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Abstract

Stream Processing is the new paradigm in data pro-
cessing. It provides an efficient approach to extract
information from new data, as the data arrives.
However, spikes in data throughput, can impact
the accuracy and latency guarantees stream pro-
cessing systems provide. This work proposes data
sampling, a type of data reduction, as a solution
to this problem. It provides a user-transparent
implementation of two sampling methods in the
Apache Spark Streaming framework [3]. Further-
more, a mini-framework is implemented for the de-
velopment of additional sampling methods. The
results show a reduced amount of input data, lead-
ing to decreased processing time, but retaining a
good accuracy in the extracted information.

1 Introduction

Big Data has brought a revolution to data process-
ing. With commodity hardware becoming cheaper
and widely available, constraints on the amount of
data to be collected have been lifted. As a result,
useful information, patterns and insights have be-
come far easier to extract. Now, Big Data process-
ing has moved onto a more on-the-fly type of data
processing called stream processing.

For stream processing systems to provide an effi-
cient service, data needs to be processed as fast as
it arrives. When a sudden peak in data throughput
occurs, greater than the processing capabilities of
the system, several problems arise. To cope with
this demand, the system will utilize additional com-
puting resources. Next, if the available resources
aren’t enough, the system will try to queue new
data while it processes the available data. This in

turn may lead to a delay in the results, lowered ac-
curacy from an overflowing queue, and an eventual
crash of the system.

An obvious solution to the problem is to add ma-
chines to the system. Next, changing the size of the
data to be processed may be attempted [10]. An-
other alternative is to use controlled data reduction
methods like load shedding [I8|, 17, 19, [16] or sam-
pling [15] [13].

However, additional machines may be unavail-
able or costly to provide and altering the input
data size would increase latency. Although effec-
tive, load shedding may skew the data distribution
lowering the result accuracy. In contrast, sampling
decreases data size by producing a subset retaining
the characteristics of the whole data set. This pro-
vides smaller resource requirements, lower latency,
but keeps a good result accuracy.

This paper contributes to the utilization of sam-
pling in stream processing systems. For these
purposes a single-point, user-transparent sampling
framework. = Coupled with the Apache Spark
Streaming framework [3], this framework was used
to enforce two sampling algorithms. Finally, the
advantages and cost this usage in advanced sam-
pling techniques incurs in the accuracy guarantees
of systems like Spark is evaluated. The result is
an early-stage data reduction in the workflow pro-
ducing a smaller processing load, shorter execution
times while keeping a low result error.

The remainder of this paper is structured as fol-
lows. Section [2] presents the necessary background
on stream processing and ”"big data” analytics to
understand the paper. Section [3] details the design
and implementation of the framework, and its eval-
uation follows in Section[d Then, Section [f|reviews
and contrasts relevant work within the state-of-the-



art, and Section [6] concludes the paper and gives
insights on future directions.

2 Background and Assump-
tions

Sampling methods and their application in Big
Data are thoroughly analysed in the work by [9].
As their work suggests, among the varied meth-
ods of data reduction available, sampling provides
an intuitive and straightforward way to obtain a
smaller subset of the data with the same structure.
Thus, they proved to be the best choice as a method
to reduce data for real-time data processing.

Apache Spark Streaming [3] proved to be the best
choice to tackle out goals and challenges. Spark
is a mature data processing framework, speeding
up processing times by performing in-memory pro-
cessing. Furthermore, Spark’s modular design al-
lows it to integrate with a multitude of different
technologies, from Hadoop’s HDF'S for distributed
storage, YARN or Apache Mesos for resource man-
agement, to providing libraries for connecting with
data sources like SQL, Apache Kafka, Cassandra,
Kinesis, as well as Twitter.

These data sources provide a continuous stream
of data which Spark Streaming processes. As
seen in figure the data is admitted into the
system through the Receiver module. The Re-
ceiver provides Spark the flexibility to connect with
data sources beyond the ones mentioned previously.
Moreover, it allows data items to be pre-processed
before being admitted into the workflow. Through
the Receiver Supervisor, the Receiver gathers the
data items into blocks and then stores them into
memory. Furthermore, the Supervisor generates
block meta-data and then inserts it into a queue at
the Receiver Tracker. Next, Spark Streaming uti-
lizes an interval to build a small batch from the en-
queued meta-data. The length of this batch inter-
val determines the size of the micro-batches which
are then processed by a user-defined streaming ap-
plication.

Micro-batches are the reason Spark does not pro-
vide “true” real-time stream processing. Spark
Streaming abstracts the data stream into micro-
batches, so each micro-batch can be processed as a
regular Spark batch application. However, a spike
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Figure 1: Basic Architecture of Batching module
in Spark Streaming

in data throughput can cause an increase in the
batch size, leading to a delay in batch processing.

3 Framework Integration and
Sampling Techniques

3.1 Framework Integration

The micro-batch abstraction mentioned in the pre-
vious section is what allowed a seamless integration
of the framework developed in this work with Spark
Streaming. Figure[I]shows the sampling framework
implemented as a wrapper at the Receiver module.
The framework intercepts each data item before it
is stored and passes it through a class implement-
ing a sampling algorithm. Next, before the batch
interval passes, the framework outputs the sampled
items to the Supervisor. The Supervisor uses the
sampled data to generate blocks, continuing a stan-
dard batching operation. As a result, the old func-
tionality of the batching module remains unaltered.

3.2 Sampling Techniques

Before the implementation, several sampling tech-
niques were considered. The following criteria were
used for selecting the sampling methods [9, [14].
The algorithms needed to implement the reser-
voir scheme, providing a one-pass sample over an
unbounded data stream. The reservoir sampling
scheme provides a fixed size sample with a single
pass over an arbitrary sized data stream. However,
reservoir scheme algorithms use uniform sampling
which can skew the data distribution of the sampled
set. Thus, algorithms that use techniques that can
counter this data distribution skew were required.
Finally, an algorithm needed to provie a bounded
error guarantee in order to be selected.



3.2.1 Congressional algorithm [7]

Congressional sampling is an efficient method of
performing sampling when data is partitioned in
groups. A considerable number of data processing
applications group data by key. The MapReduce
paradigm is a considerable proof of this. Further-
more, Congressional sampling is a hybrid of uni-
form and biased sampling. This guarantees that
both large and small groups will be represented in
the sample, preventing data distribution skew. Al-
gorithm [1| shows the algorithm for Congressional
sampling.

Algorithm 1 Congressional algorithm

initialize(sampleSize, group)
sampleCount < 0
houseSample < ()
senateSample + ()
groupingSample <
for all item € dataStream do
doHouseSample(item)
doSenateSample(item)
for attribute egroup do
doGroupingSample(item)
end for
: end for
getFinalCongressional Groups(groupingSample)
calculateSlots(houseSample,senateSample,
groupingSample)
. scaleDownSample()
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As can be seen on lines 5, 6 and 8, in the first
stage, the algorithm performs three types of sam-
pling. First, it performs a house (standard uniform
reservoir) sample. Next, a senate sample is per-
formed, which assigns an equal slot of the sample
size to each group. Finally, a grouping sample is
performed for each attribute in the group-by set,
where each attribute “grouping” is assigned a sam-
ple slot proportional to the size of the grouping in
the data set. Second, in the grouping sample, the
slot size for each group is recalculated (line 13).

GroupSize = (S/mT) * (Ngy/Np,) (1)

Equation [I| shows the equation, where S is the
sample size, mT is the number of distinct groups,
Ny is the number of items for the attribute and
Ny, represents the number of items in the distinct

group. In the next stage (lines 14 and 15), the
group sizes of the uniform, senate and grouping
samples are evaluated and the final slot size for
each group is calculated from the house, senate and
grouping samples.

SlotSize = S * (mazgeaSy/

>
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mazgecSq)

(2)
In Equation 2] S is the sample size, mazyeaSy
is the size of the largest slot for a group from the
house, senate and grouping samples and it is di-
vided by the sum of all the slot sizes for that group.
Finally, each group Is re-sampled with reservoir
sampling to generate a sample slot with the new
size. The house sample allocates more space for
larger groups. On the other hand, the senate sam-
ple allows smaller groups to enter the sample. Fi-
nally, the grouping sample optimizes the separate
attribute representations inside each group.

3.2.2 Distinct Value algorithm [11]

As its name suggests, the Distinct Value sampling
method approximates the number of distinct val-
ues of an attribute in a given data stream. As
with the previous algorithm, determining the dis-
tinct values of a certain attribute is frequently used
in the optimization of the computation flow. The
DV sampling algorithm provides a low, 0-10% rela-
tive error, while providing a low space requirement
of O(loga(D), where D is the domain size of the
attribute.

Algorithm [2] presents the Distinct Value algo-
rithm. It requires two additional parameters be-
sides the sample size. The second parameter is
the maximum sample slot size per value, called the
threshold. The third parameter is the domain size,
representing the number of possible values that can
occur. The algorithm works as follows. As each
data item arrives, the domain size is used to gen-
erate a hashed value of the data item. Next, if
the hashed value is at least as large as the current
level, an attempt to put the item in the appropri-
ate hash value slot is performed. If the slot size is
smaller than the threshold value, the item is sim-
ply placed in the slot. Otherwise a uniform sample
is performed which can result in the new item re-
placing an item currently in the slot. When the



Algorithm 2 Distinct Value algorithm

1: initialize(sampleSize, threshold)

2: level < 0

3: sampleCount < 0

4: Sample < 0

5: CountMap <+ 0

6: for all item € dataStream do

7: hashValue < dieHash(item)

8: if hashValue >level then

9: if Sample(hashValue) <threshold then
10 Sample(hashValue).add(item)
11: CountMap(hashV alue) + +
12: sampleCount + +

13: else

14: Sample(hashValue).sample(item)
15: end if

16: end if
17: if sampleCount>sampleSize then
18: sampleCount— =Sample(level)
19: Sample(level).remove
20: level = level 4+ 1
21: end if
22: end for

items in the sample exceed the sample size, the
slot whose value equals the current level number
is removed from the sample and the level is incre-
mented. By randomly mapping the attribute values
to hashed values and only allowing hashed values
equal or greater than the current level to enter the
sample, the algorithm ensures that the sample con-
tains a uniform selection of the scanned portion
of the data stream. As an addition, the threshold
value keeps the level from frequently incrementing
and skewing the data distribution.

4 Experimental Evaluation

4.1 Experimental configuration

For the experimental evaluation a single server was
used. The server runs on an 8-core, 2.93GHz In-
tel i7 processor with 12GB of RAM, using a 64-bit
Ubuntu Server 14.04 LTS operating system. The
system was implemented on version 1.6.0 of Apache
Spark, while the data streams were created using
the Netcat [6] Linux command-line tool. For mea-
suring the heap memory usage, a light-weight con-
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Figure 2: Processing time speed up plots for the
Ounline Retailer (a), Taxi Log Analysis (b), Ap-
ple NASDAQ tweets Analysis (¢) and US IT Stock
Analysis (d) benchmark applications

sole application was used, called Jvmtop [5].

4.2 Metrics

In order to gain a better understanding of the ac-
quired gains of the implemented system, three met-
rics were used. From them, two are quantitative
metrics, evaluating the speed-up in processing time
and the variation in memory consumption. The last
is a qualitative metric, estimating the relative error
in the generated sampled data for the benchmark
applications.

Four benchmark applications were used. The
first is an application that analyses Apple NAS-
DAQ tweets and provides the top ten language
speaking groups that post statuses on Twitter con-
nected to the Apple stocks. The second is a stock
analysis application, providing the company that
had the largest positive growth in stock value in a
given sliding window interval. The third is an ap-
plication that provides the most used payment type
in New York taxis. The last application provides
the country with most customers of an online retail
website.

The speed-up in processing time for all applica-
tions is shown in Figure[2] For the Online Retail ap-



plication (Figure ), both algorithms show a high
speed-up in processing time (20-30%) for sampling
sizes of 10, 25 and 30%, but the 2 and 5 % sample
shows that sampling is rendered ineffective for too
small data inputs. However, the Taxi log applica-
tion (Figure 2p), which has a much smaller domain
size for the target attribute of the sampling shows a
steady decrease of speed-up, providing high values,
30% and 28% for the 2% and 5% samples of the DV
algorithm, and a maximum of 15% speed up for the
5% Congressional sample. The Apple tweet anal-
ysis application, shown on Figure [2¢, shows two
different plot lines for the algorithms. The DV
algorithm reports a high speed up in the sample
size interval between 5% and 25%, providing a 27%
speed up for the 25% sample, 22%, 16% and 10%
speed up for the 10%, 5% and 2% samples corre-
spondingly. On the other hand, the Congressional
algorithm shows a decreasing speed up, providing a
22% speed up for the 5% sample size, a 21% speed
up for the 2% sample and a 10% and lower speed
up in processing time for the 25%, 10% and 30%
samples. The results of the stock analysis applica-
tion, shown on Figure 2, show that in both plot
lines the highest speed up is gained between the
sample size interval of 5% and 25%. The speed up
starts decreasing with sample sizes bigger that 25%.
The highest speed up is provided by the Distinct
Value algorithm, with a 34% for the 25% sample,
and 21% speed up for the 10% sample size. The
Congressional sampling algorithm provides a high,
30% speed up for the 10% sample size, with 25%
and 21% speed ups for the 5% and 25% samples
accordingly.

The plots in Figure [3| detail the heap memory
usage of Spark Streaming during the execution of
the benchmark applications. The memory usage
of the Retail application is shown on Figure [3h.
Both algorithms use up more memory to achieve
the above mentioned speed up. The Congressional
sampling uses the most additional memory, 31%,
with the 25% sample, while the Distinct Value algo-
rithm follows closely, with 30% for the same sample
size. The Taxi Logs application shows similar plot
lines (Figure . The Congressional sampling uses
the most additional memory, 31%, with the 25%
sample, while the Distinct Value algorithm follows
closely, with 30% for the same sample size. Figure
reports the memory usage of the Apple tweets
analysis application. As with the previous applica-
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Figure 3: Memory variation plots for the Online
Retailer (a), Taxi Log Analysis (b), Apple NAS-
DAQ tweets Analysis (c) and US IT Stock Analysis
(d) benchmark applications

tions, both algorithms use up more memory than
a normal run. The Congressional algorithm uses
up the most memory, with an additional 70% more
memory for the 5% sample size, while the Distinct
Value algorithm utilizes up to 63% additional mem-
ory for the 2% sample size. The reason for this is
that the sampling operations in the algorithms have
to increase to cope with the decreased sample size.
On the other hand, for the Stock analysis applica-
tion (Figure [Bd) both algorithms show that, with
sampling, less memory is used, steadily increasing
the memory consumption as the sample size is in-
creased. As shown with the plot lines, the Congres-
sional algorithm uses less memory, in general, than
the DV algorithm, using 42% and 41% less memory
for the 10% and 25% sample sizes appropriately.
On Figure [ the relative error of sampled data sets
is presented. As can be seen on Figure [h, the al-
gorithms in the Online Retail application maintain
a decreasing error. Both report a high error for the
2% sample, since the small size of this sample dis-
torts the distribution of the data. However, the er-
ror drops below 10% for the larger sample sizes for
both algorithms. The Taxi log application (Figure
) keeps a 0% error for both algorithms, with an
exception of 2% error for the 2% DV sample. Simi-
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Figure 4: Result error plots for the Online Retailer
(a), Taxi Log Analysis (b), Apple NASDAQ tweets
Analysis (¢) and US IT Stock Analysis (d) bench-
mark applications

larly, both algorithms report a 0% error rate for the
Apple tweets application for all of the sample sizes
(Figure [dc). An exception is the 5% sample size
of the Distinct Value algorithm. The Stock anal-
ysis application shown on Figure @[l shows a very
large error, 581%, for the 2% DV algorithm sample
and nearly 35% for the appropriate Congressional
sample. The error significantly lowers for the larger
sample sizes, reporting 6.5% for the 5% and 10%
samples, and 0.5% and 0% for the 25% and 30%
samples of the Congressional algorithm. The Dis-
tinct Value algorithm shows a high error value of
62% for the 5% sample, but decreases the error to
2% for the 10% sample and 1% for the 25% and
30% sample sizes.

From the evaluation metrics, it can be concluded
that while both algorithms generally consume more
memory than a normal execution, they show differ-
ent behaviour to different sample sizes. The Con-
gressional sampling algorithm reports a more sta-
ble, low error operation for low sampling sizes, sug-
gesting that it is better suited for sample generation
when smaller samples are desired. On the other
hand, the Distinct Value algorithm shows a better
performance for larger sampling sizes, where the
error and processing time is better than the Con-

gressional algorithm.

5 Related Work

Strainer, an approximate computing system inter-
sects data reduction with data processing plat-
forms. There are several notable works in these
areas:

In the area of sampling, several one-pass sam-
pling algorithms can be adapted to streamed data.
Reservoir sampling [20] is a uniform sampling al-
gorithm. It provides a bounded error, but may
skew data distribution. Count and Weighted sam-
pling [12 8] use biased sampling methods. How-
ever, both have no error bounds. Furthermore,
Weighted sampling introduces overhead informa-
tion about the weights of the data items in advance.

Currently, there is an abundance of data pro-
cessing platforms. Apache Flink [I], Storm [4] and
Samza [2] all offer stream processing libraries. In
contrast to Spark, they use a streaming dataflow
engine which performs true streaming, thus imme-
diately processing each data element. However, this
becomes an obstacle when trying to sample data,
since most sampling methods need to first build a
sample set.

Approximate computing systems use two ap-
proaches in data reduction. Works on Aurora [I§]
and Borealis [I7] tightly integrate load shedding op-
erators that discard tuples throughout their opera-
tion paths. Another work on Aurora/Borealis [16]
groups tuples into blocks, which then selectively
discards. Comparably, this system [I9] divides the
input data stream into windows which are proba-
bilistically discarded. Like Strainer, IncApprox [15]
uses sampling to reduce the input data. However, it
additionally utilizes the Incremental computing to
increase the efficiency of the system. Finally, Ap-
proxHadoop [I3] uses multi-stage sampling as the
first stage of data reduction and adds task dropping
as a load shedding approach for the second stage.

6 Conclusion

The system implements the approximate comput-
ing paradigm by leveraging the advantages of sam-
pling as a data reduction technique. It utilizes the
modularity of the Apache Spark Streaming to cre-



ate a seamless merging of this established data pro-
cessing framework with the Congressional and Dis-
tinct Value sampling methods. Thus, it provides a
user-transparent framework for the development of
approximate computing applications.

The system showed that current data processing
systems can still benefit from advancements made
before the Big Data Revolution. The experimental
results indicate that the system can be employed
in heavy data stream environments and provide a
faster execution time while maintaining a low error
bound.

6.1 Future work

Future work may address the implementation of a
self-adjusting sample size depending on the error
measurement and processing time. This may be
further expanded by recording the results of prior
executions to remember the best parameters of a
sampling algorithm and adjust these parameters for
each future job. Additionally, allowing the defini-
tion of QoS thresholds for error and accuracy over-
heads would gain the best resource usage for the
best available speed up. Finally, a module to de-
tect resource usage and shift the execution of an
application from normal to sampled mode would
provide the optimal performance and resource uti-
lization.
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