
SDD4Streaming

Tiago Lopes, 94055
Instituto Superior Tecnico

tiago.mourao@tecnico.ulisboa.pt

Abstract

With the ever-increasing amount of devices getting con-
nected to the internet, being Internet of Things (IOT) a good
example of this, so does the amount of data that needs to be
processed. Stream Processing was created for the sole pur-
pose of dealing with high volumes of data and it has proven
time and time again that it can successfully handle it. How-
ever, there is still a necessity to further improve scalability
and performance on these systems.

This work presents SDD4Streaming, a solution that
comes to solve these specific issues on the Stream Process-
ing Engines. Current engines already implement scalability
solutions but with time we’ve seen that this is not enough
and further improvements are needed. So SDD4Streaming
employs an extension of the current system to improve re-
source usage, so the applications use the resources it needs
to process data in a timely manner, and so increasing the
performance and help other applications that are running in
parallel in the same system.

Keywords

Stream Processing, Apache Flink, Resource Manage-
ment, Scalability, Performance

1 Introduction

The increasing amount of devices connected with each
other created a big demand for systems that can cope with
the high volume that needs to be processed and analyzed ac-
cording to certain criteria. Great examples of this are Smart
Cities [6], operational monitoring of large infrastructures,
and Internet of Things (IoT) [13]. Since most of this data
is most valuable closest to the time it was generated, we
need systems that can, in real-time, process and analyze all
of the data as quickly as possible and for this to happen the
technology Stream Processing was created.

First, we should explain what the Stream Processing
paradigm is. It is equivalent to dataflow programming [12],

event stream processing [4], and reactive programming [2]
but simplifies software and hardware parallelization by re-
stricting the parallel computation that can be performed.
This is done by, for a given sequence of data (a stream),
apply a series of operators to each element in the stream.

At a high level, each technology that implements this
paradigm will be similar, meaning that we can find common
elements between them but the way they behave is different
due to the way they decide to handle each of the issues in-
herent to streaming.

Even though this paradigm simplifies the processing of
variable volumes of data through a limited form of parallel
processing, it still has quite some issues that need to be tack-
led in order to have a resilient and performant system. Since
the volume of data is ever-changing, the system needs to be
able to adapt in order to accommodate and process this data
accordingly in a timely manner while also being resilient so
no data is lost while any stream is being processed.

Many of the technologies nowadays already address
many of these issues, namely systems owned by the Apache
Software Foundation, such as Apache Spark and Apache
Flink to name a few, that handle reliability and scalability
to a certain degree. But as with any type of software, espe-
cially one as high key as this one, there are always issues
that could not be handled by the system itself either by lim-
itations it has or it gives a mechanism for the user to handle
it themselves.

The rest of the paper is structured as follows. Section 2
describes briefly the fundamental and state of the art works
in the Stream Processing, Resource Management and In-
put/Processing Management. Section 3 presents the archi-
tecture and the resource management algorithm that com-
pose SDD4Streaming. Section 4 presents the evaluation to
our SDD4Streaming solution checking its performance on
applications. Finally, Section 5 wraps up the paper with our
main conclusions.

2 Related Work

We present our related work in four parts. First giving
insight on what Stream Processing is and how it works. Af-

1

ter that explain how one Stream Processing System works,
namely Apache Flink which is the system we have devel-
oped our solution against. And finally provide a brief ex-
planation of two different solutions that come to solve spe-
cific issues inherent to Stream Processing. The first one is
for Resource Management where the solution optimizes the
client application before its execution and the second is In-
put and Processing management where the solution through
machine learning can infer information from the inputs and
with that increase performance.

2.1 Stream Processing

Stream Processing can be decomposed in various dimen-
sions/aspects, taking into account they are parallel and dis-
tributed data processing systems, that need to be addressed
to create a functional system with a good quality of ser-
vice. The dimensions are Distributed Architecture, Pro-
gramming Model, Scheduling, Monitorability, Scalabil-
ity, Real-Time Processing, Fault Tolerance.

For our solution the more important dimensions that we
focus on solving is Scalability and Monitorability which we
will explain what they involve.

Monitorability: Whenever we want a system to have a
good quality of service with a certain level of availability,
we need a way to monitor said system so we can then act
upon it when an issue occurs.

There are various ways and levels of monitorability that
can be applied to infrastructure. An easy division can be,
for example, network and system monitoring. Each has its
functions, advantages, and disadvantages and the user needs
to use them accordingly to his needs.

A simple monitoring process that can be done through
the network could be, pinging all the machines in the system
from time to time to check what the latency is in the requests
and if there is any machine that is not responding.

Scalability: For a system that is constantly dealing with
data and with clients that are expecting a certain Quality of
Service (QoS) 1 from this system, we need to have a degree
of scalability to be prepared for any type of situation that
might happen.

So scalability is the property that a system has, to be
elastic [10] (ability to change itself) to accommodate the
requirements it has and in the ever-changing amount of
work it receives. This involves the change in the number
of resources available and includes either growing when-
ever there is more work than resources available or shrink-
ing when the amount of work decreases over time and we
have more resources than the ones needed.

As an example, we can imagine an API where inter-
nally it has a load-balancer that redirects the requests to the
worker machines which will then process the said request.

1https://www.networkcomputing.com/networking/basics-qos

This system supports 1000 req/s at a certain point in time
and so with this, we have three situations that can happen.
Either we are receiving fewer requests than our limit we can
support and so wasting resources (e.g. paying unnecessary
money, etc), have exactly the amount we support and this
would be the perfect world for the system but it’s not a real
scenario that we should take into account as when it hap-
pens its usually for a really small amount of time. The third
case is when the number of requests exceeds the limit of
what the system supports and so a bottleneck shall occur
and the QoS will decrease while latency increases.

To give example of systems, Aurora [1] and Medusa [3]
are stream processing engines that try to be scalable but
still have some issues which the article Scalable Distributed
Stream Processing [7] explains what the issues are and how
they could be solved.

2.2 Apache Flink

Apache Flink 2 [5] offers a common runtime for data
streaming and batch processing applications. Applications
are structured as arbitrary DAGs, where special cycles are
enabled via iteration constructs. Flink works with the no-
tion of streams onto which transformations are performed.
A stream is an intermediate result, whereas a transforma-
tion is an operation that takes one or more streams as in-
put, and computes one or multiple streams. During execu-
tion, a Flink application is mapped to a streaming workflow
that starts with one or more sources, comprises transforma-
tion operators, and ends with one or multiple sinks. Al-
though there is often a mapping of one transformation to
one dataflow operator, under certain cases, a transformation
can result in multiple operators. Flink also provides APIs
for iterative graph processing, such as Gelly.

The parallelism of Flink applications is determined by
the degree of parallelism of streams and individual opera-
tors. Streams can be divided into stream partitions whereas
operators are split into sub-tasks. Operator sub-tasks are ex-
ecuted independently from one another in different threads
that may be allocated to different containers or machines.

Apache Flink offers a fault tolerance mechanism to con-
sistently recover the state of data streaming applications.
The mechanism ensures that even in the presence of fail-
ures, the program’s state will eventually reflect every record
from the data stream exactly once. Note that there is a
switch to downgrade the guarantees to at least once (de-
scribed below). The fault tolerance mechanism contin-
uously draws snapshots of the distributed streaming data
flow. For streaming applications with a state that has little
information, these snapshots are very light-weight and can
be drawn frequently without much impact on performance.

2https://flink.apache.org/

2

The state of the streaming applications is stored at a con-
figurable place (such as the master node, or HDFS). In case
of a program failure, Flink stops the distributed streaming
dataflow. The system then restarts the operators and resets
them to the latest successful checkpoint. The input streams
are reset to the point of the state snapshot. Any records that
are processed as part of the restarted parallel dataflow are
guaranteed to not have been part of the previously check-
pointed state.

Figure 1. Apache Flink architecture (https://flink.apache.org/)

2.3 Resource Management

When developing a stream processing application/job,
the programmer will define a Directed Acyclic Graph
(DAG) with all the operations that will be done upon the in-
puts received. The right choice for this topology can make
a system go from very performant with high throughput, to
very slow with high latency and bottlenecks.

So the paper proposes SpinStreams [11], a static opti-
mization tool able to leverage cost models that programmers
can use to detect and understand the inefficiencies of an ini-
tial application design. SpinStreams suggests optimizations
for restructuring applications by generating code to be run
on a stream processing system. For testing purposes, the
author used an Streaming Processing System (SPS) called
Akka [9].

There are two basic types of restructuring and optimiza-
tion strategies applied to streaming topologies:

• Operator fission: Pipelining is the simplest form of
parallelism. It consists of a chain (or pipeline) of oper-
ators. In a pipeline, every distinct operator processes,
in parallel, a distinct item; when an operator com-
pletes a computation of an item, the result is passed
ahead to the following operator. By construction, the
throughput of a pipeline equals to the throughput of
its slowest operator that represents the bottleneck. A
technique to eliminate bottlenecks is to apply the so-
called pipelined fission, i.e. to create as many replicas
of the operator as needed to match the throughput of
faster operators (possibly adopting proper approaches
for item scheduling and collection, to preserve the se-
quential ordering)

• Operator fusion: A streaming application could be
characterized by a topology aimed at expressing as
much parallelism as possible. In principle, this strat-
egy maximizes the chances for its execution in parallel,
however, sometimes it can lead to a misuse of opera-
tors. In fact, on the one hand, the operator processing
logic can be very fine-grained, i.e. much faster than
the frequency at which new items arrive for process-
ing. On the other hand, an operator can spend a signif-
icant portion of time in trying to dispatch output items
to downstream operators, which may be too slow and
could not temporarily accept further items (their input
buffers are full). This phenomenon is called backpres-
sure and recursively propagates to upstream operators
up to the sources

The SpinStreams workflow is summarized in Figure 2.
The first step is to start the GUI by providing as input the ap-
plication topology. It is expected that the user knows some
profiling measures, like the processing time spent on aver-
age by the operators to consume input items, the probabili-
ties associated with the edges of the topology, and the opera-
tor selectivity parameters. This information can be obtained
by executing the application as is for a sufficient amount
of time, so that metrics stabilize, and by instrumenting the
code to collect profiling measures.

Figure 2. Spin Streams Workflow (from [11])

2.4 Input and Processing Management

A stream processing application usually will be used for
a certain type of data (e.g. data being generated by sensors
in a smart city) and not for a range of applications. So with
this, we can create an application that depends on the input
it receives and based previous training (machine learning) it
decided whether or not it should process them or just sim-
ply give the last result. For certain applications where the
workflow output changes slowly and without great signif-
icance in a short time window, we are wasting resources
inefficiently and making the whole process take a lot longer
than it could take while remaining with a moderately accu-
rate output.

3

To overcome these inefficiencies, SmartFlux [8] comes
with a solution that involves looking at the input the sys-
tem receives, train a model using Machine Learning with
this model check and analyze if the input being received
needs to be processed all over or not with a good confi-
dence level. This is done through a middleware framework
called SmartFlux which affects one part of a Stream Pro-
cessing Engine which is the Workflow Management System
since it wants to intercept the way the workflows are being
processed.

In Figure 2.4 we can see the architecture that was de-
signed for the Smart Flux solution.

[8]

3 Architecture

SDD4Streaming 3 acts as an extension of a Stream Pro-
cessing Engine focusing on improving its scalability and
overall performance. We seek to accomplish these improve-
ments while trying to minimize the loss of output accuracy
usually inherent when changing during runtime a complex
stateful system.

Stream Processing involves processing a variable vol-
ume of time-sensitive data and with this, the system needs
to be prepared to handle the issues coming from it. We can

3https://github.com/PsychoSnake/SDD4Streaming

take as guaranteed from the underlying system many things
such as reliability and low-level resource management (at
the task level) and so we do not need to further address the-
ses specific aspects.

Since Flink already handles these issues for us we don’t
need to go as low level for resource usage and altering the
system as we would need otherwise, meaning that we will
adapt the execution of jobs overall by changing the level of
parallelism used. As on these systems, multiple jobs can be
executed at the same time, each taking a percentage of the
total resources and that the number of resources needed to
process the input changes through time we have two ways
to handle this.

When creating a job we can define the level of paral-
lelism we want which changes how Flink handles tasks
(transformations/operators, data sources, and sinks). The
higher parallelism we have, the higher amount of data that
can be processed at a time on a job but also creating an over-
head on overall memory usage due to more data needing to
be stored for savepoints/checkpoints.

Before we can act on the system we need the client ap-
plication to provide us with some information that we will
base our decisions on, and this will be our Service Level
Agreement (SLA). The SLA is comprised of:

• Max Number of Task Slots: What is the maximum
amount of parallelism or Task Slots allowed for the job
in order to avoid a job scaling up indefinitely;

• Resource Usage: What is the maximum resource usage
allowed in the system;

• Input Coverage: What is the minimum amount of in-
puts that should be processed.

This SLA will allow us to make decisions according to
the type of performance the client wants the system to have.
This is essential because every client has its idea of how the
system should behave which we as an external element do
not know of. This is the basis of our Resource Management
component that on these values will check against the met-
rics obtained from the system and decide what to do in order
to improve performance and scalability.

To try and mitigate overhead caused by our solution, we
decided to separate responsibilities into the two following
parts:

• SDD4Streaming Library: Responsible for communi-
cating with our server and overriding Flink operator
functions;

• Resource Management Server: Responsible for han-
dling all metric related information as well as deciding
the state of known jobs and their adaptation;

4

Like this, we can make the system where the client ap-
plication is running, use its resources in a more efficient
manner being focused solely on the computation it was de-
signed to do. Most of our work is structured on the server
where our major features are located.

On the two parts explained above we can further divide
it into the following components:

• SDD4Streaming Library:

– Middleware: Responsible for extending the Flink
programming model in order to override the op-
erator functions;

• Resource Management Server:

– Metric Manager: Component responsible for
handling all metric related information, from
fetching it from Flink to storing it in our data
structure for later use;

– Resource Manager: Component responsible for
making decisions based on the state of system
through the use of the stored metrics and alter-
ing the system based on this;

In Figure 3 we have the relation between the client ap-
plication and the two components above.

Figure 3. Relation between client application
and our components

Before explaining each of these components we will go
over the data structures we use.

3.1 Data Structure

SDD4Streaming has two major sets of data structures
necessary for its execution. These consist of data, the client
application provides us about the overall system we will be
executing in, as well as metrics we fetch from said system.

3.2 Initialization data

For us to do anything at all in the system we first need
some initialization data, which comes directly from the
client application using our solution. These will give us
the means to query the system about its resources as well
as allow us to dynamically change it. This structure has the
following elements:

• Service Level Agreement: Details the optimal perfor-
mance the clients wants the system to have;

• Job Name: Used to identify a running job;

• Server Base URL: The base url for where our web-
server is running;

• Client Base URL: The base url for where the Job Man-
ager the job is gonna be executed;

• Jar Name: Name of the jar used to create the Job;

These elements will be further explained in the Imple-
mentation chapter

3.3 System Metrics

Apache Flink provides an extensive REST API that we
can use to query or modify the system in various ways. We
make use of this API to fetch metrics about the resources
being used in the system.

To accomplish this we had to map the endpoints we find
necessary from the API, being the data we have to send and
receive for each one. On some elements unfortunately its
not so simple and we can’t directly find out the relation be-
tween components and for this we need to gather this infor-
mation ourselves.

A job in Apache Flink has multiple levels and we are
able to gather different information on each one of them.
The levels important for our solution are as follows:

• JobManager: Orchestrator of a Flink Cluster;

• Job: The runtime representation of a logical graph
(also often called dataflow graph);

• TaskManager: Supervises all tasks assigned to it and
interchanges data between then;

• Task: Node of a Physical Graph. Its the basic unit of
work.

• SubTask: A Task responsible for processing a partition
of the data stream;

5

It’s good to have a notion of all these levels even if we
don’t certain properties of some of them since we will need
to go over all of them to gather all the metrics we require to
function.

For our solution, we will use and store data about the
JobManager, TaskManagers and the tasks still running from
the known jobs. While on Flink’s API these elements are
not directly related to each other, we connect them in our
data structure so we can easily check all elements required
of the job in order to make decisions.

Now talking about what kind of data we can get from
these elements, Flink through its API provides a good de-
gree of information with different representations. We can
gather information either on a collection of items (e.g. the
metrics for all task managers in the system) or for a specific
element which we then use to store in our internal structure.

Our data structure will be comprised of these elements
with the following relation JobManager < − > TaskMan-
ager < − > Task.

Figure 4. Metric Data Structure

As shown in Figure 4 above, we see each structure we
have and its relation with each other. For the JobManager,
we will store the available and total amount of task slots it
has available. This is necessary to know if we can scale a
job up or not, because on Flink whenever a job does not
have enough slots available for its parallelism level it will
stay waiting until any slot frees up to achieve the level re-
quired.

We then have the TaskManager which will store the CPU
load on the system. This load represents the average load
between all the TaskManagers the job is affecting, meaning
all the ones where tasks are being executing.

Finally we have Task which the TaskManager will store
a collection of and each one will have the buffer usage for
input and output which are used to identify backpressure
issues (e.g. possible bottlenecks).

3.4 Middleware

Our solution to work as expected it needs the user to spe-
cific (intended to be simple) modifications to its application.
These will involve using our components instead of the ones
Flink provides as well as provide us the initialization data
with information about the overall system the client created.
This will be explained in further detail in the Implementa-
tion section.

For the middleware component of the solution, we can
create our own versions of the operators Flink provides so
we can override their functionality. We do this so we can
verify how the system is behaving and act upon it and so
seamlessly handle resource management without us having
to make any extra communication with the client applica-
tion.

Besides this, we also have internal metric management
with the information obtained from an API Flink provides.
This API not only gives us metrics about each component
running in the system (e.g. Jobs, Tasks, etc), it also allows
us to adapt said system. With this, we can create an internal
data structure that allows us to make decisions, and then we
can also make actions on the system with the same API.

3.5 Metric Manager

SDD4Streaming’s decisions and actions are based on in-
formation we gather from the system through our Metric
Manager. This component is responsible for getting metrics
on the current system from Flink and organize it according
to our data structure.

Flink allows its clients to fetch system metrics through
various means but for our use, we find that the REST API
provided is the best way to achieve this. This API gives us
details on every level and components of the system without
us having to do extra work to identify these. Another way
of getting this information from the system is through the
Java Management Extensions (JMX) but for this, to work
we need to know the port for each component running and
there is no easy way to find out programmatically so we
decided to avoid this solution.

For the API, we mapped internally each of the endpoints
we find useful to have that give us the information we need.
These are ones corresponding to the components the system
has running at any point in time. We are able to gather in-
formation from the highest level being the job itself to the
lowest one being the sub-tasks generated by Flink from the
operators the client is using.

3.6 Resource Manager

For SSD4Streaming, the Resource Management compo-
nent is the most important one and where all the decisions

6

on the system will happen. This component will make use
of the metrics we get from our Metric Manager and make
decisions depending on the system being compliant with the
SLA or not.

To avoid performance issues we want the system to make
the best of the resources it has available. So whenever
needed, we will be making changes to the system to accom-
modate the ever-changing needs for processing the incom-
ing data. We can affect the system in two different ways.
Either by rescaling job we’re assigned to or by suppress-
ing inputs for the sake of performance at the cost of result
accuracy.

Algorithm 1: Decision Algorithm
Input: taskInfo
Output: shouldProcessInput
if !JobGettingRescaled(taskInfo) OR
!areMetricsAvailable() then

return true
end
if isJobDegraded(taskInfo) then

if shouldUpScaleJob() then
upscaleJob()
return true

end
if shouldSuppressInput() then

return false
end

end
if shouldDownScaleJob() then

downscaleJob()
end
return true

In Algorithm 1 above we have the pseudo-code of how
we check the job related metrics and how we adapt the sys-
tem accordingly. So for every input we receive, we will
analyze the state of the job. First, we ask the Metric Man-
ager, what are the current metrics for the job. If there are
no metrics available or the job is getting rescaled we will
return true (line 1) since there is nothing we can do at that
point. If there are metrics currently available and the job is
not getting rescaled then we will check the state of the job
and if it is compliant with the defined SLA.

With this, we are able to make the decision of simply
passing the control back to the user code and processing the
input or the need to act upon the system first. If the system
is running smoothly, before we pass control to the user code
we will check if we can downscale the job (lines 9-10). If
the system is running abnormally we need to change some-
thing but before deciding to do so, we need first check what
needs to be changed exactly. We have three possible actions
at this point depending on the decision made:

• Process Input

• Suppress Input

• Rescale Job

If we have enough resources available in the system we
are able to simply rescale the job (lines 4-6). This will help
solve bottlenecks and decrease the load on each task and so
help reduce performance degradation. But we only rescale
the current job if no other rescaling operation is happening
on the job. If we do not have enough resources to do the
operation then we need to follow a different approach. Our
other approach is suppressing the input partially and so not
processing it (lines 7-8). This will decrease the load and
help reduce performance degradation. But this comes with
the cost of reducing the accuracy of the output data which
is why we have a rule for it in our SLA, where the user can
declare what is the minimum accuracy (i.e the percentage
of the input subject to processing/reflected in the output)
required at all times. Lastly, if all of our other approaches
are not possible, we will have to pass the control to the user
code and allow him to process the input as normal (line 12).
Even though this will make increase the load in the system,
there is nothing more we can do without breaking our SLA
with the user.

4 Evaluation

To evaluate our system, we want to look at its core fo-
cus, the increase in performance while decreasing possible
bottlenecks and a dynamic resource usage depending on the
needs of the system at any point in time. Our tests will
be based on how applications behave with our solution and
compare them with just using what Flink provides to see
how it much improvement it gives.

We start our evaluation by looking into the workloads
used in Section 5.1. In Section 5.2, we document the dataset
we used as well as the transformations necessary to make
this data viable. We then move on to an analysis of the
metrics we intended to gather in Section 5.3. We are now
ready to look into the results of the testing in Section 5.4.

4.1 Workloads

For the workload we have an application that is able to
demonstrate how our solution behaves in a application. This
workload involves sending a variable volume of data to the
job and check how our solution will scale the job and the
overall performance of the system.

The producer of data will be Kafka 4, an open-source
stream-processing software platform developed by the
Apache Software Foundation that aims to provide a unified,

4https://kafka.apache.org/

7

high-throughput, low-latency platform for handling real-
time data feeds.

Initially we will prepare Kafka with a big volume of data
which when the application starts will read from. Since the
volume of data is so high, after the application finishes pro-
cessing it we will wait for a bit and check if our solution
downscales the job since its load at the time will be very
low. Finally after we finish waiting we will again send over
a large volume of data to Kafka and see if our solution is
able to adapt the job to support the new load The data used
for testing will be explained in Section 5.2.

4.2 Dataset

For the workload explained, we will use a dataset pro-
vided by the Univerty of Illinois System. This dataset rep-
resents the taxi trips (116GB of data) and fare data (75GB
of data) for the year 2010 to 2013 in New York.

4.2.1 Filtering and Data Cleanup

The dataset for the taxi rides/fares is pretty extensive com-
ing in at a total of 116GB which for our purposes we don’t
need to use everything in order to cause a heavy load on the
system. For this reason, we decided to use the latest avail-
able data which is for the year 2013 but before this can be
used by the application we first need to do a bit of cleanup.

We need to look at the data and remove rows that are
missing essential data since these will provide nothing for
our results while also mapping the columns necessary for
our execution or not.

4.3 Metrics

For each execution, we look to extract two key groups
of data: system performance and overhead caused by our
solution. The following list describes these in more detail:

System Performance:

• Resource Utilization: This metric assesses whether or
not the solution is scaling the system accordingly. The
resources used by tasks scale to keep up with the input
rate;

• Latency: If the input is taking too long to be processed;

• Throughput: How much data is being processed per
period of time;

• Accuracy: Observe how the accuracy of the applica-
tions varies over time, to assess fulfillment of quality
of service.

• CPU Usage: Check percentage of CPU being used by
tasks in the cluster as well as CPU reserved but not
used(assess resource waste and costs).

Solution Overhead:

• CPU Load: This metric assesses how much of the CPU
is affected by the execution of our solution;

• Memory Load: This metric assesses how much of the
memory is affected by storing our data structures by
our solution.

4.4 Testbed configuration

We designed our test runs to be executed in managed
infrastructure (commonly known as cloud services). The
Cloud Service used for this was the Google Cloud Platform
(GCP). This service provides 300 credits in a free trial per
account which for our use case is enough for us to do the
necessary tests.

Our setup consisted of 3 VMs each with two vCPUs, 4
GiB of RAM and 20 GiB of storage. Each of these ma-
chines will be responsible for each part necessary for test-
ing. One will host the Flink cluster where the job will run,
the other will host the data that the job will read from and
the third one will host our web server.

Besides this we also needed a way to gather the metrics
from the system while our jobs were running. To accom-
plish this we decided to use a Metric Reporter 5, in specific
the one chosen was Prometheus 6.

To give a brief overview of what this tool is. Prometheus
is a time series database (TSDB) combined with a monitor-
ing and alerting toolkit [Prometheus 2020]. The TSDB of
Prometheus is a non-relational database optimized for stor-
ing and querying of metrics as time series and therefore
can be classified as NoSQL. Prometheus mainly uses the
pull method where every application that should be mon-
itored has to expose a metrics endpoint in the form of an
REST API either by the application itself or by a metrics
exporter application running alongside the monitored appli-
cation. The monitoring toolkit then pulls the metrics data
from those endpoints in a specified interval.

This tool will be executed in our personal PCs as to not
use more credits on GCP than we need to.

4.5 Results

For both tests Apache Flink was configured to have one
JobManager and one TaskManager. The JobManager was
configured to have available 1024 MiB while the TaskMan-
ager which is responsible for managing all the tasks, the
units of work, has double that amount at 2048 MiB. The
amount of available tasks are 50 and each of the tests we

5https://ci.apache.org/projects/flink/flink-docs-release-
1.9/monitoring/metrics.html#reporter

6https://prometheus.io/

8

will start with a parallel level of 20, so using 20 of the 50
total slots

First we will go over the metrics we got from the test
where we have the application running without our solution
being used. All figures below for this test belong to the
same time interval and have a duration of 23 minutes.

Figure 5. CPU Load on the TaskManager

Figure 6. Amount of records getting pro-
cessed by each sub-task per second
(throughput)

We can see the CPU usage in Figure 5 for the work-
load used, that is pretty high and besides the first min-
utes where data is getting fetched from Kafka, the load is
mostly constant overal with some spikes now and then. For
throughput in Figure 6 we see something similar to the CPU
load graph which makes sense because higher throughput
means that we’re processing more data and for that to hap-
pen higher CPU load is expected. So we see an initial very
high throughput that then decreases after a few minutes but
remains constant.

Also when comparing the first volume of data sent and
the second one, we can see that the CPU load and through-
put are fairly similar.

Figure 7. Heap Memory Usage

We can also see memory usage by the TaskManager/-
Tasks in the Heap and Non-Heap in Figures 7 and 8 respec-
tively.

Now we will show the results from the test where we
have the application running incorporated with our solution.
The configurations are the same as the other test but we have
the extra configuration of SDD4Streaming. The important

Figure 8. Non-Heap Memory Usage

part needed before showing the results is the SLA used for
this test:

• Max Number of Task Slots: 22;

• Resource Usage: 50%

• Input Coverage: 80%;

All figures below for this test belong to the same time
interval and have a duration of 30 minutes.

Figure 9. CPU Load on the TaskManager

Figure 10. Amount of records getting
processed by each sub-task per second
(throughput)

Here we have the CPU load and throughput in Figures
9 and 10 respectively. By looking at these graphs we can
see that the execution was very different from the one with-
out our solution. For example we can see drops in both
of them that mostly represent when the job was getting
rescaled since at that point no input will be processed and
so throughput will drop to 0 and CPU will be mostly used
by the TaskManager that is adapting the job.

In Figures 11 and 12 we have the memory usage for the
Heap and Non-Heap respectively. From this we see that the
Non-Heap is very similar to the previous test but for the
Heap we are getting quite a difference. Since our solution
will adapt the system in runtime, the TaskManager will need
to use more memory in order to do the rescaling of the jobs.
And due to this we see a higher average use of memory as
well as the max amount of memory used overall.

9

Figure 11. Heap Memory Usage

Figure 12. Non-Heap Memory Usage

Finally, specifically for the test with our solution we have
in Figure 13 the number of available slots throughout the
execution of the job.

5 Conclusion

SDD4Streaming was devised to serve as an extension
of the scalability and performance capabilities of a Stream
Processing Engine. Meaning that it was created to, in run-
time, adapt the system to the current necessities of the sys-
tem to support the current load its getting. Through the sep-
aration of responsibilities between the library and the server
we are able to mitigate most of the overhead that our solu-
tion causes on the system.

References

[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Con-
vey, C. Erwin, E. Galvez, M. Hatoun, A. Maskey, A. Rasin,
et al. Aurora: a data stream management system. In SIG-
MOD Conference, page 666. Citeseer, 2003.

[2] E. Bainomugisha, A. L. Carreton, T. v. Cutsem,
S. Mostinckx, and W. d. Meuter. A survey on reac-
tive programming. ACM Computing Surveys (CSUR),
45(4):1–34, 2013.

[3] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Load
management and high availability in the medusa distributed
stream processing system. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data,
pages 929–930. ACM, 2004.

[4] R. S. Barga, J. Goldstein, M. Ali, and M. Hong. Consistent
streaming through time: A vision for event stream process-
ing. arXiv preprint cs/0612115, 2006.

[5] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,
and K. Tzoumas. Apache flink: Stream and batch processing
in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 36(4), 2015.

[6] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs.
Building a big data platform for smart cities: Experience

Figure 13. Number of Available Task Slots

and lessons from santander. In 2015 IEEE International
Congress on Big Data, pages 592–599. IEEE, 2015.

[7] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. B. Zdonik. Scalable dis-
tributed stream processing. In CIDR, volume 3, pages 257–
268, 2003.

[8] S. Esteves, H. Galhardas, and L. Veiga. Adaptive execution
of continuous and data-intensive workflows with machine
learning. 2018.

[9] M. Gupta. Akka essentials. Packt Publishing Ltd, 2012.
[10] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer.

Latency-aware elastic scaling for distributed data stream
processing systems. In Proceedings of the 8th ACM Inter-
national Conference on Distributed Event-Based Systems,
pages 13–22. ACM, 2014.

[11] G. Mencagli, P. Dazzi, and N. Tonci. Spinstreams: a static
optimization tool for data stream processing applications.
2017.

[12] T. B. Sousa. Dataflow programming concept, languages and
applications. In Doctoral Symposium on Informatics Engi-
neering, volume 130, 2012.

[13] R. Tönjes, P. Barnaghi, M. Ali, A. Mileo, M. Hauswirth,
F. Ganz, S. Ganea, B. Kjærgaard, D. Kuemper, S. Nechifor,
et al. Real time iot stream processing and large-scale data
analytics for smart city applications. In poster session, Eu-
ropean Conference on Networks and Communications. sn,
2014.

10

	Introduction
	Related Work
	Stream Processing
	Apache Flink
	Resource Management
	Input and Processing Management

	Architecture
	Data Structure
	Initialization data
	System Metrics
	Middleware
	Metric Manager
	Resource Manager

	Evaluation
	Workloads
	Dataset
	Filtering and Data Cleanup

	Metrics
	Testbed configuration
	Results

	Conclusion

