorrent [16] use a different strategy called Block level replication:
divides each file into an ordered sequence of fixed size blocks. This is also advantageous if a single
peer cannot store the whole file. A limitation of block level replication is that during file downloading it
is required that enough peers are available to assemble and reconstruct the whole file. Even if a single
block is unavailable, the file cannot be reconstructed. To overcome this problem, Erasure Codes (EC),
such as Reed-Solomon [27] are used.

Content outsourcing Given a set of properly placed surrogate servers in a CDN infrastructure and
a chosen content for delivery, choosing an efficient content outsourcing practice is crucial. Content
outsourcing is performed using either of cooperative push-based, non-cooperative pull-based and coop-
erative pull-based approaches. Cooperative push-based: This approach is based on the pre-fetching
of content to the surrogates. Content is pushed to the surrogate servers from the origin, and surrogate
servers cooperate to reduce replication and update cost. In this scheme, the CDN maintains a mapping
between content and surrogate servers, and each request is directed to the closest surrogate server or
otherwise, the request is directed to the origin server. Under this approach, a greedy-global heuristic
algorithm is suitable for making replication decision among cooperating surrogate servers. Still, it is con-
sidered as a theoretical approach since it has not been used by any CDN provider. Non-cooperative
pull-based: In this approach, client requests are directed (either using DNS redirection or URL rewrit-
ing) to their closest surrogate servers. If there is a cache miss, surrogate servers pull content from
the origin server. Most popular CDN providers (e.g. Akamai [26]) use this approach. The drawback
of this approach is that an optimal server is not always chosen to serve content request. Many CDNs
use this approach since the cooperative push-based approach is still at the experimental stage. Co-

12

operative pull-based: The cooperative pull-based approach differs from the non-cooperative approach
in the sense that surrogate servers cooperate with each other to get the requested content in case of
cache miss. In the cooperative pull-based approach client requests are directed to the closest surro-
gate through DNS redirection. Using a distributed index, the surrogate servers find nearby copies of
requested content and store it in the cache. The cooperative pull-based approach is reactive wherein a
data object is cached only when the client requests it. An academic CDN Coral [28] has implemented
the cooperative pull-based approach using a variation of Distribution Hash Table (DHT).

Caching Techniques In a query-based scheme, on a cache miss a CDN server broadcasts a query
to other cooperating CDN servers. The problems with this scheme are the significant query traffic and
the delay because a CDN server has to wait for the last ‘miss’ reply from all the cooperating surrogates
before concluding that none of its peers has the requested content. In digest-based scheme, each
of the CDN servers maintains a digest of content held by the other cooperating surrogates. The coop-
erating surrogates are informed about any sort of update of the content by the updating CDN server.
On checking the content digest, a CDN server can take the decision to route a content request to a
particular surrogate. The main drawback is that it suffers from update traffic overhead, because of the
frequent exchange of the update traffic to make sure that the cooperating surrogates have correct infor-
mation about each other. In a hashing-based scheme the cooperating CDN servers maintain the same
hashing function. A designated CDN server holds a content based on content’s URL, IP addresses of
the CDN servers, and the hashing function. All requests for that particular content is directed to that
designated server. A hashing-based scheme is more efficient than other schemes since it has smallest
implementation overhead and highest content sharing efficiency. However, it does not scale well with lo-
cal requests and multimedia content delivery since the local client requests are directed to and served by
other designated CDN servers. Under the semi-hashing-based scheme, a local CDN server allocates
a certain portion of its disk space to cache the most popular content for its local users and the remaining
portion to cooperate with other CDN servers via a hashing function. Like pure hashing, semi-hashing
has small implementation overhead and high content sharing efficiency. In addition, it has been found to
significantly increase the local hit rate of the CDN

Cache Update Cached objects in the surrogate servers of a CDN have associated expiration times af-
ter which they are considered stale. Ensuring the freshness of content is necessary to serve the clients
with up to date information. The most common cache update method is the periodic update. To ensure
content consistency and freshness, the content provider configures its origin Web servers to provide
instructions to caches about what content is cacheable, how long different content is to be considered
fresh when to check back with the origin server for updated content. This approach suffers from signif-
icant levels of unnecessary traffic generated from update traffic at each interval. On another approach,
an update propagation is triggered by a change in content. It performs active content pushing to the
CDN cache servers. In this mechanism, an updated version of a document is delivered to all caches
whenever a change is made to the document at the origin server. For frequently changing content, this
approach generates excess update traffic. Another cache update approach is invalidation, in which an
invalidation message is sent to all surrogate caches when a document is changed at the origin server.
The surrogate caches are blocked from accessing the documents when it is being changed. Each cache
needs to fetch an updated version of the document individually later. The drawback of this approach is
that it does not make full use of the distribution network for content delivery and belated fetching of
content from the caches may lead to inefficiency of managing consistency among cached contents.

13

Performance Measurement

• Cache hit ratio: It is defined as the ratio of the number of cached documents versus total docu-
ments requested. A high hit rate reflects that a CDN is using an effective cache policy to manage
its caches.

• Reserved bandwidth: It is the measure of the bandwidth used by the origin server. It is measured
in bytes and is retrieved from the origin server.

• Latency: It refers to the user-perceived response time. Reduced latency signifies the decreases
in bandwidth reserved by the origin server

• Surrogate server utilization: It refers to the fraction of time during which the surrogate servers
remain busy. This metric is used by the administrators to calculate CPU load, the number of
requests served and storage I/O usage.

• Reliability: Packet-loss measurements are used to determine the reliability of a CDN. High relia-
bility indicates that a CDN incurs less packet loss and is always available to the clients.

2.3 Web Distributed Technologies

2.3.1 The Web platform

The Browser is a very powerful tool for fueling adoption. Building a solution that runs on the browser
means one is are able to reach a broad audience without the need for, by itself, support many dif-
ferent operating systems. That is why any modern day network technology that wants to reach mass
adoption is required to support the Web platform. Three main programming languages power the Web
Browser: HTML, CSS and Javascript [29]. Since the first two focus on Web page’s structure and ap-
pearance, respectively, we are only going to focus on the third. Javascript (or JS) is a lightweight, dy-
namic, interpreted and recently JIT-compiled language best known as the scripting language of the Web.
As a multi-paradigm language, it supports the event-driven, imperative (including object-oriented and
prototype-based) and functional programming styles. Introduced in 1995, by Brendan Eich at Netscape
6, it executes in the client’s browser, with the intent of automating parts of a web page and make a web
page more dynamic. Javascript is also used by many non-browser environments. Node.js 7, revised
below, uses JS as the scripting language. MongoDB 8 accepts queries written in Javascript. Adobe’s
Acrobat and Adobe Reader support JavaScript in PDF files 9. Google Apps Script accepts javascript as
scripting language as a way for task automation 10.

Node.js - Prior to Node.js, other attempts at running Javascript in the server had been made 11, but
none was able to successfully provide a true stand-alone runtime environment. Created by Ryan Dahl in
2009, Node.js is built on top of Google Javascript engine V8 12. It materializes Netscape’s original vision

6https://web.archive.org/web/20080208124612/http://wp.netscape.com/comprod/columns/techvision/

innovators_be.html
7https://nodejs.org/en/
8https://www.mongodb.com/
9https://www.adobe.com/devnet/acrobat/javascript.html

10https://www.google.com/script/start/
11Netscape’s Lime-wire
12https://github.com/v8/v8/wiki

14

https://web.archive.org/web/20080208124612/http://wp.netscape.com/comprod/columns/techvision/innovators_be.html
https://web.archive.org/web/20080208124612/http://wp.netscape.com/comprod/columns/techvision/innovators_be.html

Figure 2.1: Web P2P Networking

of Javascript in the browser and in the server. Thus, providing minimal overhead when the developer
switches between both environments. Node.js provides a low-level I/O API and, to cope with the lack of
multi-threading, it uses an event loop which offloads operations to the system kernel whenever possible.
This forces the developer to use non-blocking asynchronous operations so not to block the event loop.
Node.js runs in most architectures and operating systems exposing a set of libraries, “modules” that
handle various core functionality such as networking (HTTP, TCP. . .), binary data handling, cryptogra-
phy functions, access to the filesystem amongst others. Crucial to Node’s adoption was its package
manager, NPM 13. NPM incentivizes the minimalist, modular Unix philosophy of writing software that
does one thing only and does it well. Each reusable small module should expose a clear interface, carry
documentation and written tests which ease debugging a bigger composition of modules.

2.3.2 Peer-to-peer in the browser

WebRTC 14 is a project supported by Google, Mozzila and Opera, which provides browsers and mobile
applications with peer-to-peer Real-Time Communications capabilities accessible through a Javascript
API. This enables applications to transfer Audio, Video or arbitrary data, other users’ browsers without
the need of either internal or external plugins. To enable peer-to-peer connections, WebRTC uses a
collection of communication protocols for NAT traversal and to provide a reliable transport layer. Namely,
BitTorrent’s uTP 15 or Google’s QUIC [30]. In the following paragraphs we will address the key aspects
that make up the system which are depicted in the figure 2.1.

The Problem With TCP The Internet was built over TCP largely because it is a reliable transmission
protocol. But where TCP shines in reliability, it dims in the number of round trips required to establish a
secure connection. A secure connection is needed before a browser can request a web page. Secure

13https://www.npmjs.com/
14http://w3c.github.io/webrtc-pc/
15http://www.bittorrent.org/beps/bep_0029.html

15

http://www.bittorrent.org/beps/bep_0029.html

Figure 2.2: Handshake comparison between TCP-only, TCP-with-TLS and QUIC protocols.

web browsing usually involves communicating over TCP, plus negotiating TLS to create an encrypted
https connection. This approach generally requires at least two to three round trips – packets being sent
back and forth – with the server to establish a secure connection. Each round trip increases the latency
to any new connection. Web browsers establish many parallel connection to the same serve. Another
issue with TCP is the head-of-line-blocking (HOLB). HOLB happens when a TCP packet is lost enroute
to the reciever, then all subsequent packets must be held in the receiver’s TCP buffer until the lost packet
is retransmitted and arrives at the receiver.

To solve this, Google designed QUIC [30]. QUIC reduces the amount of RTT to setup a connection
down to 0 (the first RTT carries data already) as seen in the figure 2.2, it also supports a set of multi-
plexed connections between two endpoints over UDP, and was designed to provide security protection
equivalent to TLS/SSL, along with reduced connection and transport latency, and bandwidth estimation
in each direction to avoid congestion. To solve the head-of-line-blocing issue, QUIC allows applications
to decide what to do with the incomplete stream by moving the congestion control algorithms into appli-
cation space. Also to tackle these TCP issues BitTorrent developers designed the, UDP-based, Micro
Transport Protocol (uTP) 16.

NAT In 1992, as in [31], the Routing and Addressing Group (ROAD) from the Internet Engineering
Task Force (IETF) was tasked with tackling scalability issues on the IP architecture [31]. Hence, in 1994
[32], the Network Address Translation (NAT) devices where the solution found. NATs are devices that
map scarce public IP addresses to private IP ones, only reachable from within the network. The NAT has
a public IP address and machines connected to it will have private ones. Requests made from the inside
of the network to the outside will be translated to the NAT’s public IP and given an unique port. Like so,
the rare public IP addresses are reused. Before NATs, it was possible to directly dial to another machine
on the network without a problem. One just created a connection to the destination’s IP address. With
NATs that is not longer possible. Since there are potentially many private IP addresses behind a public
IP, the router (NAT) is unnable to know to which one it should to route a specific packet.

16http://www.bittorrent.org/beps/bep_0029.html

16

http://www.bittorrent.org/beps/bep_0029.html

Figure 2.3: STUN Protocol operation

ICE Interactive Connectivity Establishment (ICE) is a framework to allow your web browser to connect
with peers. ICE addresses the aforementioned problem of NATs. It has to bypass firewalls that prevent
connections from being opened, give a machine a public IP so that it is reachable from the outside of
the network (in case it does not have one), work around firewall prohibited protocols and, in case it is
not possible to connect directly to other peers, relay data through a server. In order to do such NAT
traversal, ICE uses STUN [33] and TURN [34] protocols. Bellow we address both this protocols in detail.

STUN Session Traversal Utilities for NAT (STUN) 17 is a protocol to discover a machine’s public address
and determine any restrictions in its router that would prevent a direct connection with another peer.
STUN’s behaviour can be observed in figure 2.3 bellow.

Clients contact the STUN server on the Internet who replies with the client’s public (NATed) IP and
source port. This information is then exchanged with other peers, for example through a SIP server
(Session Initiation Protocol), enabling other nodes to use the just created mapping, thus traversing the
NAT. Sometimes though, it is not possible to access the client behind the router’s NAT. In the case the
router is using a Symmetric NAT, like in most big corporate networks, it is not possible to use this sort of
technique.

Symmetric NAT is a specific type of NAT that does not reuse the origin port of the machine. This
means that even though the machine has a public IP address mapping found by the STUN server, this
one is not available to other peers. In this case, for every new connection a new mapping is created. In
this situation a TURN has to be used.

TURN In case the router employs Symmetric NAT, it will only accept connections from peers the client
has previously connected to. Traversal Using Relays around NAT (TURN) was designed to bypass this
restriction by opening a connection with a TURN server and relaying all information through that server.
After the connection is opened the client may ask all other peers to contact him through the TURN
server’s public IP address which will then forward all packets to him. TURN’s operation may be further
observed in the figure 2.4

17acronym within an acronym

17

Figure 2.4: TURN Protocol operation

Although TURN almost always provides connectivity to other peers, relaying data through the inter-
mediate server is a resource intensive operation. Therefore, ICE will only use this as a last resource.

Wrapping up, ICE always tries to connect peers directly, with the lowest latency possible, hence UDP
is used. If UDP fails, ICE tries to use TCP. In order to connect peers, WebRTC uses the ICE protocol
to quickly figure out the best way to connect them (i.e the best ICE candidate). It does so in parallel
and settles on the cheapest path that actually works. WebRTC forces encryption in all for media and
data. Because it is such a disruptive technology in the browser, WebRTC is enabling a completely new
set of applications that before were not available for the Web platform. WebTorrent 18 makes use of this
technology to enable browsers to connect to the BitTorrent network. PeerCDN [35] uses WebRTC to
offload the burden of hosting content to website visitors. IPFS.js 19 is the javascript implementation of
IPFS that runs on Node.js and in the browser, may also use WebRTC as a transport protocol.

2.4 Relevant Systems

2.4.1 Oceanstore

OceanStore [21] is a global-scale persistent data store. It provides a consistent, highly-available, and
durable storage utility atop an infrastructure comprised of untrusted servers. Each object is addressed
by the hash of the owners key plus a human readable name. Objects may be lookup up through two
different alternatives: first, a fast, probabilistic algorithm attempts to find the object near the requesting
machine using Attenuated Bloom Filters. If the probabilistic algorithm fails, location is left to a slower,
deterministic algorithm. Every update in Oceanstore creates a new version, thus allowing “permanent”
pointers. Because Oceanstore separates information from its physical location, data in this system is
considered to be nomadic. Using this concept it introduces the concept of Promiscuous Caching - data
may be cached anywhere, anytime. This notion differs from previous systems like NFS and AFS where
data is confined to particular servers in particular regions of the network. Oceanstore presents the notion

18https://webtorrent.io/faq
19https://github.com/ipfs/js-ipfs

18

of deep archival storage. Archival versions of objects are read-only objects encoded with an erasure
code and replicated over hundreds or thousands of servers. Since data can be reconstructed from any
sufficiently large subset of fragments it would require a massive fraction of the network to be destroyed
before content could considered to be removed. Oceanstore supports a large range consistency policies,
ranging from extremely loose semantics to supporting the ACID semantics favoured in databases. To
enhance performance, Oceanstore also supports prefetching mechanism they named introspection.

2.4.2 CoralCDN

CoralCDN [28] is a peer-to-peer content distribution network that allows a user to run a web site that
offers high performance and meets huge demand. Volunteer sites that run CoralCDN automatically
replicate content as a side effect of users accessing it. Publishing content through CoralCDN is done by
simply changing the hostname in an object’s URL. Coral uses a peer-to-peer DNS layer transparently
that redirects browsers to nearby participating cache nodes, which in turn cooperate to minimize load
on the origin web server. One of the system’s key goals is to avoid creating hot spots that might dis-
suade volunteers and hurt performance. It achieves this through Coral, a latency-optimized hierarchical
indexing infrastructure based on a novel abstraction called the distributed sloppy hash table, or DSHT.
Wich relaxes the DHT API from get value(key) to get any values(key). Two properties make Coral
particulary fit to CDNs. First, Coral allows nodes to locate nearby cached copies of web objects without
querying more distant nodes. Second, Coral prevents hot spots in the infrastructure, even under degen-
erate loads. For instance, if every node repeatedly stores the same key, the rate of requests to the most
heavily-loaded machine is still only logarithmic in the total number of nodes. Coral organizes a hierarchy
of separate DSHTs called clusters depending on region and size, where nodes are able to query peers
in their region first, and greatly reducing the latency of lookups.

2.4.3 PeerCDN

PeerCDN [35] proposes an hybrid peer-to-peer architecture to leverage the pros and cons of (cen-
tralised) CDNs and P2P networks for providing a scalable streaming media service. PeerCDN suggests
the use of a two-layered architecture like see in the figure 2.5 bellow. The upper layer is a server layer
which is composed of original CDN servers including origin servers and replica servers. The lower layer
is composed of peer-to-peer network of clients who requested the streaming services (i.e downloaded
the media file). The network has a topology-aware, Kademlia-like topology and a uses a DHT for data
retrieval. For each network there is a coordinating node, the strong node that connects the network to
the upper layer. Using the client peers participation, PeerCDN is able to achieve a higher capacity than
traditional CDNs, extending the scale of the CDN in the edge-side. Using the topology-aware overlay
network, PeerCDN restricts the unnecessary backbone bandwidth consuming during client peer sharing.

2.4.4 IPFS

InterPlanetary File System (IPFS) [4] is a peer-to-peer hypermedia protocol that seeks to create a net-
work of persistent, content-addrassable objects as part of the same Merkle DAG. Merkle DAGs (Merkle
Directed Acyclic Graph) are key to IPFS mechanics, they are directed acyclic graphs linked together
via cryptographic hashes. The cryptographic integrity checking properties of this data structure allows

19

Figure 2.5: PeerCDN Hybrid Architecture

for an untrusted network of peers to assist in the distribution of content without the threat of content
tampering, like in BitTorrent [16]. Hence, this data structures are immutable. Since files are identified
by their hash, they are cache-friendly. IPFS exposes an API to interact with Merkle DAGs, allowing
for reads and writes. This interface, the InterPlanetary Linked Data (IPLD) 20, focuses on bringing to-
gether all the hash-linked data structures (e.g. git, blockchains) under a unified JSON-based model. To
prevent the system from being locked-in to a particular function or format, IPFS uses a Multiformats
21, self-describing formats that promote interoperability and protocol agility, multiformats are used for
hashes, network addresses, cryptographic keys and more. IPFS creators, fully aware that to truly thrive,
the protocol would have to be adaptable, have architectured the system so that this process would be
facilitated. Thus, IPFS follows a modular approach to the software’s development, enabling each small
module to be replaced and adapted without impacting the overall system. Originally IPFS’s networking
stack, libp2p 22 is now an independent project that enables developers to build p2p applications through
the libp2p’s API. It enables applications to adapt to the heterogeneity of the web clients and their differ-
ent requirements and resources, since not all of them have access to the same set of protocols. Libp2p
enables peer look-up and dial and content discovery and transfer.

20https://ipld.io/
21https://github.com/multiformats/multiformats
22https://github.com/libp2p/libp2p

20

Chapter 3

Architecture

In this chapter we will describe the architectural elements of Startrail. Startrail is a pluggable and totally
independent caching middleware that plugs into the IPFS Core, granting it with CDN-like capabilities.

IPFS offers the benefits of a structured peer-to-peer network, while also allowing for objects to be
addressed by content. The all open-source IPFS stack is also fairly well documented and provides a
good base to build up on. Because of this IPFS became a natural choice where to integrate Startrail.

The rest of the chapter is as follows, we’ll start by describing the intendend use case in Section 3.1.
Since the proposed solution is so intrinsically connected to IPFS, in Section 3.2 we’ll outline the most
relevant pieces of the system and data structures. On Section 3.3 the solution’s architecture will be
detailed, followed by an analysis of the caching algorithm on Section 3.4.

3.1 Use Case

We envisioned Startrail to be an adaptive network cache. One that continually moves content ever closer
to a growing source of request. Hence, reducing, on average, the time it takes to access content on the
network. It does so without requiring intermediate nodes to previously request such content. Thus,
enabling smaller providers to serve bigger crowds. It should do so, in an interoperable manner. This
means that nodes running Startrail should not depend on other nodes to be effective. Thus, it enables
nodes to contribute to the network even when adoption is not absolute.

Startrail was, to some degree, inspired by Kademlia’s caching system, illustrated on Figure 3.1(a).
Here nodes that request for an object (step 1) and receive it (step 2) will ask the node closer to the one
that served them the content to cache it temporarily (step 3). The Time To Live (TTL) associated to the
cached record is smaller, the further away from the provider node the caching peer is. This mechanism,
requires all nodes to implement the same interface. In the protocol, contrary to the latter, there should be
no need for interaction between nodes for the cache to work. Startrail was designed so that nodes are
totally independent and may contribute to the network without the need to implement a specific interface
to communicate with other Startrail (or regular IPFS nodes) for the cache to function. For comparison,
Startrail’s caching system is also illustrated on Figure 3.1(b). Here, it is not up to the requesting node to
ask the caching node to cache the content. It is the caching node inspects content discovery messages

21

Figure 3.1: Comparison between the Kademlia and Startrail’s caching systems

(in step 1) and continuously tracks the referenced object’s popularity. If flagged popular he’ll fetch and
the serve the content himself.

Figure 3.2: Illustration of the proposed Startrail flow

We shall now explore, in more detail, the intended behavior of the network. Figure 3.2 exposes the
simplest scenario possible - a small portion of a network where all the nodes are running Startrail.

Here the content, in this case block QmBlock1, is stored on Node A. Nodes C and D request Qm-
Block1 to the network. While doing so, Node B that is requested by both, detects that the Content
Identifier (CID) is popular and flags it, fetching and caching the content itself. Later, when Node E re-
quest the for content, the response won’t have to traverse the whole network, it may be fulfilled by Node
B.

22

3.2 IPFS Architecture

Because Startrail is built on top of IPFS and integrates with some of its deep internals and mechanics it
is then imperative that we thoroughly examine these.

The IPFS project follows the UNIX modular approach to software development. Hence, the codebase
itself is segmented into smaller modules, each being responsible for a short and confined responsibility.
This means that the project, as a whole, is made up of hundreds of small packages. In this Section we
are going to select only the most relevant parts, the ones that our solution integrates with.

3.2.1 Objects

Objects on IPFS consist of Merkle DAGs of content-addressed immutable objects with links. With a
construction similar but more general than a Merkle tree [7]. Deduplicated, these do not need to be bal-
anced, and non-leaf nodes may contain data. Since they are addressed by content, Merkle DAGs grant
tamper proof - changing the content, would change the address. They are used to represent arbitrary
data-structures. These can represent, for example, hierarchies of files, or be used in communication
systems. A visual representation of a Merkle DAG can be found on Figure 3.3.

Figure 3.3: Merkle DAG representing a file structure with deduplication of data blocks

3.2.2 Core’s Architecture

A high level overview of the architecture of the IPFS core is depicted in Figure 3.4. We shall delve into
each of the illustrated components.

• Core API - The Application Programming Interface (API) exposed by the core, imported by both
the Command-line Interface (CLI) and the HTTP API;

• Repo - The API responsible for abstracting the datastore or database technology (e.g. Memory,

23

Disk, S31). It aims to enable datastore-agnostic development, allowing datastores to be swapped
seamlessly;

• Block - The API used to manipulate raw IPFS blocks;

• Files - The API used for interacting with the File System;

– UnixFS - The Unix Engine, implemented by the Importer and Exporter are responsible for
the file layout and chunking mechanisms to import or export files from the network.

• Bitswap - Bitswap is the data trading module for IPFS. It manages requesting and sending blocks
to and from other peers in the network. Bitswap has two main jobs:

– to acquire blocks requested by the client from the network;

– to judiciously send blocks in its possession to other peers who want them;

• BlockService - This is a content-addressable store for blocks, providing an API for adding, delet-
ing, and retrieving blocks. This service is supported by the Repo and Bitswap APIs.

• Libp2p - This is a networking stack and modularized library that grew out of IPFS. It bundles a
suite of tools that aim to support the development of large scale peer-to-peer systems. It addresses
complicated p2p challenges like Discovery, Routing, Transport through many specifications, proto-
cols and libraries. One of such libraries is the kad-dht module:

– Kad-DHT - This is the module responsible for implementing the Kademlia DHT with the mod-
ifications proposed by S/Kademlia [36]. It has tools for peer discovery and content or peer
routing.

3.2.3 Data Exchange

Data exchanges on IPFS are handled by Bitswap, a BitTorrent inspired protocol. Bitswap peers operate
two data-structures:

• want list - the set of blocks the node is looking to acquire;

• have list - the set of blocks the node has to offer in exchange.

Bitswap is a message based protocol, as opposed to request-response. All messages contain
want list or blocks.

When the application wants to fetch new blocks through the Bitswap API, the want manager will keep
bundling new messages together; then sending them all together, reducing network congestion. Also,
to propagate the want list to newly discovered peers, every time a peer makes a new connection,
Bitswap will send its want list. Apart from this mechanism, peers will also periodically exchange their
want lists.

When searching for a block, Bitswap will first search the local BlockService for it. If not found, it will
resort to the content routing module, in our case, the kad-dht module. The latter will run the following
tasks:

1Simple Storage Service - On demand persistent storage service hosted Amazon Web Services

24

Figure 3.4: IPFS Core’s Architecture

1. Query the local providers database for the know providers of a certain CID;

2. Query the DHT for providers of the target CID.

Following the acquisition of the group of potential providers, the node will connect and pass them its
want list containing the target CID.

The process can be further inspected on Figure 3.5.

When a node receives a want list it should check which blocks it has from the list and consider
sending the matching blocks to the requester.

When a node receives blocks that it asked for, the node should send out a notification called a Cancel

to tell its peers that the node no longer wants those blocks.

3.3 Startrail’s Architecture

Having a better grasp of the underlying system, we can proceed to understand how and where to in-
tegrate the Startrail cache. The first step is to identify where to tap into so that we are notified of new
content requests. On IPFS we can do that through two different ways (at least, that we are aware):

• On Kad-DHT, checking for the CID associated to GET PROVIDER messages;

• On Bitswap, listening for new want list messages and tracking each of the included CIDs;

25

Figure 3.5: Bitswap and kad-dht interaction when fetching a block from the network

Our current implementation takes advantage of the former. Thus, our current implementation of
Startrail does not take advantage of both methods and probing potential. We leave as future work
implementation of the latter.

Startrail’s main purpose is to recognize patterns in object accesses. To do so, it uses two separate
components:

• The Startrail Core, that exposes the Startrail API. This is the interface other components will con-
sume to work with the module;

• The Popularity Manager. The component responsible for tracking objects’ popularity;

The Startrail Core integrates with the data trading module, Bitswap, the BlockService used to access
the data storage and libp2p for several network utilities. The Core’s main responsibility is to orchestrate
all these modules while integrating with data from the Popularity Manager.

The Popularity Manager tracks and updates objects popularity. It is totally configurable and it can
operate with any specified caching strategy.

The class diagram of these components is defined on Figure 3.6

Further analysis of the Core’s ’diagram reveals the aforementioned integrations with external mod-
ules, including the internal popularity manager. It also reveals the two main exposed functions:

• process(cid) - responsible for triggering the orquestration and popularity calculation. Returns a
Boolean for ease of integration with kad-dht module. The specific algorithm implemented can be
seen in detail in Section 3.4

• updateConfigs() - used for configuration renovation. Once executed, it will fetch new configura-
tions from the IPFS Repo and if changes are detected, will refresh the live ones. It is useful for

26

Figure 3.6: Class diagram of Startrail’s Core and Popularity Manager

hotrealoading the configuration when testing.

Additionally, for the Popularity Manager class:

• isPopular(cid) - updates and calculates the updated popularity for any CID passed as argument.
Returns a Boolean - true for popular objects, false otherwise. In Section 3.4 the specific calculation
and tracking algorithm is explored in more detail;

• updateConfigs() - serves the same purpose as the above mentioned one;

• start() and stop() - methods for controlling the state of the sampling timer;

• nextTimeout() - manages the sampling timer. Responsible for scheduling timeouts;

• update() - runs every time the timeout pops. It pushes the current sample to the sampling history
and a new one is created.

3.4 Algorithms

3.4.1 Message processing algorithm

In the previous section we’ve analyzed Startrail’s architecture and pinpointed where it is ingesting data
from. To recognize patterns in object accesses, Startrail examines the CIDs sent on GET PROVIDER

messages. Hence, we have to execute the process() function every time the GET PROVIDER message
handler is triggered. The complete execution flow, including the one inside the Startrail is illustrated on
Figure 3.7.

Figure 3.7 unveils the execution flow starting when a peer requests a block from the network. This
action triggers the search for providers on the network (as shown in 3.2.3). Upon receiving such mes-
sage, the kad-dht handler will execute the Startrail process hook. Following the popularity update,
either no further action is required, or the block is flagged popular and the peer will attempt to fetch it or

27

Figure 3.7: Execution flow inside the Startrail module

retrieve it from the BlockStorage. The block could potentially be found in the storage because, since we
are using the IPFS BlockStorage, the block could have been previously fetched by either Startrail or the
peer itself. Either way, subsequently to acquiring the block, the peer announces to the network that it is
now providing it. The JavaScript pseudo-code can be further analyzed on Code Listing 3.1.

3.4.2 Popularity Calculation Algorithm

“The best way to predict the future is to study the past.” – Robert Kiyosaki, American Author

The best way to predict the near future is to look into the recent past. The notion of content popularity
is related to the amount of requests the network makes trying to retrieve it.. By studying the current and
past popularity of a certain CID, we are able to likely forecast content that is going to, at least likely,
remain popular in the future. Caching this locally and serving it to other peers has the benefit of making
other nodes’ accesses faster.

For simplicity our forecast takes into consideration only a small subset of the node’s past. This
subset, or window, can be obtained through various techniques. The one implemented in our solution is
a hopping window. Here, sampling windows may overlap. This is desirable in our solution as we want
to maintain some notion of continuity between samples. Meaning that an object that was popular in the
window before, still has high probability to remain popular in the current one, since a portion of the data
remains the same.

Although the parameters are totally configurable the ones set by default are 30 seconds for window
duration, with hops of 10 seconds. The Popularity Manager implements the hopping window by dividing
it into hop-sized samples. In our case we divide the total 30 second sampling window into three 10
second samples. A sample consists of a simple JavaScript Object, generally known as a Map.

28

1 async function process(cid) {

2 if (!isPopular(cid)) {

3 return; // DO NOTHING

4 }

5 if (await blockstorage.has(cid)) {

6 // Block found in blockstorage, serve it

7 bitswap.serveBlock(cid)

8 }

9 // Block not found in blockstorage, get it ourselves

10 if (bitswap.wantlist.contains(cid)) {

11 // Do not get a block already on the wantlist

12 return;

13 }

14 await bitswap.get(cid)

15 // Announce to the network we are serving the block

16 await libp2p.provide(cid);

17 if (repo.size() < 9Gb) // 90\% of IPFS max default storage

18 await pin(cid);

19 }

Listing 3.1: Startrail processing engine

Every time a new message is processed, the Startrail Core checks the popularity of the referenced
object by running the isPopular() function. The function will keep track of objects it has seen in the
current 10 second window; incrementing a counter every time the CID processed. Every 10 seconds
the current window, or sample expires and is pushed onto a list that holds the previous ones. It is on this
latter list of samples (samples in the class diagram from 3.3) that the popularity calculations are made.
An illustration of the interaction between samples and block arrivals is represented on Figure 3.8.

Figure 3.8: Interaction between new block arrivals and sampling windows

29

To calculate a block’s popularity the Popularity Manager will first select the three most recent samples
after concatenating the current one to this list. Next, will reduce the array outputting the total amount of
times the object was observed. If bigger than a certain configurable threshold the object is considered
popular. A more thorough inspection of the algorithm can be made on Code Listing 3.2.

1 const WINDOW_SIZE = 3

2 const CACHE_THRESHOLD = 2

3

4 class PopularityManager {

5 constructor() {

6 this.samples = [];

7 this.currentSample = {};

8 }

9 isPopular(cid) {

10 this.currentSample[cid] = this.currentSample[cid]

11 ? this.currentSample[cid] + 1

12 : 1;

13

14 // Join last WINDOW_SIZE sample windows and calculate popularity

15 const popularity = this.samples

16 .concat([this.currentSample])

17 .slice(-WINDOW_SIZE) // get last WINDOW_SIZE samples

18 .reduce((popularity, sample) => {

19 return (popularity += sample[cid]);

20 }, 0);

21 return popularity >= CACHE_THRESHOLD;

22 }

23 }

Listing 3.2: Popularity Manager core

Caching Heuristic

In Startrail we employ our own heuristic algorithm for tracking objects popularity. Our algorithm sums
the number of times an object was processed in the 30 second window and if bigger than the default
threshold of 2 it is flagged for caching.

This heuristic has the benefits of (i) being fairly simple to implement and compute; it also (ii) reacts
quickly to changes in content access trends. It can be considered rather optimistic, since spotting the
same object twice will consider it popular. However, we should take into account that we are not listening
on the actual block requests, we are listening on the discovery requests. As analyzed on Section 3.2.3,
the discovery messages are only sent when the amount of known possible providers for a CID is not big
enough.

Due to its simplicity the heuristic has a limitation. Because the metric is statically defined it lacks the
ability to adapt to different volumes of traffic and traffic conditions. Hence, a misconfigured threshold
could lead the node into caching too little or too much data.

To further be able to adapt to the node’s environment the metric can be dynamically calculated and
factor in the node’s variable conditions. Observing the same object twice will yield different popularity
values for a node that processes 1 block a second and a completely different one for another that
processes 100 blocks/second.

30

One alternative is to, instead of flagging objects based on the total amount of times they were pro-
cessed, one could identify a block as popular based on the percentage of the overall traffic the node
processed. In a mathematical expression:

times CID was processed

total CIDs processed
≥ % Cache Threshold

But in this case, even if we got the threshold heuristic close to optimal, that would, in practice, limit
the amount of blocks the peer would be able to cache, i.e. considering the threshold was, for example,
1%, the node would be limited to caching 100 blocks when, in ideal conditions, each block is processed
1% of the times.

Our heuristic does not take into account the size of the content being cached. This was a conscious
decision, the reasoning for it is that on IPFS most blocks have the maximum default size of 256Kb.
Usually only the last one of the sequence that makes up a file is less than that. Hence, we despised the
block size as parameter for caching heuristic.

Cache Maintenance

Contrary to most caching systems [37], where content is cached by default leaving the cache replace-
ment algorithm responsible for releasing less relevant documents to create space for new ones. Startrail
employs an heuristic to judge which objects should be cached in first place. Nevertheless the cache
does not grow indefinitely as IPFS performs block replacement.

Startrail, for the most part, works by leveraging the internal IPFS mechanics. This ensures the
component is lightweight and uses the same procedures as the rest of the system. Startrail also shares
the same block datastore as the rest of IPFS. Thus, the blocks that the peer fetches through regular
utilisation and the ones fetched by Startrail are all kept in the same storage. With no way of discriminating
the origin that fetched the block it’s impossible for a cache replacement algorithm to manage only the
cached resources. Even if a list of the cached blocks CIDs was kept as a way to differentiate them, a
block may be fetched by both the regular IPFS and Startrail, meaning that in this situation, evicting a
block from cache would, potentially, remove used resources.

Hence on Startrail, we allow the node to utilise the full amount of allocated storage by IPFS which
defaults to 10Gb. Once the node fills up this space it’s up to the IPFS Garbage Collector (GC) to discard
unnecessary objects. The IPFS GC removes the non-pinned objects. Hence, to prevent popular blocks
from being collected when the it executes, we pin the popular objects. When a block stops being popular
it is unpinned, leaving it at the mercy of the GC. When the threshold of 90% of IPFS’ storage is reached
blocks are no longer pinned in order to leave room for new blocks.

3.5 Summary

In this Chapter we started by describing the way Startrail should approximate content from the source
of requests. We then thoroughly analysed IPFS’ base architecture, where Startrail is built on top of,
and also its main mechanisms. We finalized this chapter with the extended description of the proposed
solution’s architecture and its relevant algorithms.

31

32

Chapter 4

Evaluation

This chapter describes in detail the evaluation of a realistic deployment of a Startrail network, accessing
its performance and implications. We’ll then analyze these results, in light of our initial expectations and
to the results obtained by running an unmodified IPFS network through similar conditions.

We will start by describing the platform developed to execute the simulations in Section 4.1. Next, we
analyze the metrics and results we are looking to assess in Section 4.2. In Section 4.3 we’ll follow with
an analysis of the testing setup and adjustable network conditions. Section 4.4 will outline the results
obtained according to the described metrics. Additionally, we will also analyze, in Section 4.5, the impact
different percentages of Startrail adoption can have in the overall network performance.

4.1 The Testbed

Although not planned from the beginning, there was a considerable amount of effort put into developing a
testbed capable of simulating a realistic network. For our specific testbed we were looking for a solution
that could fulfill the following requirements:

1. Enable us to seamlessly adjust and change network conditions, e.g. latency, jitter;

2. Provide a platform for gathering and monitoring a diverse array of metrics and logs;

3. Scale well as more computing power is added to the testbed;

4. Effortlessly enable us to orchestrate and coordinate peers in the networks, i.e execute commands;

5. Allow for effortless integration with the codebase. Excluding possible alternatives like PeerSim
[38], as this would require porting the whole protocol to the Java API.

4.1.1 Testbed Architecture

To develop such a solution we resorted to our professional experience in deploying and monitoring large
scale micro-services as source of inspiration.

33

To allow for easy integration of new computing power into the testbed and management of deploy-
ments, we resorted to Kubernetes (K8s) [39]. Kubernetes is a tool for deploying and managing container-
ized applications. It handles the discoverability and liveness of the deployed workloads. Our Kubernetes
cluster was deployed on Google Cloud, on the managed Google Kubernetes Engine, for convenience.

The smallest computing unit on K8s is the Pod. The Pod is a formation of containers, in our case
Docker [40] containers. This enabled us to build automated Continuous Integration (CI) pipelines that
would build the containers, testing them afterwards. This granted us that only working artifacts, would
be deployed to the cluster.

Since Kubernetes Pods allows us to create any arbitrary composition of containers, we took advan-
tage of this and made sure to inject, alongside every IPFS node, a Toxiproxy 1sidecar - a small proxy
- from which we channel all IPFS traffic through, coming in and out from the node. This allows us
to inject network variability into IPFS connections and simulate diverse network conditions. Such Pod
architecture is illustrated in Figure 4.1.

Figure 4.1: Composition of the Startrail Testbed Kubernetes Pod

Further examination of Figure 4.1 reveals the piping of the IPFS service port, the swarm endpoint,
through Toxiproxy. The peer will then announce the Toxiproxy endpoint as its dial address. The IPFS
API connection is not proxied since it doesn’t require being modified.

We wanted to make the simulations easily reproducible and preferably software defined, as con-
figuration files. Hence, we leveraged Helm 2, a tool that helps us release and manage Kubernetes
applications. This enabled us to create different node configurations, Charts, e.g. for provider nodes
and consumer nodes. Helm also made easy dynamically configuring IPFS containers, including setting
test dependent Startrail options.

One critical requirement of the testbed is to be able to gather data from different layers of the system
during simulations. We accomplished such requirement in our solution by implementing the ELK Stack
3suite of tools. The ELK stack is comprised of Elasticsearch for log indexing and searching engine,
Logstash for transformation and Kibana for log and metric visualization. This way, Docker containers
will log to standard out and have their logs sent to Logstash, which will filter them and send them to
Elasticsearch to be stored. Kibana would then consume this data on demand.

1https://github.com/Shopify/toxiproxy
2https://helm.sh
3https://www.elastic.co/what-is/elk-stack

34

The above described architecture is depicted on Figure 4.2.

Figure 4.2: Architecture overview of the testbed network

4.1.2 Deploying a network

We tried to make the deploy process the simplest and automated as much as possible since we were
aware that the network would have to be deployed many times to simulate different network conditions.
Hence, we resorted to Unix’s Makefiles to automate the network setup.

The deployment process, illustrated in Figure 4.3, is as follows:

1. Setup Bootstrap nodes. On IPFS to setup a network we first need to setup the bootstrap peers.
These are used by other nodes as Rendezvous Point to join the network.

2. Create rest of nodes. Additionally, using Helm’s ability to dynamically configure releases, we need
to point these new nodes to the already setup Bootstrap ones.

3. Deploy Provider nodes. These are nodes preloaded with data. For these, as datasets were some-
times of considerate dimensions, datasets were downloaded onto the Pod from an S3 Bucket
before the starting the container.

4.1.3 Interacting with the network

Having the network setup and the nodes able to connect and fetch data from each other and also having
the ability to shutdown and bootstrap everything back together in minutes, provided us with solid ground
from where to ran test from.

35

Figure 4.3: Deployment process on a new network on the Startrail testbed

To execute our tests, we developed our own solution that utilizes the IPFS and Toxiproxy APIs to
orchestrate the peers and change the conditions of the network. The classes diagram of the CLI tool
designed to interact with the network is depicted on Figure 4.4.

Figure 4.4: Classes diagram of the testbed CLI tool

36

The CLI tool implements a client for interacting with the Kubernetes API. This is crucial for fetching
all the IPFS pods and the addresses they are running at, it is through this API that we are able to get the
endpoints for the IPFS Swarm and API, as well as Toxiproxy API, with which we’d interact through its
own client. These clients were then brought together in the implementation of the test and configuration
commands.

With the network in place and a tool with which to execute tests from, it was possible to execute
the multiple Startrail tests. We would execute the tests from our local machine that would orchestrate
commands to each individual peer according to the scripted test file. Using the monitoring platform we
would then gather live data from the nodes.

An illustration of the interaction can be examined in Figure 4.5

Figure 4.5: Testbed-cli orchestrating and monitoring Statrail testing cluster

4.2 Relevant Metrics

The metrics considered relevant for evaluating Startrail’s network performance are:

• Request Duration - The duration of network request is inherently the most important metric to
analyze Startrail’s impact on the system. It will assess if caching mechanism is working and how
effective it is. Hence, to measure this we should analyze the 95th Percentile request duration.

• Memory usage - Considering that Startrail Nodes are caching content we want to analyze how
much additional data each node has to store.

• Network usage - We want to assess how much each node has to resort to the network in order to
fetch content. Hence, we measure the volume of traffic each peer sends to the network.

For these metrics we will calculate the 95th Percentile (95P) and use for our analysis. The percentiles
have the particularity of excluding the extreme values from the average calculation, the possible outliers,
and the 95th provides a relevant assessment of the global performance of a system not subject to
stringent SLAs.

37

4.3 Testing Setup

The implementation network used to execute the simulations was deployed in the aforementioned Ku-
bernetes cluster running on Google Cloud. This cluster comprised of three n1-standard-4 nodes. These
are a general-purpose type of machine with 4 vCPUs, 15 GB of memory and 128 GB of storage. With
this setup we were able to simulate a network of 100 peers. Of these 100, 5 were bootstrap nodes and
2 were provider nodes, that were preloaded with data. The dataset used was 200Mb. The size of the
dataset was limited to such size due to the restrictions in memory each container could utilize without
starving the whole cluster.

The amount of nodes simulated were limited by the resources available in the cluster as we were
running on a limited budget. This is particularly important because although we are simulating network
congestion, if the simulation becomes CPU bounded, we will have the peers struggling to get CPU time.

The simulations performed aim to test different access and network conditions. Each dataset is
comprised of a known list of blocks (in the order of thousand blocks). For the duration of the test, we
would from time to time, select a block from the list according to the specified distribution function and
order the node to fetch it from the network. This block selection function was responsible for simulating
the different access patterns, as we varied the function that selected the blocks. The different accesses
we tried to simulate are:

• Random Access - The random access picks each block with equal probability. This pattern would
serves as control, a basis for comparison, as it is not realistic;

• Pareto Random - The Pareto Distribution [41] is a power-law probability distribution. It serves as
an adequate approximation for various observable phenomena. Internet objects popularity can
also be approximated through such distribution [42]. To achieve close to the desired distribution
we used an α equal to 0.3, meaning that 20% of the blocks generate 80% of the overall network
traffic;

• File Random - Here we divided the total list of blocks into smaller lists, each amounting to 3Mb in
block data. Selecting on of these lists means that the peer would fetch all the nodes in the list, thus
simulating file access. To pick a random file from the list, we will also use a Pareto distribution.

Table 4.1 encompasses all the test scenarios simulated. Each of these had an induced latency of
100ms, ran for 10 minutes and each node requested a new block every 30seconds.

The parameter columns are:

• Startrail - defines if Startrail was running on all the nodes in the network;

• Access Type - indicates which of the previously mentioned access patterns we are simulating;

• Latency - expresses the amount of latency introduced by Toxiproxy ;

• Req. Freq. - specifies the frequency at which each requests for blocks - or array of blocks, in the
case of File Random - are made by the individual nodes;

• Duration - indicates for how long we ran the simulation;

• Window and Threshold - specify the used Startrail configuration, if applicable. Window being the
amount of samples and the duration of each, in seconds; and Threshold the cache threshold at
which Startrail will cache content.

38

Test Name Startrail Access Type Window Size Threshold

Random no Startrail False Random N.A. N.A.

Random w/ Startrail True Random 3*10sec 2

Pareto no Startrail False Pareto Random N.A. N.A.

Pareto w/ Startrail True Pareto Random 3*10sec 2

File Random no Startrail False File Random N.A. N.A.

File Random w/ Startrail True File Random 3*10sec 2

Table 4.1: Different testing condition for running network tests

4.4 Tests Results

After running the above-mentioned simulations we compiled the most relevant of obtained results into a
set of graphs which we are going to analyze next.

Latency Analysis

The graph on Figure 4.6 exposes the calculated 95P Request duration for each simulation. The sim-
ulation of the random access running on a regular IPFS nodes’ network, on the far left, yielded a P95
latency of 60 seconds. The same simulation running on the Startrail network only did 40 seconds. This
is a considerable reduction of one third. Similar gains in speed can be observed for the tests with Pareto
distribution access pattern. While at first one would think that this would be the test where the impact of
Startrail would be the most evident, because the blocks would reach the cache threshold easier, in this
case, however, since the same blocks are being requested more often, different peers on the network
also serve the content because they previously downloaded it. Hence, the difference remains the same.
For the file access type the proportion of gains remains similar, with the overall latency going up since
now we are requesting a lot more of different blocks.

Memory Consumption Analysis

The Graph on Figure 4.7 compares the memory cost of running the simulations on a network with
and without Startrail. Analysis of the graph reveals that running the simulations without Startrail costs
generally the same, with only slight variations proportional to the amount of different blocks requested.

For the simulations ran on the Startrail network we observe a growth in memory utilization. This is
expected since nodes are now storing more content, the cached blocks. Here, one interesting result
stands out. For the Pareto access pattern we notice an increase in memory consumption relative to
the all random one. This was not expected as the smaller diversity of blocks requested would mean
less content being cached. This was not the case. One possible explanation we find that supports
such results is that in this simulation a smaller subset of the dataset is now being constantly requested,
meaning that, although smaller, we are guaranteeing that this subset will reach the cache threshold and

39

Figure 4.6: 95th percentile of request duration for the different testing scenarios

be stored. Because it doesn’t grow significantly and past the IPFS default storage of 10Gb, the garbage
collector never triggers and thus the cached blocks are kept for the whole duration of the test. This does
not happen with the random access pattern because, since it follows a uniform distribution, requests for
the same block may be scattered in time and consequently some never reach the threshold.

We can analyze Startrail’s impact on the memory consumption of the node using the following ex-
pression:

Total observed memory consumption

Regular Nodes memory consumption
× 100

This expression yields the percentage increase in memory consumption when comparing the values
obtained from running the simulation on the Startrail network with the ones obtained from running on
the regular IPFS network. By computing the earlier expression for each of the simulations running on
different networks, we can observe that the increases in memory consumption varies between 15% and
25%.

Figure 4.7: 95th Percentile of memory usage on the different testing scenarios

40

Network Consumption Analysis

The Graph on Figure 4.8 illustrates the network impact of running network simulations with and without
Startrail. Further comparison of the obtained results reveals that the savings in network traffic (Mbs)
are proportional to the speed ups in request latency. This happens because requests are being served
closer to their source by caching nodes and thus fewer messages have to transit the network. This result
wasn’t totally expected, since while Startrail nodes serve content closer to their source, which reduces
traffic, in order to do so they also need to fetch the content first for themselves, which generates traffic
as well.

Figure 4.8: 95th Percentile of network usage on the different testing scenarios

4.5 Variable Startrail percentages

Additionally, we also assess the impact of the percentage of Startrail nodes in the network, to confirm
that the benefits of Startrail are relevant even if a smaller percentage of nodes are contributing to caching
or if, on the other hand, there was an percentage of Startrail participation in IPFS that would yield the
optimal performance.

In order to evaluate which of the above mentioned propositions were true we ran the simulations
described on Table 4.2. The conditions are similar to the ones presented earlier, in each of the tests
was induced 100ms of latency, the tests ran for 10 minutes and each node requested a new block
every 30seconds. The distinction between the ones described before and these is that in the latter we
alternated the percentage of nodes running Startrail that were deployed on the network.

The results obtained from running the simulations were compiled into the graph in Figure 4.9. The
graph’s samples start on the far left with higher values of request latency for no Startrail participation on
the network, and decreases nearly linearly as the percentage of Startrail nodes increases.

The impact of Startrail nodes’ percentage on the network can be approximated through the linear re-
gression drawn on the dotted line in the graph. This supports our initial proposition that the performance
improves as the percentage of Startrail nodes increases. Nevertheless there is a slightly higher slope in

41

Test Name Startrail Percentage Access Type Latency Req Freq Duration Window Size Threshold

Random No Startrail 0% Random 100ms 30sec 10min 3*10sec 2

Random 30% Startrail 30% Random 100ms 30sec 10min 3*10sec 2

Random 50% Startrail 50% Random 100ms 30sec 10min 3*10sec 2

Random 80% Startrail 80% Random 100ms 30sec 10min 3*10sec 2

Random 100% Startrail 100% Random 100ms 30sec 10min 3*10sec 2

Table 4.2: Testing conditions for the different percentage of Startrail nodes in the network

the 30% to 50% straight, that however does not allow any conclusions of an optimal point to be taken
due to experimental noise. This finding would have to be further assessed with more testing.

0 20 40 60 80 100
0

20

40

60

80

100

120

Percentage of Startrail Nodes

A
vg

.
R

eq
ue

st
D

ur
at

io
n

(in
m

s) Avg latency

Figure 4.9: Avg request duration vs. Startrail nodes percentage

4.6 Summary

In this Chapter we started by thoroughly analysing the Cloud Deployment Infrastructure that allowed us
to quickly setup the test network and served as testbed for the execution of the Startrail tests. Next, we
described the setup used to run the simulations, the tests executed and also the specifications of the
cluster and datasets. We followed that section with an analysis of the results obtained while running the
simulations. We finished with the additional analysis of the impact that different percentages of Startrail
nodes have on the overall network performance.

42

Chapter 5

Conclusion

In this thesis we proposed a solution that extends the existing IPFS and improves it as a content sharing
system and its ability to distribute such content using a novel technique in the peer-to-peer file sharing
systems’ realm.

5.1 Concluding remarks

We started this dissertation by analyzing the relevant Content Sharing systems and by describing their
compositions. We followed that by classifying the significant Content Distribution Systems’ features.
Next we then explored the technologies that enable peer-to-peer systems to exist inside a web browser
and how to leverage them.

Having inspected the relevant components towards a design enabling a distributed, peer-to-peer
CDN, we described the architecture of the InterPlanetary File System and its key mechanics. After
identifying the key architectural elements and functionality of IPFS, and its shortcomings, we proposed
Startrail, an extension caching component and described it thoroughly. We defined the solution’s re-
quirements and documented its implementation, data structures used and processes, as well as inte-
gration points with IPFS. We then analyzed the implementation of the system for containerized network
deployments along with its architecture.

The platform used for simulating the network, including the setup conditions were then described,
along with the test executed. The obtained results show that a network running Startrail nodes is able to
perform better than one running only IPFS nodes. Startrail reduces the request latency by 30%, at the
cost of small increase in total memory consumption of 20% while also reducing bandwidth utilization by
around 25%.

Additionally, we assessed the impact that different percentages of Startrail nodes have in the overall
network performance, as they can seamless coexist with non-Startrail plain IPFS nodes within the same
network. The results, confirm the expectation that there is an inverse relation between Startrail nodes
percentage and network latency. When one increases, then other is reduced.

43

5.2 Future work

Although the results are positive and bring improvements to IPFS’s operation, there are potential further
advances to be implemented. Startrail enables the development of additional enhancement features.
Bellow we enumerate and describe some of the aspects that could be further explored:

1. Broader probing potential - Startrail takes advantage of a single request popularity probe, the
discovery messages. In order to achieve a broader probing potential an improvement could be
made allowing the system to further analyze requests on the received want lists;

2. Design a dynamic caching heuristic - Caching thresholds on Startrail are static which can lead
to caching imbalances when under high stress. One very interesting research topic would develop
an heuristic that would dynamically adapt to the amount of requests the node processes;

3. Prefetching is the process of requesting content before it is actually necessary with with the
expectation that it will be eventually requested, and thus being able to mask its retrieval time
significantly.. Prefetching on IPFS can be implemented at system level or at application level.
Startrail is a key crucial enabler for its operation. Startrail makes it possible for the prefetching
mechanism to have a reduced impact on the network by leveraging the caching, which, instead of
stressing the network, has the effect of setting up the network caches for traffic to come.

44

Bibliography

[1] G. Schneider, J. Evans, and K. Pinard, “The Internet - Illustrated,” in The Internet - Illustrated, 2009.

[2] A. Bhushan, “File transfer protocol,” RFC 114, RFC Editor, April 1971.

[3] J. Melvin and R. Watson, “First cut at a proposed telnet protocol,” RFC 97, RFC Editor, February
1971.

[4] J. Benet, “IPFS -Content Addressed, Versioned, P2P File System,” arXiv preprint arXiv:1407.3561,
2014.

[5] P. Teixeira, H. Sanjuan, and P. Samuli, “Merkle-CRDTs (DRAFT),” pp. 1–26, 2019.

[6] “Merkle-dags,” tech. rep., Protocol Labs.

[7] R. C. Merkle, “A digital signature based on a conventional encryption function,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 293 LNCS, pp. 369–378, 1988.

[8] T. D. Thanh, S. Mohan, E. Choi, K. SangBum, and P. Kim, “A taxonomy and survey on distributed
file systems,” Proceedings - 4th International Conference on Networked Computing and Advanced
Information Management, NCM 2008, vol. 1, pp. 144–149, 2008.

[9] Goldberg, Sandberg, Kleiman, Walsh, and B. Lyon, “Design and Implementation of the SUN Net-
work Filesystem,” Usenix, 1985.

[10] “The Andrew File System (AFS),”

[11] Microsoft, “Distributed File System (DFS): Referral Protocol,” 1996.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in Proceedings of the nine-
teenth ACM symposium on Operating systems principles - SOSP ’03, p. 29, 2003.

[13] R. Rodrigues and P. Druschel, “Peer-to-peer systems Survey,” Communications of the ACM, vol. 53,
no. 10, p. 72, 2010.

[14] H. Schulze and K. Mochalski, “Internet Study 2008/2009,” Africa, pp. 1–13, 2009.

[15] J. Liang, R. Kumar, and K. Ross, “Understanding kazaa,” Manuscript, Polytechnic University Brook-
lyn, 2004.

[16] Bittorrent, The BitTorrent Protocol Specification, 2008.

[17] S. El-ansary and S. Haridi, “An Overview of Structured P2P Overlay Networks,” 2004.

45

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable Peer-to-
peer Pookup Service for Internet Applications,” Sigcomm, pp. 1–14, 2001.

[19] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and routing for large-
scale peer-to-peer systems,” in IFIP/ACM International Conference on Distributed Systems Plat-
forms and Open Distributed Processing, pp. 329–350, Springer, 2001.

[20] B. Y. Zhao, J. Kubiatowicz, A. D. Joseph, et al., “Tapestry: An infrastructure for fault-tolerant wide-
area location and routing,” 2001.

[21] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “OceanStore: An Architecture for Global-
Scale Persistent Storage,” Asplos, 2000.

[22] D. Eastlake and P. Jones, “Us secure hash algorithm 1 (sha1),” RFC 3174, RFC Editor, September
2001. http://www.rfc-editor.org/rfc/rfc3174.txt.

[23] D. Mazieres and P. Maymounkov, “Kademlia: A Peer-to-peer Information System Based on XOR
Metric,” 2002.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable content-addressable
network, vol. 31. ACM, 2001.

[25] A.-m. K. Pathan and R. Buyya, “A Taxonomy and Survey of Content Delivery Networks,” Grid
Computing and Distributed Systems GRIDS Laboratory University of Melbourne Parkville Australia,
vol. 148, pp. 1–44, 2006.

[26] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A Platform for High-Performance
Internet Applications.”

[27] E. Berlekamp, “Bit-serial reed-solomon encoders,” IEEE Transactions on Information Theory,
vol. 28, no. 6, pp. 869–874, 1982.

[28] M. J. Freedman, F. Eric, and D. Mazieres, “Democratizing content publication with coral,” NSDI’04
Proceedings of the 1st conference on Symposium on Networked Systems, vol. 17, no. 3, p. 365,
2004.

[29] ECMAScript, Standard ECMA-262 Language Specification, 2017.

[30] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Kouranov, I. Swett,
J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC Transport Protocol: Design and Internet-Scale
Deployment,” Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication, pp. 183–196, 2017.

[31] P. Gross and P. Almquist, “Iesg deliberations on routing and addressing,” RFC 1380, RFC Editor,
November 1992.

[32] K. B. Egevang and P. Francis, “The ip network address translator (nat),” RFC 1631, RFC Editor,
May 1994. http://www.rfc-editor.org/rfc/rfc1631.txt.

[33] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session traversal utilities for nat (stun),” RFC
5389, RFC Editor, October 2008. http://www.rfc-editor.org/rfc/rfc5389.txt.

46

http://www.rfc-editor.org/rfc/rfc3174.txt
http://www.rfc-editor.org/rfc/rfc1631.txt
http://www.rfc-editor.org/rfc/rfc5389.txt

[34] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal using relays around nat (turn): Relay ex-
tensions to session traversal utilities for nat (stun),” RFC 5766, RFC Editor, April 2010. http:

//www.rfc-editor.org/rfc/rfc5766.txt.

[35] J. Wu, Z. Lu, B. Liu, and S. Zhang, “PeerCDN: A novel P2P network assisted streaming content
delivery network scheme,” Proceedings - 2008 IEEE 8th International Conference on Computer and
Information Technology, CIT 2008, pp. 601–606, 2008.

[36] I. Baumgart and S. Mies, “S/Kademlia: A practicable approach towards secure key-based routing,”
Proceedings of the International Conference on Parallel and Distributed Systems - ICPADS, vol. 2,
2007.

[37] W. Ali, S. M. Shamsuddin, and A. S. Ismail, “A survey of web caching and prefetching,” International
Journal of Advances in Soft Computing and its Applications, vol. 3, no. 1, pp. 18–44, 2011.

[38] M. Jelasity, A. Montresor, and O. Babaoglu, “T-Man: Gossip-based fast overlay topology construc-
tion,” Computer Networks, vol. 53, no. 13, pp. 2321–2339, 2009.

[39] B. J. Hightower K, Burns B, Kubernetes: Up and Running. O’REILLY, 2017.

[40] D. Merkel, “Docker: lightweight Linux containers for consistent development and deployment,” Linux
Journal, vol. 2014, no. 239, p. 2, 2014.

[41] K. T. Rosen and M. Resnick, “The size distribution of cities: An examination of the Pareto law and
primacy,” Journal of Urban Economics, vol. 8, no. 2, pp. 165–186, 1980.

[42] L. Adamic, “Zipf, Power-laws, and Pareto - a ranking tutorial,” 2000.

http://www.rfc-editor.org/rfc/rfc5766.txt
http://www.rfc-editor.org/rfc/rfc5766.txt

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Goals and Contributions
	Document Organization

	Related Work
	Content Sharing
	Architectures

	Content Distribution
	CDN Taxonomy

	Web Distributed Technologies
	The Web platform
	Peer-to-peer in the browser

	Relevant Systems
	Oceanstore
	CoralCDN
	PeerCDN
	IPFS

	Architecture
	Use Case
	IPFS Architecture
	Objects
	Core's Architecture
	Data Exchange

	Startrail's Architecture
	Algorithms
	Message processing algorithm
	Popularity Calculation Algorithm

	Summary

	Evaluation
	The Testbed
	Testbed Architecture
	Deploying a network
	Interacting with the network

	Relevant Metrics
	Testing Setup
	Tests Results
	Variable Startrail percentages
	Summary

	Conclusion
	Concluding remarks
	Future work

	Bibliography

