
VFC-reckon - Consistency in multiplayer games
Mário Santos, Luı́s Veiga, Paulo Ferreira

Instituto Superior Técnico
marios.santos@ist.utl.pt, [luis.veiga, paulo.ferreira]@inesc-id.pt

November 2011
Keywords: Mobile Devices, Ad-Hoc Network, Consistency, Multiplayer Games, Interest Management, DeadReckoning

Abstract: Nowadays, mobile phones/tabs/netbooks are an essential part of our life and it is hard to find someone who
does not have such a device. These devices are used to work, play games, listen to music, navigate on the
internet, etc... Multiplayer games to such devices, while interesting and fun to play, raise serious scalability
and playability difficulties as they require a massive communication flow between them, needed to maintain
the game state consistent between players. The goal of this work is to raise the game scalability by reducing
the number of messages exchanged between the devices which will reduce the bandwidth and CPU usage. Our
work consists in the conception and development of a consistency model named VFC-reckon based on Interest
Management and Dead Reckoning techniques. VFC-reckon allows us to reduce the number of messages
exchanged between the devices without affecting the game playability. We developed the system for Android
portable devices along with a distributed game that shows the advantages of the VFC-reckon model for ad-hoc
networks.

1 INTRODUCTION

In the last years mobile phones/tabs/netbooks
have acquired an important role in our society. Al-
most everyone has at least one such device which can
be used either as a multimedia platform or as a work
tool.

An interesting class of applications for such de-
vices is multiplayer games in ad-hoc networks. In or-
der to provide a shared sense of space among players,
each player has a copy of the (relevant) game state on
his device. When a player performs an action, the
game state of all other players affected by that ac-
tion must be updated. The simplest approach is for
each player to maintain a full copy of the game state
and all players broadcast updates to all other players.
The disadvantage of this approach is that it does not
scale: as the number of players increases, the number
of messages sent over the network and to be processed
by each client increases as well.

Interest management is a technique to select the
updates that are relevant (or not) to a player based
on multiple criterias. The most well known Inter-
est Management criterias are Aura Of Interest[2],
based on distances between objects, Line Of Sight[3]
wich is based on the player line of sight and
RegionParition[4] based on map division.

Dead Reckoning[6] is a technique that masks net-
work latency by estimating future game events. With
this technique we can reduce delay between messages
as well as the their loss. The next object position is
based on his current position and the collection of past
positions.

Current solutions[1, 5, 3], regarding interest man-
agement techniques ignore mobile devices limitations
such as bandwidth, CPU and battery consumption. In
addition, most are focused on one type of game and
are inflexible, making the programming of other ap-
plications a very hard and time consumption task.

The goal of this work is to develop a consistency
model that raises the game scalability through the
reduction in the number of messages among play-
ers. This reduction is done while ensuring an ac-
ceptable degree of consistency, i.e. without hinder-
ing game playability. For this purpose, we developed
the VFC-reckon consistency model; this is based on
the VFC[7] (Vector Field Consistency) consistency
model improved with Dead Reckoning[6] techniques.

Our system is implemented as a middleware for
the Android platform that handles multi-player game
object consistency. The Asteroids 1 game was ported
to VFC-reckon on Android mobile devices in order to
test the VFC-reckon playability impact. The perfor-
mance results obtained show that VFC-reckon signif-
icantly reduces the network traffic by exchanging less
messages and, consequently, CPU and bandwidth us-
age.

The paper is structured as follows: Section 2
presents the VFC-reckon consistency model and main
concepts. Section 3 describes the system architec-
ture and main components. In Section 4 we present
some relevant implementation details like how to do
the VFC-reckon model specification. Section 5 dis-
cusses the results, based on qualitative and quantita-

1http://www.goriya.com/flash/asteroids/asteroids.shtml



tive perspectives, and the last section draws the con-
clusions.

2 VFC-RECKON CONSISTENCY
MODEL

As already said, the VFC-reckon consistency
model integrates VFC along with the application of
DeadReckoning techniques. In our system the VFC
role is to select the updates that should be sent to each
player while DeadReckoning techniques are used to
mask the lack of messages.

2.1 VFC

z3z2z1 z4

Pivot Game Objects

Consistency Degree

zn Consistency Ring n

ϴ1;σ1;υ1

ϴ2;σ2;υ2 

ϴ3;σ3;υ3 

ϴ4;σ4;υ4 

ϴn;σn;υn 

Figure 1: VFC example with three consistency rings and
one pivot.

VFC[7] is a consistency model based on Interest
Management[2] techniques. VFC dynamically ad-
justs the consistency of replicated objects, based on
the current game state; it manages the degree of con-
sistency of each object based on its distance to special
game entities. With VFC we can reduce the number
of messages between players in multiplayer games
providing a reduction in network bandwidth and a less
CPU load.

The VFC consistency model is based on two main
concepts: Consistency Rings, and Consistency De-
grees, described now.

2.1.1 Consistency Rings

In VFC, each player has a local view of the virtual
game map and entities. Within each local view there

are special game entities called pivots; consistency
degree is defined around pivots for all the objects that
surround them. A pivot can be any game entity like,
such as the player Avatar2. Consistency rings are
formed around a pivot; each ring defines a consistency
degree that is applied to all game entities in that ring.

Fig. 1 illustrates three consistency rings around a
pivot object. The color intensity in the rings repre-
sents the consistency degree in that ring: the object lo-
cated in z1 ring will have a greater consistency degree
then the other two objects located in the outer rings
(z2 and others). The z4 represents the area outside the
consistency rings. In this example, we only consider
three rings but the VFC model allows the definition of
any number of consistency rings.

VFC supports any number of dimensions. In our
previous example we showed a bi-dimensional space,
with 2-dimension rings, but we can use any arbi-
trary number of D dimensions like, for example, three
dimensions in which case the rings would become
spheres.

2.1.2 Consistency Degrees

Each consistency ring has a consistency degree as-
sociated with it. A consistency degree is a 3-
dimensional vector that specifies the consistency de-
viation limits for objects within that ring. The 3-
dimensional vector parameters are: Temporal (θ), Se-
quential (σ) and Value (υ).

Temporal Dimension θ specifies the maximum
time a replica can be without being refreshed with
the most recent value. In other words, this dimension
specifies the maximum amount of time (seconds) that
a replica of an object can remain without being up-
dated.

Sequential Dimension σ specifies the maximum
number of lost replica updates. With this dimension
we guarantee that a replica of an object is outdated in
a maximum of σ updates w.r.t. the original object.

Value Dimension υ specifies the maximum rela-
tive difference between a replica and its master con-
tents. This dimension needs a function to calculate the
difference, in percentage, between two objects which
makes it dependent on the game implementation.

The multiple parameters in each consistency de-
gree makes the VFC flexible, allowing to easily adapt
the model to different game logics.

2.1.3 VFC specification

VFC consistency model corresponds to the set of all
game objects, pivots, consistency rings and consis-

2Entity that represents the player in the game



40ms

160ms

40ms 40ms

160ms

40ms

Direction

Real Points 
(Pn)

Real Points 
(Pn)

Estimated Points 
(Pe n.v)

Estimated Points 
(Pe n.v)

P1 P2 P3 P4 Pe 2.1 Pe 2.2 Pe 2.3 Pe 3.1 Pe 3.2 Pe 3.3
Δd

Δd
#Pe + 1

Figure 2: DeadReckoning linear trajectory example.

tency degrees. From the programmer’s viewpoint, to
specify the entire model associated with any multi-
player game, he just specifies these four sets. The
aggregation of these four sets corresponds to the phi
specification.

2.2 Dead Reckoning

DeadReckoning techniques [6] are frequently used in
multiplayer games due to its simplicity and gains.
These techniques are commonly used as a method of
reducing the latency impact by anticipating future ob-
ject positions based on the current position and his-
tory of old positions. In this work the use of Dead-
Reckoning is not to reduce the impact of latency, but
to mask the lack of update messages.

Normally, a game requires a rate of 25fps3, which
means that, each second, the object moves, at maxi-
mum, 25 times. To achieve this rate on a multiplayer
game, messages between players must be sent within
a 40ms interval. Using Dead Reckoning technique we
increased this interval to 160ms without affecting, in
a noticeable way, the game playability (from the point
of view of the player).

To demonstrate the DeadReckoning estimation
process we show in Fig. 2 an example of the predic-
tion of three positions, according to a linear trajec-
tory, where the interval between updates is 160ms. To
start the estimation process we need at least two real
points, in this case, P1 and P2. The estimated points
Pe(nv) in the figure are calculated from the real points
Pn and P(n− 1). To calculate the position of a Pe
is necessary to know the number of estimated points
Pe between two Pn points. With the number of Pe
between each Pn (#Pe) we can calculate the distance
between each Pe from the formula ∆d

(#Pe+1) where ∆d
is the distance between two real points like P1 and
P2. Finally, to discover the estimated point Pe(nv)

325 frames-per-second corresponds to the minimum up-
date rate according to human eye

position, we simply add the offset ∆d
(#Pe+1) to each po-

sition.
The critical aspect of DeadReckoning is the func-

tion used to predict an object’s position. Although
DeadReckoning is able to estimate any number of
points we need to keep in mind that these are esti-
mated values. In any estimated value there is always
a difference between the estimated and actual value.
In this case, the estimation error leads to weird object
movements.

In this work we developed two types of prediction
engines: a linear engine, used when an object has a
linear trajectory, and a circular engine used when an
object has a circular trajectory.

2.3 VFC-reckon

VFC-reckon combines the VFC consistency model
and DeadReckoning prediction techniques. The num-
ber of points, estimated by the prediction engine, are
defined in the VFC-reckon model by simply adding
a new consistency parameter, called estimationPoints,
into VFC Consistency Degrees. Now, the specifica-
tion of each consistency degree, has the following pa-
rameters: (θ), (σ), (υ), and estimationPoints.

Basically, to use the DeadReckoning techniques,
the programmer specifies how many points should
be estimated in each ring between each server mes-
sage. For example, if we specify 3 estimationPoints
for a consistency degree this means that, within each
message received by a client, the system estimates 3
points for objects inside that ring.

3 VFC-RECKON
ARCHITECTURE

VFC-reckon architecture is client-server based
(shown in Fig. 3) and serves as a middleware to mul-
tiplayer games for the Android Platform. Using the



Client Server

Session

Multiplayer Game

API

Communications

Replica 
Object 
Pool

Callback 
Manager

ad-hoc networkad-hoc network

Session 
Manager

DeadReckoning 
Module

Serialization 
Module

Session

Multiplayer Game

API

Communications

Callback 
Manager

Session 
Manager

Serialization 
Module

Consistency
Management

Block

Primary 
Object 
Pool

Figure 3: VFC-reckon middleware architecture

VFC-reckon middleware, the programmer just speci-
fies the consistency model specification phi according
to the game logic.

It’s the server that applies the VFC-reckon model.
This makes it simple to implement and run making
all the information needed by the model to be avail-
able in the server node. The client-server protocol
is implemented in the Session Manager component.
The server component has the responsibility to pro-
cess update requests from clients and propagate the
updates to clients selected by the VFC-reckon con-
sistency model. Communication between client and
server is implemented at the Communications Layer
following a star-type topology.

3.1 Reading and Writing objects

Game objects shared between clients are called pri-
mary objects and replicas. The primary objects are
stored on the Primary Object Pool in the server side,
while the replica objects are stored in the Replica Ob-
ject Pool and are local to each client. The server per-
forms periodic rounds; on each round, it selects and
sends, based on the VFC-reckon model, the relevant
updates to clients so that they can update their repli-
cas. Both Write and Read operations are applied to
local replicas. Writes to local replicas are propagated
later in the background to the server.

3.2 Updates propagation

There are two types of updates propagated in our sys-
tem: Server to Client and Client to Server.

3.2.1 Update Propagation - Server to Client

For Server to Client updates propagation, the Consis-
tency Management Block applies a concept of peri-
odic round. Basically, the Consistency Manager Ob-
jects periodically applies the VFC-reckon model, in
order to send to clients their selected updates.

Thus, at each round, the server selects the updates
that must be sent to each client, based on the VFC-
reckon phi specification. After this selection, the
server sends messages (to the concerned clients) with
all updates. When a client receives such messages
(called round messages), it updates its local replicas
at the Replica Object Pool.

By receiving periodic round messages from the
Server, the VFC-reckon middleware at the client may
notify the application through callback mechanisms
implemented by the Callback Manager. The notifica-
tions inform the application that the game state has
been changed, and based on that, the application can
perform several actions, such as, update the player’s
score on the screen.

3.2.2 Update Propagation - Client to Server

Sending updates (from clients) to the server each time
an update occurs (locally on a client) would be a bad
choice due to the amount of updates in each game
cycle4. This would cause the client to send N mes-
sages, with N equal to the number of objects updated
in that game cycle. A more efficient way is to period-
ically propagate a client updates to the server (simi-
larly to the server’s round already described). Updates
are grouped in one message and periodically sent to

4Normaly, a game cycle is a repetition of updating game
objects physical components and drawing entities at the
screen.



the server in background, avoiding interfere with the
game cycle.

3.3 Client and Server Session Manager

The Client and Server Session Manager are imple-
mented according to a state machine. Due to space
constraints it is not possible to fully explain all the
details of the Session Manager state machines.

Briefly, the state machine can be divided into
two phases: setup phase and active phase. In the
setup phase the client registers and sends the nec-
essary game specifications like the phi specification
and shared objects. The active phase occurs during
the game execution and it’s when the server periodic
rounds take place. In the active phase the client can
still publish new objects or remove shared objects.

3.4 VFC-reckon application

The application of VFC-reckon model depends on
two main modules: Consistency Management Block
(CMB) and the DeadReckoning Module.

Rounds are performed by the CMB at the server.
The VFC-reckon model is applied, at each round, by
selecting the updates that should be sent to clients
based on the consistency model specification phi de-
fined (by the clients) during the game setup phase.

The DeadReckoning module exists only on the
client side and has the responsibility of estimating ob-
jects new positions based on their current positions
and historical positions that have been stored from the
server.

3.5 Message Serialization

The serialization module in VFC-reckon has a great
performance impact. With a high transmission rate
between clients, the operation of serializing messages
can easily become the system bottleneck. Java default
serialization demonstrates to be a bad solution with an
high transmission rate between players.

The VFC-reckon serialization module, that we de-
veloped, serializes the messages into arrays of bytes
and delivers them to the communication layer. To
identify the object types inside a message we specify
the object class type using integers instead of strings
like Java does. This choice speeds up messages seri-
alization and deserialization operations; it also makes
messages much smaller.

4 IMPLEMENTATION
The VFC-reckon system, and a demonstrative

game were developed in the platform Android 2.2
Froyo (but are compatible with newer versions).

The system supports communication through the
WiFi protocol with TCP/IP sockets as well as via
the Bluetooth protocol with Bluetooth sockets. Only
these two communication protocols are currently sup-
ported but others can be easily supported as well given
the extensibility of the VFC-reckon implementation.

To use the DeadReckoning module, game objects
must specify a trajectory type. Each trajectory is as-
sociated with a PredictionEngine which is specified,
in game objects, invoking a method named setPredic-
tionEngine(). The programmer uses as argument the
type of engine he wishes. During the game execution
the engine can be switched invoking the setPredictio-
nEngine() method. Regarding new PredictionEngine
types, our system is extensible enough so that the pro-
grammer can easily create his own (based the game’s
logic). The new engine is created simply by extend-
ing a class named PredictionEngine and implement-
ing the prediction method.

VFC-reckon is parametrized using Java Annota-
tions. To define the phi specification the programmer
must annotate a game class with @PhiAnnotation and
set the VFC-reckon parameters such as Consistency
Degrees, Consistency Rings and Rings dimensions.

Like phi, the specification of pivots is made
through a simple annotation. The programmer anno-
tates the game object that he wants to become a pivot
with the annotation @PivotAnnotion.

5 EVALUATION
To evaluate the VFC-reckon system we developed

a distributed game (based on the well known Aster-
oids game5). The map in which spaceships and as-
teroids move spans several mobile devices. On each
player screen, we can see other players spaceships and
asteroids as long as they are close enough in the over-
all map.

The tests were performed on 2 Samsung Galaxy
tablets with 512MB of RAM and a 1GHz CPU each,
using Bluetooth as the communication protocol.

To evaluate the system we used three types of con-
sistency models: Basic, VFC and VFC-reckon:

• In the Basic model there is no update selection.
The server simply broadcasts all the updates to all
the clients.

5http://www.goriya.com/flash/asteroids/asteroids.shtml



• In the VFC model, the server selects the updates
to send to each client based on phi specification.

• VFC-reckon applies the VFC model with Dead-
Reckoning techniques allowing to mask the inten-
tional lack of messages between server and client.

The three models have a common configuration
parameter: the time interval between each round. The
round time of each model is specified after the name;
for example, the Basic 40 where the number 40 indi-
cates that the time interval is 40ms round.

For this work we adopted two types of round:
40ms and 160ms. The 40ms value is related to the
game frame-rate. A game running at 25fps (frames-
per-second) means that there is, at maximum, a new
position each 40ms. The 160ms interval (a multiple
of 40ms) means that the interval between each round
is 160ms. The fact that this range is 4 times greater
than 40ms generates a discontinuity in the movement
of entities in the game due to the lack of messages.

We observed that for intervals longer than
200ms[6] the error in the estimation of new positions
begins to be too noticeable, thus dramatically reduc-
ing the game playability.

It’s important to keep in mind that the most impor-
tant consistency models to evaluate are VFC-reckon
160 and Basic 40. VFC-reckon 160 corresponds to
our proposed optimal solution where we reduce the
number of messages exchanged without affecting the
gameplay. The Basic 40 is the simplest, and most
used solution to send game events by simply broad-
casting all the game messages to everyone.

5.1 Qualitative Evaluation

In this analysis we measure the playability of the
game Asteroids when running with VFC-reckon 160.
Thus, Thus, we invited 10 users to play the game and
provide us their evaluation of the gameplay experi-
ence, using both VFC-reckon 160 and a Basic 40 so-
lution.

The players first play the Asteroids game using the
Basic 40 solution and then play the same game with
the VFC-reckon 160 solution. It’s worthy to note that
the users are not aware of which version they are using
at any moment. In the end we asked the users if they
have noticed any difference in the gaming experience
(e.g. regarding objects movement).

The feedback obtained from the users show that
the differences between the two versions are unde-
tectable. Users did not detect any discontinuity in
the objects movement, or other types of differences.
Players focus mainly in the center of the screen, more
precisely, in the area closer to the player’s ship. As
almost the entire area of the screen is covered by the

most consistent rings, the object movement in this
area is fluid.

With this evaluation we may conclude that the
impact of VFC-reckon model, in the game playabil-
ity, is imperceptible. VFC-reckon Interest Manage-
ment techniques based on distance shows to be a good
heuristic. The use of DeadReckoning techniques, es-
pecially in the most consistent rings, makes the ob-
ject’s movement being as fluid as the Basic version
40.

5.2 Quantitative Evaluation

To evaluate VFC-reckon system scalability we mea-
sured the main resources used by the system: band-
width usage, CPU and memory.

5.2.1 Bandwidth usage

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200

K
b

yt
e

s/
s

N DataUnits

Bandwidth usage 
during a game

Basic 40

VFC 40

Basic 160

VFC 160 and VFC-reckon 160

Figure 4: Bandwidth usage during a game.

Network bandwidth is one of the resources most
used by our system. To measure the bandwidth used
by VFC-reckon, we measure the bandwidth used dur-
ing the a game execution, varying the model, round
time and the number of DataUnits6.

6DataUnit is the representation of one game object that
a player shares with all the other players like, for example,
his ship location or score



In terms of bandwidth, the results of VFC 160 and
VFC-reckon 160 are exactly the same. DeadReckon-
ing techniques role is to mask the intentional lack of
messages, in the client side, created by the increase
in the interval between each server message, which
means, that it does not influence system bandwidth
usage.

To measure the gains of VFC-reckon 160 vs Ba-
sic 40 model, we measured the number of messages
received on the client side, through the byterate. We
performed 12 tests, 3 for each number of DataUnits
(50, 100 and 150) per client, using 2 clients.

The first conclusion that stands out in Fig. 4 is that
the reduction in bandwidth is about 50% when com-
paring a VFC model type vs the Basic approach with
the same round time. These results show us that the
Interest Management criteria used by VFC, based on
the distance of objects, is extremely useful.

Analysing the behaviour of the two principal
consistency models, VFC-reckon 160 and the Basic
40 solution, the reduction in bandwidth with VFC-
reckon 160 is, in average, 88%. The reduction stems
from the greater interval between each message, from
40ms to 160ms, and the uage of the VFC consistency
model. Another conclusion is that the gain is indepen-
dent of the number of DataUnits used, i.e., using 50,
100 or 150 DataUnits usually corresponds to a gain of
about 88%.

The gains of using the VFC model depend fun-
damentally on three factors: size of the rings, consis-
tency degrees and size of the map. Decreasing the size
of the rings or increasing the map size will decrease
the number of entities that enter the consistency rings,
which will reduce the number of messages that clients
receive. The area of the rings, in our tests is about
30% of the map size which, in our opinion, is a pes-
simistic view because in a real game it is expected
that the ratio between the area of the rings and the
map area is larger.

5.2.2 CPU usage

To measure the reduction in CPU usage achieved
with VFC-reckon 160, when compared with Basic 40,
we perform several measurements through the game
frame-rate on the two tablets.

Fig. 5 demonstrates the benefits of using the
model VFC-reckon 160 when compared to the Basic
40. With 100 DataUnits per client, having 2 clients, it
is no longer possible to keep the ideal frame-rate, i.e.,
25fps. With 100 DataUnits, the message processing
load begins to be noticeable, as well as the benefits
of using VFC-reckon 160. Although we already have
gains with 100 DataUnits, the gains in CPU grows
with the number of DataUnits. Again, this is because

0 10 20 30

50

100

150

Frames per second

N
 D

at
aU

n
it

s

FPS in Client

VFCreckon 160 Basic 40

0 10 20 30

50

100

150

Frames per second
N

 D
at

aU
n

it
s

FPS in Server and Client

VFCreckon 160 Basic 40

Figure 5: FPS measurements during a game execution.

the CPU reduction comes from the reduction in the
message processing load.

Results show gains between 12% and 24%. Al-
though the results do not seem satisfactory it’s impor-
tant to keep in mind that the CPU usage is divided in
these two main components: Game and System

The CPU used by the game is used to perform op-
erations like, for example, calculations of physical up-
dates to the objects or drawing objects on the screen.
The system CPU usage corresponds to the amount of
CPU used by our middleware like the server round,
message processing (like serialization operations) or
the client DeadReckoning operations.

Through a profiling tool we verified that the CPU
load of our system, with a Basic 40 model, in the de-
vice that acts as a server, is about 55%, and in the
device that acts as a client is about 40%. This means
that when we apply the VFC-reckon 160 model, these
are the components that we are reducing by decreas-
ing the number of messages. When the client has an
overall decrease of 24% in CPU time with 150 DataU-
nits, using VFC-reckon 160, this means that we sub-
tract 24% to 40% since the other 60% correspond to
the game CPU load. If we consider only our system
CPU load, the overall reduction of 24% in CPU us-
age, means that our system uses less 60% of CPU time



with VFC-reckon 160 when compared with Basic 40.
Another important conclusion that can be taken

from Fig. 5 is that the processing load of a device that
has the role of server is not too different from the pro-
cessing load of a device that has the role of client.
This is visible through the game frame-rate, where
the difference is nearly 3fps. These results confirm
that the server role does not have a significant impact
on the system performance.

5.2.3 Memory Allocation

To evaluate the memory used by the system we mea-
sured the heap used by the game and the VFC-reckon
middleware, through a profiling tool in two Android
emulators. The two devices where running a client
instance and a Server+Client7 instance. In this eval-
uation we compare the models VFC-reckon 160 and
Basic 40, varying the number of DataUnits between
25 and 100.

Due to space constraints we will briefly present
the memory measurements conclusions. The mea-
surements show that the amount of heap memory used
by the game and VFC-reckon, regardless the number
of DataUnits, is small. The minimum value in the
measurements was 2.4 Mbytes, while the maximum
was 2.65 Mbytes.

Comparing the VFC-reckon 160 and Basic 40
measurements, the results demonstrate what was ex-
pected: VFC-reckon 160 needs more memory due to
the the VFC software on the server and the Dead-
Reckoning techniques on the client side. VFC on
the server side needs more memory because it per-
forms more functions such as the selection of updates.
On the client side we need to allocate more memory
mainly due to the history points record in DeadReck-
oning module.

Although VFC-reckon 160 needs more memory
than Basic 40, the difference between them is small
when we consider the heap size. Comparing the
measurements, the overhead for the client is about
50Kbytes, and for the Server+Client 100Kbytes cor-
responding to 2% and 4%, respectively.

6 CONCLUSIONS
We presented VFC-reckon, a consistency model

based on VFC improved with DeadReckoning tech-
niques. VFC-reckon is well adapted to distributed
multi-player games in mobile devices for an ad-hoc
network environment. The system is implemented

7Server+Client means that the device was running a
server and a client instance at the same time.

as a middleware, with a client-server architecture on
which a distributed version of the Asteroids game
runs. When compared to other approaches, our sys-
tem provides smaller bandwidth and CPU consump-
tion (which results from the fact that less messages are
exchanged) while ensuring good game playability.

References

[1] Carlos Eduardo Bezerra, Fábio R. Cecin, and Cláudio
F. R. Geyer. A3: A novel interest management algo-
rithm for distributed simulations of mmogs. In Pro-
ceedings of the 2008 12th IEEE/ACM International
Symposium on Distributed Simulation and Real-Time
Applications, DS-RT ’08, pages 35–42, Washington,
DC, USA, 2008. IEEE Computer Society.

[2] Jean-Sébastien Boulanger, Jörg Kienzle, and Clark Ver-
brugge. Comparing interest management algorithms
for massively multiplayer games. In Proceedings of
5th ACM SIGCOMM workshop on Network and sys-
tem support for games, NetGames ’06, New York, NY,
USA, 2006. ACM.

[3] Thomas A. Funkhouser. Ring: A client-server system
for multi-user virtual environments. In Symposium on
Interactive 3D Graphics, pages 85–92, 1995.

[4] Dugki Min, Donghoon Lee, Byungseok Park, and Eu-
nmi Choi. A load balancing algorithm for a distributed
multimedia game server architecture. In Proceedings
of the IEEE International Conference on Multimedia
Computing and Systems - Volume 2, ICMCS ’99, pages
882–, Washington, DC, USA, 1999. IEEE Computer
Society.

[5] Jeffrey Pang. Scaling peer-to-peer games in low-
bandwidth environments. In In Proc. 6th Intl. Workshop
on Peer-to-Peer Systems (IPTPS, 2007.

[6] Lothar Pantel and Lars C. Wolf. On the suitability of
dead reckoning schemes for games. In Proceedings of
the 1st workshop on Network and system support for
games, NetGames ’02, pages 79–84, New York, NY,
USA, 2002. ACM.

[7] Nuno Santos, Luı́s Veiga, and Paulo Ferreira. Vector-
field consistency for ad-hoc gaming. In Proceedings of
the ACM/IFIP/USENIX 2007 International Conference
on Middleware, Middleware ’07, pages 80–100, New
York, NY, USA, 2007. Springer-Verlag New York, Inc.


	Introduction
	VFC-reckon consistency model
	VFC
	Consistency Rings
	Consistency Degrees
	VFC specification

	Dead Reckoning
	VFC-reckon

	VFC-reckon Architecture
	Reading and Writing objects
	Updates propagation
	Update Propagation - Server to Client
	Update Propagation - Client to Server

	Client and Server Session Manager
	VFC-reckon application
	Message Serialization

	Implementation
	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation
	Bandwidth usage
	CPU usage
	Memory Allocation


	Conclusions

