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Abstract

Distributed stream processing systems appear as a solution for processing huge volumes of data in
real-time. One of the key problems that these systems need to deal with is associated with managing
all the computational resources that are required to execute their applications, so that no resources are
wasted and unnecessary costs are reduced. This, while at the same time, guaranteeing that all tasks
are well provisioned with the resources that they need to keep up with their incoming workload.

This work explores precisely this problem by proposing a novel resource management model, that
targets resource efficiency in a stream processing environment where several workload dynamic and
resource heterogeneous applications execute in parallel. A resource aware task scheduler is proposed,
that follows what we call an optimistic approach, as it doesn’t limit the amount of tasks that can be
executed by a single machine, instead, it adapts tasks’ allocation / placement based on their runtime
metrics. At the same time, load shedding in stream processing applications is explored as a solution
to overcome situations of tasks’ overallocation to resources that may appear due to previous wrong
decisions performed by the task scheduler, due to its optimistic approach.

Additionally, a proof-of-concept of such system is implemented, targeting the widely used Apache
Flink system. This proof-of-concept is evaluated against different workloads, to show how the different

aspects of the algorithm and its mechanisms operate and behave.
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Resumo

Os sistemas de processamento distribuido de streams aparecem como uma solugao para o processa-
mento de grandes volumes de dados em tempo real e com baixas laténcias. Um dos problemas chave
destes sistemas prende-se com a gestdo dos recursos computacionais disponiveis, de modo a reduzir
custos e a evitar desperdicios de recursos. Sendo também necessario garantir que cada tarefa tem os
recursos que precisa para poder acompanhar o ritmo a que recebe novos eventos para processar.

Este trabalho explora precisamente este problema ao apresentar um novo modelo de gestao de
recursos computacionais, com o objectivo de optimizar o uso destes recursos em ambientes de pro-
cessamento em stream, onde sdo executadas aplicagdes que processam workloads dinamicos e que
tém diferentes requisitos em termos de recursos computacionais. Um novo escalonador de tarefas é
proposto, que toma decisdes optimistas no sentido em que deixa de limitar o nimero de tarefas que po-
dem ser executadas em cada maquina. Em vez disso, a alocacao de tarefas aos recursos disponiveis
€ adaptada em tempo real, com base nas métricas de execugdo das mesmas. A utilizacdo de Load
Shedding em processamento de streams € também explorada como uma ferramenta para resolver
problemas de sobre-alocagao de tarefas, que pode ocorrer devido as decisdes optimistas tomadas pelo
escalonador.

Ao longo deste trabalho, foi implementada uma prova de conceito deste sistema no Apache Flink,
um sistema de processamento de streams moderno. O sistema proposto é avaliado utilizando diversos

workloads, de modo a mostrar os diferentes componentes e algoritmos usados em acc¢ao.

Palavras Chave

Processamento em Stream; Escalonamento de Tarefas; Optimizacdo de Recursos; Load Shedding;
Apache Flink.
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Every day large amounts of data are produced from diverse data sources. This data contains in-
sightful and valuable information, and as such there is a need not only to process it, but also to do it in
a near real time manner. Thus, allowing users to get results as fresh as possible. Distributed stream
processing systems appear as a tool that allow to easily build large scale real time applications that
can process these huge amounts of data and keep up with the incoming rate at which the data is gener-

ated. Excused to say that large computational clusters are required to run these large scale applications.

1.1 Motivation

Efficiently managing these large amounts of resources is a challenging problem, particularly in en-
vironments where several heterogeneous applications can be executing in parallel [1-3]. Usually an
allocation based approach is followed, where the application owners can reserve specific amounts of re-
sources for the execution of the applications’ tasks. In such environments, it is common to face resource
underutilization situations. This not only yields a pain for the application developers, since they pay for
more resources than the ones they need at a specific instant in time, but it also shows an opportunity
for the resource owners to increase their profit. In fact, this is also an observed issue in large scale
datacenters, where reports can be found claiming a resource usage below 60% [4] of the full capacity.

One of the main reasons for this to happen is because resources tend to be allocated to the appli-
cations’ peak workload, while on average workload most of these resources will not be used [5]. Note
that it is usual for stream processing applications to have very unstable and dynamic workloads, where
most of the time the workload is fairly low but suddenly some unpredictable bursts occur. This makes
this overallocation understandable, since applications still need to respect their Service Level Agree-
ments (SLAs) when facing these worst case scenarios. Additionally, estimating the resource needs for
specific applications is not a trivial task, and it's easy for clients to simply overestimate the amount of
required resources. As such, although these resources are available, no application will be able to use
them, since they are already allocated for the execution of other applications.

Apache Flink', is a modern and state of the art stream processing system. Nonetheless, it suffers
from the same problems when it comes to resource management. In fact, Flink’s resource management
model is even more rudimentary, since the resources used for each task execution are not specified
by the application owner. Instead, each machine provides a specific amount of slots that can be used
for tasks’ execution. Machines’ resources are equally distributed over these slots. Needless to say
that this amount of tasks is defined by the Flink cluster administrator, thus it has to assume that all

application tasks have the same resource requirements. As such, if tasks are expected to consume

”Apache Flink”, https://f1link.apache.org, (June 22, 2018)
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few resources, then machines should be configured to provide high amounts of fine granular slots,
avoiding underutilization situations. On the other hand, if tasks are expected to be resource heavy,
then machines should provide coarse grained slots, avoiding resource starvation situations. Clearly this
rather inflexible one-size-fits-all approach doesn’t work in scenarios where the applications’ tasks are
highly heterogeneous, as it is more and more expectable in multi-tenant scenarios / deployments.

The opposite problem of resource underutilization is usually named as task overallocation [6], which
consists in having too many tasks allocated to a specific machine. It leads to poor applications’ per-
formance and eventually disrupting the applications’ SLAs, where applications fail to cope with their
incoming workload because no computational resources are available for them to use. This is clearly an

undesirable situation in such real time critical systems.

1.1.1 Shortcomings of Current Solutions

As said, current stream processing systems solutions follow an allocation based resource manage-
ment approach [7]. As such, they can’t handle resource underutilization situations, since they still require
clients to have a fine control on the resources that are allocated to their applications. Other stream pro-
cessing solutions such as Apache Storm?, follow a more naive approach, distributing applications’ tasks
over the available resources in a round robin way. While this approach reduces the probability of re-
source underutilization, it increases the probability of resource starvation situations.

Overallocation of tasks to machines is a commonly used solution to avoid resource underutiliza-
tion [8], being commonly used in datacenter environments running several virtual machines. Nonethe-
less if the applications’ workload increases, their SLAs may become compromised. This leads to the
need of constantly monitor the applications’ runtime in order to react to possible bottleneck situations
and guarantee that their SLAs keeps being respected; as well as the necessity to have some compen-
sation mechanism to perform eventual corrections in the system. A common compensation mechanism
consists in auto-scaling the application. This may not be ideal, first because it may not react fast enough
for the applications to keep coping with their workload. Second, because it implies the system having to
perform runtime modifications to the applications’ topology (i.e. increasing / decreasing the parallelism),
without the user being in control of them.

Additionally, Flink provides an almost similar method to overallocation, named slot sharing [9], that
allows to use a single slot to execute multiple tasks of the same application. Nonetheless, it is still up for
the user to decide whether to use it or not.

In resource management systems such as Apache Mesos® similar solutions to overallocation can be

found. For instance, Oversubscription [10] is used in Mesos to take advantage of temporarily unused

2”Apache Storm”, http://storm.apache.org, (June 22, 2018)
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resources to run best-effort, lower priority tasks. This way, these tasks can be assigned to revocable
resources, meaning they can be taken away once they are needed by other higher priority task, in
order to meet his target Quality-of-Service (QoS). This is done either by killing or throttling the lower
priority tasks. Nonetheless, such approach doesn’t take advantage of the domain knowledge on stream
processing systems, where the applications’ accuracy can be used as a trade-off for the freshness of
their results.

Additionally, resource usage estimation mechanisms for the applications’ tasks have also been pro-
posed [5], allowing to correct the resource over-estimation performed by the user. This estimation is
then taken into account by the task scheduler. Unfortunately, these solutions usually require some his-

tory from the applications’ execution in order to perform good estimations.

1.2 Proposed Solution

This work proposes a novel approach for resource management in stream processing systems that
targets resource efficiency. It does so, by following a different mechanism from current resource reserva-
tion based solutions. In fact, the proposed solution completely drops the concept of resource allocation
to applications’ tasks. The rationale behind this solution consists in using a task scheduling policy that
given a new task, schedules it to the machine with more available resources, in terms of CPU usage.
Therefore, avoiding situations of resource underutilization, due to having unused but reserved resources
that can’t be used by other applications.

By following this policy, it is clear that it can lead to task overallocation situations, since it may allocate
multiple resource heavy applications to the same machine, and because the applications’ workload
and resource requirements can dynamically change over time. For that reason, two mechanisms are
proposed, in order to guarantee that applications keep coping with their incoming workload. The first,
consists in dynamically re-scheduling tasks to other machines. While the second consists in using
load shedding as a way to reduce the workload of specific applications, allowing applications to keep
producing fresh results, with the trade-off of reducing the applications’ accuracy.

The proposed solution is responsible for deciding when each of these mechanisms should be used.
This is performed based on runtime metrics and on SLA requirements provided by the users, namely,

the priority of the applications’ queries and their acceptable accuracy threshold.

1.3 Goals and Contributions

The main goal of this work consists in exploring the applicability of Load Shedding solutions to the

problem of resource management in stream processing systems. The proposed solution accomplishes



this goal by leveraging load shedding as a compensation mechanism to the task overallocation problem.
Thus, allowing applications to keep up with their incoming workload and improving resource efficiency
without compromising their SLAs, while reducing costs both for the applications’ and cluster’s owners.

Several key contributions from this work can be outlined. The first consists in a model (and underlying
algorithms) that allows to govern all the required decisions, providing useful and meaningful semantics
for the end line users, as well as a simple and understandable interface for them to specify their applica-
tions’ requirements. The second contribution consists in a more sophisticated load shedding mechanism
for stream processing applications, that takes into consideration accuracy requirements from the differ-
ent queries within the applications. A detailed description is provided, regarding how such a mechanism
can be implemented in Apache Flink; as well as how the solution can take into consideration bottlenecks
in source tasks of the applications. A resource usage aware task scheduler is also developed, that
performs scheduling decisions based on runtime metrics of the tasks’ execution.

As will be seen, these mechanisms are detailed in such a way that the different components end
up by being decoupled. Allowing to easily replace the semantics followed by each of them, without
compromising the objective of the overall solution. This is also considered to be a relevant contribution,
as it not only enables customization, but also allows future work to be performed on top of the proposed

framework.

1.4 Document Roadmap

The remaining content of this document is organized as follows. Chapter 2 presents other work
that is considered to be relevant and in line with the established goals and context of this work. Three
dimensions are explored in this chapter: Stream processing, Resource Management and Approximate
Computing. Besides exploring state of the art academic and commercial solutions, this chapter also pro-
vides a good background knowledge for the reader to better understand the rest of the work. Chapter 3
focuses on describing the architecture and on detailing the proposed model, as well as the algorithms
that will govern the decisions taken by each component of the solution. Follows Chapter 4, that presents
a more implementation wise oriented description of the proposed solution in Apache Flink, as well as
some setbacks discovered during this phase of the work. Chapter 5 covers the evaluation of the devel-
oped solution, providing a description of performed benchmarks and the obtained results, together with
their analysis and discussion. This document finishes with Section 6, that summaries the main points of

this work and discusses possible future work.
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2.1 Overview

This work covers three main fields of study: Stream Processing Systems, since the solution is specifi-
cally design to take advantage of these type of systems; Resource Management, as it aims at improving
resource efficiency, by handling underutilization and resource starvation situations; and Approximate
Computing, since it leverages Load Shedding as a mechanism that will be used to guarantee that appli-
cations will keep up with their incoming workload. As such, this chapter focus on providing a historical
and state of the art background regarding these three dimensions of this work. Sections 2.2, 2.3 and 2.4
cover the above mentioned topics, in the respective order. The chapter finishes with a section dedicated
to Apache Flink, that contains relevant and more detailed information, that will establish some concepts

that will be used throughout the rest of the document.

2.2 Stream Processing

Historically, data stream processing started being explored within the Databases research field.
At that time, stream processing systems where called Data Stream Management Systems (DSMSs).
DSMSs allowed users to submit queries over data streams, that are continuously executed until the user
removes them. A good example of such systems is the Aurora Project [11]. These systems were end-to-
end solutions, that provided a storage and computation unified solution. They often did not scale; they
were often SQL oriented, which makes them less expressive, though some allowed to specify queries in
a graphical way; and they only supported structured data. Eventually these systems evolved to DSMSs
such as Aurora* [12], Borealis [13] and STREAM [14], that target distributed, high available and scalable
stream processing [15].

Recently, with the "Big Data explosion” and the increasing need to process huge amounts of data in
real time, a new class of stream processing systems emerged. These systems are called Distributed
Stream Processing Systems (DSPSs), and examples of them are the Apache Flink, Apache Storm and
Apache Spark Streaming'. A key difference between DSPSs and DSMSs, is that they only provide the
processing layer. More, they are built to scale to hundreds of nodes. This section focuses on distributed
stream processing and on current state of the art solutions. Regarding the terminology that will be used,
it follows the one defined by Apache Flink, as it's the DSPS that is targeted by this work.

2.2.1 Distributed Stream Processing

Intuitively, stream processing consists in processing data streams. These data streams correspond

to continuous, ordered and possibly infinite flows of events. In order to process data streams, current

”Apache Spark”, http://spark.apache.org, (June 22, 2018)
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solutions follow one of the following paradigms: Micro Batching or Tuple-at-a-Time processing.

Micro Batching Incoming events are constantly grouped into small batches that are then processed
in a batch processing fashion. It has the advantage that it allows to leverage already existing batch
processing tools so that they can support stream processing, therefore most of the problems would
be already solved and it is easier for companies to shift from batch to stream processing. But, it has
downsides. One is the fact that it adds additional delay due to its batch nature, the other is the difficulty

to determine the optimal batch sizes [16].

Tuple-at-a-Time Consists in processing events as they arrive to the system. Though this approach
cannot reuse already existing batch processing systems, it does have the advantage that it achieves
the lowest latency. Note that this does not mean that stream processing tools that follow this paradigm
cannot support batch processing, since batch processing is just a special case of stream processing

with bounded data streams.

2.2.2 Stream Processing Applications and Concepts

A stream application is usually represented as a Direct Acyclic Graph (DAG), sometimes also de-
nominated as a dataflow. In this DAG, the nodes represent operations on the events, and the edges
represent streams that connect the output of one operation to the input of the other, as presented in
Figure 2.1.

Given a certain node (e.g. blue nodes in the figure), the set of nodes that precede him in the DAG are
named its upstream (e.g. yellow nodes in the figure), and the set of nodes that succeed him are named
its downstream (e.g. green nodes in the figure). Nodes without any upstream are named sources, while
nodes without downstream are named sinks or queries. Source nodes are responsible to inject the
events from an external data stream into the application in order to be processed.

The figure also shows that there are two types of DAGs, the logical and the physical one. The logical
DAG corresponds to the one that is described by the user, whereas the physical DAG corresponds to a
compiled and optimized description of the application, representing how the application will actually be

executed and deployed to the machines.

Operators Are abstract computations that consume events from a stream, process them and output
zero or more events to its output streams. Operators can be implemented by the user, but usually most
DSMS provide some standard operators.

Operators may be stateless, i.e. they do not maintain state across events, or stateful, i.e. they do

keep state. In order to deal with failures, operators allow to periodically take snapshots of their state.

10



These snapshots are then stored in a reliable distributed data store.
In the physical DAG, the operators are presented by subtasks, or operator’s instances. Each operator

may be mapped to several subtasks that execute the same logic in parallel.

upstream downstream
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< >
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Figure 2.1: Example of a stream application’s logical and physical DAGs.

Streams Are abstract channels that allow operators to exchange events. They provide First-In First-
Out (FIFO) semantics and allow nodes to communicate asynchronously.

Since sending events between nodes has costs, instead of sending individual events, operators
produce buffers of events sent over the streams. Defining the size of the buffer or periodicity at which
it must be flushed, has impact on the overall latency and throughput of the system. If the buffer size is
higher, the throughput is maximized but the latency increases, since events must hold before being sent
to the downstream nodes. If the buffer size is low the latency decreases as well as the throughput. This
problem has been explored in [17].

Events in the streams may or may not be persisted. Persisting events leads to faster fail recoveries,
but a penalty is paid on latency, introduced by persisting messages before making them available to the
downstream. On the other hand, not persisting the events, leads to having to re-compute some of the

already processed events [18]. Recently, in [19] an hybrid approach has been proposed, where events
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become immediately available for consuming, while at the same time are asynchronously persisted
(removing this latency out of the critical path). When a failure occurs, events may or not need to be
re-computed.

In the physical DAG streams are divided into partitions, each connecting two subtasks. The amount
of partitions depends on: the source data streams, on the operators’ parallelism and on how they are
connected. Operators in a stream may be connected in an all-to-all fashion, i.e. all producer subtasks
create tuples to all consumer subtasks; or in a many-to-many, i.e. each producer subtask produces
tuples only for a subset of the consumer subtasks. The way a producer instance decides to which
partition a tuple is sent depends on the routing policy that can be done based, for instance, on the hash

of a tuple field, which ensures load balancing for all subtasks of the same operator.

2.2.3 State of The Art

Regarding examples of DSPSs, the followings are currently the most relevant ones in the stream
processing landscape, and as such it is worth to mention them. These systems not only bring interesting

ideas to the field, but they are also broadly used in the industry.

Apache Spark Streaming Is a well-known batch dataflow processing framework [20]. To support
stream processing, it provides a streaming APl named Spark Streaming. The way stream processing
works on Apache Spark is based on Micro Batching, being its key difference when comparing with other
solutions. Thus, it ends up by having all the downsides of this approach. In Spark, these batches are
called Resilient Distributed Datasets (RDDs), which are partitioned, fault-tolerant and in memory data

structures that can be periodically checkpointed.

Apache Kafka Streams Developed by Confluent, it consists on a stream processing tool built on top
of Apache Kafka. Kafka Streams are in all aspects similar to Apache Samza [21], except that it does
not rely on a resource manager, since its main focus is on simplicity. Comparing to other solutions, the

following are the key features that differentiate Kafka Streams [22]:

+ It relies on the duality between streams and tables. Where a stream can be seen as a change-log
of a table, and a table as a cache of the latest value associated with each key in the stream. This

idea is used in order to store the state of stream processing tasks in Kafka.

» The use of stateful streams and how it leverages Kafka topics as a mean of communications

between tasks, while at the same time uses Kafka as a way to provide fault tolerance support.
» The use of standby replicas for fast failure recovery.

» Well suited for micro-services use cases.
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Apache Flink Similarly to Spark it supports both batch, iterative and stream processing. At its core,
Flink is implemented as a streaming dataflow processing system, on top of which the Datastream and
Batch processing layers are built. Therefore, Flink follows the Tuple-at-a-Time approach, enabling true

stream processing. Key contributions from Flink are:

» The Memory Manager that reduces garbage collection overhead by managing off-heap memory,
while at the same time is responsible for moving data to disk whenever the memory is full. It also
provides a way to control the amount of memory each operator in the application actually uses.

More, it allows to perform operations such as joins on top of the serialized records [18].
» The Asynchronous Barrier Snapshotting Algorithm [23] that allows Flink to perform distributed

shapshots of the applications’ state enabling exactly-once processing semantics.

StreamScope Developed by Microsoft and presented in [19]. Though it is not publicly available, it

brings some interesting new ideas such as:

Hybrid Streams (discussed in previous sections) together with a recovery mechanism that provides

exactly-once processing.

Three different task recovery techniques: Checkpoint-based Recovery, Replay-based Recovery

and Replication-based Recovery.

Straggler nodes detection.

» Node maintenance and application scaling without downtime, via replication.

2.3 Resource Management

2.3.1 Resource Management Systems

Resource Management Systems appear as a solution to manage resources and schedule jobs and
tasks on a cluster of machines. They expose an interface that allows clients to allocate resources on
those machines so that they can be used to run applications. Examples of such applications are any of
the DSPSs mentioned above, a web server or even a database.

From the client perspective, he no longer needs to care where the applications are running, he has
a well-established abstraction that makes him look at a cluster of machines as a whole. These groups
of resources, i.e. CPU, memory and disk, that are reserved for a certain application are often called

containers.
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From the Resource Manager perspective, it only needs to take care of allocating requested contain-
ers to the available machines in order to maximize the resource usage. It also needs to solve other
problems such as handling failures from the client to avoid having locked resources that are not being
used; providing container isolation; handling different scheduling strategies that can be followed de-
pending on the applications nature; and supporting multi-tenancy environments where different users
may have different quotas and priorities on the resources. Regarding resource isolation, Resource Man-
agers usually provide this by using their own mechanism (with support from the underlying operative
system) or by using Docker? containers.

Besides Resource Managers such as Apache Hadoop YARN?® and Apache Mesos, that will be de-
scribed below, many others are available, though not usually used in the stream processing context. For

instance, Google Kubernetes, Omega and Borg [2, 24].

Apache Hadoop YARN Is the resource management layer for the Apache Hadoop ecosystem. It
is decomposed in three main components: the Resource Manager, the Application Master and the
Node Manager [25]. Each application has an Application Master associated that will be responsible for
negotiating the resource containers that the application requires (by sending requests to the Resource
Manager), as well as track their status and monitor them. The Application Master is also responsible by
guaranteeing fault tolerance to the application it is responsible for.

The Resource Manager performs the resource allocation and the monitorization of the Node Man-

agers and Applications Masters. It can be sub-divided into two components:

» Scheduler: responsible for the scheduling of the containers based on multiple constraints such
as capacity, fairness and SLAs. In order to allow for different scheduling policies, the scheduler
is a pluggable component. By default, YARN provides a fair scheduler and a capacity scheduler.
Both these policies group resources in a queue. Queues may be defined per application, user
or organization and may have a hierarchical relation between themselves. In the fair scheduler,
resources in a queue are distributed in a fair way over the running applications associated with
the queue. It also allows to give different weights to the applications so that they get different
proportions of the queue. The capacity scheduler allows queues to share resources as needed,

giving priority to queues with higher affinity, based on the defined hierarchy.

» Application Manager: responsible for accepting job submissions, launching the Applications Mas-
ters and by restarting them in case of failure.

The Node Managers are the slaves. They register themselves to the Resource Manager, offer their

resources, monitor their resource usage and send heartbeats to the Resource Manager.

2"Docker”, http://docker.com, (June 22, 2018)
8”Apache Hadoop”, http://hadoop . apache . org, (June 22, 2018)
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Thus, the workflow to schedule an application in YARN, is as follows: deploy the Application Master
to the YARN cluster via the Resource Manager; once the Application Master becomes ready, it can
negotiate resources for its containers with the Resource Manager, as it requires.

Additionally, in [5], a solution is proposed, that aims at improving the resource efficiency and over-
coming the observed resource overallocation issue in YARN, by estimating the resource usage of the

worker nodes and taking this estimation into account when performing task scheduling decisions.

Apache Mesos Mesos was initially developed at the University of California, Berkley [3]. It differs
from YARN as it introduces two-level scheduling: it delegates the per-application work scheduling to the
applications themselves while remains responsible for resource distribution between the applications.
This allows different frameworks to use different scheduling strategies adapted to their use case.

It is divided into three main components: the Mesos Slaves, that execute the containers; the Mesos
Masters, that manage the Mesos Slaves daemons; and the Frameworks, that perform the per-application
work scheduling. Regarding Frameworks, the client may develop its own, for instance, Flink Master
works as a Framework when working with Mesos. The communications between these components
works as follows: the Mesos Master sends specific resource-offers to each Framework; upon receiving
an offer, the Framework can accept it or reject it based on whether the offer matches the application
needs; once an offer is accepted, the Mesos Master receives the response with the details of the con-
tainer and allocates it to the Mesos Slave associated with the offer that was accepted.

The Framework has the power to accept or reject offers, while the Mesos Master has the power to
decide which resources to offer. This allows the Mesos Master to optimize resource allocation, and the
Framework to decide from a set of offers the ones it prefers, for instance, based on data locality. More, at
a given time, an offer to a specific resource can only be sent to one of the Frameworks, avoiding having
two Frameworks accepting the same offer. This was called pessimist or exclusive approach. Other
systems such as Google Omega follow a more optimistic one, by sending the same offer to multiple
Frameworks at the same time.

Mesos’ Dynamic Oversubscription module [10], allows the execution of best-effort tasks in reserved
but unused resources, i.e. revocable resources. By constantly monitoring the cluster resources, the
Resource Estimator keeps track of oversubscribed resources, while the QoS Controller makes sure that
the revocable tasks don't interfere with the regular tasks. If they do interfere, these revocable tasks can
be killed or throttled in order to correct the QoS. Similar techniques have also been used and proposed
in other systems such as in [26].

Another approach that has also been developed on top of Mesos, and that also tackles the resource
overallocation problem, is called the Dominant Resource Fairness [27]. It consists in a resource schedul-

ing policy that aims at fair resource distribution over heterogeneous tasks and that: incentivizes users to
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share resources; guarantees that a user cannot increase his allocation by lying about his requirements;

and that no user will want to change his allocated resources with the ones from another.

2.3.2 Task Scheduling in Stream Processing

Multiple strategies can be found for scheduling stream processing application’s tasks over the avail-
able resources in the cluster.

In Flink, each Task Manager (TM) provides a set of resources and a set of slots [18]. Resources
in a machine are fairly shared among slots, e.g. there is no CPU isolation. Flink’s scheduling strategy
consists in assigning tasks to all slots in a single machine, and only then move to the next one. This
strategy works well when working with elastic clusters, or with a resource manager such as Apache
Mesos. Additionally, the Flink task scheduler also allows the user to provide hints for task co-location,
so that two tasks can be scheduled in the same machine, in order to reduce communications’ overhead.

Apache Storm on the other hand, uses a different approach. lts default scheduling strategy consists
in a naive round robin distribution of tasks over the available resources [28]. Additionally, a Resource
Aware Scheduler was proposed in [7], and is supported by Storm. Which allows the user to specify
resource related restrictions for each application’s task, e.g. amount of CPU and memory. The sched-
uler then uses a bin packing algorithm to schedule the tasks according with the restrictions, reducing
resource wastage and fragmentation. Both schedulers also support multi-tenancy related restrictions,

i.e. tenant / application priority and resource isolation.

2.4 Approximate Computing

In stream processing, Approximate Computing techniques appear as a way to deal with overload
situations where the application can’t keep up with the rate at which data arrives, and therefore as an
alternative to scaling up. In such techniques, the accuracy of the application is often penalized whether

by discarding data or cutting on processing time and/or space.

2.4.1 State Synopsis and Sampling

State Synopsis is a category of Approximate Computing methods whose objective consist in sum-
marize the information contained in a data stream.

Within this category many methods can be found, such as Sketches, Histograms and Wavelets [29].
Sampling appears as the simplest of these methods. Extensive research has been done on sampling
within the field of Statistics. The objective in sampling is to maintain a subset (named sample) of the

data that captures a good representation of the universe. In stream processing, this subset is maintained
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over time and updated whenever it is necessary to reflect new trends or interesting occurrences in the
input data stream, due to its dynamic nature.

Bernoulli Sampling is known as the simplest sampling method. Where for each incoming event, the
element is included in the sample with a given probability p;, thus being a uniform Sampling method,
otherwise is ignored [30]. Nevertheless, many other methods, such as: Congressional Sampling and
Reservoir Sampling, can be found in literature. Though more complex, these methods provide stronger
guarantees on the sample that is generated.

Recent work can be found on evaluating these techniques on DSPS such as Flink, on [31] and [30].

2.4.2 Load Shedding

Load Shedding follows a different idea to sampling. Instead of building a sample of the universe, it
keeps as many elements as possible until the system becomes stressed. Once this happens, it starts
dropping information. A key use case for load shedding is on dealing with bursty workloads.

When performing load shedding in a stream processing application, the following main problems

must be considered [32, 33]:

» When to shed? The solution passes by creating a system that monitors the load of the application

and detects when the application is under stress, according to specific metrics such as throughput.

» Where in the DAG should the events be dropped? When applications can have different queries
with different accuracy requirements, one needs to find ideal drop locations in order to avoid pro-
cessing events that will be dropped further down in the application DAG, while assuring the accu-

racy requirements.

» Which events to shed? This leads to having a method for selecting which tuples to drop. Since
load shedding is triggered when the system is under stress, usually simple sampling techniques
are used, such as random drops. Nevertheless, more advanced methods can be found such as

semantic drops, that try to minimize loss of valuable events.

» How much to shed? Given the workload of the application, how many tuples should be dropped

so that the application can keep up with the incoming data rate.

Studies can be found on applying load shedding techniques in DSMS, for instance in [34] and [35].

2.5 Case Study: Apache Flink

As mentioned previously, Flink is the DSMS that is the focus of this work. As such, this section is

dedicated to present not only an overview of its architecture, but also some of its relevant features.
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2.5.1 Architecture

Flink follows a master-slave architecture, where the master servers are called Job Managers (JMs)
and the slaves, TMs [18]. The JMs are responsible for receiving the requests to deploy stream appli-
cations, schedule their tasks and monitor both the applications’ tasks and the TMs in order to properly
handle failures. At each time, multiple JMs may be alive, though only one of them is the leader. This
is the way Flink provides JM high availability. Additionally, they are also responsible for checkpoint
coordination and by coordinating application recovery from a previous snapshot, whenever a task fails.

On the other hand, the TMs are responsible for executing the tasks. Each TM offers to the cluster a
set of slots that can be used to execute tasks. As such, the amount of slots in a TM limits the amount
of tasks the TM can execute in parallel. The system administrator is responsible by defining the amount
of slots a TM provides. In Flink stream processing applications, slots do not isolate computational
resources such as CPU and memory. Instead, the available CPU is shared fairly among the executing
tasks, as required; and memory is either shared fairly among the tasks, as required, or eventually by a
third party system such as RocksDB, when dealing with the tasks’ state.

Regarding communications, the TMs and the JMs follow the Actor Model [36], where each of these
components represent an actor (an high level abstraction that is used in concurrent and distributed
systems), that holds a state, has a specific behavior and can asynchronously exchange messages with
other actors. Flink uses Akka Actors®, an implementation of the Actor Model. The communication
between tasks can be done either in memory, in case they are running within the same JVM; or by using
Netty®, otherwise.

A Flink cluster can either be executed in standalone mode, or be integrated with a resource man-
agement system such as YARN or Mesos, in which case, the JM is able to request containers to launch

new TMs when needed.

2.5.2 Tasks’ Chaining and Pipelining

At runtime, Flink allows to group a chain of subtasks into a single task, that is executed by a single
thread, where the subtasks perform computations sequentially on the received events. The advantage
of this is that it reduces the overhead of inter task communication, thus reducing latency.

For higher throughput, Flink also allows to pipeline subtasks, i.e. split a chain of subtasks into multiple
tasks being executed by separated threads in parallel, that can be executed on different TMs.

Finding the optimal solution on whether to use task pipelining or not, is the responsibility of the user
and depends from application to application. In [37] a mechanism has been proposed that allows to

discover at runtime when to use pipelining, based on metrics obtained from monitoring the applications.

4”Akka”, https://akka.io, (June 22, 2018)
5"Netty”, nttps://netty.io, (June 22, 2018)
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2.5.3 Slot Sharing

Slot Sharing [9] is a way to increase resource efficiency. It does so by changing the semantics of
a slot. Instead of a slot executing a single task, it can now execute a pipeline of tasks that belong
to the same application. As such, multiple threads may be running within the same slot, sharing the
resources. This not only allows to reduce communication overheads, but also to increase resource
efficiency whenever an application contains tasks with different resource requirements. A restriction is
that slots can only be shared by tasks that belong to the same application and that do not perform the

same operations.

2.5.4 Dynamic Scaling Applications

Recently it was added to Flink a dynamic scaling mechanism [38] for applications, that allows users
to redefine the task parallelism of running applications. The way this mechanism works is by leveraging
Flink’s snapshotting mechanism. Whenever an application requires to be scaled, the system takes
a snapshot of the application, stops the application and restarts it with the new parallelism degree.
For stateless tasks, this is trivial; for stateful ones, the state is redistributed based on the stream key

partitions that each task will be responsible for.

Flink does not provide any support for triggering scale up or scale down actions based on metrics

such as throughput or backpressure.

2.5.5 Asynchronous I/O

Whenever an application needs to perform some blocking operations, such as a query to a database,
the task that executes that operation will be blocked waiting for the response. If the resources allocated

to the task are not well dimensioned, resource wastage will occur.

In the past, the solution to this problem was on configuring the TMs with more slots than the amount
of CPUs they provide. In recent releases, Flink started providing support for asynchronous calls, thus
allowing to perform non-blocking requests to a service and receive the response via a callback. It does
so by providing the user an API to define how the request is performed and how to handle the callback
response. It also provides mechanisms to preserve order between requests, event time and to handle

fault tolerance. A more detailed description of this mechanism can be found in [39].
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2.5.6 Window Programming Model

Flink provides an API for users to define their own windows [40], besides the standard ones. The

way this is done is by specifying the following functions:
+ Window assigner: given a new element, it defines to which windows the element is assigned.

» Window functions: specify the function to be applied on the windows. These functions can
be a reduceFunction, a foldFunction or a windowFunction. The first two types can be computed
incrementally as new elements are added to the window. The last one, corresponds to functions

that cannot be computed incrementally, therefore are less efficient and consume more resources.

» Trigger: define when a window must be triggered, i.e. when the window can be processed by
the window function. When the trigger is time based, Flink will take into account the defined time

watermark.

Additionally, the user can define Evictors that allow to specify which elements to keep after a window
is triggered and after or before the window function is applied.
In Flink, windows can be non-keyed or keyed. In the first case, all the windowing logic will be per-

formed within a single task, whereas on the second one this can be performed in parallel.

2.6 Summary

This chapter highlighted related work that contains useful insights that are relevant for the develop-
ment of the proposed solution.

In terms of stream processing, this chapter provided a good background regarding its main concepts,
such as how stream processing applications are represented; and key functionalities like fault-recovery.
Several state of the art stream processing solutions were mentioned, together with their most differenti-
ating features. Apache Flink architecture was also explored with more detail, together with key resource
efficiency features such as Slot Sharing and Task Co-location that need to be taken into account by the
proposed solution.

In terms of resource management, Mesos Oversubscription module provides a good example regard-
ing how resource underutilization and task overallocation problems can be addressed, i.e. a feedback
mechanism is required to keep track of the QoS of the applications in order to detect and act upon these
situations. As may be noticed in the following chapter, the architecture of our solution is similar to the
one used in the Mesos Oversubscription module.

Regarding load shedding, the main problems that need to be addressed were identified, which will be
taken into consideration when defining the load shedding mechanism that is required by the proposed

solution.
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3.1 Overview

As mentioned earlier, the proposed solution targets the problem of resource underutilization in dis-
tributed stream processing systems, more precisely in Apache Flink. This chapter focuses on detailing
this solution, from its architecture and its components, to the specification of the model and algorithms
that will govern the decisions taken by the system.

The rationale behind our solution consists in using a task scheduling policy, that upon a new task
scheduling request, simply assigns the task to the cluster machine with the most available resources,
in terms of CPU. By following such a policy, the system is able to avoid the problem of resource over-
allocation, as the concept of having tasks allocating fixed amounts of resources gets completely dropped.

Nonetheless, by following this policy, the system may lead applications to situations of resource
starvation. Such situations can appear due to the optimism of the proposed policy. This may cause
applications’ performance to degrade and failing to keep-up with their incoming workload.

When such situations are detected by the system, two possible resolution approaches are proposed.
The system can either decide to perform Task Re-scheduling of specific application tasks to other ma-
chines with more available resources, causing some application downtime; or it can decide to use Load
Shedding, allowing applications to keep up with their incoming workload at the cost of decreasing the
accuracy of their results. This second mechanism will be the preferred approach, only using the first one
as a last resort.

To guide the system decisions, two restrictions should be specified by the user, for each query in their
applications. The first restriction corresponds to the priority of the query, which allows users to define
some queries as being more important than others. The second restriction corresponds to the minimum
acceptable accuracy of the query. This last restriction is relevant, since below a given accuracy, the
results provided by a query stop being useful or even meaningful to the user.

Both these restrictions are crucial for the system to decide when and how to use Load Shedding;
and when to switch to Task Re-scheduling. As well as on deciding on which tasks these mechanisms
should be triggered, clearly being the low priority tasks the first ones to be targeted.

This chapter follows the concepts and nomenclature established by Flink, which have already been
described in Sections 2.2 and 2.5.

3.2 Architecture

To achieve the intended behavior, two new components are added to the current Flink architecture:
the Task Scheduler, that schedules tasks over the available cluster resources, by following the already
described policy; and the Quality-of-Data Controller (QoD Controller) that continuously monitors all tasks

that are executing in the cluster, in order to decide when the Load Shedding or Task Re-scheduling

23



mechanisms should be triggered. The QoD Controller is mainly guided by runtime metrics from the
tasks’ execution and by user provided restrictions, i.e. the application queries’ priorities and minimum
acceptable accuracies. Decisions from both these components are guided by a model that will be
detailed in the following sections.

Figure 3.1 provides a bird’s eye view of how these new components are integrated with the current
Flink architecture. As shown in the figure, the two components run on the JM (2). The Task Scheduler
executes for every task scheduling request. Meanwhile, the QoD Controller is triggered periodically,
possibly sending messages to the TMs, either telling them to fail tasks or tune the tasks’ load shedders.

Since at a given instant, Flink’s high availability mechanism guarantees that only one of the JMs in
the system is the leader, while the others are in standby; only the Task Scheduler and QoD Controller
that are executing in the leader JM will be taking decisions. The remaining instances of these com-
ponents will only become active when a leadership change occurs, causing their correspondent JM to

become the leader.

________________________________________________________________________________
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Figure 3.1: High level view of the proposed solution and its components, in a Flink cluster.

All the cluster TMs periodically send runtime metrics to the leader JM such as the CPU usage infor-
mation and input / output rates from each task they are executing (3). These metrics are exposed to the
main components, to help them on guiding their decisions.

To define the restrictions for each application query, Flink’s stream application definition Domain-
Specific Language (DSL) (1) is also extended. Allowing the user to specify the priority and minimum
allowed accuracy for each query. These restrictions are then propagated to the JMs in order for the QoD
Controller to take them into account.

Additionally, a load shedding mechanism is also introduced at the applications’ runtime level. This
allows them to eventually drop some of the incoming workload, while taking into account the different

accuracy requirements from the application’s queries.

24



3.3 Model

Before going through the specification of how the new components perform their decisions, the used
nomenclature and concepts should first be formalized. Given a task instance ¢, (i) will be used to refer
to the task whose i is instance of; ¢tm(i) will be used to refer to the TM where the task instance i is
executing, and taskManagers as the set of all the TMs in the system. Additionally, queries represent the
set of all the query tasks in the system’s applications, which can be restricted to the queries of a specific
task ¢ by using queries(t); and downstream(t) / upstream(t) as the downstream / upstream tasks of a

task ¢, that are directly connected to it.

3.3.1 User Restrictions

The system allows users to specify two restrictions for their applications, that will be taken into con-
sideration during decision making. Users will only need to specify these restrictions for the sink tasks of

their applications. The system can then interpolate them to the remaining tasks.

Priority - p(t)

Priorities provide hints on how important certain tasks are compared to others, and as such, each
task will have an associated priority, p(t) € Z, that will allow the system to prioritize access to the
computational resources. The higher the value of p(t), higher the priority of the task.

Given the priority that the user specifies for a given query in an application, the system will use
Equation 3.1 to compute the priority of the remaining tasks in the application. This is done by simply
propagating the priority specified by the user, through the query’s upstream tasks. The priority of a task

simply corresponds to the maximum priority of its downstream tasks.

t) = v 3.1
p(t) t,quggces(t)p() (3.1)

The set of all tasks’ priorities in the system, sorted in descending order, is represented by priorities.
Values in this set can be scoped to a specific TM by using priorities(tm). Additionally, ti(¢tm, p) is used
as the set of task instances in a given TM ¢m, with a given priority p; or ti(¢tm) for all instances regardless
of their priority. The set of all the TMs executing task instances with a given priority p, will be provided
by tm(p).

Minimum Accuracy - minAc(t)

The minimum accuracy of a task, minAc(t) € [0%,100%)], is used as a threshold of its accuracy,

below which the outcome of the task stops being valuable to the user. This value is defined as the
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minimum percentage of input events of the application that must be processed by a given task. These
events can be dropped anywhere in the application. Note that this definition is crucial, since it is the
definition of accuracy that is followed throughout this work.

Once again, this threshold only needs to be defined for the application queries. The provided value
is then propagated through the query’s upstream using Equation 3.2. As such, the minimum accuracy
of a given task in an application corresponds to the highest minimum accuracy of its downstream tasks.

This is logical, because otherwise, the downstream tasks would fail to meet their required accuracy.

minAc(t) = max minAc(q) (3.2)

qE€queries(t)

3.3.2 Load Shedding

Load shedding allows the system to drop some of the applications’ workload for them to cope with it.
These workload drops are performed by load shedders placed in specific locations of the applications’
DAGs. Which are parameterized with the percentage of events that they should keep, named the non-
drop probability, d(t,t’"), between a producer task ¢ and a consumer task ¢’. This parameter provides
an interface for the system to tune the load shedders at runtime, as the workload of the applications
dynamically changes.

Regarding the way dropped events are selected, the load shedding implementation used in this work
simply performs random drops based on the non-drop probabilities that are defined. Other load shedding
policies are possible, as long as they can be configured solely using d(t, ).

In terms of placement of the load shedders, each load shedder is associated with a stream connect-
ing two tasks. To avoid wasting network bandwidth, load shedding is performed in the producer task.
Source tasks also have load shedders after their first subtask, which is the one responsible for pulling
data from the external datasource into the application dataflow, thus, allowing workload to be dropped
right after it's fetched by the application. This load shedder is also parameterized by d(¢,t¢'), where ¢
corresponds to the datasource. Figure 3.2 provides an example of the load shedders’ placement in the
physical DAG of an application.

-~ Load Shedder

»
Datasource A

Task

Datasource B M

Figure 3.2: Placement of load shedders in the physical DAG of an application.
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The percentage of application input events being processed by a task ¢ is given by ac(¢), which
corresponds to our definition of accuracy of the task. Since tasks in an application may have several
instances executing in parallel, load shedding in one of the task’s instances and not on the others may
lead to biased results. Therefore, because the system has no a priori knowledge regarding the deployed

applications, all task instances of the same task must respect the following restrictions:

1. They must all have the same accuracy, i.e. Vicinstancest)ac(i) = ac(t). Where instances(t) corre-

sponds to the set of all instances of a task t.

2. For two connected instances i1 and 2 of different tasks ¢1 and ¢2, respectively, d(i1,i2) = d(¢1,¢2).

Additionally, given two tasks t¢1 and t2, directly connected to a downstream task ¢3, then ac(tl) =
ac(t2) and ac(t3) < ac(tl),ac(t2). Essentially, this restriction avoids biased results for tasks that con-
sume data from two or more streams.

This yields that, given all the d(¢,t) in an application and taking into account the restrictions defined
above, it is possible to compute the accuracy for a given task in the application using Equation 3.3. This
is done by chaining all the d(¢,t') probabilities in a DAG branch (collection of streams) connecting an
application source task and the task whose accuracy needs to be computed (including the load shedder

between the datasource and the source task of the branch).

1, if upstream(t) = {}
ac(t) = , ac(t! / ) 3.3
( ) { >t Cupstream(t) (t")xd(t',t) otherwise ( )

|upstream(t)| ’

3.3.3 Current Accuracy - currAc(t)

The current accuracy, currAc(t) € [0%, 100%], is used as a guideline that provides an approximation
to the runtime accuracy of a given task ¢, based on the runtime metrics of the application. Thus providing
an hint on how much overloaded a task is. The system will always attempt to maximize curr Ac(t).

This function is defined as presented in Equation 3.4. Where the current accuracy is computed using

locAc(t), that represents the local accuracy of a task ¢, and is defined in Equation 3.5,

l A t i 3
curr Ac(t) = ocAc(t), . if upstr.eam(t) {} (3.4)
locAc(t) X miny cypstream(tycurrAc(t’), otherwise
100%, if> ) cupstream(r) Cut Rate(t',t) =0
locAc(t) = Wit imaramees(s i Rate (i) VEupstream(t) (3.5)

(Zt/ewstmam(“ outRate(t’,t))/\instances(tﬂ ’ otherwise
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I's important to note that, according to our definition, the current accuracy of a task is calculated
using the minimum current accuracy of its upstream tasks. Meaning that if a task has two upstream
branches with different current accuracies, its current accuracy is determined by the minimum. Because
this is the most that is currently being guaranteed. Other definitions of the current accuracy are possible,
and eventually the user could even define it for each application in a different way.

Regarding Equation 3.5, the inRate(i) represents the input rate of an instance i of a task ¢; while
outRate(t',t) corresponds to the output rate of an upstream task ¢’ to a task ¢. Therefore, the local
accuracy of a task matches the minimum local accuracy of its instances, with the assumption that the
output rate of its upstream is uniformly distributed over its task instances.

Additionally, if the denominator of the Equation 3.5 equals zero then, locAc(t) = 100%. This happens
because, if the direct upstream tasks are not emitting any tuples, then their downstream tasks are
processing all events that they receive from the upstream, i.e. none. Also note that locAc(t) = 100%
when both upstream and downstream tasks are processing data at the same rhythm.

Using this definition of current accuracy, the objective of our system is therefore to minimize the
difference between a task’s upstream output rate and its input rate. Or in other words, to maximize the
overall application throughput.

Note that the current accuracy of a query, ¢, is not necessarily the same as the actual accuracy of
the query, ac(q). In fact, the actual accuracy corresponds to the upper bound of the current accuracy.
This happens because ac(q) is strictly defined by the load shedders’ non-drop probability. While the
currAc(q) not only embodies the non-drop probabilities, but also the input and output rates differences

that appear due to the mismatching input / output throughputs.

3.3.4 Maximum Achievable Accuracy - maxAc(t)

Given the desired accuracy for each downstream query ¢, represented as desired(q); maxAc(t)
returns the maximum accuracy that the upstream task ¢ will have, based on the restrictions imposed by
the downstream queries and taking into account that events will be dropped as soon as possible in the

DAG. The way this it is computed is described in Equation 3.6.

marAc(t) = max desired(q) (3.6)

gEqueries(t)

3.3.5 CPU Load - cpu(t)

The expected CPU load for a task ¢, cpu(t), is calculated based on the CPU load of its instances.
Equation 3.7 shows how cpu(t) is computed, where cpuLoadM etric(i) corresponds to the CPU load

percentage obtained from the TM metrics for a task instance . If a task is using a full CPU virtual core,
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then cpuLoadMetric(t) = 100%.
Since the local accuracy, defined in Section 3.3.3, is restricted by the minimum local accuracy of the
task’s instances; then cpu(t) is also defined by the CPU load of this same instance, i.e. the one with the

lowest local accuracy.

cpu(t) = epuLoad M etric (argminiemsmnces(t)inRate(i)) (3.7)

Additionally, it’s also defined that cpu(tm) corresponds to the CPU usage of the TM tm, including

non-Flink related processes; tCpu(tm) = > cpu(i); and nCores(tm) to the amount of CPU virtual

i€ti(tm)
cores provided by a given TM, tm.

Note that there is an assumption that all the TM machines have similar computational capacity. This
assumption can easily be dropped by using a normalization factor for the computational capacity of each

machine, as it is usually done in similar situations.

3.3.6 Minimum Obtained CPU - mObtCpu(i)

The minimum CPU amount a task instance i is guaranteed to get, mObtCpu(i), based on the current
available CPU, aCpu(tm), of the respective TM, ¢tm. This is computed as described in Equation 3.8. The
available CPU time is evenly distributed over all task instances with the same priority. Note that a task
instance may require less CPU resources than the ones it can get, in order to achieve the accuracy that
it requires.

aCpu(tm

. (M)
mOYCPU) = T (a), ot 58

3.3.7 Required CPU - rCpu(t, ac)

The CPU required by a task ¢ to achieve ac(t) = ac is represented as rCpu(t,ac). This function
is defined in Equation 3.9, and assumes that the CPU load and accuracy are proportional, which is a

reasonable assumption for stream processing applications.

0%, if currAc(t) = 0% and ac = 0%
rCpuli,ac) = { 100%, if currAc(t) = 0% and ac # 0% (3.9)
min (“"“P“(“ 100%), otherwise

currAc(t)’

The equation has two special conditions, for which the rationale is the following:

1. If the task’s current accuracy and required accuracy, ac, equal 0%. Then, rCpu(t, ac) = 0%, since

no CPU is required to achieve 0% accuracy.
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2. If the task’s current accuracy is 0%, but the required accuracy is not. Then, rCpu(t, ac) = 100%.
In this case, the system simply provides its best bet on the CPU that will be required (a full virtual

core), since it still doesn’t have enough information to provide a safe estimation.

The CPU required by a task ¢ to achieve the minimum, minAc(t), and maximum accuracies, maxAc(t),

are also defined in Equations 3.10 and 3.11, respectively.

minReqCpu(t) = rCpu(t, minAc(t)) (3.10)

maxReqCpu(t) = rCpu(t, maxAc(t)) (3.11)

3.3.8 Obtained Accuracy - obtAc(t, cpu)

Given a task t and a provided CPU load cpu; obt Ac(t, cpu) returns the maximum accuracy the task
can provide to its downstream using that CPU amount, as expressed in Equation 3.12. Once again,

some special conditions are specified:

1. If the current accuracy is 0% and no CPU is provided, then the task will clearly get 0% accuracy.

This is in line with the condition 1. when defining rCpu(t, ac).

2. If on the other hand the current accuracy is 0% and CPU load is provided. Then, an optimistic bet

is performed, estimating that the task will be able to achieve a 100% accuracy.

3. If the current CPU load of the task equals 0% and no CPU load is provided, the task will clearly

maintain the same accuracy.

4. If the current CPU load of the task equals 0%, but some CPU load is provided. Then the system

will once again perform an optimistic bet, estimating that the task will achieve a 100% accuracy.

0%, if currAc(t) = 0% and cpu = 0%
100%, if currAc(t) = 0% and cpu # 0%
obt Ac(i, cpu) = { currAc(t), if cpu(t) = 0% and cpu = 0% (8.12)
100%, if cpu(t) = 0% and cpu # 0%
min (W7 100%), otherwise

3.3.9 Slack - slack(tm, p)

For a given TM, tm, slack(tm, p) represents the sum of the differences between: the CPU percentage

that its tasks with priority p require (in order to achieve the maximum accuracy they can, based on current
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restrictions imposed by other tasks and while assuming the minimum accuracy is guaranteed); and the
available CPU for the task. The way this is done is presented on Equation 3.14, where Equation 3.13,
simply computes the difference between the required CPU to achieve the maximum required accuracy

and the one to achieve the minimum accuracy.

dif fReq(t) = maxReqCpu(t) — minReqCpu(t) (3.13)
slack(tm, p) = Z (dif fReq(t(i)) — mObtCpu(t(i))) (3.14)
i€ti(tm,p)

3.4 Task Scheduler

Given a task instance, the Task Scheduler component is responsible for determining to which TM it
should be scheduled. This decision is taken by selecting the TM with the most available CPU, reducing
the probability of having to re-schedule the task instance later during its execution.

Task’s locality preferences should also be taken into account. This is an already existent feature in
Flink, that allows to reduce applications’ latencies by co-locating some of their tasks in the same TM.
Such co-location may not be feasible either because there are no more slots available in the preferred
TM; or, in our case, because the preferred TM doesn’t have enough resources for the task to achieve
its accuracy threshold. In such situations, the locality preference must be disregarded. Therefore, the
Task Scheduler requires an estimation of the CPU load used by the task instance : that is going to be
scheduled, given by estimatedCpuload(3).

If the system has previous CPU load metrics from the task execution, either from the instance that
will be scheduled or from the other instances of the same task; then, these metrics are used as an
initial estimation of the instance’s CPU load. If such execution history doesn’t exist, the system performs
a pessimistic estimation of the CPU resources required by the task instance that will be scheduled,
estimating that the task instance will require a full CPU virtual core, i.e. 100%. Other initial CPU usage
estimations are possible. Note that there is a trade-off between having the application’s task instance
being placed in the same machine, promoting low latencies, but potentially being re-scheduled (if the
initial estimation is below the real CPU usage); or having these tasks distributed over the cluster, with
low probability of being re-scheduled and making it potentially network I/O bounded instead of CPU
bounded (otherwise).

Algorithm 3.1 presents the pseudo-code of the scheduling function that, given a task, returns the
TM to which it should be scheduled. Given a task ¢, it starts by picking all TMs that match its locality

preferences, provided by the function taskManagers(locality); and removing the ones that won’t be
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able to provide enough CPU resources for the task execution (line 2). If none of the task’s preferred
TMs has conditions for its execution, then the Task Scheduler uses all the available TMs in the cluster
as candidates for task scheduling (lines 3-5). The algorithm then proceeds by selecting the TM with the

maximum estimated available CPU load, from the set obtained in the previous steps (line 6).

Algorithm 3.1 Task Scheduling Algorithm.
1: function SCHEDULETASKINSTANCE(i, locality)
2 tms < {tm € taskManagers(locality) : estimated AvailCpu(tm) — estimatedCpuLoad(i) > 0%}
3: if tms = {} then

4 tms < taskManangers

5

6

end if

: tm < argmaZimeems(estimated AvailCpu(tm))
7 return tm
8: end function
9:
10: function ESTIMATEDAVAILCPU(tm)
11: return 100% x nCores(tm) — cpuLoad(tm) — >
12: end function

estimatedCpuLoad(i)

itenewT askInstances(tm)

The estimated available CPU of a TM tm, is computed using the estimated AvailCpu(tm) function
(lines 10-12). This function takes into account: the maximum CPU load that can be available in the
TM, i.e. the maximum available CPU capacity that it has to execute tasks, without incurring in resource
starvation; the CPU load that is already being in use either by tasks that are already running, or by
other non-Flink related processes that may be consuming CPU time; and the estimated CPU load for
the newTasksInstances(tm), which represents new tasks in the TM for which the system doesn’t have
yet runtime metrics. The CPU load of these tasks is not yet captured by the cpuLoad(tm).

It is possible, and acceptable, for the estimatedAvailCpu(tm) to take negative values, since often
our estimations can be wrong. Even if the estimation happens to be correct and a task is scheduled
to a TM where this estimation is negative, the QoD Controller will be able to later re-schedule the task
instance to another TM.

Note that this CPU estimation is only used for task scheduling purposes, not being taken into account

by the QoD Controller, described next.

3.5 QoD Controller

The QoD Controller is the core component of our architecture, that continuously ensures that all
Quallity-of-Data (QoD) requirements are met across the cluster. This is done by using Algorithm 3.2,
which is periodically executed with a configurable frequency. This frequency is relevant, since it will
dictate the reactiveness of the system to QoD changes. If the frequency is too high, then the system will

react fast to changes in the QoD. But more resources will be consumed in the JM, without necessarily
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being required. If the frequency is too low, it may not be reactive enough. Thus, taking too long to take
actions to guarantee that the applications keep up with their incoming workload. Note that the runtime
metrics used by the model (CPU load and input / output rates) are also computed periodically, using a

moving average to smooth possible fluctuations.

Algorithm 3.2 QoD Controller main cycle.

1: for all tm € taskManagers do

2: aCpu(tm) < 100% x nCores(tm) — cpu(tm) + tCpu(tm)
3: end for

4: for all ¢ € queries do

5. desired(q) < 100%

6: end for

7: for all tm € taskManagers do

8: reqCpu <= 3 e ti(em) minReqCpu(t(i))

9: released < 0

10: if reqCpu > aCpu(tm) then

11: released « killTasks(reqCpu — aCpu(tm),tm)
12 end if

13: aCpu(tm) < aCpu(tm) — reqCpu + released

14: end for

15: for all p € priorities do
16: for all tm € tm(p) order by slack(tm,p) DESC do

17: distribute Evenly(ti(tm, p), aCpu, desired)
18: end for
19: end for

20: Compute d(t,t") based on the desired accuracy for the queries
21: Send new d(t,t") to the Task Managers where t is running

In each iteration, the algorithm starts by initializing: the available CPU of each TM, as the total
available CPU it has to execute the Flink tasks (lines 1-3); and the desired accuracy for each query as
100%, since they haven't yet been pruned with load shedding (lines 4-6). At the begin of each iteration,
the QoD Controller believes that all queries will be able to achieve their maximum possible accuracy.

The algorithm then proceeds to guarantee that each TM has the necessary CPU to keep executing
all its task instances with the minimum accuracy they require, regardless of their priorities (lines 7-14).
If such is not possible, it immediately releases the required CPU by forcing the re-scheduling of some of
the TM’s tasks (line 10-12). This happens because, in such cases, load shedding tasks’ input workload
will not be enough to improve their QoD. The TM available CPU is updated accordingly (line 13), so that
it knows how much CPU will be available to further improve the tasks’ accuracy.

Once each task is guaranteed to have its minimum accuracy, the algorithm distributes the remaining
available CPU over the task instances (lines 15-19), this time, respecting their priorities. It starts by
the TMs with highest slack, i.e. the TMs with less CPU available to increase the accuracy of their task
instances. This, while avoiding having to backtrack already made decisions, since the TMs with lower

slack will be the most restrictive ones in terms of accuracy that they can provide to their task instances.

33



The system only distributes the available CPU load to lower priority task instances, once all of the higher
priority ones, in the same TM, are guaranteed to achieve their maximum accuracy.

The following Sections 3.5.1 and 3.5.2, further detail the two algorithms that are used to decide which
tasks should be re-scheduled (line 11) and to fairly distribute the remaining CPU load among tasks with
the same priority (line 17), respectively.

Finally, the non-drop probabilities of all streams are computed, using the method that will be defined

in Section 3.5.3; and the new values are sent to the TMs to adjust their load shedders (lines 20-21).

3.5.1 Task Re-Scheduling

To select which tasks in a TM, tm, should be re-scheduled in order to release a given amount of
CPU load, cpu, the system follows a policy that aims at: 1) Minimizing the amount of tasks that will be

re-scheduled to another TM, as well as their priorities; 2) Avoid releasing more CPU load than necessary.

Algorithm 3.3 Selection of tasks to be re-scheduled.

1: function KILLTASKS(cpu, tm)

2 released + 0%

3 I+ {}

4: for all p € priorities(tm) do

5: if cpu — released > 0% then

6: I« TUti(tm,p)

7 released < released + 3 ey ) MinReqCpu(t(i))
8: end if

9: end for
10: for all i € I order by p(t) DESC, minReqCpu(t(i)) DESC do
11: if released — minReqCpu(t(i)) > cpu then
12: released + released — minReqCpu(t(i))
13: else
14: fail(i)
15: cpu < cpu — minReqCpu(t(i))
16: end if
17:  end for
18: return release

19: end function

Algorithm 3.3 is used to achieve these two goals, by performing this task selection in two steps.
The first step (lines 3-10), aims at determining the maximum priority of the tasks that may have to be
re-scheduled to release at least the required CPU load. It returns a set of candidate task instance to
be re-scheduled (I), and the released CPU load if all those task instances are actually re-scheduled
(released). Since the required CPU to release is computed based on the CPU load that each task
requires to achieve its minimum acceptable accuracy, the algorithm considers that the CPU load that is
released by re-scheduling a task instance ¢ to another TM, corresponds to the minReqCpu(t).

The second step of the algorithm (lines 10-17) avoids releasing more CPU than necessary, by prun-
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ing the candidate tasks set. To do so, it starts by the tasks with higher priority and higher required CPU.
If by removing the task from the set, this still allows to release at least the amount of CPU that must be
released, then, the task is removed. Otherwise, the task instance is failed on purpose, in order to be
re-scheduled to another TM by Flink. Note, once again, that the released CPU by re-scheduling a task
instance at this point, corresponds to the one used to achieve its minimum acceptable accuracy.

Regarding this last step, it prefers to re-schedule tasks with low CPU consumption. The reasons why
this semantic was selected are: 1) It reduces resource fragmentation; 2) Smaller tasks are easier to
re-schedule since they require less resources; 3) Once re-scheduled, these tasks should take less time
to recover and start coping again with their incoming workload.

Follows an example, to better understand how the algorithm works: suppose the following tasks in
a given TM, represented by a tuple (minimum required CPU, priority): (20%,4), (10%, 3), (40%, 3),
(10%, 2), (10%,2), (10%,1); and that the system needs to release 40% of the CPU load in that TM. The
first step of the algorithm (lines 4-9) yields all tasks with priority lower than 4, and a released CPU load
of 80%. The second step of the algorithm (lines 10-17) will end up by failing all tasks in the candidate
set except (40%, 3). Therefore, releasing exactly the required CPU load.

The system assumes that there will be another TM with enough available resources to execute the
re-scheduled tasks with their required accuracy. This can be achieved by using a separated mechanism

for auto-scaling the Flink cluster.

3.5.2 Resource Distribution

To fairly distribute the remaining available CPU of a TM over a set of tasks, Algorithm 3.4 is used.
It receives as input the available CPU load to distribute, aCpu; the set of tasks over which it should be

distributed, it; and the desired accuracy for all tasks in the system, desired.

Algorithm 3.4 Fair distribution of CPU load.

1: function DISTRIBUTEEVENLY(it, aCpu, desired)

2 c<+0

3 T < it order by rCpu(i, maxAc(i)) — minReqCpu(t(i)) INC
4 foralli ¢ ' do

5: maxReq + maxReqCpu(t(i)) — minReqCpu(t(i))
6 cpu < min ( mazxReq, W)

7 ac < obtAc(i, cpu) + minAc(s)

8: for all ¢ € queries(t(i)) do

9: desired(q) < min (desired(q), ac)
10: end for
11 aCpu(tm(i)) + aCpu(tm(i)) — cpu
12: c+—c+1

13: end for
14: end function
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The algorithm starts by distributing the CPU load by the tasks with lower required CPU to achieve
the accuracy they need, avoiding decision backtracking (line 3), since these tasks may require less CPU
to achieve their maximum accuracy than the CPU they can get. If such tasks exist, then the remaining
CPU from those tasks is fairly distributed across the remaining task instances.

During the traversal, the desired accuracy of the tasks’ correspondent queries is updated to match the
accuracy the task can provide with its CPU share. The available CPU of the TM is updated accordingly
(line 8-11).

3.5.3 Computation of Non-Drop Probabilities

Finally, it only remains to specify how the non-drop probabilities for each application’s stream is
computed. This is done by using both Equations 3.15 and 3.16, which are responsible by defining how
many events should be dropped and where they should be dropped in the DAG, based on the desired
accuracy for each query in an application.

The first equation is used to propagate the dropping probabilities upstream. This will allow the system
to drop events as early (upstream) as possible in the DAG. Implementation wise, this is done with a sink
to source traversal of the DAG. Once done, the second equation is used to compute the d(t,t’') values,
given the already provided accuracy and the desired accuracy at the downstream task ¢/, desired(t').
This second step is done by traversing the DAG from the source nodes to the sink nodes.

Note that in this last equation, the non-drop probability for the load shedder located right after the
first subtask of each source task, is also calculated. This is done by the first condition of the equation,

that specifies this non-drop probability as the desired accuracy of the source task.

desired(t) = max desired(t") (3.15)

t'€downstream(t)

d(t,t

, desired(t'), iftis an external datasource
) = (3.16)

desired(t) :
Tesired (D) > otherwise

Figure 3.3 provides a visual example of these equations being used to compute the non-drop prob-
abilities of the load shedders in an application with two sinks, A and B. It starts with the desired ac-
curacies for each query of the application (1), which are passed as an argument, desired(4) = 80%
and desired(B) = 40%. The desired accuracies are then propagated upstream (2) using Equation 3.15,
that selects the desired accuracy of a task as the maximum desired accuracy of its downstream tasks.
The non-drop probabilities are then calculated for each load shedder (3), by using Equation 3.16. The

algorithm starts by calculating the non-drop probabilities for the load shedders between the source tasks
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and the external datasources, which yields an 80% non-drop probability for both load shedders. This
guarantees the desired accuracy for the sink task A. As such, the non-drop probabilities of its upstream
load shedders are all 100%. Regarding the sink task B, its desired accuracy is guaranteed by setting a
non-drop probability of 50% between the sink task and its direct upstream task, which is the only stream
that doesn’t belong to the upstream of the task A. This example clearly shows that events are dropped

as soon as possible in the application’s DAG.

1. Starting Point — 2. Compute desired accuracy for each task — > 3. Compute non-drop probabilities

4

d=380%

i | desired= 80% desired = 80%! d= 100%

d= 100%

. desired= 80% :
i desired = 80% desired= 40%

desired= 80% desired= 40%; desired= 80% desired= 40%

Figure 3.3: Example of the computation of the non-drop probabilities for an application with two sink tasks, A and
B, having a desired accuracy of 80% and 40%, respectively.

3.6 Summary

The underlying mechanisms, algorithms and model that constitute the proposed solution were de-
scribed in this chapter. The solution contains two main components, the Task Scheduler and the QoD
Controller. The Task Scheduler schedules tasks to the machines with more CPU load available. The
QoD Controller periodically monitors the execution of the applications, and eventually applies some cor-
rections to make sure that the user defined restrictions are respected, i.e. priority and minimum accuracy
for each query. On each QoD Controller cycle, it starts by guaranteeing that all applications’ queries
have enough CPU load for them to be processing at their minimum accuracy, otherwise, some tasks
may be re-scheduled to release the required CPU load. Once this minimum accuracy is guaranteed,
the remaining CPU load is distributed over the tasks, this time, by distributing it first to the higher priority
tasks and only then to the lower priority ones.

The selection of tasks to be failed, in order to release the required CPU, is performed using a policy
that balances a trade-off between not releasing more CPU than required and minimizing the priority of
the tasks that are re-scheduled.

Regarding the Load Shedding mechanism, it drops events using a random drops semantic, param-
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eterized by the non-drop probability. Load shedders are placed between every two task instances and
right at the beginning of the source tasks’ instances.
Several crucial concepts such as accuracy, current accuracy and desired accuracy were also intro-

duced and defined in this chapter.
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4.1 Overview

This chapter’'s focus is on the implementation aspects of the algorithms and mechanisms of our
solution, described in the previous chapter. As such, it will cover details regarding the scope of the
changes performed during this implementation, covering both newly added Flink components and the
already existent ones.

Our proof-of-concept (Stream Economics), which is going to be used during the evaluation, was
implemented on top of Apache Flink 1.2 release. Thus, all the Flink internals that are mentioned along
this chapter are specific to this release.

The final sections of this chapter target specific functionality that is required for the system to achieve
its goal, which was not covered in the previous chapter since it's more implementation specific and not

relevant for the core functionality of the solution.

4.2 Scope of Changes

To implement the proposed solution, several changes had to be performed in the target Flink release.

The purpose for these changes can be break down into several requirements:

1. Users should be able to specify the priority and accuracy for each query in their applications.

These restrictions should be available to the components that require them, for decision making.

2. Applications’ data streams should have load shedders executing on the data stream’s source task
side. Source tasks have an additional load sheeder right after their first subtask. These load

shedders should be configurable at runtime by the JM.

3. Slots should no longer work as a restriction to the amount of task instances a TM can execute.

Instead, they can be considered to be dynamic (avoiding widespread changes on Flink).

4. The TMs should periodically send runtime metrics both related to the TMs machines and to the

tasks being executed.

5. The QoD Controller should periodically tune the load shedders’ parameters and trigger task re-

schedules whenever necessary, according to the policy described in Chapter 3.

6. The task scheduling policy that was also proposed in the previous chapter, should be used for all

incoming task scheduling requests.

Figures 4.1 and 4.2 will be used to support the description on how each of these requirements
were implemented. Both figures, show the Flink components that were added or modified during the

implementation, as well as the relations between them.
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4.2.1 Stream Application’s Stages

Before a stream processing application in Flink being deployed and actually executed, it goes through
several stages, each using different abstractions to represent the application. Figure 4.1 presents these

abstractions.

Stream Transformations: Correspond to the main entities used to specify the Flink’s stream process-
ing application (blue color components in the figure). A StreamTransformation has several specific
implementations, each for a different pattern that can be found in a stream application’s DAG, e.g.
SourceTranformation, UnionTranformation and SinkTranformation. Each of these transformations
are further extended into more specialized versions.

Since the system only requires users to specify the application’s restrictions for each sink task (re-
quirement 1.), the two required restrictions only need to be added to the SinkTransformation. Using the
newly added withPriority and withMinimumAccuracy methods, users are able to specify the priority
and minimum accuracy for their applications, respectively. Listing 4.1 provides an example where these
two methods are being used to specify the restrictions for a word count stream processing application
(lines 29-30).

Listing 4.1: Word count stream processing application in Flink with the minimum accuracy (0.7) and priority
(5) restrictions being specified for a single query.

import java.util.Properties

import org.apache.flink.api.scala._
import org.apache.flink.streaming.connectors.kafka._
import org.apache.flink.streaming.util.serialization.SimpleStringSchema

® N® O A WN =

object WordCount {
9 def main(args: Array[String]l) {

10 val env = StreamExecutionEnvironment.getExecutionEnvironment
1 val props = new Properties {

12 setProperty ( s )
13 }

14

15 val source = env.addSource(

16 new FlinkKafkaConsumer010[String] (

17 s

18 new SimpleStringSchema(),

19 props

20

% )

23 val words = source.flatMap(value => value.split( ))
24 val counts = words.map(value => (value,1))

25 .groupBy (0)

26 .sum(1)

27

28 counts.print ()

29 .withMinimumA ccuracy(0.7)

30 .withPriority(5)

31 }

2 3}

Stream Graph: From a collection of StreamTransformations, the application is then transformed into
a StreamGraph (green color components), by the StreamGraphGenerator. At this stage, transforma-

tions are grouped into StreamNodes, representing operator chains. StreamNodes are connected via
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StreamEdges. The created StreamGraph is then sent to the JM for scheduling.

Job Graph: Represents a Flink dataflow program, conceptually more generic than a StreamGraph
since it is also used to represent batch processing jobs. The JobGraph (yellow color components) is cre-
ated by the JM from a StreamGraph, using the StreammingJobGraphGenerator. Each JobGraph contains
several JobVertexes each producing zero or more IntermediateDataSets. Each IntermediateDataSet

can be consumed by several JobVertexes, by connecting them using a JobEdge.

Execution Graph: The ExecutionGraph (red color components) contains all the information regarding
the application’s physical DAG. Meaning it can be fully mapped to the runtime structure of the application.

JobVertexes are mapped into ExecutionJobVertexes, which are then decomposed into several
ExecutionVertexes, each representing a task instance that can be executed in a TM. While on the other
hand, IntermediateDataSets are mapped into IntermediateResults, which are then decomposed
into IntermediateResultPartition. Each IntermediateResultPartition represents a partition of
the dataset, that can be consumed by several ExecutionVertexes. This relation is represented by the
ExecutionEdges.

Current Flink implementation enforces that each IntermediateResult can only be consumed by a
single ExecutionJobVertex. If two ExecutionJobVertexes consume the same events that are produced
by the same ExecutionJobVertex, then the producer will have two IntermediateResults, one per con-
sumer ExecutionJobVertex. Each IntermediateResult with a single IntermediateResultPartition.
Therefore, each ExecutionVertex will also have the same amount of IntermediateResultPartitions
as the amount of ExecutionJobVertexes consuming the IntermediateResults generated by the re-
spective producer ExecutionJobVertex.

Additionally, each ExecutionVertex keeps track of several Executions, one being its current execu-
tion in a TM; and the others, being past executions of the ExecutionVertex, that are no longer being
executed.

Throughout each of these stages, the priorities and minimum acceptable accuracies of the applica-
tion’s tasks are computed and forwarded to the next stage. Data structures were also added to quickly

lookup the downstream sinks of each task in the application.

4.2.2 Task Scheduling

The JM, represented by the JobManager component in Figure 4.2, contains both an InstanceManager
and a TaskScheduler. The first, is responsible for managing the TMs that registered to the JM, each

represented as an Instance. While the second, corresponds to the component that is responsible

45



for scheduling a task to the available instances. This component was adapted to use the new task
scheduling policy, that was defined in the previous chapter (requirement 6.).
Currently, each Instance in Flink provides a set of Slots for task scheduling. For the current Flink

implementation there are two types of slots:

» SimpleSlot: slot that can be used for a single Execution of an ExecutionVertex

» SharedSlot: contains a collection of slots, either SimpleSlots or SharedSlots. This abstraction is

used for the Slot Sharing feature implementation, which will no longer be required by the system.

To avoid changes to the current Flink implementation that would fall out of the scope of this work, the
abstraction of SimpleSlot was kept. Nonetheless, there’s no restriction to the amount of SimpleSlots
that an Instance can provide (requirement 3.). In the new system, they can be simply seen as the repre-
sentation of an unbounded amount of resources that can change at runtime. For each ExecutionVertex
scheduling request that is sent to the TaskScheduler, it simply returns a SimpleSlot that will be used

for the Execution of the ExecutionVertex.

4.2.3 Application Runtime

The TMs, represented by the TaskManager component in Figure 4.2, use their own abstractions
to execute Flink applications. A Task, corresponds to the entity that actually executes the operations
defined in an ExecutionJobVertex / ExecutionVertex, and as such, is responsible by managing the
thread that will be used to perform the required work. A Task, on the TMs’ side, is mapped to an
Execution, on the JMs’ side.

Each Task produces several ResultPartitions, that map to IntermediateResultPartitions on
the JMs’ side. ResultPartitions are decomposed into several ResultSubPartitions, each corre-
sponding to an ExecutionEdge on the JMs side. Each ResultSubPartitions contains information on
how to send the partition data to the actual consumer Task.

For each ResultPartition of a Task, there’s a ResultPartitionWriter that is responsible by writ-
ing buffers of emitted records to the ResultPartition. A RecordWriter is used by the Task to write
records and events, e.g. snapshot barriers used by the state snapshotting algorithm, to a specific
ResultSubPartition. This is only performed for the records emitted by the last operator, of the task’s
operator chain, to its downstream tasks. The Recordwriter is also responsible for grouping records into
buffers.

To perform load shedding on a per record basis (requirement 2.), load shedders were added to each
RecordWriter. For each record that is emitted by the Task, the RecordWriter either allows the record

to be sent downstream, by adding it to the current buffer that is being filled; or simply drops it.
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As previously defined in Section 3.3.2, the non-drop probability for all the stream partitions connecting
two Tasks that belong to the same ExecutionJobVertex, should be the same. As such, this probabil-
ity is stored in the ResultPartition, thus becoming available for the load shedder in the associated

RecordWriter.

4.2.4 Metrics System

Flink has its own abstractions to handle system metrics. For the scope of this work, the most relevant
abstractions are presented in Figure 4.2. As presented, Flink has the concept of an AbstractMetricGroup
that allows to create hierarchies of Metrics, i.e. each AbstractMetricGroup can have several sub-
AbstractMetricGroups each containing a set of Metrics at the same level.

Each Task has an associated TaskMetricGroup, an implementation of an AbstractMetricGroup,
responsible for centralizing all metrics associated with a single Task. Each TaskMetricGroup has two
special metrics groups: the TaskIOMetricGroup, containing metrics such as the input and output record
rates of the Task; and the OperatorMetricsGroups, each containing metrics relative to specific operators
that are being executed by the Task.

Flink’s TaskIOMetricGroup metrics are computed using a sliding time window, allowing their values
to be more stable. This was adapted, in order for the sliding window’s size to match the frequency at

which the QoD Controller is triggered.

4.2.5 Communications between Job Managers and Task Managers

As mentioned earlier in Section 2.5.1, both the Flink JMs and TMs are implemented as Akka Actors,
and as such they are able to exchange messages among themselves with the properties defined by
the Actor Model. Meaning that: 1) An actor can send messages to other actors; 2) An actor processes
received messages one at a time; 3) State is not shared among actors.

An example of such messages that are exchanged between the JMs and TMs are the Heartbeat
messages, presented in Figure 4.2, that are periodically sent from the TMs to the JMs. The system,
uses these Heartbeat messages to send runtime metrics of the TMs and their Tasks to the JMs, using
a TaskMetrics per Task. Once the JM receives these metrics, it stores each of them in the correspon-
dent ExecutionVertex, so that they become available to all the JM’s components that require them
(requirement 4.).

The UpdateNonDropProbabilites message is also introduced, allowing JMs’ QoDController to send
the non-drop probabilities to the ResultPartitions in a specific TM (requirement 5.). These non-drop
probabilities are sent in a batch, i.e. each message can contain several of them.

Additionally, a special message was added, to periodically trigger the QoDController main cycle.
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This message is sent from the JM to itself with a configurable frequency.

4.3 Missing Metrics

Although some of the runtime metrics required by the system are already provided by Flink, such as
the input and output records rate per (sub)task; the CPU usage both by each task and per TM’s process

are not yet available in Flink.

As such, these new metrics were added during the implementation of our solution. The CPU load per
TM process is fairly easy to obtain using the Java Management Extensions (JMX) provided interface.
The CPU load per thread is more complex, since this is not directly provided by JMX, i.e. one must keep
track of the CPU time of the thread, in order to compute this load. Just like in Flink’'s metrics system,

these two metrics are computed by our solution also over a sliding time window.

4.4 Overcoming Flink task failing limitations

When a Flink’s task instance is failed, for instance by the QoD Controller, all the tasks that belong to
the same application are also marked as failed. Causing application’s tasks to release all their resources

and to be re-scheduled once again, not necessarily to the same TIM.

This is not the intended behavior by the QoD Controller, it simply wants to re-schedule a specific
task, while the remaining ones should keep executing on the same TMs, even if some recovery needs
to be done. This is a problem, as it affects the optimality of the algorithms that are used to govern the

system’s decisions, since they depend on the ability of failing individual tasks without affecting others.

Note that there’s currently no impediment on the Flink side for this to be possible, it is simply a
not implemented feature, which also affects Flink’s efficiency when recovering from application failures.
At the moment that this document is being written, there’s a Flink Improvement Proposal that aims at

solving this limitation, the FLIP-1: Fine-grained Recovery from Task Failures’.

Nonetheless, to overcome this restriction, every time a task is failed on purpose, the QoD Controller
flags it. On the Task Scheduler side, if a re-scheduling request contains a flagged task instance, then it
schedules the task to a different TM from the one it was running previously. Otherwise, it schedules the
task to the TM it was previously running on. By following this approach, the optimality of the algorithms

used by the proposed solution is guaranteed.

""Flink Fine-grained Recovery”, https://issues.apache.org/jira/browse/FLINK-4256, (June 22, 2018)
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4.5 Load Shedding on the Source Tasks

As pointed earlier, in Chapter 3, load shedding is also possible right after events are fetched from
the external datasource and before being injected into the applications’ downstream. This, to drop input
events as soon as possible in the application’s DAG.

Given a new event, the task instance’s thread executes what is called an OperatorChain. The
OperatorChain, abstracts a set of chained operators that are sequentially executed by the thread. Each
operator performs the operation on top of the event it receives, and emits the result to the next operator
in the chain. In the end of the chain, if the task is not a sink, then the operator will emit its results to the
next task, that can either be running in the same TM or in a different one.

Therefore, a load shedder was placed between the first operator and the second one in every source
tasks with more than a single operator, since the first operator is the one that performs the integration
with the external datasource. This load shedder is similar to the others and as such, its non-drop

probability is also configurable at runtime.

Task Task

Kafka : Kafka Consumer ﬂ‘ StreamOperator [—> ...—> StreamOperator ﬂ :

Load Shedder

Figure 4.3: Task operator’s chain at runtime with a Kafka consumer source operator and a downstream task.

Figure 4.3 shows a diagram with these concepts. In this figure, the source operator corresponds to

an Apache Kafka  consumer.

4.6 Accuracy of Source Tasks and Integration with Apache Kafka

Computing the accuracy of source tasks in the applications is also a challenging problem. This
happens because to compute this accuracy, one needs to know both the throughput at which events are
being sent to the external datasources that are consumed by the applications; and the rate at which the
source tasks are consuming events. This, while taking into consideration that events may be dropped
right after being fetched by the source subtask, as seen in the previous section.

Obtaining these required metrics is not a trivial task. For this reason, the scope of the proof-of-

concept was reduced to only support this kind of integration with Apache Kafka. Otherwise, the system

2"Apache Kafka”, https://kafka.apache.org, (June 22, 2018)
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assumes that these source tasks are always coping with the event injection rate of the external data-

source, which can be a problem if this is not true.

Apache Kafka Background Topics are the main abstraction of Kafka, that represent queues of mes-
sages. These queues have both producers, that send events to them; and consumers, that consume
these messages. For high parallelism, Kafka topics are partitioned into several partitions, that are dis-
tributed and replicated over the available machines in the Kafka cluster, named the Kafka Brokers.
Consumers can also be grouped into Consumer Groups, that together consume a topic in parallel. Each
topic’s partition is only consumed by a single consumer within each consumer group; while each con-
sumer can be consuming several partitions of the same topic. As such, partitions define the maximum
parallelism at which a consumer application can consume data from a given topic. Figure 5.3 presents
an overview of Kafka’s architecture.

Kafka topic’s consumption is pull based, allowing each consumer to consume events at its own rate.
For performance reasons, events are fetched from a partition in batches. Additionally, each event has

its own offset, that identifies the event in the partition it belongs to.

/ Kafka Cluster \\

Consumer Group 1

Kafka Broker 1

Producer 1 Partition 2

Partition 0

I

Kafka Broker 2

Producer 2 Partition 3

Partition 1

i/l

-

Figure 4.4: Overview of Apache Kafka’s architecture.

Kafka Consumer Metrics Kafka consumers expose some internal metrics during runtime. In the
specific case of Flink’s integration with Kafka datasources, these metrics are already integrated with
Flink’s metrics system, and therefore accessible from the TMs. These Kafka metrics are updated every
time a batch of records is fetched by the Kafka consumer operator in Flink.

Flink's Kafka consumer operator executes in a separated thread, independent from the main one, that
is used by the task instance. This operator, continuously fetches batches of events from the partitions
it is consuming from. Once a batch is received, the consumer injects it into the task’s operators chain.

The synchronization between both threads is performed by a size one blocking queue.
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This yields an issue, because if this synchronization data structure is full, then the Kafka consumer
will be blocked, causing Kafka metrics not to be updated. As such, the Kafka consumers should be
configured to fetch records from the data source in batches that are sized to the application’s maximum
throughput. This can be done by using either the max.poll.records or max.partition.fetch.bytes property,
where the first limits the maximum amount of records fetched in a batch, and the second limits the size
of the batch.

Kafka Input Rate Estimation The input rate of the Kafka consumed topics is not provided as a con-

sumer metric. As such, it must be estimated by the system. Which is done using the following metrics:

» records-lag-max: the lag of a partition corresponds to the difference between the maximum and
minimum offsets in a partition. This metric provides the maximum lag among the partitions con-

sumed by the Kafka consumer. |deally, this value should be zero.
» records-consumed-rate: consume rate of the Kafka consumer instance.

+ assigned-partitions: given a Kafka consumer instance, corresponds to the amount of partitions

it is consuming from.

By computing the variation of the first metric, it is possible to estimate the input and output rates’
difference for the Kafka partition with the highest lag. Therefore, given the output rate and the lag
variation of this partition, it is possible to compute its input rate. Assuming that the workload is fairly
balanced across the topic’s partitions, the output rate of the partition can be estimated by dividing the
second metric by the third one. Using this result and adding it to the lag variation within the partition,
yields the partition’s input rate estimation. Similarly, this can be extended to the rest of the topic’s

partitions.

Source Task’s Input Rate Regarding the input rate of the source tasks, it needs to take into consid-
eration that incoming events may be dropped by the load shedders placed between the first and second
subtasks of the source task’s instances. Thus, if the source task has a second operator, then its input
rate is used as the input rate of the source’s task instance. If the task has a single operator, its output

rate after the load shedder can be used instead. This last situation should be highly unusual.

4.7 Tasks’ Warm-up Interval

Every time a task instance is scheduled to a TM, it takes a while for its CPU load to stabilize and for
its consumption rate to match the one that would be expected given the resources that are available for

the task execution. During this time, any decision performed by the system could be precipitated and
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even lead to unnecessary re-scheduling of tasks. As such, whenever a task instance is (re-)scheduled
to a TM, the system provides some time for it to stabilize and start coping with its input workload. Which
is named the tasks’ warm-up interval.

The warm-up interval of a task instance, starts when the task is scheduled to a TM; and finishes
when the task’s current accuracy achieves its minimum acceptable accuracy. Though it is expected for
this warm-up period to be short, a configurable timeout is added to avoid situations when the task is
infinitely stuck in a warm-up state.

On the QoD Controller side, whenever a TM has a task instance in a warm-up state, all the tasks
whose instances are being executed by the TM will be processing at their minimum required accuracy,

allowing the task in warm-up state to quickly exit this state.

4.8 Summary

This chapter covered the implementation aspects of the proposed solution. The different require-
ments to fully implement its algorithms and mechanisms were specified. Followed by a walkthrough of
all the components that were involved in the implementation (both from Flink and from our solution), and
a description of the changes that were performed to fulfill the identified requirements.

The implementation changes covered: the Flink components used to represent the different phases
of the stream applications, between being specified by the user and being deployed to the TMs; the
Flink’s task scheduling components and the ones responsible to keep track of the existent TMs; the run-
time representation of Flink tasks in the TMs; Flink’s metrics system; and the different communications
between JMs and TMs.

Some setbacks were also highlighted, together with an explanation on how the implementation of our
solution overcomes them. Namely: missing metrics that are required by the model defined in Chapter 3;
Flink limitations to efficiently handle task failures without re-scheduling the whole application; challenges
of implementing the Load Shedding mechanism, more precisely, on detecting bottlenecks in source
tasks and on performing load shedding on these tasks; and the required warm-up interval for tasks to

start coping with their workload when they are re-scheduled.
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5.1 Overview

With both the architecture and implementation of the system specified, it only remains to assess if
the proposed solution is actually able to solve the problem that is the subject of this work. This chapter
is focused precisely on this evaluation. This is performed by running and analyzing a set of scenar-
ios where stream processing applications are executed in a cluster, while their workload dynamically
changes over time. These scenarios are tailored to show situations where current solutions would fall
either on the resource underutilization or resource starvation problems.

This chapter also focuses on evaluating the performance impact of the solution both at the application
level and at the JM level. This allows to assess whether it’s feasible to use the developed solution in
large stream processing environments where hundreds or even thousands or tasks execute in parallel.

This chapter starts by describing the goals of this evaluation, the benchmarking environment and
stream processing applications that will be used. It will then go through each scenario, presenting the
obtained results and a brief analysis of them. It finishes with a critical summary of the gathered results

based on the previously established evaluation criteria.

5.2 Evaluation Criteria

Before performing the evaluation, the evaluation criteria that the system must meet, in order to con-

sider that it successfully solves the problem that it was built to address, must be defined:

1. The solution should always respect the restrictions provided by the user. The applications’ accu-
racy should not go below the defined threshold; and the tasks’ priority must be respected, accord-

ingly with the semantics established in the previous chapters.

2. It must efficiently react to application’ workload changes. For instance, when the application work-
load increases it should reduce the application accuracy or re-schedule tasks to other TMs, avoid-
ing events to be waiting for the application to process them. When the workload reduces, the

applications’ accuracy should increase up to its maximum.

3. Its decisions must guide the system towards a state where tasks are optimally distributed to maxi-
mize their throughput and increase resource efficiency. Showing the ability to solve both situations
of resource underutilization and resource starvation. Obviously, taking into account that the system

can reduce the applications’ accuracy to delay eventual task re-schedules.
4. The solution must be able to scale for scenarios where several tasks run in parallel.

The benchmarking scenarios that will be presented in the following sections of this chapter are de-

signed to demonstrate the ability of the solution to meet these goals. At the end of this chapter, the
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criteria enumerated is used to determine how far the solution is from achieving its objective.

5.3 Benchmarking Environment

The benchmarking environment used to execute the evaluation scenarios consists in four virtual ma-
chines running on top of an host machine with a quad-core 2,4 GHz Intel Core i7. Each virtual machine
running Ubuntu 16.04 LTS operative system, with a single dedicated core and 3 GB memory. These
virtual machines execute in the same host, since the objective is to estimate the solution’s overhead
without this overhead being masked by the network.

Regarding the roles of each machine, three of them were responsible to run the Flink cluster. One
machine executing the JM, and the two others running the two TMs. The Flink setup uses the default
configuration settings, with the exception of the configurations required to setup communications be-
tween the machines. Additionally, all Flink nodes were configured to use a file metrics reporter. Allowing
to gather and later analyze all the metrics reported by the Flink cluster. The QoD Controller was config-
ured to be executed with a 5 seconds frequency, allowing a fair response time for workload changes.

The fourth machine runs Apache Kafka and the data injector for the Kafka topics. The Kafka top-
ics are used as input datasources for the applications that are executed in the evaluation scenarios.
The Apache Kafka 0.10.2.1 release was used, together with Apache Zookeeper' 3.4.11. Zookeeper is
mandatory, since the Kafka consumers use it for checkpointing the latest consumed offset from each
consumed partition. In terms of configurations, the defaults were used for both systems.

To inject data to the consumed Kafka topics and to coordinate the execution of the evaluation scenar-
ios, a new configurable data injector for Flink applications was developed. This injector receives a JSON
specification of the scenario, with information regarding: which applications should be used, when they
should be started and stopped, and how the data injection rate changes for each topic that is consumed
by the applications. For a given Kafka topic, the injected data is obtained from a given input file, by

picking random lines from it. Underlying, the injector uses Gatling 2 to control the actual data injection.

5.4 Test Suite and Datasets

Two applications were created for the evaluation scenarios. Both designed to show specific de-
tails of the system that are required to meet the previously specified goals, hence behaving as micro-
benchmarks of the metrics critical to the system. While at the same time, being simple enough to make
the obtained results easily understandable. Configurations such as the priority and accuracy of each

applications’ query will be described individually for each scenario, whenever relevant.

”Apache Zookeeper”, https://zookeeper . apache.org/, (June 22, 2018)
2’Gatling — Load Testing”, http://gatling.io, (June 22, 2018)
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5.4.1 Taxi Drives Application

The Taxi Drives (TD) application consumes data from two distinct Kafka topics, both providing events
regarding taxi drives. These events are generated based on the NY TLC Trip Record dataset®.

Incoming events are parsed by two application’ source tasks, one for each Kafka datasource; and
only then, the two parsed streams are blended and consumed by two distinct sink tasks, each computing
some useful metrics regarding the taxi trips. The logical DAG of this application is presented in Figure
5.1, DAG (1). Where the task T'DSnk1 of this application is configured to have a parallelism of 2, while
the remaining tasks are executed with a parallelism of 1. Additionally, the T DSnk2 task is more CPU
intensive than the remaining tasks.

Although simple, this application will allow us to analyze how load shedding is propagated in complex
application DAGs, since it not only has a join and fork pattern, but also because one of the sink tasks

has two executing instances.

5.4.2 K-Nearest Neighbors Application

The second application consists in an implementation of the K-Nearest Neighbors (KNN) algorithm
for a three dimensional problem that classifies incoming events based on a given dataset [41]. These
incoming events were randomly generated three dimensional tuples. As presented in the DAG (2) in
Figure 5.1, this application has a single task. This allows to test how the system will be able to take into
account metrics provided by the Kafka consumer. For instance, whether the system is able to trigger
load shedding based on the data injection rate to the input Kafka topic; or not, causing the Kafka topic
lag to increase once the application reaches its bottleneck.

Regarding the parallelism of this application, it will be used both with a parallelism of 1 and 2, de-
pending on the evaluation scenario. In both cases, the input Kafka topic will be configured with two
partitions, allowing to validate that the system is able to handle situations when a single task instance

consumes data from several partitions of the same Kafka topic.

TDSrcl TDSnk1

KNNSrcl

TDSrc2 TDSnk2

(D (2)
Figure 5.1: Logical DAGs of the Taxi Drives (1) and KNN (2) applications.

8”NY TLC — TLC Trip Record Data”, http: //www.nyc.gov/html/t1lc/html/about/trip_record_data.shtml, (June 22, 2018)
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5.5 Scenario 1: Tasks With Same Priorities

The first scenario consists in the execution of the TD application where both sink tasks are config-
ured to have a similar priority, and a minimum acceptable accuracy of 40% and 60% for T DSnk1 and
TDSnk2, respectively. Figure 5.2 shows the obtained metrics from the execution.

The starting point for this execution consists in a cluster with a single TM, TM 1, to which all the TD
application tasks are scheduled, as it is the only available machine. Once the application is running, a
second TM, T'M2, is added to the cluster (A), without any tasks being immediately scheduled to it.

As the workload of the application increases to levels where the application stops coping with it,
the load shedding mechanism gets triggered, causing the application’ accuracies to decrease. Instant
(A), shows one of those situations, where load shedding workload allows the application to keep up,
without having to re-schedule some of the application tasks. As the workload decreases, the application
accuracy increases, up to the moment where load shedding is no longer required (B).

The effect of all tasks having equal priority is clear when looking at the application tasks’ accuracy,
since load shedding is applied to both sinks without any of them reaching their accuracy threshold.
Instant (A) is an example of such situations.

In the instants (C) and (D) the QoDController re-schedules some tasks to the later added TM, as
load shedding stops being able to release the required resources without compromising the application’s
restrictions. In (C) the first instance of the T D.Snk1 task was re-scheduled, while in (D) it was the second
instance of the same task. The reason why both T DSnk1 instances where re-scheduled rather than
T DSnk2, is because their re-scheduling was the one that minimized the amount of released CPU, while
still releasing enough for the remaining tasks in TM 1 to keep up with their workload.

After each of these re-schedules, the maximum application throughput increases. Note that after (D),
the system achieves an optimal task distribution that maximizes both the throughput and accuracy of the
application, and reduces resource wastage. Additionally, the effects of the tasks’ warmup period in their
accuracy are also visible every time a task is re-scheduled. This warmup phase took no longer than 1
minute in both re-schedules, showing that tasks can quickly exit from this state.

Looking at the CPU usage of T'M1, it's noticeable that a considerable amount of CPU load is not
being tracked by the system, even though only the Flink TM is being executed in the machine. This
happens because Flink tasks can create more threads rather than their main one. This is common in
several operators, such as window operators or even in Kafka source operators, where a second thread
fetches events from Kafka and injects them into the processing pipeline. A better mechanism should be
provided by Flink to control all the threads created from a single task instance, as this is a loophole in
Flink’s resource management model.

During the execution, it was also observed an average difference of 0.6% and 0.5%, between
currAc(TDSrcl) and ac(T' DSrcl), and between curr Ac(T DSrc2), respectively.
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Execution of the Taxi Drives application where all sinks have the same priority. First two charts show
the CPU load of each TM and their executing tasks. Third and fourth charts show the application sinks’
accuracy and the application throughput for each input Kafka topic, respectively.
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5.6 Scenario 2: Tasks With Different Priorities

This scenario shows an execution with both TD and KNN applications, where their tasks have dif-
ferent priorities, both between the two applications and between the two queries in the TD application.
This way, this scenario allows to evaluate how different priorities are taken into account by the system.

The test starts with both TMs available for executing tasks, and with the TD application’ tasks being
scheduled among them following the established scheduling policy. The KNN application, which is
configured with a parallelism of 1, is only added later to the system (A). Since this scheduling occurs
when the TD application is already processing events, the KNN task is scheduled to T'M 2, which is the
TM with the lowest CPU usage. Once the KNN application is scheduled, the effect of its warmup state
is visible on the accuracy of the other tasks whose instances are also executing in TM (A).

In terms of priorities, it’s visible that the T'DSnk1 task has an higher priority than the K N N Src1 task.
For instance, when the KNN application’ workload increases (B), its accuracy drops, while the accuracy
of the T'DSnk1 task (which is being executed in the same TM) remains unchanged. A similar behavior
appears later, when the workload of the TD application increases (C), causing the accuracy of the KNN
application’ to decrease in order for T'DSnk1 to cope with its incoming workload.

On the other hand, TDSnk1 has a lower priority than the TDSnk2 task. As the workload of the TD
application increases, the TDSnk1 instances’ accuracy drops before load shedding gets triggered on
TDSnk2, eventually re-scheduling the first TDSnk1 task instance (C) in order to allow TDSnk2 to keep
up with its workload.

Once again this scenario shows the ability of the system to adapt task scheduling based on the
changing runtime requirements of application tasks. By doing so, it was able to improve the applications’
throughput, as can be seen in (C), after re-scheduling the task instance TDSnk1.1. Flink 1.2 is incapable
of performing this type of adaptation, clearly showing a situation where the proposed system performs

better in terms of resource efficiency.
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Figure 5.3: Taxi Drives and KNN applications’ execution, having tasks with different priorities. First two charts show
the CPU load in both TMs. Third chart shows the applications’ throughput for each input Kafka topic.
The accuracy for each sink task is presented in the remaining charts.
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5.7 Scenario 3: Apache Kafka Integration

The third scenario focus on evaluating the integration of the mechanism with the metrics provided by
Kafka consumers, as described previously in Section 4.6. In this evaluation scenario, the KNN applica-
tion is executed with a parallelism of 2, where both task instances consume from different partitions of
the input Kafka topic. Both TMs were used, each executing one of the task instances, due to the task
scheduling policy. Figure 5.4 presents the obtained results.

In terms of the load shedding mechanism, the results show that the system is able to properly adapt
the application’ accuracy based on the incoming workload (first and second charts in the figure), either
when it increases (A) or decreases (B). While the load shedding mechanism was active, it was measured
a Pearson correlation of 0.95% between the accuracy and the estimated Kafka input rate.

The second chart in Figure 5.4, shows a comparison between the actual and estimated injection
rate to the consumed Kafka topic, where the estimated injection rate is the one computed based on the
method previously described in Section 4.6. Results show that even when load shedding is active, the
system is able to estimate the actual injection rate with a mean error of 0.4% + 6.2% and 2.8% error
in percentile 90%. A slight delay between the estimated value and the actual injection rate, can also be
noticed, which explains the high standard deviation. This happens due to delays on updating the Kafka
consumer’s metrics.

Regarding Kafka topic partitions’ lag, some spikes can also be observed, which appear due to the

following two reasons:

1. The definition used for current accuracy, in Section 4.2, aims at reducing the difference between
the producer and consumer throughput, not at minimizing the amount of events that are in queue
to be processed by a task. Other definitions for the current accuracy could be used to address this

problem.

2. A misalignment between the instant when the injection rate suddenly changes and the instant
when the next QoD Controller cycle is triggered, causing events to wait in queue to be processed,

since the system can’t react immediately after the workload change.

Once again, our load shedding mechanism proves its value, as it prevents the Kafka topic lag from
increasing as the application reaches its bottleneck. The same wouldn’t happen in Flink 1.2, where its
back-pressure mechanism wouldn’t be able to keep Kafka lag near zero. This will be observed in the

benchmark presented in the next scenario.
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Figure 5.4: Execution of the KNN application as the event injection rate changes. First chart shows its accuracy;
second chart a comparison between the injection rate and estimated injection rate to the Kafka topic;
and third chart, the lag of each Kafka topic partition.
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5.8 Scenario 4: Impact on Applications’ Performance

This fourth scenario aims at understanding the impact of the proposed mechanism on the applica-
tions’ performance. This was done by executing the TD application and monitoring both its latency and
throughput as its workload increases. This scenario was executed both in Flink 1.2 and in our modified
version of it. To allow a fair comparison, a single TM was used, guaranteeing that tasks are scheduled
in the same way (since there is only one TM).

The obtained results are presented in Figure 5.5, which shows the Kafka topics’ lag, the application
throughput at each input Kafka topic and the application latencies, over time. The measured latency
corresponds to the latency inside the application, i.e. it doesn’t take into account the time each event
spends in queue, waiting to be consumed by the application

As observed, once the application bottleneck is reached (instants A and B), the different behavior
of both solutions becomes clear. In Flink 1.2, the application throughput stops keeping up with the
increasing injection rate. Causing the Kafka topics’ lag to continuously increase, as Flink’s back pressure
mechanism gets triggered. The same doesn’t happen when using the developed solution, thanks to the
load shedding mechanism. In this case, the application is able to cope with the injection rate, keeping
Kafka topics’ lag almost null.

In case of the modified Flink version, it's possible to see interesting patterns regarding the applica-
tion’s latency. As presented, there are several latency spikes aligned with changes in the injection rate.
Nonetheless, these latency spikes eventually converge to latencies below the ones observed in Flink
1.2 (C), though still slightly above the ones observed before the application reaches its bottleneck. The
reason this happens is the same pointed in Section 5.7, though this time, events are queuing up in the
application’s internal buffers between the producer and consumer tasks.

Regarding latency in Flink 1.2 execution, results shows that it increases once the application bottle-
neck is reached (A). This happens because without load shedding, the intermediate application buffers
will remain full. Note that the time events spent in the Kafka topic should also be added to the measured
latency; thus, the overall latency is actually getting worst as the Kafka topic lag increases.

These results show a clear advantage of the proposed solution compared to Flink 1.2, as it allows
applications to maintain higher throughput and lower latencies, even though optimizing the latency is not
entirely the focus of the implemented model.

As a side note, the reason for the misalignment between instants A and B happens both due to the
different task parallelism, and because the union operator implementation prioritizes the consumption of

one of its input streams over the other.
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Figure 5.5: Lag, consumption throughput and latency of the Taxi Drives application as the injection rate increases,
both when using Flink 1.2 and in using the proposed solution.
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5.9 Scenario 5: Scalability and Job Manager Performance Impact

The fifth and final scenario focuses on understanding the scalability of the decision making mecha-
nism as the amount of tasks in the system increases. The results presented in both Figures 5.6 and 5.7
were used to perform this assessment. The first figure shows how the CPU load of the JM increases
as the amount of tasks being executed increases. Figure 5.7 shows how the execution time of the QoD
Controller monitoring cycle increases with the amount of executing tasks. Both benchmarks were per-
formed using two TMs, with the applications’ workload dynamically changing. Causing load shedding to
be triggered, but without any task re-scheduling.

The obtained results show that even with 2000 executing tasks, which is already a very high amount
of tasks, the JM’s CPU load is below 15% in the third quartile. Meanwhile, the execution time of the
QoD Controller is below 115 ms in the second quartile, for the same amount of tasks. Compared with
Flink 1.2 (first box plot in Figure 5.6) the solution shows to be more CPU intensive, which was an already

expected outcome.
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Figure 5.6: CPU Load of the JM for different amounts of executing tasks, with two TMs, and comparison with Flink
1.2 release.
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Figure 5.7: Execution time of the QoD Controller, given a fixed amount of executing tasks and using two TMs.
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5.10 Summary

Overall, the obtained results from the different scenarios were promising. They are able to show
that the system is able to adapt both load shedding and task scheduling to the dynamic workload of
the applications. Thus, causing the system to eventually converge to a state of optimal task distribution,
which can change over time due to the dynamic nature of the applications’ workload.

At the same time, it was possible to observe situations where load shedding worked as a buffer,
preventing the system from taking precipitated task re-scheduling decisions. Even when tasks were
re-scheduled, their warmup interval showed to be acceptable.

The integration with the external datasource metrics, was also validated, proving that the system can
effectively detect bottlenecks in the applications’ source tasks.

In terms of performance, the system was able not only to improve the applications’ throughput, but
also their latencies. Thus, showing great improvements when compared with Flink’s current approach,
obviously at the cost of lowering applications’ accuracy. The solution also proved to be scalable, which
shows that it can be feasible for real world applications, where the provided semantics are acceptable.

Regarding the previously established evaluation criteria, it’s possible to conclude that the evaluation
results proved that the system was able to fulfill them. Nonetheless, the obtained results also show room
for improvements, both in terms of the defined decision making model; and regarding the way runtime

metrics are being obtained / calculated.
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6.1 Conclusions and Final Remarks

This dissertation explored the problem of efficient resource management in large scale clusters run-
ning several workload dynamic and resource heterogeneous applications, either facing underutilization
or resource starvation situations. While at the same time exploring how approximate computing tech-
niques can be used to address this problem.

A novel resource management model was proposed, that specifically targets this problem under the
domain of distributed stream processing systems. The solution leverages a resource usage aware task
scheduler together with two mechanisms to handle task overallocation situations, i.e. task re-scheduling
and load shedding. The system exposes a simple, yet meaningful, interface for the application devel-
opers, that allows them to specify the importance of their queries and their acceptable accuracy. The
model governs the system decisions at runtime by respecting the user defined application requirements,
while following the established semantics for this decision making mechanism. The proposed model
was developed and evaluated on top of Apache Flink, a modern and state of the art stream processing
system.

Defining the different followed semantics in a way that they are useful for most stream processing
use cases, such as identifying a good definition for accuracy and specifying how the different applica-
tion priorities should be taken into consideration; turned out to be a non-trivial problem. Additionally,
guaranteeing the computational efficiency of the algorithms that perform this decision making was also
a challenging task. Because in order to avoid decision backtracking, decisions need to be performed by
the system in the right order, since decisions taken for one task instance may also affect the others.

The developed load shedding mechanism for Flink should also be highlighted, since it not only takes
into consideration bottleneck situations in internal application tasks, but also on source tasks, based on
metrics from the external datasources. This mechanism is also able to drop incoming workload as soon
as possible in the applications’ DAGs, minimizing the processing of events that will be surely dropped by
downstream tasks, while taking into account the different desired accuracies of the applications’ queries.

Implementation wise, several limitations were identified, such as the lack of ability to re-schedule a
single application task in Flink without having to re-schedule the whole application. Or even missing
datasource metrics that could be useful to identify source tasks’ bottlenecks.

Performed benchmarks show that, compared to current stream processing solutions, the overall
system is able to better explore the available resources, as well as improve the throughput and latency
of the applications in bottleneck situations. The system is able to dynamically change tasks’ allocation
to resources, as well as their accuracy, based on the runtime applications’ needs. Allowing application
queries to keep outputting fresh results, albeit at the cost of accuracy drops. The underlying algorithms
also proved to be scalable, allowing the system to manage the execution of hundreds or even thousands

of parallel tasks.
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6.2 Future Work

Besides overcoming the already identified limitations of the system and making it more production
ready, future work should also focus on exploring other dimensions of the proposed solution.

It would be interesting to integrate an auto-scaling mechanism with the model, allowing it to also
change the applications’ parallelism, when the performance of a specific task can no longer be improved
without increasing its parallelism. Or even to adapt the amount of machines in the cluster, allowing the
system to add more resources every time task re-scheduling and load shedding can’t overcome resource
starvation situations. This, while at the same time, reducing the amount of machines whenever these
are not required, causing more tasks to be scheduled to the same machine.

In terms of the load shedding mechanism, other approaches for selecting the events that should be
dropped can be explored, such as semantic load shedding. Or even to allow users to specify different
load shedding semantics per application.

In fact, generalizing the proposed model in order to allow specific parts of it to be customizable either
by the system administrator or by the application developers (on a per application granularity), could be
another thread of exploration. For instance, enabling the user to provide: its own implementation of the
current accuracy function, in order to improve the latency of its application and not just the throughput; a
method to predict the obtained accuracy given a CPU amount; or even a completely different definition
of accuracy. As well as to modify the semantics followed by core components such as the QoD Con-
troller. Nonetheless, guaranteeing that users won'’t explore this feature for their own advantage, can be
a challenge.

Better alternatives to the tasks’ warmup interval should also be investigated, since this warmup
interval may unnecessarily affect the accuracy of other application.

Finally, there are also opportunities for future work regarding the benchmarking of the proposed
system. The system must still be tested in large scale environments with several heterogeneous appli-
cations, allowing to obtain a good estimation of how much the environment resource efficiency can be

improved by using this novel approach for resource management.
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