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Abstract. The creation of data centers allowed global access to huge computational
resources, previously only available to large companies or governments. By renting
the desired computational power, small companies (or even an individual person) do
not need to worry about large investments. In current data center environments, a
client can ask for a computational instance of various sizes, and the service provider
assures levels of guaranteed performance (through an SLA) for that computational
instance.

However, these guarantees are not extended to the networking layer. Cloud providers
do not offer network performance guarantees to their tenants. Since communication
is carried over a network shared by all tenants, the performance that a tenant’s
application can achieve is unpredictable and depedent on several factors - some outside
the tenant’s control.

In this work we propose omniCluster, which solves these problems by using the ab-
straction of virtual networks. Virtual networks are isolated from each other, providing
performance guarantees. We designed a scalable OpenFlow controller, that is able to
allocate virtual networks (with bandwidth guarantees) in a work-conservative system,
and achieves both high consolidation on the allocation of virtual networks and high
resource utilization of the Data Center’s resources.

Our assessments shows that the above mentioned properties are achieved, being car-
ried out in two common data center network topologies: Tree and Fat-tree.

Keywords: Data Center, Virtual Networks, Bandwidth Guarantees, Work-Conservation,
Software-Defined Networking.

1 Introduction

The creation of data centers allowed global access to huge computational resources,
previously only available to large companies or governments. By renting the desired com-
putational power, small companies (or even an individual person) do not need to worry
about large investments. In current data center environments, a client can ask for a com-
putational instance of various sizes, and the service provider assures levels of guaranteed
performance (through an SLA) for that computational instance. This guarantee is possible
due to the huge evolution of virtualization technologies. Nowadays, hypervisors can control
the behaviour of the virtual machines (VMs) it possesses, ensuring that a VM cannot use
more CPU than what it was requested (except when the hypervisor allows). In this way,
clients (or tenants) are not harmed by the misbehaviour of others.

This simplicity of computational resources on demand has generated a lot of interest
around the world. However, there are still a lot of things to improve in this area. One of
them is the lack of network accounting in this renting of resources. Cloud providers do not
offer network performance guarantees to their tenants. In fact, a tenant’s compute instances
(i.e. VMs) communicate over the network, that is shared by all tenants.
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Thus, the network performance that a certain VM can get is dependent on several factors,
most of them outside the tenant’s control, such as the network load on a given moment or
the placement of that VM in the network. Moreover, this is aggravated by the oversubscribed
nature of a Data Center network.

The lack of guarantees in a shared communication medium leads to unpredictable appli-
cation performance (as well as tenant cost). This is well documented in [7]. This work shows
the impact of machine virtualization on network performance, and conclude that virtualized
machines often present abnormally large packet delay variations, which can be a hundred
times larger than the propagation delay between the two hosts they used for measuring.
Another interesting finding by this work is that TCP and UDP throughput can fluctuate
rapidly (in the order of tens of milliseconds) between 1 Gb/s and zero, which shows that
applications will have a very unpredictable performance. This can be very important, since
many applications running in the cloud are data intensive, such as video processing, scientific
computing or distributed data analysis. This may severely degrade the performance achieved
by an application. For instance, with intermittent network performance, MapReduce[2] ap-
plications will experience harsh issues when the data to be shuffled amongst mappers and
reducers is quite large.

Solving this problem is hard for many reasons. Nonetheless, the major one is the difficulty
of obtaining the current state of the Data Center network. In turn, this is hard to do because
the network state is distributed: both physically among network devices that are running
distributed protocols; and logically, since each network device has its own convoluted way to
configure and monitor. Software-Defined Networking (SDN) [6] is an emerging networking
concept, that decouples the control and the data planes.

This abstraction thereby decouples the forwarding hardware from the control software,
which means that the control mechanism can be extracted from the network elements and
logically centralized in the SDN controller. The controller creates an abstraction of the
underlying network, and thereby provides an interface to the higher-layer applications. By
introducing layers and using standardized interfaces, SDN brings a modular concept that
enables the network to be developed independently on each one of the three layers. Most
notably, it creates the opportunity for others than networking hardware vendors to innovate
and develop control software and applications for the network.

In this project, we use SDN to have a global view of the state of the network. This
way, we are able to give virtual networks to tenants. Such as a VM, a virtual network
gives performance isolation, but at the network level. This allows tenants to express their
requirements in terms of bandwidth, which is then enforced through virtual networks.

As expected, the objectives are focused on improving the state-of-the-art, providing
properties that are lacking in current systems. Thus, we want to build a system that: is
scalable to Data Center environments; achieves high consolidation (within the placement of
virtual networks); achieves high resource utilization of the Data Center’s physical resources
(namely servers and network); and provides bandwidth guarantees in a work-conservative
system.

2 Related Work

We now give a brief description of our key enabling technology - OpenFlow. Then, we
will categorize the works that are most related to ours, describing the properties achieve by
each category of system.

The OpenFlow architecture consists of three concepts: the network is made of OpenFlow-
compliant switches, that form the data plane; the control plane is made by at least one
OpenFlow controller; and there is a secure channel between each switch and the control
plane.
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Each switch is a ”dumb” forwarding device, that simply uses its flow table to determine
a packet’s next hop. A flow table is composed by a series of flow entries. Each flow entry has
the header fields on which it will try to match incoming packets (e.g. Ethernet destination
address), actions to perform when an incoming packet matches this table entry (e.g. forward
to a specified port or flood to all ports), and counters that hold statistical information
about each flow (e.g. number of packets and bytes transmitted in this flow). Each OpenFlow
switch uses Ternary Content Addressable Memory (TCAM) to allow fast lookup of wild-card
matches, and thus fast packet forwarding. When an incoming packet does not match any
entry on the flow table, it is sent to the controller using the secure channel, which will decide
what to do with this packet.

We now present the description and classification of the works related to ours. At the
highest level, the studied works can be divided in two categories. Thus, our taxonomy for
network allocation techniques in data centers is: dynamic allocation based on network mon-
itoring; and static allocation based on virtual network embedding. The former aims at max-
imizing resource utilization, fair bandwidth sharing of the physical network and sometimes
give Quality of Service (QoS) guarantees for end hosts, while the latter provides support
for virtual networks with QoS guarantees but with small (or even none) maximization of
network usage.

The first type of works, classified as doing dynamic allocation based on network monitor-
ing, rely on a constant monitoring of the network performance to keep an up-to-date view of
the data center network. For that purpose, it is periodically gathered statistical information
from the network elements (and/or end hosts), in order to infer the bandwidth usage for
each VM or physical server. With this updated view of the network, this type of systems can
use traffic engineering techniques to maximize resource utilization, leading to an economical
gain for the provider, since it can for instance aggregate requests and shut down unused
resources. The maximization of resource usage is possible since these dynamic approaches
can react to the changing demands from different tenants, and manage them to get the most
of the providers’ resources. The solutions we have surveyed can be categorized as based on:
centralized traffic matrix estimation or bandwidth regulation in each end host.

The second type is composed by works that make static allocations based on virtual
network embedding. Whereas the algorithms from the previous paragraph aim at maximizing
the resource usage and QoS guarantees for the tenants, in virtual network embedding the
aim is to completely virtualize the network, providing performance isolation among tenants
at the network level. So, virtual network embedding consists in the mapping of virtual
networks (consisting of virtual nodes and links) onto the substrate network (consisting of
physical nodes and links). Some works do not call this embedding, but are doing the same
thing (mapping virtual networks in one or more physical networks).

As we can see, we have some works that are focused on maximizing resource utilization
(which are favourable to the service provider), and other works that aim to provide band-
width guarantees by making allocations of virtual networks (which is advantageous for the
customer). None of the surveyed works try to achieve the two at the same time, giving the
best of both worls, in a solution that satisfies everybody involved.

3 omniCluster

We now present and describe our solution - omniCluster. We begin by providing a generic
use case for our system. In Figure 1 we can see the high level architecture of the solution, in
this case using a simple tree topology with depth equal to 3 and fanout equal to 2. Although
many topologies are being proposed by the network research community, we will focus on
the traditional tree-like topologies (Tree and Fat-tree) since they are still the most used data
center topologies, as described in [1]. The OpenFlow controller (in the top-right corner) is
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the central component of the solution, as it is responsible for running the virtual network
embedding algorithm in order to map the requests on the substrate network, and then
program the switches to deploy the requested virtual networks. As previously stated, each
switch acts merely as a packet forwarder, according to the rules dictated by the controller.
The controller has a connection to every switch in the network, represented by the dashed
red lines that form the control plane. They are dashed to represent the logical (and not
physical) separation between the data and the control planes. The control plane does not
necessarily need dedicated connections, it can use the same physical links of the data plane.

Our network embedding algorithm tries to allocate the requests on the smallest available
subset of the substrate network (i.e. on the same physical server, then on the same rack,
and so on). Thus, we aim to maximize the proximity of VMs belonging to the same tenant,
which results in minimizing the number of hops between those VMs. This is advantageous
for two reasons: first, with less hops the delay is normally reduced; and second, keeping the
VMs close (e.g. in the same rack) relieves the bandwidth usage in the upper links of the
tree, which in the data center is where the bandwidth is scarcer[1]. With this approach, we
will be able to accept more virtual network requests, since the core links will not be so likely
to become the bottleneck of the data center.

In Figure 1, we can see an example of the placement of three virtual networks according
to this algorithm. The virtual network of tenant A represents the best case possible where
all the VMs of the virtual network can be mapped on the same physical server. In this
case, there is no usage of the network (which saves bandwidth for future requests), and the
bottleneck of the virtual network is only the speed within the server. In the virtual network
of tenant B the request could not be mapped to a single server, and so it uses another
server belonging to the same rack to accommodate the entire request. The virtual network
of tenant C shows a case where the virtual network could not be mapped in the same rack,
and has to use a server on the adjacent rack. As we can see, the bandwidth of the links on
the top of the tree is only used in the worst cases (i.e. when the request is large or the data
center is operating near saturation).

Besides the network embedding algorithm, that ensures the network can provide the
bandwidth guarantees requested by each tenant, we make use of the centralized information
in the controller to provide two properties not seen in the surveyed network embedding
systems: fair bandwidth sharing (i.e. work-conservation) among tenants (non-existent in
network embedding systems) and incremental consolidation of virtual network requests. The
first is achieved by instructing every switch used by a virtual network (which is determined
by the embedding algorithm) to create a new queue for that virtual network. The queues
in OpenFlow are used to provide QoS guarantees (in this case bandwidth). The second
property is enforced in the network embedding algorithm itself, choosing the location of
a virtual network according to a best-fit heuristic on the VM placement. To do this, the
algorithm needs the current state of the network and the physical servers (which is kept by
the OpenFlow controller ). By managing all this information centrally, the controller could
become itself the bottleneck of the network. However, the controller does not need to be a
single machine. For instance, it could be a cluster of powerful machines.

3.1 Detailed Architecture

We will now describe in greater detail the architecture shown in the previous section.
Figure 2 is the result of ”zooming in” in each component of Figure 1. Thus, Figure 2 contains
the software that will run in each component as well as the most important interactions
between those components.

To simulate our data center network, we will use Mininet [4], both because it is open-
source (which is very useful in research) and also because it is the de facto standard of
OpenFlow emulators [5]. It is also important to refer that all the source code that will be
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Fig. 1. High level architecture of the solution with a tree topology.

developed could be ported to a physical data center with few (or no) changes. The only
exception is in the Linux Process, which in a real scenario would be running an hypervisor
software to manage the VMs inside that host. In this work this is simplified to an operating
system managing processes, where each process will simulate a VM. Another important
detail is that we assume all the physical servers have equal CPU, so that in a virtual network
request a tenant asks for a percentage of a CPU (instead of a CPU with a certain frequency,
as in real data centers).

We now describe the typical flow of information when the system is in operation. First
of all, the tenant expresses its demands in a virtual network request (which consists in a
XML file). This consists in defining two things: the number of VMs required (and also the
percentage of CPU of each one) as well as the bandwidth required between the VMs that will
be connected (expressed in MBit/s). This request is fed into the virtual network embedding
algorithm, that is running in the OpenFlow controller. Upon receiving the request, the
embedding algorithm contacts the network information manager to get the current state of
the network. Based on this state, the algorithm determines (if the request is accepted) where
this virtual network will be allocated. It is important to note that as all the requests are
processed by the controller, this updated view of the network involves zero control messages



6

Fig. 2. Software architecture of the components present in the solution.

over the network (both to switches and hosts), since the controller just has to update this
information when it processes a new virtual network request.

The controller then translates the resulting decision of the algorithm (i.e. the affected
switches and hosts) to OpenFlow rule(s) to reprogram the switch(es). Upon receiving this
message, the Open vSwitch manager takes two actions: creates a new queue for this virtual
network, with the assured bandwidth present in the received message; and installs a new
rule in the switch’s flow table to forward packets from a certain VM to the newly created
queue. This means that there will be one queue for each pair of linked VMs in a virtual
network. In this way, a VM can use more bandwidth than its minimum when the link is
not throttled. Moreover, the sharing of bandwidth between queues is made fairly according
to the minimum bandwidth a queue has (a queue with a higher minimum bandwidth will
use more spare bandwidth). Thus, the resource usage is maximized, since the tenants share
unused bandwidth fairly, but at the same time get their minimum bandwidth guarantee
when the network is saturated.

As already mentioned, the VMs will represented by and implemented as Linux processes.
To simulate tenants’ workloads, each process will be running a traffic generator. As depicted
in Figure 2, upon the necessary configurations, each process (i.e. VM) can communicate
with other processes on the same virtual network, using either the operating system (in
case the processes are on the same server), or contacting its adjacent switch, which will
use the flow table to check to which queue it should forward this solicitation (in case the
processes are on different servers). In this work we will only focus on communication inter-
server (as the intra-server communication would be a responsability of the hypervisor in a
real deployment).

4 Evaluation

In order to assess the goal fulfillment of our solution, we have implemented what was
described in the previous section on top of the Floodlight controller, developing the necessary
modules to achieve the desired behavior.
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Then, our experiments were run as follows: the controller processes virtual network re-
quests, and we stop an experiment when the controller returns False to an allocation,
meaning it can not allocate more virtual networks. Then, each experiment is run a thousand
times, in order to get meaningful results. To generate our dataset, we have produced virtual
network requests (XML files) where: a VM asks for a CPU that is generated randomly (using
an uniform distribution) between 0.1 and 5 %; and the connections between VMs are also
randomly generated (with an uniform distribution as well) between 0 and 10 Mbit/s. For
each size of the virtual network requests (i.e. number of VMs in it), which we defined as
going from 2 to 40.

Regarding the network topologies, we ran our experiments in Mininet using Tree and Fat-
tree topologies. However, due to space constraints, here we only show the results achieved
with a tree topology. We now show the evaluation made according to each goal that was
defined in section 1.

4.1 Goal I - Scalable to Data Center Environments

In this goal we want to assess if our solution is scalable to environment (and size) par-
ticularly found in Data Centers. To this end, we have measured the time it takes to process
each virtual network request. This is calculated using the method currentTimeMillis from
Java API. In Figure 3, we can see the results of obtained with a Tree topology:

Fig. 3. Allocation time for a virtual network request using a Tree topology.

By analyzing Figure 3, we can see that up to about 25 VMs in a request, we have a
processing time under 5 ms, which we think are great results. As a comparison, SecondNet[3]
achieves 10 ms in requests with 10 VMs, which is twice the processing time in requests with
less than half the VMs. We can see that our system takes about 10 ms to process requests
with 40 VMs. Although the emulated network is not close to the size of a Data Center, we
want to point out that a request with 40 VMs is almost one third of the number of physical
servers in the network. Even in these conditions, our processing time did not grow abruptly,
which we think is a good indicator of the scalability of our algorithm.

4.2 Goal II - High Consolidation

The evaluation around this goal aims to measure how consolidated virtual networks are,
since our algorithm strives to take server locality into account, allocating the VMs of a
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virtual network as close as possible. This is important since a low number of hops leads
to a low latency in the communication between the VMs of a virtual network. This metric
is calculated by counting the numbers of physical servers there are in a virtual network
allocation. In Figure 4 the results of using a Tree topology are depicted.

Fig. 4. Average number of hops in a virtual network using a Tree topology.

Analyzing Figure 4 we can see that we achieve high consolidation of the virtual networks,
since the average is almost always near zero. It starts out equal to zero up to 5 VMs per
request, then the average is almost the same but the variance increases, meaning most of
the virtual networks do not have any hop, but some do. It keeps this behavior along the line,
with the average increasing less than linearly. On 40 VMs per request we get an average
number of hops close to 1. Again, we want to point out that 40 VMs in a request is big since
our data center network has 125 servers, and even in that case the virtual networks only
need, on average, one hop.

4.3 Goal III - High Resource Utilization

By evaluating this goal we want to measure the resource utilization within the Data
Center: this means calculating the server and link utilization. This is computed by calculating
the utilization of these resources when the experiment stops, and dividing it by its full
capacity. The resource utilization results using a Tree topology are portrayed in Figure 5.

Analyzing Figure 5 we can see that most of the time our system achieves high server
utilization. This makes sense since one of the main concerns of our algorithm is doing a
best-fit placement of the VMs within the servers. This also shows that our decision of not
having a consolidation algorithm running periodically in the controller is correct, since our
algorithm already does an incremental consolidation. The server utilization starts to drop
when the number of VMs in a virtual network is around 20. This happens because with a
request of this size (and larger), some of the VMs have to be placed on different servers,
which causes fragmentation of the CPU utilization by a server, which results in a lower
server utilization. Obviously, when this happens the network utilization starts to grow, since
we have more and more utilized links across the network. We also want to point out that our
low network utilization is a result of getting all the servers full before we get some virtual
networks that require link usage, since this is just a matter of which resource is exhausted
first. Since this is doing what we would expect by looking at the algorithm, we do not think
this is relevant.
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Fig. 5. Resource utilization using a Tree topology.

4.4 Goal IV - Bandwidth Guarantees in a Work-conservative System

We now intend to demonstrate that a server can get more bandwidth than what was
requested when the link is free, and gets at least what was requested when the link is
saturated. However, we were not able to do a full-fledged evaluation of this goal, beucase
of a software bug between Mininet’s links and Open vSwitch’s queues (described in the full
thesis).

To work around this limitation and to prove the concept of our idea, we have devised a
different way to test this. We have created a topology with 8 hosts, were 4 hosts generate
traffic towards the other 4. Each host generates 50 Mbit/s, and we simulate a 100 Mbit/s
link using a queue with the max-rate parameter set to this value.

Fig. 6. Rate achieved by each host when all of them are sharing a single link.

In the beginning (t = 0s), only Host 1 is generating traffic with the bit-rate stated above,
and with Host 5 as destination. As he is the only one doing so, he gets the full bandwidth
that he is requesting - 100 Mbit/s. This goes on until t = 20s, when Host 2 starts to generate
traffic towards Host 6, and there are two hosts generating traffic at 50 Mbit/s, which is the
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”link capacity”. Each host on the right gets pratically the bandwidth that its correspondent
is generating. When we reach t = 40s, Host 3 starts to generate traffic to Host 7. Now,
the sum of the traffic generated by the hosts exceeds the ”link capacity”, which will cause
dropped packets. However, each host gets more than its assured bandwidth (25 Mbit/s), as
the three of them divide the link, each one getting about 33 Mbit/s. Finally, at t = 60s,
Host 4 begins to generate packets towards Host 8. Now, the 100 Mbit/s link is divided by
the four hosts, and each one gets about its assured bandwidth.

As we can see by this example, our solution allows hosts to get guarantees about band-
width, while using more when there are spare resources. This remains to be tested at a large
scale, where several hosts generate traffic at the same time.

5 Conclusions

Current Data Centers lack network performance guarantees, since all tenants inter-
changeably share the network. This makes the performance of a tenant’s application unpre-
dictable, since it is depedent on factors outside of its control. This unpredictability severely
prevents a wider cloud adoption, since there are many use cases that require network per-
formance guarantees.

These problems are solved using the abstraction of virtual networks. Virtual networks
are isolated from each other, providing performance guarantees. We have undertook this
challenge using Software-Defined Netwoking. We designed an OpenFlow controller that is
able to allocate virtual networks (with bandwidth guarantees) in a work-conservative sys-
tem, achieving high consolidation on the allocation of virtual networks and high resource
utilization of the Data Center’s resources.

Our evaluation uses Tree and Fat-tree topologies (although only the first is shown in this
document), and shows that we have pretty much accomplished the goals we have set out in
the first section. Throughout the evaluation, we can see that our system has: low execution
time, high consolidation of virtual networks and high resource utilization. Regarding the
last goal (providing bandwidth guarantees in a work-conservative system), due to a conflict
in our software stack, we were not able to make the full-fledged evaluation we would like.
With this conflict solved, we could undoubtedly achieve all goals, and with it make some
more interesting research work.
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