Tenant-Aware BigData Scheduling with
Software-Defined Networking

I.Tasneem Akhthar
tasneem.akhthar@tecnico.ulisboa.pt

Instituto Superior Técnico, INESC-ID
Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Abstract. The increase of data in the Internet world has created a need to pro-
cess and acquire information from them using Big Data Analytics which in turn
use data center for computing and storing purposes. The Big data analytics in
data center needs a good network configuration to avoid delay or error in the
network. but the traditional network could not avoid the error or dynamically
create a metwork architecture. This gave rise to Software Defined Networking
which configures, deploys and manages the network infrastructures and is most
widely used in the data center network. Both these technology SDN and Big Data
has benefited the data center network tremendously. SDN follows logically cen-
tralized approach, with which network allocation and scheduling can be performed
with increased efficiency and reliability. Due to the emergence of cloud services
it has becoming easy to access the computational resource. The client can rent
large size of the computational resources in a very reasonable price, but unfor-
tunately there is performance degradation in the network level as many clients
would be using the computational instance through same communication channel
and SLA (Service-level agreement) could not guarantee the performance in the
network layer. This bring about the problem in the multi-tenant data center en-
vironment. Having these two technologies in mind we propose MR-FLOOD which
s a conjugation of the Hadoop MapReduce framework and Floodlight controller.
We brought these technologies together to give the tenants a fair bandwidth share
and less latency using bandwidth or latency based job allocation strategy. Our as-
sessments show that the above mentioned properties are achieved, being carried
out in two common data center network topologies: Tree and Fat-tree.

Keywords: Software-Defined Networking (SDN); Big-data processing; schedul-
ing; multi-tenancy; cloud computing

1 Introduction

Massive increase in the usage of social networking, data intensive technologies, in-
ternet, cloud computing, has shown the growth of data in an unexpected extent. This
huge data collected can be processed to extract helpful information, which is known as
"Big data Analytics” and it is done by the data-intensive analytic framework such as
Hadoop [17], Spark [19], Dryad [9] and many others.

From many years MapReduce is used as the big data framework which does data
processing across large-scale computing clusters. Due to its simplicity and scalability
it is used by big data analytics to parallelize the job and process the data. Among

Tenant-Aware BigData Scheduling with Software-Defined Networking 2

many features, One of the main features of MapReduce is its ability to make use of
data locality and minimize network transfers. But according to the research [7] there
is performance degradation in MapReduce framework as there occurs bottleneck in the
network due to job completion time in shuffle phase. For example, the recent study of
MR traces from Facebook acknowlegde that the shuffle phase uses more than 50% of
the job completion time [20]. This problem can be solved by optimizing the network
used for communication, to reduce the response times.

MapReduce normally runs in large data centers (DCs) where network must be uti-
lized in a proper way to increase the productivity. Many researchers have concentrated
in optimizing the network based on the scheduling algorithms to improve the data lo-
cality and data transfer in the network. But very few work has been carried out in
order to dynamically adapt the network behavior to MapReduce application’s needs.
So there must be some kind of controller which is already aware of the application’s
traffic demand in the network. These observations helped to improve the performance
of individual MR applications and the overall network utilization, by introducing the
revolutionary idea which is known as Software-Defined networking (SDN). SDN controls
the network through software which in turn makes the network programmable. It has
been introduced as a replacement for conventional networking methods so that it can
meet today’s market requirements.

Software-Defined Networking is a technique which allows a network controller to
manage the network scheduling, in order to make full use of the resources and improve
the performance of the software running on the network. In short, SDN decouples the
network control (control plane) and forwarding functions (data plane) which enables
the control over the network and abstracts the underlying network infrastructure for
applications and network services.

Software-Defined Networking allows large scale networks to be coordinated and man-
aged effectively from a logically centralized controller. Large scale cloud and networking
systems are built leveraging the programmability and reconfigurability offered by SDN.
For Big Data applications, software-Defined networks provide for the ability to program
the network at runtime, in a manner such that, data movement is optimized for faster
execution.

While existing MapReduce frameworks such as Hadoop are exploited for real time
evaluation of QoS-driven service composition, SDN and OpenFlow controllers should be
leveraged to enable a QoS-driven self-configuration of the MapReduce platforms. This
research proposes a bandwidth and latency aware MapReduce service composition and
self-configuration for big data Analytics with SDN, by extending and leveraging Hadoop
MapReduce framework and floodlight SDN controller. Our project is also responsible
for allowing the tenant to make use of the big data application(Hadoop) and still keep
the data isolated from each tenant in the data center.

There are other bog data frameworks which is recently developed and they do give
better performance but we chose MapReduce frameowrk as it was used in MRemu
tool [12] to which we are upgrading in this project, we also improve the performance
of MapReduce jobs through runtime communication using Software-Defined network,
which is used to have a global view of the state of the data center network. This way
we are able to allocate the MapReduce jobs in the Data center by ensuring the band-
width and bandwidth. It is evaluated by trace-driven emulation-based experiments,

Tenant-Aware BigData Scheduling with Software-Defined Networking 3

using popular benchmarks and real-world applications that are representative of signif-
icant MapReduce uses.

2 Related Work

In the previous section we provided an insight on SDN, now we discuss about Open-
Flow protocol as SDN uses it. The OpenFlow architecture has three important concepts:
the network consist of OpenFlow switches, which becomes the data plane; the control
plane is made by at least one OpenFlow controller; and there is a secure channel between
the switch and the control plane. Each and every switch is a ”dumb” forwarding device,
that simply uses its flow table to determine where the packet has to be transmitted. A
flow table is composed by a series of flow entries. Each flow entry has the header fields
on which it will try to match incoming packets (e.g. Ethernet destination address),
actions to perform when an incoming packet matches this table entry (e.g. forward to
a specified port or flood to all ports), and counters that hold statistical information
about each flow (e.g. number of packets and bytes transmitted in this flow). When an
incoming packet does not match any entry on the flow table, it is sent to the controller
using the secure channel, which will decide what to do with this packet.

2.1 BigData Application Using OpenFlow

There are many number of techniques which uses OpenFlow to improve the transfer
of data to the nodes with better bandwidth utilization. Some of them are discussed
below:

Zhao li et. al. |[10] proposed OFScheduler which is a network optimizer based on
OpenFlow for improving MapReduce operations in a heterogeneous cluster. OFsched-
uler is aimed to increase the utilization of bandwidth and balance the workload of the
links in the network. The author uses tag to identify different types of traffic and then
OpenFlow tailors and transmits the flow dynamically.

FlowComb is a network management framework [5], which is also based on Open-
Flow. It benefits Hadoop with increased in bandwidth utilization and decreased data
execution times. The centralized decision engine present in FlowComb, collects data
from software installed on application servers and decides, how to schedule forthcoming
flows globally without congesting the network.

Qin et al., [14] have proposed a framework that employs SDN in Hadoop to decrease
the time taken by data to reach the distributed data nodes from the mappers. To
avoid the delay the author has developed a technique which eventually measures the
current available bandwidth on the links through OpenFlow protocol and schedules
tasks in a way which decreases the execution time. He named the proposed technique
as ‘bandwidth aware task scheduler’ (BASS) which utilized SDN and it manages the
available bandwidth of the links, and then allots into the time slot(TS), later BASS
decides to allocate the task remotely or locally with respect to the completion time.
The main plus point in BASS is that it does task scheduling, even when the OpenFlow
controller has scanty amount of bandwidth to consider.

Sandhaya Narayan et al., |[11] uses OpenFlow to control the network resources in
Hadoop. The most traffic generating phase in Hadoop is Shuffle phase where the inter-
mediate data is moved from Mappers to the Reducers. Due to the heavy traffic in the

Tenant-Aware BigData Scheduling with Software-Defined Networking 4

Shuffle phase, which in turn makes the bandwidth link unavailable between Mappers
and Reducers, causes delay in the Reducer. Consequently lowering the performance of
the Hadoop cluster. So the author has used OpenFlow technology which is used in SDN
to furnish better link bandwidth for shuffle traffic which simultaneously decreases the
Hadoop job’s execution time.

Wang et al., [15] have proposed a application-aware networking setup based on SDN
controller with optical switching, in which the network configuration is made easier by
using the integrated control plane in job placement. The job is scheduled in two ways
i)Bin packaging placement ii)Batch processing. Due to application awareness of the
network there is improvement in the big data performance by allocating and scheduling
bandwidth, as well as the completion time of the job is minimized drastically. The author
used Hadoop as an example of the big data application framework. The challenge which
the authors faced during configuration of the network for Hadoop task was to handle
the aggregated traffic in the mappers and reducers, which was resolved by ranking the
racks based on the traffic demands and then the racks needed to be added in the tree
topology in descending order of the demand.

Freguson et al., [6] has developed an API named PANE which is implemented on
OpenFlow Controller that gives read and write authority from the network adminis-
trator to end user. With the help of PANE the end users are allowed to work in the
network , which means that the end user and their application can manage the network
according to their need. It allows applications to contact the controller to request for
resources or set up rules for future traffic. PANE solves two issues (i)It allows multiple
end user (principal) to control the network resources (ii) It successfully solves the con-
flict between the end users requests, meanwhile it also maintains the level of fairness
and security.

End Users (principal) in PANE which gets read and write authority from the network
administrator can issue three type of message such as Queries,Hints, Request [6]. These
three message are used by principal when the user wants to request for bandwidth or
access control resources(Request Message),when user wants to learn about the traffic
between host or available bandwidth (Query), whereas the last message notifies the end
user about the current or future traffic characteristics.

Participatory Network restricts on the limits of the end user authority with the
help of shares. Share mentions which end user can send which kind of message in the
flowgroup, where the flowgroup refers to the messages in some of the network flow.
A share has three segements: principals, privileges and flowgroup [6]. The authors
demonstrate the feasibility of their proposed approach with four distributed applications
such as Ekiga, SSHGuard, Zookeeper and Hadoop.

Xiaolin et al., proposed Palantir [18], which is a SDN service specific for distributed
frameworks. It was build to abstract proximity information from the network for the
distributed frameworks such as MapReduce, Dryad. Earlier the network administrator
has to manually configure the network for the distributed framework but Palantir of-
fered great help to the network administrator by defining and capturing the proximity
information. To implement Locality Aware Task Scheduling and Rack Aware replica
placement we need to observe the network proximity information, where Palantir al-
lowed the distributed framework to express their definition of proximity. With the help
of this definition the Palantir automatically abstracted the proximity graph from phys-

Tenant-Aware BigData Scheduling with Software-Defined Networking 5

ical network topology. Palantir is leveraged on FloodLight controller E| where it uses
the existing device and topology manager of FloodLight to abstract the network in-
formation. Palantir had some concerns on scalability of the system so they tried to
reduce the computational cost by caching the abstracted proximity domain for each
registered framework in memory. When the framework corresponding to the Palantir
was shutdown or unregistered then the cached results are deleted from the memory.

3 MR-Flood

We now describe our solution MR-Flood. We start this chapter by providing a use
case for our system, in the upcoming paragraph. Then, in section 3.1 we provide a
detailed architecture explanation, mainly on the interactions between the component
of our thesis solution. In section 3.2 we go in-depth to the components presented in the
previous section, and describe the internal working of each one. Then, in section 3.3,
we summarize this chapter.

OpenFlow

Controllar
@‘I—P Job Tacker

Root Switch

Top of Rack (ToR)
switches

Physical q
Servers s

S IR I BT s PSS pemery

Tasktracker 2

Mata Plane

TaskTrcker N

R — Control Flane

Example of a Rack

-—e Virtual Metwork of Tonant A
— Virtual Network of Tenant 8

S—a Virtual Network of Tenant ©

Fig. 1: High level architecture of the solution with a simple data center tree topology.

In Figure [I] we show the high level architecture of our solution, which is inspired by
ViTena [4] in this use case we are also using a simple tree topology with depth equal
to 3 and fanout equal to 2. Most of our work will be similar to ViTena [4] but with the
changes due to the inclusion of MapReduce job scheduling in the VMs which is allocated
as described in ViTena [4]. Here we are using the traditional topology to have a better
understanding of our architecture. The OpenFlow controller is the main component
of our solution, as it is responsible for running the ”Latency and bandwidth aware
job scheduling” algorithm in order to map the requests on the physical network, and
then dynamically program the switches to deploy the requested task. We also introduce
MapReduce emulator (rightmost) which is another component of this solution and it
consist of Job Tracker and Task Tracker. It emulates as MapReduce framework.

! http://www. projectfloodlight. org/floodlight,/

Tenant-Aware BigData Scheduling with Software-Defined Networking 6

Now we explain about the Openflow switch where all the switches acts as a packet
forwarder as they do not have any intelligence to forward the packet, it listens only to
the controller and acts according to the rule described by the controller. The controller is
logically connected with all the switches in the network, which is depicted by a dashed
red lines that becomes the control plane. They are only logically separated but not
physically separated from each other.

Our algorithm ”Latency and bandwidth aware job scheduling” tries to schedule the
batch of task on the smallest available subset of the physical network (on the same
physical server, then on the same rack, and so on). Our aim to maximize the proximity
of Batch of task in the VMs belonging to the same tenant, which results in minimizing
the number of hops between those VMs, in turn it reduces the latency and having the
task placed in proximity i.e to be in the same server or in different rack, this saves the
bandwidth usage in the upper links of the tree, which helps in saving the bandwidth
in the upper links as the network is scarcer in data center [3]. By this we can allocate
more number of task without making the network links to become bottleneck.

Now we explain you the Figure [I} where we show you an example of three virtual
network placements according to algorithm presented in ViTena [4]. The virtual network
of tenant A represents the best case possible where all the batch of task can be mapped
on the same physical server. In this, there is no usage of the network due to which
bandwidth is saved for future requests of the task allocation. Now in other situation
where the batch of task is split into two cases based on latency and bandwidth oriented
request such that the given batch of task cannot be mapped into the same server.
For instance let us assume that the task is latency oriented and the request cannot be
mapped into a single server then we try to allocate the request in other servers belonging
to the same rack as shown in the virtual network of tenant B this drastically reduces the
latency. In the second case we assume that the request is bandwidth oriented then our
algorithm looks for the server which are scattered apart to allocate the request (i.e. not
in the same rack) as shown in the virtual network of tenant C to ensure that bandwidth
and latency are not compromised.And the nearest free server are kept for the future
task which are latency oriented.

Our algorithm ensures that the network, can provide the bandwidth and latency
guarantees requested by each Batch of task Apart from this we also use the centralized
information in the controller to provide two properties not seen in the systems we have
surveyed, those are the fair bandwidth sharing among tasks and reduction of latency
for the Batch of Task requests. Fair bandwidth sharing is achieved by instructing every
switch used by a virtual network to follow the QoS disciplines by creating a new queue
for that task. Secondly the reduction of latency is achieved by ensuring latency and
bandwidth for batch of task algorithm, by placing the task using best fit strategy.
To know the heuristics we need to abstract the current network from the OpenFlow
controller.

3.1 Architecture of the Proposed Solution

Now we describe in greater detail about the architecture shown in the previous
section. Figure [2|is the similar to the previous architecture but here it shows in greater
detail about the component of our project. Thus, in Figure [2| it contains the software
that will be used for the execution of our alogorithm.

Tenant-Aware BigData Scheduling with Software-Defined Networking 7

Job Batchof Task | Allocating Batch of Task —
tracker Request Algorithm —|

OpenFlow
¥ Controller:

Parser from Allocation Floodlight
Results to OpenFlow Rules

L
————

Network Information
Manager

Y

Switch's Flow R .
—% Table % % Open vSwitch Manager
Queue |_____ Queue
N 2 1

|)

Server's Operating System ‘

]

OpenFlow
Switch:
Open vSwitch

Legend:

Data Plane ‘
Messages

Physical Server:
& L Linux Host

____ Control Plane '/
Messages ‘ Process N ----- Process 2 ‘ Process 1 |— | Task
Tracker

Fig. 2: Software architecture of the components present in the solution.

Let us justify our choices regarding the components shown in Figure 2] For the
OpenFlow controller, we will use Floodlight for two reasons: first because it is based
in Java, which as stated earlier gives the highest performance; and second because it
is build using Apache Ant,which is very easy and flexible in use. Regarding the other
components, Switch and Physical Server, the choices are Open vSwitch and Linux Host
(respectively) because this solution will be implemented within the Mininet emulator,
that uses those components. We will use Mininet because it is open-source and also
because it is used by the MRemu tool [12]. Our solution can be executed in the real
data center network with or without any changes. The only exception is the Linux Host,
where there would be a hypervisor running and it would manage the VMs inside the
host machine. We make an assumption to simplify our solution that all physical server
have the same CPU frequency so the tenant asks for the percentage of CPU instead of
the CPU frequency.

Now we depict the flow of information in the system which uses our algorithm. First
of all, the BigData application’s task expresses its demands in a Batch of task request
(e.g. an JSON file). This consists in defining two things: the number of VMs required
(and also the percentage of CPU of each one) as well as the bandwidth required between
the VMs that will be connected (expressed in MBit/s). The batch of task request is fed
into the ensuring latency and bandwidth for batch of task algorithm (detailed in the
next section), that is running in the OpenFlow controller. Upon receiving the request,
the algorithm contacts the network information manager to get the current state of
the network. Based on this state, the algorithm determines (if the request is accepted)
where this batch of task will be allocated. One important thing we should know is, all
the requests are processed by the controller, this updated view of the network involves
zero control messages over the network, since the controller just has to update this
information when it processes a new task allocation request.

Tenant-Aware BigData Scheduling with Software-Defined Networking 8

The controller then translates the result of the algorithm (i.e. the affected switches
and hosts) to OpenFlow rule(s) to reprogram the switch(es). Upon receiving this mes-
sage, the Open vSwitch manager takes two actions: creates a new queue for the batch
of task, with the minimum bandwidth present in the received message; and installs a
new rule in the switch’s flow table to forward packets from that batch of task to the
newly created queue. This means that there will be one queue for each batch of task
passing on that switch. In this way, a queue (Batch Of Task) can use more bandwidth
than its minimum when the other queues are not using it.

The bandwidth share between queues is made fairly according to the minimum
bandwidth a queue has. Thus, the resource usage is maximized, as the tenants share
unused bandwidth in the fair manner, and they also get their minimum bandwidth
guarantee when the network is saturated. Suppose if the network is saturated, packets
may be dropped at the switch. This ensures performance isolation at the network level.
As the Open vSwitch is based on the Linux kernel, we will use the traffic control (tc)
utility HTB (Hierarchy Token Bucket) to make the configuration of the queues.

We will represent and implement Batch of task as processes. To simulate tenants
workloads, each process will be running a traffic generator. As depicted in Figure
upon the necessary configurations, each process (i.e. Batch of Task) can communicate
with other processes on the same virtual network, using either the operating system (in
case the processes are on the same server), or contacting its adjacent switch which will
use the flow table to check to which queue it should forward this solicitation (in case the
processes are on different servers). To make this distinction, each physical server needs
to keep a list of the processes (and the corresponding virtual network of each one) it
owns.

4 Evaluation Methodology

The traces which we are using to generate traffic in our experiment were obtained
from the MRemu github repository with modification explained in previous section.
Neves et al. |12] used the traces which was obtained from the HiBench benchmark
suite. [§]

— WordCount - This is the most common application used during the MapReduce
evalution. It has a text input data where each words are counted when they occur.
The traces had 50 GB of input data.

— TeraSort - It is an application where huge data is sorted to check the time it
takes to sort using the MapReduce framework. With the help of this application
the MapReduce framework is evaluated. we use the traces of 31 GB of data from
HiBench benchmark suite.

— Sort - We also use the Sorting application where it sorts the input data which is in
text. This input data is generated from a Random TextWriter. This application is
widely used to evaluate the performance factor. In this application 32 GB of data
was sorted to obtain Job traces.

— PageRank - This application is implemented using the page-rank [8] algorithm,
where it calculates the ranks if the web page by counting the number of reference
links in the web page. So this application is also used in our evaluation strategy.
Here we use 500k pages to process the page rank which was configured by Neves

Tenant-Aware BigData Scheduling with Software-Defined Networking 9

et al. This 500k pages of data has 1 GB of input data where Neves et al. used
Pegasus project [2] to derive the job traces. Hence, this is also used by us to know
the efficiency of the MapReduce framework during job scheduling.

— Nutch - Apache Nutch [1] is a web crawler, used for page indexing purposes, this
is a;s0 used in MapReduce framework and Neves et al [12] used 5M of pages to do
the indexing and it was approximately 8 GB of data.

— Bayesian Classification - This is last application which we are using for our
evaluation strategy. It is based on the Naive Bayesian [8] algorithm. It is basically
used in Data mining, Machine learning, Knowledge discovery and it is part of Apache
Mahout [13]. For this application Neves [12] configured 100K pages to be used as a
job trace.

MaxiNet [16] is best to emulate the data center networks as it gives the realistic feel
of the data center networks and it was our choice at first. But then, it was not supported
by Mremu [12] framework. so we have to use Mininet to create our data center network
topologies.

We use two different types of mininet topologies developed by [4] to evaluate our
experiment. These two topologies were used to emulate the data center.

— Tree topology - It has 125 servers, 31 switches and 155 links. This consists a Tree
topology with a depth equal to 3 and a fanout equal to 5.

— Fat-tree topology - It has 128 servers, 160 switches and 384 links in the network.
Here the k factor is set to 32, which means each switch has 32 ports.

4.1 Goal - Job Completion time

In this goal we want to evaluate the job completion time using tree topology. The job
traces are serially processed based on the latency/bandwidth parameter. We evaluate
to check how efficient our experiment is when compared with the Zhuoyao Zhang et
al., [21] where he has not used SDN to abstract the underlying information of the data
center network.

4.1.1 Tree Topology In Figure [3] we can see the results of obtained with a Tree
topology:

It has a row of blue bar which depicts the Job completion time when the latency
was set as parameter and the red bar in the chart depicts the Job completion time when
bandwidth was set as parameter for our job scheduling algorithm.

Our results for the job completion time are better when compared with |21]. Our job
scheduling algorithm processed the request of all jobs was quickly and achieved 47.3%
less time when compared to Zhuoyao Zhang et al., [21] work.

By analyzing Figure [3| we can see that bandwidth oriented task has higher job
completion time. This is because the bandwidth task are scattered into the servers.
And the latency based task are closely kept in the server due to which the time taken
to complete the job is lower when compared to the bandwidth based job.

Tenant-Aware BigData Scheduling with Software-Defined Networking 10

Job completion time with tree topology
— M Latency
WordCount] B Eandwidth
SO
250 300 350 400 450

Job completion time (sec)

Fig. 3: Job completion time using a Tree topology.

Tenant-Aware BigData Scheduling with Software-Defined Networking 11

4.1.2 Fat-tree Topology The results for Job completion time using a Fat-tree topol-
ogy, are presented in Figure [

In this topology we have more links and switches as the k factor is set to 32 and due
to this, the fat tree topology would have more path than the Tree topology.

As described in the previous topology the blue bar depicts the job completion time
of the latency oriented task and the red bar in the chart depicts the job completion
time of bandwidth oriented task.

Looking at Figure [l we can see that the completion time for all the task using
this topology is higher than the one using a Tree topology. And when this result was
compared with Zhuoyao Zhang et al., work, it showed a variation of 48.1% which
seems to be better. Fat tree took more time to complete the job completion time when
compared to tree topology as it had more number of paths between two nodes.

Job completion time with fat tree topology

B Latency
WordCount __ B Eandwidth
250 300 380 400 450

Job completion time (sec)

Fig. 4: Job completion time using fat tree topology.

5 Conclusion

we have addressed the topic of Job scheduling, network management and configu-
ration in Data Center networks. We know that current Data Centers lack network per-
formance guarantees, since all tenants interchangeably share the network. This makes

Tenant-Aware BigData Scheduling with Software-Defined Networking 12

the performance to degrade in a tenant’s application, since the tenant dependents on
factors outside of its control.

These problems are solved using the abstraction of underlying networks. Using the
abstraction we gathered the network parameters such as bandwidth, latency and CPU
to provide better resource to the tenant without degrading the performance. All this
was possible by using the Floodlight SDN controller.

We designed an OpenFlow controller that is able to allocate the batch of task (with
bandwidth guarantees) in a work-conservative system, achieving high consolidation on
the allocation of tasks and high resource utilization of the Data Center’s resources. We
have designed our task allocation algorithm taking into account the environment where
it will run in, a Data Center, which means that it has to scale well.

With our solution well defined, we have implemented our controller on top of the
Floodlight open-source project with the Hadoop Mapreduce emulator. We began study-
ing both the tools so that we can implement our logic into the floodlight controller with
which our job scheduling would fulfill its demand of allocating the batch of task. But
for this we need to develop a new module inside the Floodlight controller. Apart from
that we also make modification inside the MapReduce emulator to be able to provide
tenant aware job scheduling.

In MapReduce emulator we have overcome the limitation Neves et al, had. We have
enhanced the tool by introducing ”Concurrent job execution” And we also made many
changes so that we can make our implementation possible.

After the comprehensive evaluation of our implementation. we use the developed
scripts [4] to create two Data Center network topologies: Tree and Fat-tree. After the
evaluation conducted the results were outstanding, which shows that we have pretty
much accomplished the goals we have set out in the beginning. From the evaluation, we
can see that our system has: low execution time, high consolidation of task allocation
and high resource utilization.

References

1. Apache nutch.

Pegasus: A peta-scale graph mining system implementation and observations.

3. Kashif Bilal, Samee Ullah Khan, Joanna Kolodziej, Limin Zhang, Khizar Hayat, Sajjad Ah-
mad Madani, Nasro Min-Allah, Lizhe Wang, and Dan Chen. A comparative study of data
center network architectures. In ECMS, pages 526532, 2012.

4. Daniel Caixinha, Pradeeban Kathiravelu, and Luis Veiga. Vitena: An sdn-based virtua;
network embedding algorithm for multi-tenant data centers., In 15th IEEE International
Symposium on Network Computing and Applications(NCA 2016).

5. Anupam Das, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and Curtis
Yu. Transparent and flexible network management for big data processing in the cloud.
In 5th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud’13), 2013.

6. Andrew D Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram Krish-
namurthi. Participatory networking: An api for application control of sdns. In ACM
SIGCOMM Computer Communication Review, volume 43, pages 327-338. ACM, 2013.

7. Mohammad Hammoud, M Suhail Rehman, and Majd F Sakr. Center-of-gravity reduce
task scheduling to lower mapreduce network traffic. In Cloud Computing (CLOUD), 2012
IEEFE 5th International Conference on, pages 49-58. IEEE, 2012.

N

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

Tenant-Aware BigData Scheduling with Software-Defined Networking 13

Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The hibench bench-
mark suite: Characterization of the mapreduce-based data analysis. In New Frontiers in
Information and Software as Services, pages 209—228. Springer, 2011.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: dis-
tributed data-parallel programs from sequential building blocks. In ACM SIGOPS Oper-
ating Systems Review, volume 41, pages 59-72. ACM, 2007.

Zhao Li, Yao Shen, Bin Yao, and Minyi Guo. Ofscheduler: a dynamic network optimizer
for mapreduce in heterogeneous cluster. International Journal of Parallel Programming,
43(3):472-488, 2015.

Sandhya Narayan, Stuart Bailey, and Anand Daga. Hadoop acceleration in an openflow-
based cluster. In 2012 SC' Companion: High Performance Computing, Networking Storage
and Analysis, Salt Lake City, UT, USA, November 10-16, 2012, pages 535-538. IEEE
Computer Society, 2012.

Marcelo Veiga Neves, Cesar AF De Rose, and Kostas Katrinis. Mremu: An emulation-
based framework for datacenter network experimentation using realistic mapreduce traf-
fic. In Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2015 IEEE 23rd International Symposium on, pages 174-177. IEEE, 2015.
Sean Owen, Robin Anil, Ted Dunning, and Ellen Friedman. Mahout in action. 2012.
Peng Qin, Bin Dai, Benxiong Huang, and Guan Xu. Bandwidth-aware scheduling with
sdn in hadoop: A new trend for big data. arXiv preprint arXiv:1403.2800, 2014.

Guohui Wang, TS Ng, and Anees Shaikh. Programming your network at run-time for big
data applications. In Proceedings of the first workshop on Hot topics in software defined
networks, pages 103-108. ACM, 2012.

Philip Wette, Martin Draxler, Arne Schwabe, Felix Wallaschek, Mohammad Hassan
Zahraee, and Holger Karl. Maxinet: Distributed emulation of software-defined networks.
In Networking Conference, 2014 IFIP, pages 1-9. IEEE, 2014.

Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

Ze Yu, Min Li, Xin Yang, and Xiaolin Li. Palantir: Reseizing network proximity in large-
scale distributed computing frameworks using sdn. In Cloud Computing (CLOUD), 2014
IEEE Tth International Conference on, pages 440-447. IEEE, 2014.

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.
Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX conference
on Hot topics in cloud computing, volume 10, page 10, 2010.

Deze Zeng, Lin Gu, and Song Guo. Cloud Networking for Big Data. Springer, 2015.
Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo. Optimizing cost and per-
formance trade-offs for mapreduce job processing in the cloud. In 2014 IEEE Network
Operations and Management Symposium (NOMS), pages 1-8. IEEE, 2014.

	Tenant-Aware BigData Scheduling with Software-Defined Networking
	Introduction
	Related Work
	BigData Application Using OpenFlow

	MR-Flood
	Architecture of the Proposed Solution

	Evaluation Methodology
	Goal - Job Completion time

	Conclusion

	Bibliography

