
browserCloud.js

A federated community cloud served by a
P2P overlay network on top of the web

platform

David Dias, mail@daviddias.me

Técnico Lisboa, University of Lisbon

Abstract. Grid Computing fundamental basis is to
use idle resources in order to maximize their effi-
ciency. This approach quickly grew into non Grid en-
vironments, leveraging volunteered shared resources,
giving the birth of Public Computing. Today, we face
the challenge of how to create a simple and effective
way for people to participate in such community ef-
forts and even more importantly, how to reduce the
friction of adoption by the developers and researchers
to use and provide these resources for their applica-
tions. This thesis explores and proposes novel ways
to enable end user machines to communicate, using
recent Web technologies such as WebRTC.

Keywords: Cloud Computing, Peer-to-peer, Voluntary
Computing, Decentralized, Javascript, WebRTC.

1 Introduction

In the information communications technology landscape, to-
day, user generated data has been growing at a large pace,
with the introduction of social networks, search engines, In-
ternet of Things, which led to innovation on home and vehicle
automation. The storage, transfer, and carry out of processing
and analysis of all this data brings the need for considerable
new breakthroughs, enabling us to optimize systems towards
a better and enhanced experience. However, how to use the in-
formation available to achieve these breakthroughs has been
one of the main challenges since then.

Currently addressing these issues in part, Cloud Comput-
ing has revolutionized the computing landscape due to key
advantages to developers/users over pre-existing computing
paradigms, the main reasons are:

– Virtually unlimited scalability of resources, avoiding dis-
ruptive infrastructure replacements.

– Utility-inspired pay-as-you-go and self-service purchasing
model, minimizing capital expenditure.

– Virtualization-enabled seamless usage and easier program-
ming interfaces.

– Simple, portable internet service based interfaces, straight-
forward for non expert users, enabling adoption and use
of cloud services without any prior training.

Grid computing had offered before a solution for high CPU
bound computations, however it has high entry barriers, being
necessary to have a large infrastructure, even if just to execute
small or medium size computing jobs. Cloud computing solves

this by offering a solution “pay-as-you-go”, which transformed
computing into an utility.

Still, even though we are able to integrate several Cloud
providers into an open software stack, Cloud computing re-
lies nowadays on centralized architectures, resorting to data
centers, using mainly the Client-Server model. In this work,
we pursue a shift in this paradigm, bridging the worlds of de-
centralized communications with efficient resource discovery
capabilities, in a platform that is ubiquitous and powerful,
the Web Platform.

1.1 Problem Statement

There is a large untapped source of volunteered shared re-
sources that can be used as a cheaper alternative to large
computing platforms.

Current Shortcomings We have identified several issues
with current solutions, these are:

– Typical resource sharing networks do not offer an interface
for a user to act as a consumer and contributor at the same
time.

– Interoperability is not a prime concern.
– There is a high level of entrance cost for a user to con-

tribute to a given resource sharing network.
– Load balancing strategies for volunteer computing net-

works are based on centralized control, often not using
the resources available efficiently and effectively.

– Centralized Computing platforms have scalability prob-
lems as the network and resource usage grows.

1.2 Research Proposal

To accomplish this, we propose a new approach to abandon
the classic centralized Cloud Computing paradigm, towards
a common, dynamic. This, by means of a fully decentralized
architecture, federating freely ad-hoc distributed and hetero-
geneous resources, with instant effective resource usage and
progress. Additional goals may include: arbitration, service-
level agreements, resource handover, compatibility and max-
imization of host’s and user’s criteria, and cost- and carbon-
efficiency models.

This work will address extending the Web Platform with
technologies such as: WebRTC, Emscripten, Javascript and In-
dexedDB to create a structured peer-to-peer overlay network,
federating ad-hoc personal resources into a geo-distributed
cloud infrastructure, representing the definition made by
C.Shirky of what an peer-to-peer means:

“An application is peer-to-peer if it aggregates resources at
the networks edge, and those resources can be anything. It can
be content, it can be cycles, it can be storage space, it can be
human presence.”, C.Shirky [?]

1.3 Structure and Roadmap

We start by presenting in Chapter 2, the state of the art for
the technologies and areas of study relevant for he proposed
work, which are: Cloud computing and Open Source Cloud
Platforms (at 2.1), Volunteered resource sharing (at 2.2) and



Resource sharing using the Web platform (at 2.3). In Chapter
3, we present thed architecture and respective software stack,
moving to Implementation details in Chapter 4 and system
evaluation present on Chapter 5.

1.4 Publications, Presentations and References

We witness a new thread in Javascript, Node.js, WebRTC and
essencially in the Web Open Source communities to move to
a model where contributions to the ecosystem are measured
by their ability to be used by other projects, reviewed and
studied from their internals and easy to use. We have fully
adhered to and adopted this mindset since the beginning of
the development of browserCloud.js, taking the project to the
community and collecting feedback early and often, getting
other developers excited to use the platform. In this process,
we’ve achieved:

– Talk at Data Terra Nemo1, P2P Conf in Berlin, Germany.
– Talk delivered at OpoJS, Oporto, Portugal.The video of

this talk was later published2

– WebRTC Weekly Issue #60 mention, the number
one WebRTC newsletter with more than 1000 sub-
scribers (https://webrtcweekly.com/issue/webrtc-weekly-
issue-60/).

– Number one Top article in EchoJS for 3 days in a row and
Top-5 for 7 days. (http://www.echojs.com/news/14009)

2 Related Work

The lack of applications portability in Cloud Computing has
been identified as a major issue by growing companies, known
as ‘lock-in syndrome’, becoming one of the main factors when
opting, or not, for a Cloud Provider, the industry realized this
issue and started what is known as OpenStack3.

OpenStack is an open source cloud computing platform
initiative founded by Rackspace Hosting and NASA. It has
grown to be de facto standard of massively scalable open
source cloud operating system. There is an underlying illu-
sion that is the fact that you still have to use OpenStack in
order to have portability, it is just a more generalized and free
version of the ‘lock-in syndrome’. Other solutions are:

– Eucalyptus - is a free and open source software to build
Amazon Web Services Cloud like architectures for a pri-
vate and/or hybrid Clouds. From the three solutions de-
scribed, Eucalyptus is the one that is more deeply en-
tangled with the concept of a normal Cloud, packing a:
Client-side API, a Cloud Controller, S3 storage compliant
modules, a cluster controller and a node controller.

– IEEE Intercloud - pushes forward a new Cloud Comput-
ing design pattern, with the possibility to federate several
clouds operated by enterprise or other providers, increas-
ing the scalability and portability of applications.

– pkgcloud - is an open source standard library that ab-
stracts differences between several cloud providers, by of-
fering a unified vocabulary for services like storage, com-
pute, DNS, load balancers, so the application developer

1 http://dtn.is/
2 https://www.youtube.com/watch?v=fNQGGGE zI
3 http://www.openstack.org/ - seen on December 2013

does not have to be concerned with creating different im-
plementations for each cloud.

One interesting aspect that we want to remark is that the
more recent solutions look for interoperability through ab-
straction and not by enforcing a specif stack.

Another trend in Cloud Computing are the Community
Clouds, where computing resources might be shared and
traded through the available network or through a Commu-
nity Network, where individuals can build their own data
links, this is also known as “bottom-up networking”. CON-
FINE [6] is an European effort that has the goal to feder-
ate existing community networks, creating an experimental
testbed for research on community owned local IP networks.
From this project, resulted Community-Lab,4 a federation be-
tween guifi.net, AWMN and FunkFeuer (community network
from Vienna and Graz, Austria).

Volunteered resource sharing networks enable the coop-
eration between individuals to solve higher degree compu-
tational problems, by sharing idle resources that otherwise
would be wasted. The type of computations performed in this
Application-level networks (ALN), are possible thanks to the
definition of the problem in meta-heuristics, describing it with
as laws of nature [3]. This process creates small individual sets
of units of computation, known as ‘bag of tasks’, easy to dis-
tribute through several machines in and executed in parallel.

In order to increase the flexibility of the jobs executed by the
volunteered resources, the concept of Gridlet [2] [7] appears as
an unit of workload, combining the data with the logic needed
to perform the computation in one package.

One of the main focuses with the proposed work, is to take
advantage of the more recent developments of the Web plat-
form to make the intended design viable, the system depends
on very lower level components such as:

– High dynamic runtime for ongoing updates to the platform
and specific assets for job execution, using JavaScript [4],
an interpreted language with an high dynamic runtime,
has proven to be the right candidate for a modular Web
Platform, enabling applications to evolve continuously
over time, by simply changing the pieces that were up-
dated. HTTP2.0 [10] also plays a important role towards
this goal with differential updates, binary framing and pri-
oritization of data frames.

– Close-to-native performance for highly CPU-bound jobs.
This is achieve through Emscripten [12], a LLVM(Low
Level Virtual Machine) to JavaScript compiler, enabled
native performance on Web apps by compiling any lan-
guage that can be converted to LLVM bytecode, for ex-
ample C/C++, into JavaScript.

– Peer-to-peer interconnectivity with WebRTC[?], a tech-
nology being developed by Google, Mozilla and Opera,
with the goal of enabling Real-Time Communications in
the browser via a JavaScript API.

– Scalable storage and fast indexing with ‘level.js’, an effi-
cient way to store larger amounts of data in the browser
machine persistent storage, its implementation works as
an abstraction on top of the leveldown API on top of In-
dexedDB [?], which in turn is implemented on top of the

4 http://community-lab.org/ - seen on December 2013



LevelDB, an open source on-disk key-value store inspired
by Google BigTable.

Previous attempts on cycle sharing through web
platform: The first research of browser-based distributed cy-
cle sharing was performed by Juan-J. Merelo, et. al., which in-
troduced a Distributed Computation on Ruby on Rails frame-
work [5]. The system used a client-server architecture in which
clients, using a browser would connect to a endpoint, where
they would download the jobs to be executed and sent back
the results. In order to increase the performance of this sys-
tem, a new system [3] of browser-based distributed cycle shar-
ing was creating using Node.js as a backend for very intensive
Input/Output operations [11], with the goal of increased ef-
ficiency, this new system uses normal webpages (blogs, news
sites, social networks) to host the client code that will connect
with the backend in order to retrieve and execute the jobs,
while the user is using the webpage, this concept is known as
parasitic computing [1], where the user gets to contribute with
his resources without having to know exactly how, however
since it is Javascript code running on the client, any user has
access to what is being processed and evaluate if it presents
any risk to the machine.

Analysis and discussion: The concept of Gridlet, akin
to those seen as well in state of the art databases such as
Joyent’s Manta,5 which bring the computation to/with the
data, reducing the possibility of a network bottleneck and in-
creases the flexibility to use the platform for new type of jobs,
will very important. To enable this new Cloud platform on us-
ing browsers, it is important to understand how to elastically
scale storage and job execution, as in [8], but in peer-to-peer
networks: therefore a study of the current algorithms and its
capabilities was needed. Lastly, browsing the web is almost as
old as the Internet itself, however on the last few years, we
are seeing the Web Platform rapidly changing, and enabling
new possibilities with peer-to-peer technology e.g. WebRTC;
otherwise, it would not be possible to create browserCloud.js.

3 Architecture

browserCloud.js proposes a mechanism to find, gather and uti-
lize idle resources present in a P2P overlay network, in which
its participants will be joining and connecting to each other
through a rendezvous point, as represented in Figure 1. For a
given peer, all that the peer needs to know is that once part
of this network, it can submit a job which will be partitioned
and distributed across a number of peers available, being re-
sponsible for later aggregating the results and delivering them
to the user which summoned that job. The user does not need
to understand how the network is organized or which peers it
is directly connected too, so that complexity is abstracted by
browserCloud.js.

A pratical use case for browserCloud.js is high CPU bound
jobs and capable to run in parallel, e.g: image processing, video
compressing, data manipulation, map and reduce functions,
etc. These parallel tasks are divided by the peers available in
the network, leveraging the parallelism to obtain a speed up.

5 http://www.joyent.com/products/manta - seen in December
2013

Fig. 1. browserCloud.js Overview

browserCloud.js was architectured to meet the following re-
quirements:

– Membership management - The system has to en-
able peers to join and leave a current network of browser-
Cloud.js peers or a subset of it.

– Message routing - Messages are be routed between
peers, having each peer knowing a subset of the network,
guaranteeing in full coverage in this manner.

– Job scheduling and results aggregation - The discov-
ery of computational resources must be performed using a
distributed approach, peers interact between each other to
send tasks and retrieve the results for the peer executing
the job.

– Support dynamic runtime - Provide flexibility for jobs
being executed.

– Reduced entrance cost to enable greater adoption
- Simple APIs design, abstracting the complexity in favor
of greater extendability.

– Enable integration and compliance tests - Automate
the process of verifying browserCloudjs integrity and func-
tionality.

3.1 Distributed Architecture

The overview of the distributed architecture can be seen in
Figure 2.

Fig. 2. browserCloud.js Distributed Architecture Overview

Entities There are two different kind of actors in the system:

– browser - The points on our network that will be able to
issue jobs, execute tasks and route messages.



– rendezvous point - The only centralized component in this
architecture, its purpose is for the clients to have a way to
connect to and join the overlay network.

Interaction Protocols In a browserCloud.js infrastructure,
we have three main interaction patterns, the first being when
a peer joins or leaves the network, which also we can call mem-
bership management, something that in traditionally P2P net-
works would simply mean an exchange of a IP:Port pair, but
in a P2P browser network, a RTCPeerConnection has to be
established and kept alive, meaning that an handshaking pro-
tocol must be performed. The second pattern is message rout-
ing between peers, this has been designed with inspiration on
the Chord[9],routing algorithm, studied on the related work.
The third interaction demonstrates how to levarage the com-
puter cycles available in the network to process CPU bound
jobs.

Peer joins and leaves A peer join compromisses of the follow-
ing steps:

– 1 - Registration - When a peer is ready to join the
network, it performs the registration action to the custom
browserCloud.js signalling server, the server replies with
a confirmation and a unique ID for this peer to occupy
in the network. This enables the signalling server, which
holds the meta data of the current state in the network, to
pick the ID in the ID interval that might be less occupied.
We can observe this interaction in Figure 3.

– 2 - New peer available - As peers join the network,
other peers present need to be notified to establish or up-
date their connections to the new best candidates, so that
the routing of messages (explained in the next subsection),
remains efficient. For each peer join, a notification with a
finger update can be sent to 1 or more peers present, as
seen in Figure 4.

– 3 - Connection establishment between two peers -
In order to establish a connection between two peers, once
there is an interest for these to connect, for e.g, in the case
of a finger update event. There are two substeps, the first
being the SDP offer creation through a technique called
”hole punching”, where a browser uses one of the We-
bRTC API to traverse through NAT to obtain its public
IP, which is crucial information when two browsers need
to establish a direction connection, Figure 5. The second
step is the exchange of these SDP offers between browsers
and that has to be performed by a centralized service; in
browserCloud.js we developed a custom signalling server
that handles that part, as seen in Figure 6.

A peer leave is a simpler and organic process, once a
peer leaves the network, the RTCPeerConnections objects are
closed and destroyed, notifying automatically the peers that
have to update their finger tables that they should request the
signalling server to update the metadata of the state of the
network and therefore, issuing new finger-update messages.

Message routing For message routing, we designed an adapta-
tion of the Chord routing algorithm, a P2P Structured Over-
lay network, a DHT studied in the related work, with the goal

Fig. 3. Registration of a peer, signaling itself as available to be part
of the P2P network

Fig. 4. A peer is notified to update his finger table

Fig. 5. Hole punching through NAT to obtain a public IP and
create a SDP offer

Fig. 6. Establishment of a RTCPeerConnection through the cus-
tom Signalling Server

of keeping an efficient routing and resource lookup with the
increase of the number of peers in the network.

The ID namespace available in our DHT consists of 48 bit
IDs (Figure 7 ), this decision was made due to the fact that
Javascript only supports 53 bit numbers, to support a greater
variaty of IDs, we would have to resort to a big integer third
party library, adding unnecessary consuption of computing re-
sources. However, for demonstration purposes, we will explain
using a 3 bit ID namespace.

Fig. 7. How the ID namespace is visualized in the DHT



In Figure 8, we have a DHT composed of 4 different peers,
with IDs 0, 1, 3 and 6. Each one of these peers will be re-
sponsible for a segment of the DHT, in another words what
this means is that every message that is destined to their seg-
ment, will be delivered to respective peer responsable. A peer
is responsible for a segment of IDs greater than the peer that
is its predecessor and lesser or equal than its own ID, repre-
sented in Figure 9. When a peer enters in the network, its ID
is generated through a crop of a SHA-1 hash from a random
generated number, creating a natural uniform distribution.

Fig. 8. Example of a DHT with 4 peers for case study

Fig. 9. Responsability interval for each Peer

In order for messages to find its correct destination, each
peer has to know at minimum the peer that is next to it on
the DHT, also called ”successor” (Figure 10). Messages will
be forward until they reach the peer which compromisses the
responsability of being responsible for that message ID.

Fig. 10. Minimum number of connections for messages to be routed
properly

However, as specified earlier in the document, we want to
achieve a good and stable efficiency when it comes to routing
messages inside the DHT as the network grows. To achieve
that, we introduce fingers in our peers as we mentioned earlier.
A finger is a direct connection to another peer in the network
(Figure 11), that was picked following a specific distribution,
each peer will have 1 to N fingers, where N is the number of
bits of the IDs (for this example, N = 3). A finger is always
the peer responsible for the ”start” value of the interval (see
Figure 12 for reference and formula) and a message will be
routed to that finger if it falls inside the interval.

Fig. 11. Example of peer with ID = 0 fingers

Fig. 12. Peer with ID=0 finger table

The number of fingers and the fingers we use for a given
instance of browserCloud.js are configurable. The reason be-
hind this design decision was that RTCPeerConnections have
a significant memory cost, so we have to be considerate in the
number of data channels we keep open. In order to give greater
flexibility to the developer, we allow the option of picking how
many rows of the finger table will be filled by the developer
creating a browserCloud.js application. This is also perfect
since WebRTC is still a working draft and there might be
good developments in resource consumption.

3.2 Resource Management

Leveraging the browser’s dynamic runtime was a feature we
pursue from the beginning of the design for browserCloud.js.

Job Execution A job consists in the partition of tasks which
are enriched, with both task code and data, and sent to other
peers to be executed. These tasks, which can be represented
as functions (job assets), can be defined in runtime, therefore
providing a greater flexibility to the developer that is using



this system to run the distributed job they want. We can de-
scribe the work performed to schedule a job, by the following
algorithm:

– 1. A user submits a job

– 2. The job is divided in smaller computing units, called
tasks, each task compromisses of a segment of the data
that is going to be processed and the transformation which
is going to be applied, that is, a function.

– 3. These tasks and data partitions are created

– 4. The peer will request the network for other peers avail-
ability, the user has the capability to specify how many
peers should be used to process this job. This option is
given since different jobs might benefit of more or less
partition, depending on the data set.

– 5. The peer who submitted the job (the peer that is con-
trolled by the user submitting the job) will receive the in-
dividual results for each task as they are ready and trans-
mitted. Once all of the results are received, they are ag-
gregated and delivered to the user.

3.3 Architecture of the Software stack

We can observe a overview of this architecture in Figure 13.

Fig. 13. Software layers at the peer level

Communication layer The communication layer is re-
sponsible for routing messages between peers and establish
a connection with the rendezvous point to perform a peer
join/leave.

Service router The Service router establishes a protocol for
modules like the job scheduler to interact with the network
of peers, it uses an event driven model, where modules can
register listeners to events that happen on the network or send
messages.

Job scheduler The Job scheduler benefits the API of the
Service router to implement its logic.

3.4 API design

For the user of browserCloud.js, a simple API was created to
perform: peer join, message listening and job scheduling as
demonstrated by the following code (which should be inter-
preted as pseudo-code since the API might change with the
release of new versions):

API Usage Peer join

// browserCloud.js browser module name is called webrtc-explorer.

var Explorer = require(’webrtc-explorer’);

var config = {
signalingURL: ’<signalling server URL>’

};

var peer = new Explorer(config);

peer.events.on(’registered’, function(data) {
console.log(’registered with Id:’, data.peerId);

});

peer.events.on(’ready’, function() {
console.log(’ready to send messages’);

});

peer.register();

Listen for messages

// The only action that has to be performed is listen for the message
// event
peer.events.on(’message’, function(envelope) {

console.log(envelope);
});

Execute a job

var browserProcess = require(’webrtc-explorer-browser-process’);

var config = {
signalingURL: ’http://localhost:9000’

};

// Make this browser available to execute tasks and also prepared to
// issue jobs to the network
browserProcess.participate(config);

var start = function() {
var data = [0,1,2,3,4,5,6,7,8,9,10]; // simple data input
var task = function(a) {return a+1;}; // e.g of a task (
var nPeers = 2; // number of peers we are requesting from the network
// to execute our job

browserProcess.execute(data, task, nPeers, function done(result) {
console.log(’Received the final result: ’, result);

});
};

3.5 Testing framework requirement

When it comes to testing to test a decentralized browser app
or library, the focus stops being how a browser implements a
specific behaviour, but how the decentralized network handles
node joins and leaves, and whether nodes are effectively com-
municating between each other. For this scenario, we have a
specific set of requirements for the framework, these are:

– Have N browsers available, where 1<=N<=virtually un-
limited

– Serve a custom web page for the desired test

– Instruct browsers on demand

– Gather information and evaluate the state as a whole



browserCloudjs quality test workflow In order to evalu-
ate that a browserCloudjs instance is working as desired, we
have designed the following workflow, which can also be seen
in Figure 14:

– 1 - A Web Server is started by the Control Center, this
endpoint will be serving the necessary static assets (e,g
.html, .css and .js files) that will contain our browser-
Cloudjs module, so that when a browser loads the page
through this endpoints, has a way to run browserCloudjs.

– 2 - The number of required browsers for the test being
executed, are spawned. In our example in Figure 14, we
see that number is 2.

– 3 - Once the browser loads the web page containing the
browserCloudjs module, the Control Center starts sending
commands to each browser to execute.

– 4 - Since the messages and data transferred between
browsers happens in a side channel, browsers report to
the Control Center which events were triggered.

– 5 - Once all the commands were executed, the Control
Center assesses the order in which these events happened
and asserts if the behavior was the expected.

Fig. 14. Normal execution of a browserCloudjs test

browserCloudjs quality test assessment browserCloudjs
tests are not linear, a message can be routed between any
two browsers through several combinations, depending on the
current size of the network and the respective IDs of those
browsers, which will influence how their finger table looks like.

In Figure 15, we have an example of two browsers com-
municating between each other. We can see that some of the
browsers between them will have the responsibility to forward
the message, while others, will be idle.

Fig. 15. Possible timeline of events for an request from browser A
to browser D and the consequent reply

4 Implementation

Every code artifact was developed following the Unix philoso-
phy, every module attempts to do at most one thing and one
thing well, creating small, maintainable and powerful abstrac-
tions.

4.1 Browser module

The browser module is the agent that sits inside our browser
nodes, implementing all the communication protocols designed
for the browserCloud.js platform and exposing a developer
API to send and receive messages.

Essentially it is broken down into 4 components:

– channel manager - responsible to leverage the websockets
connection with the signalling server and abstracts the
necessary work to open new RTCPeerConnections with
other peers.

– finger table manager - where the information about a spe-
cific peer finger table lives.

– router - the routing logic to deliver the messages on the
most efficient way. It uses the finger table manager to un-
derstand what is the most efficient way to rout messages.

– interface - developer exposed interface.

4.2 Signalling server

The Signalling Server offers a HTTP and Web Sockets API
and serves as a rendezvous point for SDP data exchange be-
tween browsers so they can establish a RTCPeerConnection.

4.3 Testing framework - piri-piri

The testing framework implementation, which we named ”piri-
piri”, encapsulates the necessary logic described on section 3.5.

4.4 Visualize the network state

Using D3JS6, we have developed an application that grabs the
state of the browserCloud.js network and shows a live graph-
ical representation, as seen on Figure 16, where each node is
represented by a dot and its ID and the arcs being the con-
nections established between the nodes in the network.

4.5 Ray Tracing module

To perform the parallel CPU bound tests, we have developed
a module that works in Node.js and in the browser to perform
Ray Tracing Tasks.

5 Evaluation

In this chapter, we go through our qualitative and quantita-
tive evaluation of browserCloudjs system, comparing it to our
initial goals and expectations.

6 http://d3js.org



Fig. 16. Visualization of a browserCloud.js network

5.1 Qualitative assessment

In a qualitative perspective, browserCloudjs performs success-
fully the following:

– Efficient resource discovery through peer-to-peer routing
over a structured overlay network, using a DHT.

– Remove the need for centralized indexes or points of con-
trol. There is still a need of a rendezvous point to enable
new peer joins, however the data transmited, computed
and stored inside the network is peers responsability.

– Enable every machine equiped with a WebRTC enabled
browser to be part of a browserCloudjs instance. In 2013,
the number of WebRTC capable devices already exceed
one billion7

– Enable peers to both participate and contribute to a job
and at the same time submiting and requesting the net-
work to process their own.

– browserCloudjs’ Job Scheduler is job agnostic, this means
that different types of jobs can be executed on demand
without any previous configuration or preparation.

– browserCloudjs solves the decentralized communication
problem between browsers in a scalable way, giving the
opportunity for new scenarios to be developed on top of
it through its modular and pluggable approach.

We have developed a Demo video of browser-
Cloudjs working, this video can be seen at
https://www.youtube.com/watch?v=kjwIjoENCR .

5.2 Quantitative assessment

In this subsection we evaluate browserCloud.js via real ex-
ecutions on top of increasing number of browsers executing
locally, to assess the limits of current Javascript engines on
typical desktop machines, and with micro-benchmarks to de-
termine the speedups that can be achieved in distributed ex-
ecutions with one browser per individual desktop machine.

The setup In order to assess the potential of the proposed
system, we have built a ray-tracing application, adapted from
algorithms available, written in full vanilla JavaScript, that

7 Google I/O presentation in 2013 - https://bloggeek.me/webrtc-
next-billion/

can be run on any typical modern browser engine. This al-
gorithm allows us to stress-test the CPU, and the possibility
to obtain advantages through processing parallelism. We need
this to understand whether the expected speeds up resulting
from distributing the tasks through the browserCloud.js peers
network, are not hindered by loosing efficiency due to message
routing on the overlay Network.

The setup used during the tests was a system running
Chrome version 39 on a Intel Processor Code i7 2.3Ghz
with 16Gb of RAM. The STUN server used was provided by
Google.

Goals Following our motivation to build browserCloudjs in
the first place, that is, to provide a way to take advantage
of the volunteer computing paradigm, using the idle resources
available on user machines, leveraging the capabilities that
offered to us by the Web Platform, we set ouselves with some
goals to proove if our solution is viable, through:

– Measuring the time lapsed for a single browser to compute
a CPU bound job and several browsers to compute that
same job, but in parallel.

– Measuring the RTT time between any of two browsers in
the network and evaluate as routing efficiency evolves with
the increase in number of browser

– Assessing if there are significant speedups

Results We have perfomed tests in order to assess:

– Time elapsed during a distributed ray-tracing job, check-
ing for how it changed when we increased the number of
browsers and the level of granularity in which we divided
the job. Seen in Figures 17 , 18 , 19 and 20.

– How much time each ray-tracing task takes. Seen in Fig-
ure 21.

– What is the average round trip time between any of two
browsers in a 10 browser network. Observed in Figure 22.

Fig. 17. Time elapsed on a ray-tracing job divided in 25 computing
units

Analysis The standard ray-tracing job using the algorithm
developed, running in a single browser takes as median
23610.434ms to complete. As we can see in Figures 18 and 20,
our system excels in delivering faster results by dividing the



Fig. 18. Time elapsed on a ray-tracing job divided in 2500 com-
puting units

Fig. 19. Time elapsed on a ray-tracing job divided in 25 computing
units (with induced web RTT delay)

Fig. 20. Time elapsed on a ray-tracing job divided in 2500 com-
puting units (with induced web RTT delay)

Fig. 21. Average time for a task execution for a job fragmented in
2500 computing units

job up to 2500 computational units (or tasks) and requesting
from the browsers available in the network to compute those
(i.e., a rectangle of the resulting output image). This is ex-
pected as ray-tracing is a known case of an embarrassingly
parallel application.

Fig. 22. Average Round Trip Time between an two nodes in a 10
browser network

One fact interesting to note is that we obtained much bet-
ter results by reducing the granularity of which ray-tracing
job was divided into, as we can see on Figures 17 and 19.
This happens due to two factors: a) the first is that since we
have a lower number of tasks to be run by other browsers,
we reduce the message routing overhead between nodes (i.e.,
resource discovery does not take so long); b) the second fac-
tor is that since this system was tested using a single ma-
chine and a networked simulated delay. When the number of
tasks is too large, the workers in the browser are in fact com-
peting for CPU resources (to execute tasks and to forward
messages among them). This creates a scenario, where more
nodes/workers actually make the system slower, since this is
a much more strict and resource constrained scenario, than a
real example with browsers executing in different machines.

In a real world example, the actual execution time would
be bounded by:

jobTime = slowestDelayFromResourceDiscovery +
timeOfExecutingSlowestTask +
slowestDelayFromResultReply(1)

with full parallelism, where in our test scenario we have:

jobTime =
∑

DelayFromResourceDiscovery +
(TimeOfExecuting N Tasks on M Resources) +∑

DelayFromResultReply(2)

where N=2500 and M=8 hardware threads, therefore con-
tention for CPU becomes higher with more nodes (browsers)
as more messaging is taking place, besides the parallelized
computation.

In a real world scenario, with more browsers from more ma-
chines, the total execution time (makespan) of a ray-tracing
job would be closer to that described by Equation 1. It would
be influenced by the maximum round trip time between any
two nodes (so that the information for every task can be re-
ceived and processed by another node), plus the time it would
take to execute the most of CPU intensive task (e.g., the rect-
angle in the frame that has the more complex geometry and
light reflections to be processed). Figures 21 and 22 show what
is the average task length and RTT between any two nodes,
being the maximum for the first 61ms and the second 11174ms,
creating a total of 11235ms (or 11.296s overall). This is a sig-
nificant increase of efficiency, comparing to the sequential ex-
ecution and also to the previous single-machine experiments.



It is important to note that in Figure 21, we can see sev-
eral task execution lengths due to the complexity of each task,
with more or less light reflections. With this microbenchmark
we see that the execution time of each task, without any re-
source contention (1 node = 1 browser per machine), the task
duration has an even lower upper bound (lower than 5s). This
would entail the upper bound of total task execution time to
be under 5061 ms (around just 5s), with a theoretical speedup
of about 4.6 times (take into account that we would be using
2500 nodes then, so speedups are not perfectly linear due to
communication overhead, as expected).

Inference As we have discussed in the previous subsections,
we did managed to reach significant speedup between 2 and
close to 5 times for our experiment, using only volunteer re-
sources, that is a reduction between 50% and 76%.

When distributing a job through a multiple node network,
one of the aspects we observed was that we can influence over-
all efficiency by adjusting how much resources we are going
to take from the network to process the job, in this case, how
much browsers. We also can influence it by deciding how much
fine-grained each task it will be: the smaller the computation
unit, the more we can distribute tasks through the network,
with a natural trade-off of adding more task generation and
messaging overhead, with diminishing returns when more and
more, and smaller tasks are created.

6 Conclusions

We end this report, making an overview and summing up all
the primary aspects, from proposed work, contributions, state
of the art, definition of the architecture, implementation of the
respective architecture and evaluation, moving to what were
the major breakthroughs and ending with concluding remarks
and future work.

browserCloudjs was an exercise to strive towards a federated
community cloud, enabling its users to share effectively their
resources, giving developers a reliable and efficient way to store
and process data for their applications.

When it came to architecture decisions, we knew that we
wanted to built browserCloudjs on top of the most recent web
technologies and on top of the Web Platform, the most ubiq-
uitous platform. There were two reasons behind this decision,
the first being longevity, the Web Platform, even though it is
quite popular, it is still an emerging platform, meaning that
our assumptions of ubiquity will previal; the second reason was
developer adoption, JavaScript is the ”lingua franca” of the
web, meaning that it will be common for a developer to know
how to code with JavaScripts APIs and since browserCloudjs
was built in JavaScript, developers will know inherently how
to use the platform.

Going after a decentralized model was also something we
saw as a potential key factor for the browserCloudjs platform,
structured peer-2-peer networks scale well with demand, while
centralized networks have a number of significant challenges
once a certain threshold of users is reached. WebRTC, the
technology enabling browsers to communicate in a peer-2-peer
way, is in great part responsible for this platform success.

With browserCloudjs, we achieved in bulk, mainly two great
milestones:

– The first browser based DHT - browserCloudjs offers
for the first time in browser history a fully functional DHT,
performing resource decentralized resource discovery on
the browser.

– The first peer-2-peer browser computing platform
- the research of using browsers to leverage the idle
computer cycles have been in the literature for a while,
however, always following the centralized/BOINC model.
browserCloudjs offers the first peer-2-peer browser com-
puting framework with proven speedups.

We have found this thesis to be a source of hard work and
enthusiasm, a great opportunity to research and interact with
bleeding edge technologies and also, interact with the devel-
oper communities that are pushing the web forward.

References

1. a L Barabási, V W Freeh, H Jeong, and J B Brockman. Para-
sitic computing. Nature, 412(6850):894–7, August 2001.

2. F Costa, JN Silva, L Veiga, and Paulo Ferreira. Large-scale
volunteer computing over the Internet. Internet Services and
Applications, pages 1–18, 2012.

3. Jerzy Duda and W Dubacz. Distributed evolutionary comput-
ing system based on web browsers with javascript. Applied
Parallel and Scientific Computing, 2013.

4. S Ecma. ECMA-262 ECMAScript Language Specification,
2009.

5. Juan-j Merelo, Antonio Mora-garćıa, Juan Lupión, and Fer-
nando Tricas. Browser-based Distributed Evolutionary Com-
putation : Performance and Scaling Behavior Categories and
Subject Descriptors. pages 2851–2858, 2007.

6. Leandro Navarro. Experimental research on community net-
works. Technical report, 2012.

7. Rodrigo Rodrigues and Paulo Ferreira. GiGi : An Ocean of
Gridlets on a Grid-for-the-Masses . 2007.

8. João Nuno Silva, Lúıs Veiga, and Paulo Ferreira.
A2HAautomatic and adaptive host allocation in utility
computing for bag-of-tasks. Journal of Internet Services and
Applications, 2(2):171–185, August 2011.

9. Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek,
Hari Balakrishnan Ý, and Hari Balakrishnan. Chord : A Scal-
able Peer-to-peer Lookup Service for Internet. pages 149–160,
2001.

10. M Thomson and A Melnikov. Hypertext Transfer Protocol
version 2.0 draft-ietf-httpbis-http2-09. 2013.

11. Stefan Tilkov and Steve Vinoski Verivue. Node.js : Us-
ing JavaScript to Build High-Performance Network Programs.
2010.

12. Alon Zakai. Emscripten: an llvm-to-javascript compiler. In
Proceedings of the ACM international conference companion
on Object oriented programming systems languages and appli-
cations companion. ACM, 2011.


