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Abstract

Function-as-a-Service is an emerging Cloud Computing model that is proving to be very suitable for

processing the large amounts of data being generated by devices in the expanding Internet of Things.

Bringing this computing model closer to the source of data can provide a response to the reduced la-

tencies and bandwidth requirements of the applications that reside at the edge of the Internet. Edge

Computing environments are typically characterized by their large scale architecture, decentralized na-

ture, and resource-constrained devices, which causes Function-as-a-Service approaches to currently

still lack the ability to fulfill these service requirements, while efficiently leveraging resource utilization on

distributed edge devices.

In this work, we present a solution to implement the Function-as-a-Service model in an Edge Computing

environment, by utilizing resources volunteered by other edge nodes and discovered through the IPFS

network, to deploy functions written in several possible language runtimes, that allow near universal

deployability on edge devices, using the Apache OpenWhisk framework.

Keywords

Function-as-a-Service; Edge Computing; Cloud Computing; Volunteer Computing; Peer-to-Peer Data

Networks.
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Resumo

Função como Serviço é um modelo emergente de Computação em Nuvem que se está a revelar muito

adequado para processar as grandes quantidades de dados geradas por dispositivos na crescente In-

ternet das Coisas. A aproximação deste modelo de computação à fonte dos dados pode proporcionar

uma resposta aos requisitos de latências e largura de banda reduzidas das aplicações que residem na

periferia da Internet. Os ambientes de Computação na Borda (Edge Computing) caracterizam-se tipi-

camente pela sua arquitetura em grande escala, natureza descentralizada e dispositivos com recursos

limitados, o que faz com que as abordagens Função como Serviço ainda não tenham a capacidade de

satisfazer esses requisitos de serviço, ao mesmo tempo que aproveitam de forma eficiente a utilização

de recursos nos dispositivos distribuı́dos na borda.

Neste trabalho, apresentamos uma solução para implementar o modelo Função como Serviço num

ambiente de Computação na Borda, através da utilização de recursos disponibilizados por outros nós

computacionais de borda e descobertos através da rede IPFS, para executar funções escritas em di-

versas linguagens de programação, que permitem uma implementação quase universal em dispositivos

de borda, utilizando o framework Apache OpenWhisk.

Palavras Chave

Função-como-Serviço; Computação na Borda; Computação em Nuvem; Computação Voluntária; Re-

des de Dados Peer-to-Peer.
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Function-as-a-Service (FaaS) is an emerging paradigm [1] aimed to simplify Cloud Computing and

overcome its drawbacks by providing a simple interface to deploy event-driven applications that exe-

cute the function code, without the responsibility of provisioning, scaling, or managing the underlying

infrastructure. In the FaaS model, the management effort is detached from the responsibilities of the

consumer, since the cloud provider transparently handles the lifecycle, execution, and scaling of the

application. This computing paradigm was originally proposed for the cloud but has since been explored

for deployments in geographically distributed systems [2].

With the expansion of the Internet of Things, the cloud has become an insufficient solution to respond

to the growing amounts of data transmitted and the variety of Internet of Things applications that require

low latency and location-aware deployments, as stated by CISCO [3]. This has led to the introduction

of a new computing paradigm, called Edge Computing, designed to reduce the overload of information

sent to the cloud through the Internet, by bringing the resources and computing power closer to the end

user and processing the data at the edge of the network.

1.1 Motivation

The intersection between Function-as-a-Service and Edge Computing presents a captivating area of

research and innovation since the growing demand for low latency, real-time applications urges the

need to explore the integration of FaaS in Edge Computing devices. At the same time, this integration

also needs to address its inherent challenges, such as managing distributed architectures, optimizing

resource allocation, and ensuring compatibility with the heterogeneous characteristics of edge devices.

By investigating the feasibility, performance implications, and architectural considerations, this research

attempts to contribute valuable insights into how FaaS can improve the capabilities of edge devices and

the development of edge applications, and ultimately enhance distributed computing.

1.2 Current Shortcomings

Most of the current cloud service platforms still rely on centralized architectures and services that are

not designed to operate on resource-constrained environments and the diverse variety of heteroge-

neous devices that characterize the edge systems. In recent years, solutions have been explored to

bring FaaS deployments to the edge of the network [4], [5]. Even so, few have managed to realize

efficient resource provisioning and allocation [6], along with near universal deployability, by leveraging

volunteered resources in a completely distributed and decentralized manner [7], in order to maximize

resource utilization and meet the performance needs of edge applications.

2



1.3 Proposed Solution

Our proposed solution is a FaaS@Edge system that uses volunteer resources from multiple users, that

are announced and discovered through the InterPlanetary File System (IPFS)1 network, to submit and

invoke user functions on their volunteered edge devices using the Apache OpenWhisk2 framework.

1.4 Contributions

The primary contribution of this work is the development of a system that uses volunteer resources from

users to allow Function-as-a-Service deployments at the edge of the network. In order to achieve this,

we defined the following individual contributions:

• Survey the previous research and current state of the art in Function-as-a-Service, Edge Comput-

ing, and Peer-to-Peer (P2P) content, storage and distribution.

• Produce taxonomies to classify Function-as-a-Service models, Edge Computing models, and P2P

Data Networks.

• Implement the FaaS@Edge middleware prototype that supports a distributed architecture, algo-

rithms, and protocols that leverage volunteer resources for FaaS deployments on edge computing

nodes, using the Apache OpenWhisk framework and IPFS to discover the resources.

• Evaluate the feasibility, efficiency, and performance of our prototype, and present and analyze the

results.

1.5 Document Roadmap

The remainder of this thesis is organized in the following way: Chapter 2 presents an analysis of the

related work in FaaS, Edge Computing, and P2P content, storage and distribution. Chapter 3 presents

the architecture and algorithms that compose our solution. Chapter 4 describes the implementation

details of our solution. In Chapter 5 we present the evaluation of our work and lastly, Chapter 6 concludes

the document with our final remarks and possible future work proposals.

1https://ipfs.tech/
2https://openwhisk.apache.org/
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In this section we discuss important research and state of the art work in Function-as-a-Service in

Section 2.1, Edge Computing in Section 2.2, and P2P Content, Storage and Distribution in Section 2.3.

Lastly, we describe the Relevant Related Systems in Section 2.4.

2.1 Function-as-a-Service

Back in 2009, as the excitement surrounding utility computing grew larger, the potential of Cloud Com-

puting raised a lot of predictions as to how it would revolutionize the service provisioning model in the

IT industry. The main advantages pointed out by Armbrust et al. [8] were the illusion it creates of infinite

computing resources, the elasticity to add or remove resources, not needing to make upfront invest-

ments, and the pay-as-you-go business model, whilst also mentioning the potential it offers to create

economies without needing to afford large data centers, and improving resource utilization via virtual-

ization and hardware sharing.

During the following years, we have largely witnessed the accomplishment of these predictions and

Cloud Computing is now a highly popular paradigm with several service delivery models and deployment

methods. The three main service delivery models available are:

• Infrastructure-as-a-Service (IaaS): This model provides a cloud infrastructure where the con-

sumer can deploy and run software including operating systems, runtime environments, and appli-

cations. The consumer has no control over the underlying physical infrastructure but can manage

storage space, networking properties, and have access to computing resources that may be virtu-

alized.

• Platform-as-a-Service (PaaS): This model provides a cloud infrastructure where the consumer

applications can be deployed without having the responsibility to manage the underlying infrastruc-

ture, including the physical layer and operating systems. The consumer can deploy and manage

the applications and their configurations without being concerned about resource provisioning or

capacity planning.

• Software-as-a-Service (SaaS): This model provides the consumer the ability to use product appli-

cations hosted by the service provider on a cloud infrastructure. The consumer does not have the

responsibility of managing the underlying infrastructure, including servers, storage, and network

components that constitute the physical layer, nor the operating systems and application runtime

environment where the application is running. The consumer can simply interact with the interface

provided by the service to utilize the application’s capabilities.

When Amazon first introduced its Elastic Compute Cloud (EC2)1 instances belonging to the IaaS
1https://aws.amazon.com/ec2/
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delivery model, other companies followed soon after and this became the designated Virtual Machine

approach. However, there were still some drawbacks due to the managing responsibilities it imposes on

developers, for instance, ensuring service availability, efficient resource utilization, autoscaling capabili-

ties, and service monitoring [1].

The Google App Engine (GAE)2 providing PaaS improved on this by automating the scaling and

storage purposes to allow the customer to only develop at the application level. GAE applications were

still constrained to specific frameworks, programming languages, and the amount of Central Processing

Unit (CPU) they could use to answer a request. Some of these limitations were more emphasized

when the customer wanted to deploy code at a more fine-grained level, i.e. an application function with

relatively few lines of code, which led to the core of FaaS offerings, first presented by Amazon, in the

form of Lambda3 functions (a.k.a. Cloud functions).

Cloud functions allow the consumer to run their function code automatically when a request occurs,

i.e., an event is triggered, without having to provision virtual machine instances or monitor and up-

grade the system, among other responsibilities mentioned previously. Cloud functions may take different

names depending on the cloud platform, as we will see later on, and constitute the basis for Serverless

Computing frameworks. At the end of the spectrum, there are the SaaS models (e.g., Google Apps4)

where the service provider hosts applications that the customer can simply access through the Internet.

Figure 2.1: Function-as-a-Service Taxonomy

2https://cloud.google.com/appengine
3https://aws.amazon.com/lambda/
4https://workspace.google.com/
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In Figure 2.1, we present a taxonomy to classify Function-as-a-Service models. Although this is a

more recent approach out of all the Cloud Computing delivery models, significant research has already

been carried out and detailed in the current literature. Jonas et al. [1] provide a good contextualization of

Serverless Computing in comparison to Virtual Machine solutions, describing its challenges and future

directions, Mohanty et al. [9] focus on comparing the features of existing FaaS open source frameworks,

alternatively, Wen et al. [10] focus on comparing features concerning FaaS commercial platforms. Next,

we define the main characteristics that distinguish the various FaaS offerings according to the type of

Computing Environment, Development, Deployment, and Runtime.

Computing Environment: This characteristic marks the distinction between the entities granted the

right to modify or use the software, depending on the existence of commercial purposes for the platform.

The Computing Environment can either be Commercial Platforms or Open Source Frameworks.

Commercial Platforms of Function-as-a-Service provide the services for provisioning, management,

and resources necessary for a consumer to develop, deploy and execute functions in a pay-as-you-go

model (e.g., Amazon Web Services (AWS) Lambda, Google Cloud Functions5, Microsoft Azure Func-

tions6, International Business Machines Corporation (IBM) Cloud Functions7). These are usually main-

tained by a company, i.e., a cloud provider, and as a consequence, there are specific requirements

imposed on function code that can create vendor lock-in and computation restrictions. The cloud in-

frastructure is available to be used by the general public regardless of whether it is in an academic,

business, or governmental setting. These platforms may also use Open Source software for commercial

purposes.

Open Source Frameworks of FaaS overcome the limitations of Commercial Platforms by providing a

free and publicly available environment solution for serverless functions (e.g., OpenWhisk8, Kubeless9,

Fission10, OpenFaaS11). These frameworks are not exclusively descriptive of private cloud deployments,

but rather free software that can be distributed and modified by the general public.

Development: The characteristics of the application, present in the Development phase of the pro-

cess, that need to be supported by the platform when using this serverless computing model can be con-

sidered in terms of the Programming Language, the type of Function Trigger, and the Package Size Limit.

Programming Language regulates which languages can be used to write the code of the function

that is going to be executed by the platform. Each platform has a set of languages that are compatible

with their runtimes, with Python and Java amongst the most popular ones.

Function Trigger is associated with the respective function payload and is responsible for initiating the

5https://cloud.google.com/functions
6https://azure.microsoft.com/products/functions/
7https://cloud.ibm.com/functions/
8https://openwhisk.apache.org/
9https://github.com/vmware-archive/kubeless

10https://fission.io/
11https://www.openfaas.com/
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execution request of the function which can originate from a variety of events (e.g., Hypertext Transfer

Protocol (HTTP) requests, modifications in storage services, scheduled timers).

Package Size Limit of applications defines the maximum size of the packaged function code and

respective dependencies, and it is imposed with the intention of reducing the cold start delay when

executing functions (e.g., AWS Lambda limits a zipped package to 50 MB).

Deployment: The characteristics of the Deployment phase of FaaS models, which may be distinct

across platforms, can be divided in Deployment Methods, Deployment Tools, the type of Messaging

Service, Function Memory Allocation, and CPU.

Deployment Methods define the packages, repositories, and systems that are responsible for de-

ploying and orchestrating the function services. The existing options include source code packages,

Docker container images which encompass the operating system, application code, dependencies and

other system settings needed to deploy the image to its function, open source container orchestration

systems such as Kubernetes 12, and other external services.

Deployment Tools are the interface options the consumer can use to deploy the functions to the

platform. Existing options include the Command Line Interface (CLI), Console Interface, Application

Programming Interface (API), and Software Development Kit (SDK).

Messaging Service is typically integrated with these Cloud platforms and can be used for asyn-

chronous messaging events, by associating specific functions to process messages present in the mes-

sage queue (e.g., AWS Lamba can be used with Amazon SQS13).

Function Memory Allocation is configured to define how much memory is allocated for a function to

use during runtime. Most platforms have default and limit values established but allow custom modifica-

tions to increase or decrease the memory allocated and set a limit value.

CPU power is usually attributed to the function proportionally to the correspondent allocated memory

and consequently, modifying these values can modify memory values as well.

Runtime: The characteristics of the Runtime phase come into view once a function has already

been successfully deployed. During their Runtime, we can consider different types of Invocation Style,

Concurrency, Auto Scaling Metric, Billing Model (for Commercial Platforms), and Monitoring Tools.

Invocation Style of a function can either be Synchronous or Asynchronous. In Synchronous invoca-

tions, when a function is invoked, the consumer has to wait for the task execution to finish before being

able to proceed. Contrarily, in Asynchronous invocations, the consumer does not have to wait for the

function’s execution. This invocation is usually connected to a function trigger that decides when it is

processed.

12https://kubernetes.io/
13https://aws.amazon.com/sqs/
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Platform Computing
Environment

Development Deployment Runtime

Programming
Language

Function
Trigger

Package
Size
Limit

Deployment
Methods

Deployment
Tools

Messaging
Service

Function
Memory

Allocation
CPU Invocation

Style Concurrency
Auto

Scaling
Metric

Billing
Model

Monitoring
Tools

AWS
Lambda Commercial

Java, Go,
PowerShell,

Node.js,
C#, Python,

Ruby,Custom

HTTP,
Schedule,

Event,
AWS services

50 MB
or

250 MB

Source Code,
Docker

Container

CLI,
Console,

API
SDK

Amazon
SQS

10,240
MB

Proportional
to Memory

Synchronous,
Asynchronous 3000

QPS,
custom
metrics

#requests,
execution

time
allocated
memory

Amazon
CloudWatch

Google
Cloud
Functions

Commercial

Node.js,
Python,

Go, Java,
.NET Core,
Ruby, PHP

HTTP,
Schedule,

Event,
Google Cloud

services

100 MB
or

500 MB

Source Code,
Docker

Container,
Terraform,

External Services

CLI,
Console,

API
SDK

Cloud
Tasks,

Pub/Sub

8192
MB

Proportional
to Memory

Synchronous,
Asynchronous 3000 QPS

#requests,
execution

time
allocated
memory,
idle time

Cloud
Monitoring

Azure
Functions Commercial

C#, F#,
JavaScript,

Java, PowerShell,
Python,

TypeScript,
Custom

HTTP,
Schedule,

Event,
Azure services

100 MB

Source Code,
Docker

Container,
External
Services

CLI,
Console,

API
SDK,

VS Code

Azure
Queue 1.5 GB Proportional

to Memory
Synchronous,
Asynchronous 500 QPS

#requests,
execution

time
consumed
memory

Azure
Monitor

IBM
Cloud
Functions

Commercial

Node.js,
Python, PHP,

Go, Ruby,
Java,

.NET Core,
Custom

HTTP,
Schedule,

Event,
IBM Cloud
services

48 MB
Source Code,

Docker
Container

CLI,
Console,

API
SDK

IBM MQ,
IBM Event
Streams

2048
MB Unspecified Synchronous,

Asynchronous 1000 QPS

Execution
time

allocated
memory

IBM
Cloud

Monitoring

Apache
OpenWhisk

Open
Source

Go, Java,
JavaScript,

PHP, Python,
Ruby, Rust,

Swift, .NET Core,
Custom

HTTP,
Schedule,

Event
48 MB

Source Code,
Docker

Container,
External
Services

CLI, API Kafka 512
MB Unspecified Synchronous,

Asynchronous 100 QPS Free StatsD

Kubeless Open
Source

Python, Node.js,
Ruby,

PHP, Go, .NET,
Custom

HTTP,
Schedule,

Event
1 MB Source Code,

Kubernetes CLI Kafka,
NATS 1 GB Custom Synchronous,

Asynchronous >1

CPU
utilization,

QPS,
custom
metrics

Free Prometheus

Fission Open
Source

Node.js, Python,
Go, Java, Ruby,

PHP, .NET,
Perl, Binary

HTTP,
Schedule,

Event
Unspecified Source Code,

Kubernetes CLI

Kafka,
NATS,
Azure
Queue

1 GB Custom Synchronous,
Asynchronous >1 CPU

utilization Free Prometheus

OpenFaaS Open
Source

Go, Node.js,
Python, Java,
Ruby, PHP,
C#, Custom

HTTP,
Schedule,

Event
Unspecified

Source Code,
Docker

Container,
Kubernetes,

External
Services

CLI,
API
SDK

NATS,
Kafka,

AWS SQS,
RabbitMQ

Custom Custom Synchronous,
Asynchronous Unspecified

QPS, RPS,
CPU

utilization
Free Prometheus

Table 2.1: FaaS Platforms/Frameworks Classification
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Concurrency is the number of executions/activations of functions that can occur at the same time.

Some platforms allow the reservation of a portion of the maximum concurrency value to ensure that a

specific function is able to be activated at a given time.

Auto Scaling Metric is used to evaluate the need to scale the service. By monitoring these metrics

(e.g, number of incoming requests to function per second (QPS) or requests completed per second

(RPS)), the system can automatically make decisions on whether to deploy more or fewer functions in

order to meet the request demands.

Billing Model refers to the payment models that Commercial Platforms use to charge consumers for

the services they provide, based on measurements taken from the consumers’ utilization of the services

(e.g., number of function requests).

Monitoring Tools are used to retrieve information about the system status to assess its performance

and monitor used and available resources. Monitoring tools (e.g., Prometheus14) usually provide graph-

ical interfaces, i.e., dashboards to visualize these differences over time.

Table 2.1 contains the FaaS platforms and frameworks considered most relevant in our research and

their respective classification according to the taxonomy presented.

2.2 Edge Computing

As a result of the recent developments of edge technology in number and complexity, the Edge Com-

puting paradigm has been continuously studied as a way to bring the computing, storage, and network

resources closer to the edge of the network.

The distribution of computing power has been introduced before in several paradigms, including older

approaches such as Grid Computing [11], which is designed to offer public organizations computing

resources through a shared infrastructure and is still used nowadays in scientific research with systems

like the World Community Grid15. The development of this approach as a commercial offering with

the adaptation of a consumption-based business model inspired what resulted in the Cloud Computing

paradigm [11].

Edge Computing is a particular incarnation of Cloud Computing that seeks to provide a solution for

some of the challenges that Cloud Computing faces, in particular, network bandwidth pressure, privacy,

and real-time needs, by bringing Cloud Computing capabilities closer to the source of data [12]. In more

recent years, with the evolution of technologies like the Internet of Things, the literature has looked at

advances in Edge Computing such as Fog Computing [13], Mobile Edge Computing (MEC) [14], and

Cloudlets [15]. Fog Computing is a term often interchangeable with Edge Computing (albeit relying on

14https://prometheus.io/
15https://www.worldcommunitygrid.org/
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geo-distributed provider infrastructure), whereas MEC and Cloudlets are similar concepts as well, but

more focused on utilizing mobile devices as edge computing nodes [16].

In this section, we present a taxonomy to classify Edge Computing models (Figure 2.2). Since

this is a very broad and recent computing paradigm, there are still alternative classifications in the

current literature. Cao et al. [12] provide a broad overview of the layered architecture and other aspects

and research topics in Edge Computing, Özyar et al. [17] present a comparison of Edge orchestration

frameworks, and Hong et al. [18] classify resource management architectures and algorithms in Fog and

Edge Computing. Next, we define the main design choices, architectural properties, and characteristics

that enable us to address and distinguish these models.

Figure 2.2: Edge Computing Taxonomy

Architecture: This characteristic relates to how the coordination between the nodes is managed

and how they are structured. This is distinct from where the computation effectively takes place, which

in Edge Computing, as the term already indicates, is inherently distributed. The type of architecture can

be Centralized or Decentralized.

Centralized models have a controller component or a small set of nodes in a central location ded-

icated to managing the computational and storage resources throughout the edge nodes (e.g., Pi-

Casso [19]). This type of architecture has fewer scaling capabilities since the provisioning and resource
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scheduling tasks all depend to some degree on the same set of nodes.

Decentralized models can be divided into two sub-types: Hierarchical and P2P. Hierarchical models

distribute the responsibilities amongst different tiers that can be composed of edge devices, nodes,

routers, servers, or data centers. This is usually the model used in Fog Computing paradigms as it allows

the offloading of tasks to a different tier, with the trade-off of communication delays (e.g., Cloudlets [20]).

P2P models (e.g., VFuse [7]) are a widespread composition of decentralized edge nodes with nearly

symmetrical responsibilities of coordinating admission, provisioning, and scheduling decisions with each

other.

Computing Environment: This characteristic distinguishes the nature of the execution environment

where the computation takes place. The environment is not dependent on the node’s physical location,

but rather on the hardware and software upon which it operates. The Computing Environment type can

be a Virtual Machine, Container, Process, or Browser.

Virtual Machine (VM) instances allow hardware virtualization to any guest operating system by pro-

viding full isolation inside a node. This can be useful for multi-tenant environments since a single node

can contain several instances.

Containers provide a virtualized environment to run applications in a manner that isolates CPU,

memory, and network resources at the operating system level from other applications. This ability to

deploy, terminate, replicate, and migrate a virtual environment anywhere, along with the small size of

Container images, compared to VM instances, make Containers a faster and highly scalable solution for

Edge Computing (e.g., Caravela [21]).

Processes are a common Computing Environment in systems intended to utilize large amounts

of volunteered computing resources (e.g., nuBOINC [22]) since the computational workload of these

projects can be divided into tasks, and each volunteer can execute one or more of these tasks as an

application process on their personal computing device. These processes are usually run in the back-

ground and with low priority to avoid hindering the user’s normal performance.

Browsers provide an environment for Web applications to run isolated and an easily accessible way

to share resources. This is the more fine-grained environment solution, that can become highly scalable

on demand if every Edge Computing node has a Browser installed and simply deploys a worker thread

on it (e.g., Pando [23]). Contrary to VM instances or Container environments, Browser based Edge

Computing instantiations are useful in systems where low latency is a requirement due to their ability

to be executed on the edge node closer to the source of data and user input. WebAssembly (wasm)

binaries were initially built for Browsers but have since been explored, using their modules of wasm code

compiled in Browsers, to host runtimes with quick start-up time and secure isolation (e.g., Bacalhau [24]).

Resource Ownership: This characteristic describes who owns the physical devices that power the

Edge Computing system. Two types can be considered: Volunteer Devices and Infrastructure Owner.
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Volunteer Devices are the interconnection of Edge Computing with Volunteer Computing, the system

leverages the resources and computational power of personally owned devices from the general public

(e.g., Folding@home [25], Volunteer MapReduce [26], guifi.net [27]). The users may be incentivized to

join, e.g., by a reputation or virtual currency system (e.g., Filecoin16). In Personal Volunteer Computing

the focus is on the personal needs of computational power and resources by programmers for their

personal or community applications.

Infrastructure Owner is the single or collective entity that owns the system’s physical infrastructure.

The owner can be the Infrastructure Service Provider (ISP) if the system is composed of a Cloud Com-

puting infrastructure, such as AWS data centers, or a mobile device infrastructure. There can also be

on-premises owners (e.g., Skippy [28]) in the circumstance that a Service Provider supplied computa-

tional devices for personal or communal use, which can describe the resource ownership of several Grid

infrastructures.

This classification is parallel to having Private, Public, or Community ownership. There are also Edge

Computing models where the Resource Ownership is a combination of the two types described. This is

the case where a big part of the infrastructure is owned by an individual or collective entity (e.g. ISP),

usually the higher tiers in the architecture that are responsible for the heavier computational power and

resource management, while other users with their edge devices volunteer computational power and

other resources to the infrastructure.

Resource Scheduling: This characteristic comprises the processes of provisioning and allocating

resources. The scheduling mechanism decides on which resource to execute the computation request,

by managing the need to allocate more or fewer resources according to the user application require-

ments. Resource Scheduling in Edge Computing models has implicit challenges as it has to consider

the latencies imposed by the distance of computation nodes to the users, the overhead of starting

the respective virtualized environment and preparing it to execute the requested computations, and

the communication and coordination delays from having distributed computation locations [6]. We fur-

ther divide Resource Scheduling into several sub-types: Scheduling Policies, Decision-taking, Scaling,

Application-level Placement, and Execution Migration.

Scheduling Policies define the global approach used to decide where an execution is placed. In

Edge Computing systems the execution placement is usually correlated to the prioritization of system

goals designed to improve Quality-of-Service and user experience, e.g. by reducing communication

delays and response time. We classify these policies into the following types: Load-aware and Network-

aware. Load-aware refers to policies whose goal is to leverage the available resources of nodes (e.g.

CPU, RAM, disk utilization), either by maximizing the resource utilization of specific nodes, or evenly

distributing the load across all nodes. Network-aware encompasses policies that attempt to reduce

16https://filecoin.io/
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latencies and serve network-intensive applications without compromising the bandwidth pressure of the

system or introducing communication delays.

Decision-taking describes how the scheduling mechanism decides to act upon the resources, it can

be Reactive or Predictive. Reactive methods base their decisions on an evaluation of the system’s

current state, which activates the subsequent decision that there is a need to utilize more or fewer

resources. Predictive methods consider previously obtained knowledge to make future decisions, pro-

viding a mechanism to anticipate the system’s resource needs and allocate them in a timely manner.

These are usually based on machine learning techniques and tend to provide better solutions and per-

formances than Reactive methods [17].

Scaling the system is fundamental to maximize resource utilization and improve user experience due

to the heterogeneous and resource-constrained nature of edge nodes that compose Edge Computing

systems. This can be done through Horizontal Scaling or Vertical Scaling. Horizontal Scaling applies

to the deployment or termination of resources, such as deploying more application containers or termi-

nating VM instances according to the application’s workload. It can be performed on a single node, e.g.

deploying more containers on the same node, or across several edge nodes of a network. Vertical Scal-

ing is the adaptation of resource specifications of the existing infrastructure, e.g. improving or replacing

the CPU and memory capabilities of the application container.

Application-level Placement defines on which node of the network to place the components or mi-

croservices of an application in execution. Some systems have to satisfy user requirements to reduce

communication delays between microservices, or lower request latencies and network bandwidth pres-

sure. There are two approaches for selecting locations to place the executions: Spread or Co-location.

Spread approach places the application components physically distanced from each other, which be-

comes less prone to creating bandwidth bottlenecks in a region. Co-location is used when the user

intends to have all the components close to each other, usually in applications that require low latency

communication between components (e.g., Caravela [21] allows both).

Execution Migration can happen after an execution is placed on an edge node and is running a

service application, it is also possible to relocate it to another edge node. This may be helpful if, for

instance, the node has suffered a failure or there is a workload imbalance within the infrastructure

nodes [29]. Execution migration can be of two types: Cold or Warm. Cold migration terminates the

execution instance that was running in a node and uses its base image to launch it on a different node.

Warm migration requires the service to be running while it is being transferred. The image is started on

a new node, and the application state is saved and transferred to that node when it is ready. This type of

migration proves more advantageous for large-size images, especially if the image was already cached

in the destination node since only the execution environment needs to be deployed, and it minimizes

downtime possibly at the cost of temporarily lower throughput.
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Work Architecture Computing
Environment

Resource
Ownership Resource Scheduling Target Application

Pando [23] Centralized Browser Volunteer
Devices

Load-aware,
Reactive,

Horizontal/Vertical Scaling

Computational
Workflows

VFuse [7] P2P Browser Volunteer
Devices

Network-aware,
Reactive,

Horizontal Scaling

Computational
Workflows

SETI@home [30] Centralized Process Volunteer
Devices Horizontal Scaling17 Cycle-Sharing

Folding@home [25] Centralized Process Volunteer
Devices

Load-aware,
Horizontal Scaling17 Cycle-Sharing

Cloudlets [20] Hierarchical VM,
Process

Infrastructure Owner,
Volunteer Devices

Load-aware,
Reactive,

Horizontal Scaling,
Warm Migration

Computation
Offloading

PiCasso [19] Centralized Container Infrastructure
Owner

Load-aware,
Reactive,

Horizontal Scaling,
Co-location/Spread,

Warm Migration

General
Application

Caravela [21] P2P Container Volunteer
Devices

Load-aware,
Network-aware,

Co-location/Spread

General
Application

Cicconetti
et al. [31] Hierarchical VM,

Container
Infrastructure Owner,

Volunteer Devices

Network-aware,
Predictive,

Horizontal Scaling

Computation
Offloading

Skippy [28] Centralized Container Infrastructure Owner
(On-premises)

Load-aware,
Network-aware,

Reactive,
Horizontal Scaling,
Co-location/Spread

General
Application

Tong et al. [32] Hierarchical VM Infrastructure Owner,
Volunteer Devices

Load-aware,
Predictive,

Spread

Computation
Offloading

Özyar et al. [17] P2P Container Volunteer Devices
Load-aware,
Predictive,

Vertical Scaling

General
Application

nuBOINC [22] Centralized Process Volunteer Devices Horizontal Scaling17 Cycle-Sharing

Bacalhau [24] P2P Container Volunteer Devices Horizontal Scaling17 Cycle-Sharing

Gridcoin [33] P2P Process Volunteer Devices Horizontal Scaling17 Cycle-Sharing

Table 2.2: Edge Computing Works Classification

17Through volunteers joining/leaving the network.
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Target Application: Edge Computing models share some relevant advantages that most of its ap-

plications can benefit from, e.g. lower latencies due to proximity to the end user, lower network pressure

at the edge, and the ability to answer to real-time needs. Nonetheless, some models have been pur-

posefully designed to attend to specific applications. These are the four main categories we identified:

Cycle-Sharing, Computational Workflows, Computation Offloading, and General Application.

Cycle-Sharing applications are characterized by Edge Computing models whose purpose is to take

advantage of volunteered computing resources to share the computational cycles needed to execute

the computational workload. For example, SETI@home [30] sends digitalized data from radio signals

through the Internet to be analyzed by home computers.

Computational Workflows applications in Edge Computing environments are built to support large

amounts of data, by using specific computing paradigms such as MapReduce or Fork/Join, used by

VFuse [7], or Streaming Map, used by Pando [23], in order to orchestrate distributed workflows and

resources.

Computation Offloading applications are useful since the network edge environments, sometimes

compromised by the resource-constraint nature of its edge devices, e.g. mobile phones, can take ad-

vantage of this type of model to easily forward threads, components, or applications that are too com-

putationally heavy to be run on an edge device, to other constituents of the distributed cloud model.

Cloudlets [20] focus on offering a transparent solution to offload mobile application components closer

to the end user. Cicconetti et al. [31] use edge routers to forward lambda functions to devices with

sufficient computation capabilities.

General Application is a type reserved for models that could not fit any of the previous categories,

since they are not designed to handle the execution of any particular types of orchestration workflows,

data workloads, or applications.

Table 2.2 presents the classification of Edge Computing works analyzed during our research process

using the previously explained taxonomy.

2.3 P2P Content, Storage and Distribution

As computational progress evolves rapidly on a global scale with the emergence of increasingly more

powerful processors and more data being stored and shared through the Internet, cloud storages have

been more sought after to handle these data management functions. However, the typical characteristics

of centralized management and single-entity infrastructure providers which are linked to cloud storages

may pose several privacy and security concerns, and threaten data accessibility and availability [34].

To overcome these issues, other large-scale data-sharing and content distribution approaches have

become popular, such is the case of P2P Data Networks [35], which create overlay networks where
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peers can autonomously share their resources with each other.

Similar approaches for data distribution surfaced alongside P2P Data Networks, including Content

Delivery Networks [36] that addressed the lack of dynamic management of Web content. Content

Delivery Network (CDN) infrastructures contain servers for content caching and routers that join other

network elements in distributing the content requested by a client [37]. A CDN provider focuses on

fulfilling the customer’s (often a company) requirements for performance and Quality-of-Service whereas

the goal of P2P Data Networks is mainly to efficiently locate and transfer files across peers (often final

users) [38].

We were able to find insightful taxonomy classifications on these topics in the existing literature.

Pathan et al. [38] provide a survey on commercial and academic CDNs and then classify them based on

organization approach, content distribution, request routing, and performance. More recently, Anjum et

al. [39] have focused on peer-assisted CDNs as an alternative to traditional CDNs, which take advantage

of the distribution capabilities of peers instead of relying solely on the CDN servers, and compare the

techniques employed by commercial solutions to solve several challenges these types of CDNs face.

Regarding P2P Data Networks, Ashraf et al. [40] provide a critical analysis of unstructured networks

based on several qualitative measures, Lua et al. [41] accomplish a comparison of structured and un-

structured network schemes and categorize P2P networks in both, whilst Daniel et al. [34] in a more

recent study, present a comparative overview of what they define as the next generation of P2P net-

works. In Figure 2.3, we present a taxonomy to classify the architecture, storage handling, availability,

and incentive approaches of P2P Data Networks that incorporates a broader class of these networks.

Network Architecture: This characteristic defines how the peer nodes are coordinated over the

network. Data networks create an overlay network, which is a logical network on top of the physical

network, to communicate with peers, and can be organized in different ways, which we will see later

on that is highly correlated to how the content is discovered and shared among nodes. We divide the

possible architectures into three types: Structured, Unstructured, or Hybrid.

Structured networks have a well-defined overlay network, usually, a Distributed Hash Table (DHT)

where it is deterministically placed the information regarding the location of the data stored, at the node

whose identifier corresponds to the content’s key value [41]. Each node keeps a routing table with the

node identifiers and IP addresses of its neighboring nodes. This type of architecture is highly efficient

for locating specific content but could prove to be more difficult for node membership and access control

management.

Unstructured networks (e.g., Gnutella [42]) have to rely on peer discovery and direct communication

mechanisms since no defined network topology is connecting them. Nodes use communication proto-

cols that allow them to disperse their addresses and maintain a record of their neighboring peers and

their content, occasionally using a ranking or reputation system. In this type of network architecture,
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Figure 2.3: Peer-to-Peer Data Networks Taxonomy

nodes can easily enter and exit the network without causing disruptions to the structure.

Hybrid networks are only structured to some extent, combining characteristics of both of the previous

types. These networks (e.g. BitTorrent [43]) can use a structured overlay network (e.g. a DHT), to

perform solely the peer discovery and then use a different unstructured network for the data exchange

between peers, which can be influenced by peer rankings, allowing content owners to achieve greater

performance in content distribution.

Storage Handling: This characteristic encompasses the components of P2P Data Networks related

to how the content is handled. We organize them into: Data Structure, Placement, and Look-up Method.

Data Structure defines the structure in which data can be stored locally and/or on the network. We

classify it as the following: File-based or Chunks. File-based is more frequent in networks mainly

interested in content sharing since their goal is to hold all the pieces that compose a file. Although in

these cases splitting larger files into pieces is useful when transferring data, this is not always implicit

(e.g. Arweave [44] uses on-chain storage based on transactions). Chunks are file fragments or blocks

that can be stored on different nodes regardless of whether a node possesses the chunks composing

an entire file (e.g., Kademlia [45]).
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Placement defines the approaches to deciding where the data is stored. We classify them using

the following categories: Content-Addressed and Random. Content-Addressed describes the storage

placement approach usually used in structured networks where each chunk of the data can be individu-

ally addressed by its content (via hashing) and this determines its location (e.g. Swarm [46] uses a hash

function of the content to decide the address). Random is an approach used when the storing location

is decided arbitrarily by distributing the chunks to the available nodes. Some networks (e.g. IPFS [47])

build a Merkle DAG linking the data chunks, that are Content-Addressed, but their storing location is

arbitrary.

Look-up Method defines the different ways through which data can be discovered in a network, usu-

ally, these are specific requests made to neighbors for a certain file or chunk. Networks are able to

employ one or more of these methods depending on their storage structure and network overlay. We

classify these methods as: Centralized, DHT-based, and Vicinity-based. Centralized look-up is used

when the network possesses a central component that is responsible for directing the data request,

typically employed in an unstructured network (e.g, Napster [48]). DHT-based as the term indicates

uses a DHT to send the request to the desired peers in the network. This is the method employed in

structured overlay networks and can also be found in some hybrid architectures. Vicinity-based uses the

typical gossip, flood, or random-walk dissemination protocols to acquire information about the content

possessed by neighbors in their vicinity. These are employed mostly by unstructured networks since

there is no structured connection to peers that would allow them to obtain some prior knowledge of the

content of neighboring nodes. Although these protocols are very efficient to locate popular content in

the network, nodes can easily become overloaded if flooded with a large number of content requests.

Content Availability: This characteristic is one of the important aspects associated with information

security, alongside confidentiality and integrity. These other aspects are usually achieved in P2P Data

Networks by means of encryption and hash functions, respectively. The content availability in these

systems can be challenged by factors such as failures in nodes where content is stored, and the churn

effect caused by the arrival and departure of nodes from the network [49]. P2P networks are able to

employ multiple methods to guarantee availability. We classify these methods into: Replication and

Erasure Codes.

Replication can help promote content availability by multiplying the same content in different nodes

to ensure that the system can provide the requested data even under the circumstance of node failures

in the network. P2P systems can employ more than one of these three types of replication: Proactive,

User-driven, or Cache-based. Proactive replication is the more rigorous solution where data is replicated

in advance in arbitrary nodes. This can also mean that nodes need to be coordinated in case of a

peer departure, to ensure that the data it possesses is promptly copied to another peer. User-driven

replication is the case where the replication of data implies another node’s voluntary request for the
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content. Nodes can then prevent the deletion of this data and therefore promote its replication (e.g.,

Swarm [46]). Cache-based is the type where content is cached at nodes without a specific request but

rather as a result of the natural distribution and content sharing along the network.

Erasure Codes are a method to protect data by splitting a file into fragments that are then expanded

to introduce redundancy as a way to allow data recovery, which may cause some overhead during the

storing process of the distributed files (e.g., in Storj [50]). Erasure coding offers protection against a

single point of failure with the distribution of fragments and ensures sufficient information redundancy

to recover the data (e.g., Reed–Solomon codes [51]). This allows the retrieval of data in case of node

failures and thus contributes to improving content availability.

Incentive: This characteristic has become very popular especially in volunteer P2P Data Networks

as a way to promote the participation of nodes and also consequently increase availability. Incentive

mechanisms aim to provide a reward as compensation for actions that benefit the system and penalize

actions that negatively influence it. In some P2P networks, the compensation can be a monetary incen-

tive, e.g. cryptocurrencies. We classify the incentives according to the actions they reward: Storage and

Exchange.

Storage can be rewarded to nodes that perform it for specific predetermined time periods, receiving

compensations after the completion of those time intervals, or for providing continuous storage capabili-

ties over time (e.g., in Storj [50]).

Exchange is rewarded to nodes actively participating in the retrieval and trading of content by incen-

tivizing them to answer data requests or possibly punishing them for refusing. Some P2P networks also

evaluate this exchange in terms of traded data (e.g., in BitTorrent [43]) by comparing the overall data a

node offered and the data it received.

Table 2.3 contains the P2P Data Networks included in our research and their respective classification

using the taxonomy presented.

2.4 Relevant Related Systems

IPFS [47] is a highly distributed file system that combines DHTs, block exchanges, version control, and

self-certified file systems ideas to build a decentralized P2P Data Network. IPFS nodes are identified

by a PeerID, the hash of their public key, and can be discovered using the Kademlia-based DHT or

by a direct encounter with another peer. When connecting, peers exchange public keys and verify the

respective hash. The Kademlia-based DHT also serves as a routing system to not only discover peers’

network addresses but also locate content that is being stored locally by specific nodes. The DHT

contains PeerID references to peers who store data objects locally.

18Can rely on a central tracker or a DHT.
19Uses Filecoin to reward storage.
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Work Network
Architecture

Storage Handling Content
Availability IncentiveData

Structure Placement Look-up
Method

Napster [48] Unstructured File-based Random Centralized User-driven None

Gnutella [42] Unstructured File-based Random Vicinity-based User-driven None

Freenet [52] Unstructured File-based Content-addressed DHT-based Cache-only None

Chord [53] Structured Chunks Content-addressed DHT-based Proactive None

CAN [54] Structured Chunks Content-addressed DHT-based Proactive None

Tapestry [55] Structured Chunks Content-addressed DHT-based Proactive None

Kademlia [45] Structured Chunks Content-addressed DHT-based Proactive None

Viceroy [56] Structured Chunks Content-addressed DHT-based Proactive None

Pastry [57] Structured File-based Content-addressed DHT-based Proactive None

FastTrack/KaZaA [58] Unstructured File-based Random Vicinity-based User-driven None

BitTorrent [43] Hybrid File-based Random Centralized,
DHT-based18 User-driven Exchange

IPFS [47] Hybrid Chunks Random DHT-based,
Vicinity-based

User-driven,
Cache-based

Exchange,
Storage19

Swarm [46] Structured Chunks Content-addressed DHT-based

Proactive,
User-driven,

Cache-based,
Erasure Codes

Exchange,
Storage

Hypercore
Protocol [59] Hybrid File-based Random DHT-based User-driven None

SAFE [60] Structured Chunks Content-addressed DHT-based Proactive,
Cache-based Exchange

Storj [50] Unstructured Chunks Random Centralized Erasure
Codes

Exchange,
Storage

Arweave [44] Unstructured File-based Random Vicinity-based User-driven Exchange,
Storage

Table 2.3: P2P Data Networks Classification

The objects stored in IPFS are split into chunks that are content-addressed and used to build a

Merkle DAG with links between objects. An object can then be retrieved using the root of its Merkle DAG.

The checksum used to identify content and links allows the detection of tampering and helps prevent

data duplication since the same content will produce the same checksum. Since the content-addressed

data in a Merkle DAG is immutable, IPFS incorporates the InterPlanetary Name System (IPNS) to allow

mutable naming, i.e., linking a name with a content identifier of a file. Data distribution in IPFS is achieved

using the BitSwap protocol in which peers maintain a list of content identifiers of chunks they want to

retrieve and another list of the ones they are willing to offer in exchange. IPFS allows any network
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transport protocol to be used for communication between nodes.

These features allow IPFS to be explored as a highly distributed file system, where it is possible to

upload, exchange and download FaaS deployment images and, at the same time, its DHT-based content

and peer discovery are suitable for a distributed and decentralized system to locate available resource

offers in edge nodes of the network.

Caravela [21] is a completely decentralized Edge Cloud system that utilizes volunteered user re-

sources where users can deploy their applications using Docker containers. It has a distributed and

decentralized architecture, based on a ring structure of nodes built upon a Chord P2P overlay. Nodes

are uniquely identified by a key that is used in the resource discovery mechanism to find a node with the

necessary amount of resources available to deploy a container. The Chord ring is mapped in regions

according to different combinations of resources available (CPU class, amount, and RAM) and this in-

formation is encoded in the node IDs. Peer nodes in Caravela can act as suppliers, publishing offers to

supply their resources, buyers, searching for resource offers in order to deploy a container, or traders,

registering and mediating the offers made within their resource region. The Chord lookup process is

used to publish resource offers and in the resource discovery process. For the scheduling process,

there is a search for a favorable resource offer(s), according to the scheduling policy selected, and the

buyer node requests a deployment indicating the container configurations to be run using the resources

previously discovered.

The leveraging of volunteer resources is a feature worth exploring in a decentralized edge cloud

system, that along with the content distribution and lookup protocols of P2P overlay networks, such

as Chord and IPFS, can provide an efficient mechanism to distribute the available offers and discover

the necessary resources to deploy a service. Although the goal in Caravela is to deploy long-running

container applications, some of these mechanisms can be adapted in terms of the resources and coor-

dination needed for FaaS deployments.

Apache OpenWhisk20 is an open source serverless framework that provides the application function

execution capabilities without having to manage the servers and underlying infrastructure. In the Open-

Whisk programming model, serverless functions that execute code are called Actions and can be written

in any programming language. Their execution can be driven by events, called Triggers, coming from

a variety of sources, or manually, using the designated CLI or Representational State Transfer (REST)

API. Rules are employed to associate Triggers with Actions.

The OpenWhisk architecture, as pictured in Figure 2.4, relies on several technologies to compose

its cloud service platform, in particular, Nginx21 serves as the entry to the system through an HTTP

and reverse proxy server; Kafka22 provides the distributed event streaming services; Docker23 allows to

20https://openwhisk.apache.org/
21https://www.nginx.com/
22https://kafka.apache.org/
23https://www.docker.com/
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deploy actions in an isolated and safe environment using containers; CouchDB24 stores the results of

invocations in the database.

After a request enters the system through the reverse proxy it is forwarded to the Controller compo-

nent, responsible for the implementation of the REST API, which decides the next path to take based on

the user’s request. The Controller acts as an orchestrator and load balancer to the system, by interacting

with the Invokers to execute actions. The Invokers create a Docker container for each invocation, where

they inject the function code and respective parameters to run it and then retrieve the results.

Nevertheless, OpenWhisk still suffers from some performance challenges when utilized for low la-

tency applications, due to cold starting containers, and on typically resource-constrained devices like

the ones used in edge computing environments.

Figure 2.4: Apache OpenWhisk architecture. Source:https://openwhisk.apache.org/

WOW [61] is a prototype for a WebAssembly runtime environment, as a lightweight alternative to

traditional container runtimes, designed mainly for serverless computing at the edge. It introduces the

components to support the WebAssembly runtime, similar to Docker’s container runtime support, us-

ing the Apache OpenWhisk framework but focusing more on the execution and performance aspects

of the system. The developers can use any programming language to write the function code which

is then compiled to WebAssembly and deployed using an adapted OpenWhisk interface instead of the

usual Docker container deployment. The components introduced are an Executor that takes the wasm

runtime binary and provides the endpoints necessary for its execution; an Invoker that receives a re-

quest, forwards the execution instructions to the Executor and returns the results to the user; and the

wasm module containing the function code, similar to a container image. The OpenWhisk interface was

modified so that its Invoker passes the request to the respective endpoint of the wasm Executor. The

experimental results of the prototype present it as a promising approach to FaaS in edge computing

24https://couchdb.apache.org/
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System Content Storage/Distribution Edge Environment FaaS Execution
IPFS Yes Yes No

Caravela Yes Yes No
Apache OpenWhisk No No Yes

WOW No Yes Yes

Table 2.4: Relevant Related Systems Comparison

environments, mainly due to the improvements it introduces on cold start performances and memory

usage.

The previous systems address some of the aspects that we are going to tackle in our solution but,

as presented in Table 2.4, none achieves the implementation of all aspects. IPFS focuses on content

storage and distribution, which is highly important in P2P edge environments but involves no computa-

tion execution by itself. Caravela uses a P2P network with similar capabilities as IPFS and introduces

the execution of long-running container applications, it is not designed for FaaS deployments. Apache

OpenWhisk is a framework for FaaS deployments, but it was not intentionally designed to maintain per-

formance in an edge environment and does not feature content distribution. WOW focuses solely on the

aspects of FaaS execution in edge computing nodes, abstracted from its integration in a distributed and

decentralized network architecture.
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In this chapter, we present the architectural elements and properties of FaaS@Edge, a decentralized

middleware that allows FaaS deployments in volunteer Edge Computing devices.

3.1 Desired Properties

From the research analysis realized on the current state of the art works and related systems, presented

in Chapter 2, it became possible to define a group of properties that our solution should embody in order

to effectively and efficiently bridge the gap between the FaaS executions and the processing demands

of Edge Computing environments whilst leveraging and distributing user’s volunteered resources. The

desired properties are:

• Low latency

• Efficient resource utilization

• Resource usage flexibility

• Scalability

• Content distribution and availability

• Distributed and decentralized resource leveraging

• Compatibility with multiple programming languages

The main goal of bringing the computing capabilities closer to the data source or end-user, in Edge

Computing, is to reduce latency, and thereby improve performance and efficiency when processing

data or executing applications. So our solution must also attempt to minimize the function execution

time in response to a user’s request to our system. This can also comprehend a fast and automated

deployment of functions to edge locations to be able to respond rapidly to changing requirements.

Edge Computing environments are typically characterized by their resource-constrained nodes so

there needs to be efficient resource utilization. A node is a user’s device that can volunteer its memory

resources to be used by our system. FaaS@Edge should allocate resources only when needed and

release them upon the termination of execution, to avoid wasting resources. There is also an option

to maintain some flexibility when it comes to resource usage, by providing the user with the ability to

make their own decision regarding the amount of resources they want to volunteer, e.g. indicating the

maximum amount of memory they are willing to supply when starting up a node. Since FaaS platforms

typically measure metrics such as CPU utilization proportionally to function memory allocated, in our

system we define resources as ranges of memory.

Edge Computing platforms that employ volunteer computing approaches can experience a growth

in size due to more nodes joining the network, such as SETI@home [30] that at the time of writing has
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1,808,938 users, around 400k more than in 2013. Therefore, FaaS@Edge must have a scalable archi-

tecture to support a sudden influx of user requests and nodes. A large number of users can subsequently

promote content distribution and availability seeing as each node’s peer-to-peer interaction in IPFS

to provide and discover resources improves the data network’s performance and allows a completely

distributed and decentralized approach to leveraging user’s resources.

All the FaaS platforms and frameworks studied offer a degree of flexibility in their configurations to

enhance the system’s usability, e.g. support for multiple programming languages, thus FaaS@Edge

must also allow this type of compatibility by providing the user with similar CLI tool commands and

options as the ones found in the OpenWhisk environment.

Although some of these properties address the current shortcomings, described in Chapter 1, it is

possible to identify further aspects that this work will not tackle due to it being outside the scope of our

work and to time constraints, such as security properties that are highly important when it comes to

distributed systems. These properties are not pertinent to the ones being considered in our work but

can be accomplished by future work, as described in Chapter 6.

3.2 Participant Nodes Architecture

For the purpose of contributing to the functionality of the system, there are essential architecture com-

ponents that a participant node in FaaS@Edge must have in order to perform the designed operations

within our network environment.

3.2.1 Components

Edge nodes that join our FaaS@Edge system need to be composed of the following components to be

able to request FaaS deployments in edge devices:

• Our FaaS@Edge middleware running as a background process (daemon) ready to receive user

requests.

• An initialized IPFS Kubo node. For simplification purposes, in the development of our prototype we

assume IPFS uses the node’s public IP address. The node can be in a private network and only

communicate with other nodes who share the same secret key, by adding its own bootstrap peers.

This is preferred in cases where privacy and confidentiality are priority concerns. Otherwise, the

node can be connected to the public IPFS network and use the default bootstrap peers.

• The IPFS daemon running in order to be ready to interact with the IPFS network.
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With the previous components, the user can use FaaS@Edge’s functionality to request the submis-

sion and invocation of functions. In order to answer one of these requests, a node needs to additionally

have the following component (see all components in Figure 3.1):

• An OpenWhisk stack running as a Java process in order to run the functions.

Figure 3.1: Complete node’s components.

3.2.2 Operations

A user with an edge device can participate in FaaS@Edge by voluntarily sharing its computing resources

with the network, and other users can consequently use those resources to deploy their functions. This

can be done using the following operations:

• Submit - Submit a function payload into FaaS@Edge. The user can specify in the request the

memory amount limit the function can use. The user should indicate the kind of function runtime it

is requesting. It is also required that the user designates a name for the function.

• Invoke - Invoke a submitted function identified by its name. The user can indicate the respective

function input parameters. The user can also request to receive the function execution results.

3.3 Distributed Architecture

The distributed architecture of FaaS@Edge sits on top of IPFS’ [47] peer-to-peer architecture that relies

on a Kademlia-based DHT. The large scale architecture and decentralized nature of edge environments

required a divergence from cloud platforms’ centralized architectures, which led us to IPFS and its

network architecture that was developed to build a distributed, peer-to-peer network for storing and

sharing content.
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Looking further into the benefits of IPFS, every node in the network has the ability to act as both

a client and a server, requesting and providing content, so there is no need for a centralized server.

The discovery of other nodes in the network starts with a bootstrap procedure, in which the IPFS dae-

mon learns about peers by connecting to the peers preconfigured in a bootstrap list and exchanging

information about others in the network.

The DHT in IPFS maps the content identifiers to the identifiers of nodes that are storing the content

and their IP addresses. This Kademlia-based DHT protocol is helpful for performing lookups, routing,

and content retrieval. A node can lookup in the DHT the closest peers storing specific content, and then

retrieve it directly from its respective nodes using the DHT’s routing. This approach makes it suitable for

efficient content distribution on a large scale also as a result of its inherent caching capabilities. When

content is requested by a peer within the network, it is temporarily cached so it can be readily served

by that peer in subsequent requests. These properties were designed to reduce latencies and optimize

bandwidth usage, therefore the introduction of IPFS can be beneficial to improve our system.

Since all FaaS@Edge nodes have access to IPFS and are uniquely identified by their PeerID, a

SHA-256 multihash of the public key, we are able to take advantage of these IPFS benefits in order

to realize a distributed and decentralized resource discovery process in our network. Further details

about how we leverage IPFS’ peer-to-peer architecture to realize our resource discovery process will be

presented later (Section 3.4.2). The overall distributed architecture on top of IPFS’ peer-to-peer model

is represented in Figure 3.2.

3.4 Algorithms

Having introduced the distributed architecture of FaaS@Edge using IPFS to discover and share the

resources in our network’s resource pool, we describe the algorithms created to use those mechanisms

to carry out FaaS deployments. We will start by describing the resource discovery algorithms, and

then, the function’s scheduling algorithm that performs the user deployment requests of submission

and invocation of functions. The following distributed protocols and algorithms are developed using a

REST API to define how nodes can connect and communicate with one another. There is a Web Server

running in each FaaS@Edge’s node daemon to handle the REST API requests and through which other

nodes can utilize the node’s services.

3.4.1 Data Structures

Before we delve into the details of the algorithms driving the discovery of user resources and the schedul-

ing of user functions within a deployment request, we first introduce the main data structures used in

these algorithms:
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Figure 3.2: FaaS@Edge’s distributed architecture.

• Offer contains the resources a supplier node is offering. Offers are published in IPFS as a text file

with the string faas-edge-MEM, where MEM corresponds to the amount of memory being offered.

Nodes search offers in IPFS using their Content Identifier (CID) by hashing the desired string.

Only one file is published per amount, the following offers are incremented/decremented in the

map presented next.

• Supplier’s Active Offers Map is present in each node that is offering its resources and keeps a

record of the number of offers made of each resource value.

• Available Offer contains the resources and supplier IP address of an offer discovered in IPFS.

• Function’s Configuration contains the configurations necessary to submit a function: source

code’s CID, function’s name, function’s runtime kind and resources needed.

• Function’s Status contains the function’s configuration, the IP address of the supplier node that

is deploying the function, and the function’s submission status.

• Invocation’s Arguments contains the arguments necessary to invoke a function: the function’s

name, function’s parameters and invocation’s result indicating the invocation returns a response.
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• Invocation’s Result contains the invocation’s arguments, the invocation’s response and invoca-

tion’s status.

3.4.2 Resource Discovery

The resource discovery process involves the phases of supplying the resources and discovering them.

The FaaS@Edge nodes have different roles depending on the tasks they are capable of performing.

The nodes that are running the OpenWhisk component to execute function deployment requests are

described as supplier nodes and are the ones volunteering their resources to the system. However,

all nodes can send function deployment requests. During the initialization process of a node, the CIDs

of all the possible offer values (ranging from 128MB to 512MB, in power of 2 sizes) are calculated with

IPFS’ only-hash add command and stored to be used by the supply and discovery algorithms.

Algorithm 3.1: Supplier’s create offer algorithm used to create an offer in the system
Data: supplierActiveOffersMap, IPFSClient
Result: NewOffer
Function CreateOffer(offerResources):

if supplierActiveOffersMap[offerResources.V alue] < 1 then
offerString ← GetResourcesString(offerResources)
ok ← IPFSClient.Add(offerString)
if ok = false then

return Error(”Unable to create offer”)

/* Only needs to add to IPFS if there are no active offers of that memory

value, otherwise, just creates the new offer to add to the map. */

newOffer ← NewOffer(offerResources)
return newOffer

3.4.2.A Supplying

In the supplying phase of the resource discovery process each supplier node makes its resources avail-

able to all nodes. When a node wants to provide its resources it uses the function pictured in Algo-

rithm 3.1 that is in charge of creating a new offer in the system. Recall that offers are ultimately reflected

in the system as IPFS files containing a string that represents the memory amount being offered. The

CreateOffer algorithm starts by checking if the node already has active offers of that value in its offers

map, if that is not the case, it will start by making the offer available in IPFS. To do this, the node will

retrieve the string representative of that offer value and call the IPFS client to add a file with the string

to its distributed file system. If the publishing operation was successful or there was no need to publish

because at least one offer of that memory value was already being made in IPFS, the function can finally

create a new offer object containing the resources available in the offer.
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The described algorithm is used when a supplier decides to make offers in the system and is part of

the complete supplying protocol detailed in Algorithm 3.2. This protocol is run by a supplier node when:

1. The node first joins FaaS@Edge and wants to start providing its resources.

2. The node is submitting a user function in OpenWhisk upon request, thus consuming its resources

and causing the need to update its offers according to its new resource availability values.

3. The node failed to submit a user function in OpenWhisk upon request, thus needing to release the

resources selected to be consumed and causing the need to update its offers in order to match its

new resource availability.

The supplier nodes store the maximum value of resources they are willing to provide and the current

value of free resources they have. The former value is received as input through the CLI when the

user starts a FaaS@Edge node, and with it, we can keep a record of the latter by decrementing or

incrementing it whenever resources are consumed or released, respectively.

When the supplying algorithm is triggered due to the items listed above, it starts by calculating the

amount of resources currently in use, given its maximum and current values. After that, it removes

all active offers in order to calculate the new number of offers of each size that matches the current

resource availability. This operation does not introduce a lot of overhead since to remove the offers

there only needs to be made one call to the IPFS client per each size of active offer, the remaining are

simply decremented in the active offers map. The reason for this call is to remove the pin of the offer

file, in the case that during the update no offers of that size will be realized. Given the distributed nature

of IPFS and its caching capabilities, there is no direct way to delete a file, only to unpin it from storage

and let the garbage collector reclaim it. After this, the algorithm will calculate the number and size of

offers to be made, according to the respective offering plan (all offering plans will be detailed next). For

each of these, it will use the previous Algorithm 3.1 to publish the file in IPFS and create a new offer

object. Adding the offer files to IPFS during each update can serve as an offer refresh and help to ensure

liveness. Finally, the algorithm finishes by adding each newly created offer to the supplier’s active offers

map.

Algorithm 3.2: Supplier’s complete supplying algorithm
Data: supplierActiveOffersMap, supplierOfferP lan
Function SupplyResources(freeResources,maxResources):

usedResources← ResourcesInUse(freeResources,maxResources)
removeSupplierOffers()
offerCount, offerSize← supplierOfferP lan.CalculateOffers()
foreach offerCount, offerSize do

newOffer ← CreateOffer(offerSize)
supplierActiveOffersMap.Add(newOffer)

32



When the supplier node has available resources to supply, it can follow several options on how to

arrange different combinations of resource offers. These offering plans will achieve different results when

it comes to effective resource utilization, fragmentation, and resource allocation. The different offering

plan options are the following:

• Balanced - The supplier node provides the same number of offers for each size, without exceeding

the node’s maximum resource capacity.

• Overbook - The supplier node generates all the possible resource combinations that it can offer,

thus overbooking its available resources. This approach favors resource utilization and avoids

fragmentation since there are offers of all sizes. Free resources will be a result of the different

supply and demand in the system.

• Balanced Ranges - Equivalent to the Balanced option except the offer sizes are limited within one

of the following ranges: Small (128MB), Medium (256MB), or Large (512MB)1.

• Overbook Ranges - Equivalent to the Overbook option except the offer sizes are limited within

one of the ranges Small, Medium, and Large presented above.

• Random Balanced - Each supplier node randomly chooses the offering plan between the Bal-

anced and the three Balanced Ranges plans.

• Random Overbook - Each supplier node randomly chooses the offering plan between the Over-

book and the three Overbook Ranges plans.

3.4.2.B Discovery

At this point, we have already described how the supplier nodes provide/publish their available resources

to the system in the form of offers. So now we can move on to the phase of discovering those resources,

where a node searches for a supplier node available to submit its function.

Algorithm 3.3 describes how the resource discovery process is carried out. A node receives a user

request for a function submission containing the resource restrictions. In order to find providers for that

function, the node starts by fitting the resources within our range of values, which will assign the lowest

memory size that can fit the resources needed, and then it can retrieve the corresponding CID. With it,

the node calls the IPFS client’s Find Providers operation to find peers in the network that are providing

that specific CID value, indicating they are offering those resources. IPFS performs a lookup for that CID

on the distributed hash table and returns the peer records containing the providers’ IPFS addresses. For

each of the providers found (at most 20, by default), a new Available Offer object is created containing

the resources and the supplier node’s IP address (retrieved from its IPFS address).
1These sizes could be increased or new ranges added in the algorithm if needed, although currently OpenWhisk only supports

function memory allocation sizes between 128MB and 512MB.
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Algorithm 3.3: Resource’s discovery algorithm
Data: IPFSClient
Result: availableOffers
Function DiscoverResources(neededResources):

availableOffers← ∅
fittedResources← FitResources(neededResources)
resourcesCID ← GetResourcesCID(fittedResources)
providers← IPFSClient.F indProviders(resourcesCID)
foreach provider in providers do

newAvailableOffer ← NewAvailableOffer(fittedResources, provider.IPAddress)
availableOffers.Add(newAvailableOffer)

return availableOffers

3.4.3 Scheduling

Now that we explained our resource discovery algorithms that support the leveraging of volunteer re-

sources, we use this section to describe the algorithms carried out during the subsequent phase, which

is the scheduling phase. A user can introduce a function submission request through the CLI application

that interacts with FaaS@Edge’s daemon. When the node receives the user’s request containing the

function’s configuration, it calls the Schedule function described in Algorithm 3.4 which schedules the

function’s deployment on a supplier node in our system fit to host it.

The Schedule function is given the function’s configuration (detailed in Section 3.4.1) and starts

by using it to get the resources needed for the deployment. After this, it calls the DiscoverResources

function from our resource discovery process (see Algorithm 3.3), which returns a set of available offers

found. Then, this set of offers is sorted in random order in order to avoid overloading any supplier

nodes. And finally, it will iterate over the sorted offers, and send a SubmitFunction message, through the

node’s remote client, containing the function’s configuration, the offer to be used, and the node’s own

IP address. If no supplier node is able to submit the function, an error is returned to the user informing

the deployment failure. This can occur, for example, when client nodes are concurrently trying to use

the same supplier’s offers and it does not have enough resources to satisfy them all, or when another

peer in IPFS has shared outdated information about a provider that is no longer serving a certain type

of offer. In case of deployment failure, the user can manually repeat the request to try again. If the

deployment is successful, the node stores a deployed function object with the function’s configuration

and the supplier node’s IP address into a map where it is identified by its function name to be used when

the user requests an invocation.

Regarding the supplier node’s scheduling responsibilities, these are described in Algorithm 3.5.

When the supplier node receives a function submission message, it starts by signaling the use of the re-

sources provided in that offer, which triggers an update of the supplied offers, as seen in Section 3.4.2.A,

to adjust to the decrease in available resources. Then it will call our OpenWhisk component, passing the
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Algorithm 3.4: Algorithm to schedule a function’s deployment in a supplier node in the system.
Data: discovery, remoteClient
Function Schedule(functionConfig):

resourcesNeeded← functionConfig.Resources
availableOffers← discovery.DiscoverResources(resourcesNeeded)
availableOffers← RandomOrder(availableOffers)
foreach offer in availableOffers do

functionStatus←
remoteClient.SubmitFunction(functionConfig, offer, self.IPAddress)

if functionStatus = ok then
deployedFunction← NewDeployedFunction(functionConfig, offer.SupplierIP )
functionsMap.Add(deployedFunction)
return functionStatus

return Error(”Unable to schedule function”)

function’s configuration so that it can retrieve the function’s source code file from IPFS using its CID, and

insert/create the function (also called action) in OpenWhisk according to the configurations specified.

If the creation is successful, the node stores a new local function object in a map, where it keeps the

functions of each client node, to be able to invoke them when requested, and informs the client node of

the successful deployment. In case of failure during the function’s creation, the supplier’s resources are

released, and an error message is returned to the client node that requested the deployment.

Algorithm 3.5: Supplier node’s algorithm to deploy a function in OpenWhisk.
Data: supplier,OpenWhiskClient
Function DeployFunction(functionConfig, offer, clientNodeIP):

if supplier.UseResources(offer.Resources)! = ok then
return Error(”Resources not valid”)

functionStatus← OpenWhiskClient.InsertFunction(functionConfig)
if functionStatus = ok then

localFunction← NewLocalFunction(functionConfig, clientNodeIP )
localFunctionsMap.Add(localFunction)
return functionStatus

else
supplier.ReleaseResources(offer.Resources)
return Error(”Unable to submit function”)

3.5 Function Invocation Command

In this section, we will delve into how the Function Invocation Command, which allows the user to

execute the submitted function, works, by explaining its usage on the user side and how it is fulfilled on

the supplier node’s side.

As mentioned previously in Section 3.4.3, when a scheduling request to submit a function is injected
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by the user into a node that will search for a supplier node available, it saves locally the data regarding the

deployed function. This data includes the function’s configuration and the IP address of the supplier in

charge of deploying it, and is kept in a map identified by the function’s name. The supplier node similarly

keeps a record of the local functions it was requested to deploy, by saving the function’s configuration

and the user node’s IP address where the request originated from. To do this, it uses a nested map

(map inside another map) where each function is identified by its name, and the functions belonging to

each user are identified by the user node’s IP address.

When an invocation command is issued by the user, containing the invocation’s arguments (see

3.4.1) the node will lookup the function’s supplier IP on the map to send an InvokeFunction message

directly, including the arguments and the user’s IP address. When the supplier node receives this mes-

sage, it will use the function’s name and the IP address to validate the function’s existence and then call

the OpenWhisk component to activate/execute the function. After the activation, the supplier node will

send the response to the user node containing the invocation results, if indicated in the arguments, or

an error message.

3.6 Analysis and Discussion

To summarize the architecture of FaaS@Edge, we will discuss the key architectural components and

considerations that shape the system and how they are interconnected with the several works, platforms,

and networks presented in Chapter 2 and their taxonomies.

Function-as-a-Service: Starting with the FaaS aspects, these are directly inherited from the Open-

Whisk platform to mainly allow an open source computing environment, a diversity of programming

languages, HTTP requests to trigger functions, the source code deployment method, an API accessed

through a client library, the synchronous invocation style and a free billing model. The remaining as-

pects such as other function triggers, deployment methods, and the messaging service component fall

out of the scope of our work and the properties we want to achieve, thus were not developed.

Edge Computing: Regarding the Edge Computing characteristics, FaaS@Edge maintains a P2P ar-

chitecture due to the IPFS network, with a process computing environment since OpenWhisk executes

functions inside Docker containers. The resource ownership belongs to the volunteer devices and its

scheduling is designed to promote load-balancing, due to the random sorting of offers, and can eventu-

ally scale horizontally through more nodes joining the network. FaaS@Edge is designed as a general

application.
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P2P Content, Storage and Distribution: Finally, when it comes to P2P content, storage and distri-

bution, FaaS@Edge benefits mainly from IPFS’ DHT-based lookup method used to discover resources

and user-driven and cache-based content availability that allows to store and distribute the resources.

3.7 Summary

In this chapter, we started by declaring the group of properties that our prototype desires to embody

which include reduced latency when executing function applications, efficient resource utilization on the

resource-constrained edge nodes, and resource usage flexibility given to the user, a scalable architec-

ture, content distribution and availability allowing a distributed and decentralized approach to leverage

user’s resources, and finally compatibility. Then, we described the components needed to make use

of FaaS@Edge’s functionality and the operations used to do so. Next, we detailed FaaS@Edge’s dis-

tributed architecture and how we use it for our network’s resource discovery process. Then, we de-

scribed the algorithms and data structures used for resource discovery and scheduling functions and

after that, we still detailed the function invocation command. To conclude the solution’s description we

discussed the prototype’s aspects in relation to the works and taxonomies presented in Chapter 2.
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For our FaaS@Edge implementation, our prototype was written in Go and is composed of ≈3K

lines of code. We settled on Go since the first and most widely used implementation of IPFS, called

Kubo, is written in Go, and both IPFS and OpenWhisk offer Go client libraries to access their respective

APIs which allowed us to isolate our middleware from the platforms’ API details. Ultimately, our more

ambitious goal is to further integrate these technologies as mentioned in the future work presented in

Section 6.1.

4.1 FaaS@Edge Prototype

In this section, we will cover the fundamental specifications of our FaaS@Edge prototype’s implemen-

tation, by going over its software components and respective code modules, their responsibilities, and

interfaces that expose the functionalities to the other components, the user, and remote nodes.

4.1.1 Code modules/organization

Figure 4.1: FaaS@Edge prototype’s code organization.

Regarding our prototype’s code organization, in Figure 4.1 we provide an overview of FaaS@Edge’s

Go module and packages tree structure. The module is composed of the following main packages: api,

node, cli, ipfs, and openwhisk.

The api package contains the code responsible for establishing communication between nodes run-

ning our middleware, and the cli package depends on it in order to allow the user to inject commands

into the node. The ipfs and openwhisk packages, as the name suggests, provide the functionalities
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needed to interact with the IPFS network and the OpenWhisk platform in order to publish and discover

resources, and create and invoke functions, respectively. Finally, the node package contains all the

code responsible for implementing the node’s components that fulfill the main objectives of our proto-

type, i.e. resource discovery and function scheduling, and their interaction with the other components in

the FaaS@Edge system.

4.1.2 Software Architecture

Figure 4.2: FaaS@Edge’s components and interfaces.

In order to describe the software architecture that ensures that our solution can be effectively imple-

mented and evaluated, we start by providing a complete overview of FaaS@Edge’s node components,

interfaces, and their relations, pictured in Figure 4.2, that can serve as a reference for the following

sections. In these next sections, we will provide a more detailed description of each key component

that presents their functionalities and how they employ the algorithms and protocols addressed in Sec-

tion 3.4.

As mentioned previously, not all FaaS@Edge nodes carry the same responsibilities, although the
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system benefits from having more nodes running OpenWhisk and therefore supplying their resources,

nodes have the possibility to use FaaS@Edge solely as a client node and send function deployment

requests to the system. FaaS@Edge is composed of eight components: Node, Scheduler, Discovery,

Function Manager, IPFS Client Wrapper, OpenWhisk Client Wrapper, Remote Client, and HTTP

Web Server. A client node does not comprise the OpenWhisk Client Wrapper and the Function Manager

components, as pictured in the overview. Figure 4.3 presents a UML diagram illustrating the main entities

used throughout the system and serves as a reference to the other diagrams that will be introduced in

the upcoming descriptions.

Figure 4.3: Main entities used by the system’s components.

4.1.2.A Node

The Node component acts as a super component that drives the initialization of all other components,

receiving the configuration parameters from the user through the CLI tool, during the start command,

and passing them to its internal components for their proper configuration. The node exposes the

available services of the Scheduler component through the IRemoteScheduler interface, to allow a node

to contact other nodes in order to schedule functions, and the IUser interface, which is used as a front-

end for a FaaS@Edge user. These interfaces are exposed to the outside via a REST API, which uses

the HTTP Web Server component, to contact other nodes and to be exploited by our CLI tool.

4.1.2.B Scheduler

The Scheduler component is responsible for the function deployments and subsequent invocations. Fig-

ure 4.4 illustrates the Scheduler component and its interfaces. It exposes the IUser and IRemoteScheduler
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interfaces to the outside via the REST services mentioned above. The first one is used by the user to

inject requests into the system, during which time the node is acting as a client node. The second inter-

face is used by remote nodes to allow them to send message requests to deploy/invoke functions in this

node.

In order to fulfill its function deployment responsibilities, the Scheduler interacts with the node’s Dis-

covery component, by using its IResourceDiscovery interface, to find nodes offering enough resources

that can satisfy the request injected by the user. The scheduling algorithm that accomplishes this is

Algorithm 3.4 that is implemented in the RequestFaaS method of the IUser interface.

Figure 4.4: Scheduler component and its interfaces.

4.1.2.C Discovery

The Discovery component is responsible for implementing the resource discovery algorithms presented

in Section 3.4.2 to find resources offered by other provider nodes and to oversee the supplier node’s

resources and offers. It controls the node’s available resources and decides on what offers to provide

into the system according to its OfferPlan options. This is implemented using Algorithm 3.2 already pre-

sented. In order to create and find offers in the system, it leans on the IPFS Client Wrapper component

(via the IIPFS interface) to add offer files to IPFS, query the DHT to find providers offering the value

requested, and get the CID of each offer value. Figure 4.5 represents the Discovery component’s inter-

faces and its offer plans. The IResourceDiscovery interface is used by the Scheduler when a node needs

to discover available resources to deploy a function. This interface is implemented by Algorithm 3.3 that

was detailed previously.

This component exposes the IResourceManager interface to the Function Manager component so

that when a function is intended to be deployed, the Function Manager can validate the use of the

selected resources with the Discovery component that manages them.
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Figure 4.5: Discovery component interfaces and offer plans.

4.1.2.D Function Manager

The Function Manager component is responsible for managing the functions deployed in the local node’s

OpenWhisk platform. This component provides the IFunctions interface, pictured in Figure 4.6, that is

used by the Scheduler component to submit and invoke functions requested by other nodes. This

interface implements Algorithm 3.5, already presented, to insert a new function in OpenWhisk.

As we mentioned previously, the Function Manager uses the IResourceManager interface to ensure

with the supplier node’s Discovery component that the use of the selected resources is valid, this is done

through the UseResources method that will trigger the Discovery’s resource availability update. This com-

ponent also uses the IOpenWhisk interface to instruct the insert, invoke, and delete function commands

to OpenWhisk. If it receives an error from OpenWhisk when attempting to insert a function, it informs the

Discovery component that the unused resources can be reutilized (via the ReleaseResources method

of the IResourceManager interface). If at any point, the local node is instructed to stop, the Function

Manager removes all created functions from OpenWhisk via IOpenWhisk interface.

4.1.2.E IPFS Client Wrapper

The IPFS Client Wrapper wraps the Go client library for the HTTP Remote Procedure Call (RPC) API

that is exposed when an IPFS Kubo node is running as a daemon. In this way, we are able to expose

a simplified interface called IIPFS, pictured in Figure 4.7, to be used by our Discovery and OpenWhisk

Client Wrapper components and IPFS as a separate process, isolating its use for resource discovery and

sharing at our middleware’s level from IPFS’ core API that provides direct access to the core commands.

With this component, we can issue a command to IPFS during the node’s initialization to get the
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Figure 4.6: IFunctions interface exposed by the Function Manager component.

CID of offer files for all possible memory values to be used during the resource discovery process.

The exposed interface also provides a method FindProviders to find other nodes that are supplying

the resources needed to deploy a function by specifying the respective CID. Throughout the supplying

phase of our resource discovery, we use this component to issue commands to IPFS to add offer files to

IPFS’ distributed file system, containing the string descriptive of the memory resources in the offer (see

Offer in Section 3.4.1) and to remove the pin on offer files that are no longer being supplied after the

active offers have been updated.

The IPFS Wrapper is also responsible for exposing the method GetSourceFile to be used by the

OpenWhisk Client to retrieve the contents of the function’s source code file stored in IPFS, by providing

the file’s CID as an argument.

Figure 4.7: IIPFS interface exposed by the IPFS Client Wrapper component.
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4.1.2.F OpenWhisk Client Wrapper

The OpenWhisk Client Wrapper, as suggested by the name, wraps the Go client library for the Open-

Whisk API providing a simple interface to access the running OpenWhisk services. This way, we can

isolate our middleware’s function management from OpenWhisk’s API details.

The OpenWhisk Wrapper exposes the IOpenWhisk interface, as illustrated in Figure 4.8, to be used

by the Function Manager component to insert, invoke, and delete functions. When an insert function

command is issued, it details the function’s configuration that includes the CID that OpenWhisk Client

will use to call the IIPFS interface and get the function’s source code, along with the function’s name,

kind, and memory. It is the OpenWhisk Wrapper that can enforce the system limit for how much memory

a function can use, which is defined when the function is inserted into OpenWhisk.

OpenWhisk Wrapper is also responsible for providing the InvokeFunction method, by specifying

the invocation arguments which include the function call’s parameters in JSON format, the function’s

name, and an invocation result variable. If the invocation request is expected to return a result, the user

calls the method with this variable as true, otherwise, it is false. OpenWhisk Wrapper is responsible

for allowing the Function Manager to delete all inserted functions from the OpenWhisk service once the

local FaaS@Edge’s node is ordered or forced to stop, in order to not occupy unnecessary resources.

Figure 4.8: IOpenWhisk interface exposed by the OpenWhisk Client Wrapper component.

4.1.2.G HTTP Web Server

The HTTP Web Server is responsible for serving the REST API endpoints and redirecting the requests

to the respective FaaS@Edge components that are capable of executing them. The server was im-

plemented using the net/http package from Go’s standard library, with a custom request router from

the gorilla/mux package to match incoming requests against their respective handler. The server is

started by the Node component once the user issues a start command.
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4.2 Command-Line Interface (CLI)

Similarly to the consistent interface provided by the OpenWhisk CLI tool, called wsk, to interact with

OpenWhisk’s services, we also developed a CLI application to easily start the FaaS@Edge daemon,

submit/create and invoke/activate functions, and exit the application by shutting down its components

and daemon. In order for the CLI to interact with FaaS@Edge’s daemon we provide a client library, also

written in Go, that can be used as Go’s SDK for FaaS@Edge. The following commands are provided by

our CLI:

• Start

• Exit

• Submit

• Invoke

Start: A user can start running a new FaaS@Edge node by issuing the command start. This command

should be issued to run as a daemon since it is in charge of all FaaS@Edge’s operations. The command

drives the initialization of all the components of the FaaS@Edge node, including the HTTP server that

will handle the requests in each local node. The user can specify two flags: an integer flag detailing

the maximum amount of memory (in MB) that the node is willing to offer to other nodes in the system

to deploy their user functions, and a boolean flag that when present indicates that the node is currently

running the OpenWhisk application and thus capable of acting as a supplier node in the system.

Exit: To shut down the instance node the user can simply insert the exit command that will trigger the

shutdown of all FaaS@Edge components and, in supplier nodes, remove all offers made from IPFS and

all user functions from the OpenWhisk platform. Listing 4.1 provides an example of the start and exit

commands.

Listing 4.1: Example of the start and exit commands using FaaS@Edge’s CLI.

1 faasedge start -m <memory> [-w]

2 faasedge exit

Submit: The instructions to create and invoke functions aim to be similar to the ones offered by Open-

Whisk’s CLI in order to allow users/developers to more easily understand and visualize the functionalities

of our prototype. Therefore, we can see in Listing 4.2 that the create command used in OpenWhisk is
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equivalent to FaaS@Edge’s submit command although carrying some differences: instead of the source

code’s filename, our command uses its CID from IPFS, and it is also needed to indicate the kind of pro-

gramming language and the memory limit that a function can allocate.

Listing 4.2: Example of a create action command using OpenWhisk’s CLI and a submit function command

using FaaS@Edge’s CLI.

1 # OpenWhisk's wsk CLI

2 wsk action create <name> <source code>

3

4 # FaaS@Edge's CLI

5 faasedge submit <cid> -m <memory> -n <name> -k <kind>

Invoke: The invoke command also reflects many similarities as demonstrated in Listing 4.3, diverging

solely on the syntax in which the function’s parameters are written and the fact that all invocations in

FaaS@Edge are blocking, whilst this is only an optional feature in OpenWhisk. Though it could easily

be added to our prototype, it was not a main priority during the development.

Listing 4.3: Example of an invoke action command using OpenWhisk’s CLI and an invoke function command

using FaaS@Edge’s CLI.

1 # OpenWhisk's wsk CLI

2 wsk action invoke <name> --blocking --result --param <param name> <param value>

3

4 # FaaS@Edge's CLI

5 faasedge invoke <name> -result -args <json args>

4.3 Example FaaS Workloads

In order to exercise our FaaS@Edge prototype, we also implemented a set of example FaaS work-

loads. Typical full FaaS environments integrating microservices, external database storage, and multiple

sources of events that trigger executions, are not fully supported by our FaaS@Edge’s prototype yet.

The only deployment method currently supported is the source code. Therefore, we could not find work-

load functions that could be used directly in our system, which required us to create our own functions

based on the common use cases for FaaS, but that can be requested to execute through our prototype.

The functions developed are all written in the Go language, and partially follow micro-benchmarks

developed in the context of recent research [62]. They are the following:
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• Content Hashing: Receives data contents as a function parameter and generates the SHA256

hash of that content. The resulting hash is returned to the user if requested.

• Database Query: The user can request the initialization of an in-memory database that stores

information regarding a library’s books in JSON format. Then, the user can query the database for

any specific book by passing its International Standard Book Number (ISBN) as a parameter.

• Image Transformation: Receives a public image URL which is used to get the image data using

HTTP. Then, performs a transformation to flip the image vertically and returns the image data in

base64 format.

We also used these example FaaS workloads to evaluate our system (described in the next chapter).

4.4 Summary

In this chapter, we delved into the most relevant aspects of the implementation of FaaS@Edge’s pro-

totype in Section 4.1, discussing its codebase organization and code modules developed to achieve

the desired functionalities. Then we proceeded to describe the software architecture supporting the

prototype, detailing its components and interfaces that structure the interactions within a system node.

Next we presented a detailed description of our CLI tool that accommodates the prototype’s usability,

by explaining its user interactions and commands in Section 4.2. We also mentioned how its syntax

compares similarly to OpenWhisk’s CLI tool to provide an already familiar user experience.

Finally, in Section 4.3 we pointed out the need to develop our own FaaS workloads in order to

exercise and later evaluate our implementation, stating our prototype’s current limitations within FaaS

environments. Therefore, we produced our functions bearing in mind the common use cases found in

FaaS.
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In order to evaluate our FaaS@Edge system, we intend to provide an assessment of its feasibility,

resource efficiency, and performance so that we can determine its suitability for FaaS in Edge Computing

environments, by understanding the potential benefits and challenges associated. We evaluate the

system by itself and also compare it to a local FaaS deployment using only Apache OpenWhisk.

We start our evaluation by presenting the configuration of our testbed in Section 5.1. In Section 5.2

we detail the benchmarks and datasets used to constitute the requests sent to test our system, according

to the workload functions developed. Then, we present the metrics that we considered during testing

to evaluate the different aspects of our solution and compare it with another in Section 5.3. After this,

we can finally analyze our execution results in Section 5.4 and ultimately discuss the main conclusions

taken from the evaluation of FaaS@Edge when comparing its performance in Edge Computing devices

in Section 5.5.

5.1 Testbed Configuration

For the initial runs of our tests that were designed to assess the correct operation and make small

adjustments to achieve the desired output and performance, we used two local VM instances running

with VirtualBox. One instance with 2 Virtual Centralized Processing Unit (vCPU)s and 4096MB of RAM,

acted as a supplier node and hence was able to run the OpenWhisk stack as a Java process, along with

an initialized IPFS Kubo node. The other instance with 1 vCPU and 2048MB of RAM, served as a client

node to send the workload function requests and also had an IPFS Kubo node initialized.

Later on for the actual executions, we used the machines provided by the GSD cluster hosted at

INESC-ID with 2x Intel(R) Xeon(R) Gold 5320 CPU (2.2GHz - 52 cores), 64GB of memory, and 4x GPU

- NVIDIA RTX A4000, to create a deployment setup ranging from 1 to 15 VMs, each with 2 vCPUs and

2048MB of RAM where depending on the number of VMs (also referred to as nodes) active, different

ratios between clients and suppliers are explored. A remote client node hosted in one of the two local VM

instances mentioned above was also included in this deployment setup, in order to evaluate whether the

physical distance between machines could affect the request time latency. Test executions are managed

through a single machine that sends the commands to execute the respective testing scripts.

5.1.1 IPFS Network Configuration

During our test executions, a private IPFS network was set up containing the IPFS Kubo nodes initialized

in each FaaS@Edge instance, as opposed to the global distributed network to which IPFS connects

a machine by default. A private network is preferred in this case to maintain some level of privacy

and confidentiality so the data is only accessible to known peers on the network. This is achieved by

modifying the IPFS node’s list containing the bootstrap nodes that it connects to in order to discover other
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peers, removing the default entries to add the IP address and peer ID of the private network’s bootstrap

nodes, and by referencing the network’s swarm key. In a real scenario, these values can be shared with

a FaaS@Edge node by some type of group network/security administrator, upon an initial request to

join the network, which keeps a record of nodes with long-lived connections to the FaaS@Edge system,

similar to the content provider list maintained by IPFS with popular nodes that provide a lot of content

to the IPFS network. Listing 5.1 shows a partial example of an IPFS configuration file with a single

bootstrap node in its bootstrap list.

Listing 5.1: Example of IPFS configuration file with a modified bootstrap list.

1 {

2 "API": {

3 "HTTPHeaders": {}

4 },

5 "Addresses": {

6 "API": "/ip4 /127.0.0.1/ tcp /5001",

7 "Announce": [],

8 "AppendAnnounce": [],

9 "Gateway": "/ip4 /127.0.0.1/ tcp /8080",

10 "NoAnnounce": [],

11 "Swarm": [

12 "/ip4 /0.0.0.0/ tcp /4001",

13 "/ip6 /::/ tcp /4001",

14 "/ip4 /0.0.0.0/ udp /4001/ quic",

15 "/ip4 /0.0.0.0/ udp /4001/ quic -v1",

16 "/ip4 /0.0.0.0/ udp /4001/ quic -v1/webtransport",

17 "/ip6 /::/ udp /4001/ quic",

18 "/ip6 /::/ udp /4001/ quic -v1",

19 "/ip6 /::/ udp /4001/ quic -v1/webtransport"

20 ]

21 },

22 "AutoNAT": {},

23 "Bootstrap ": [

24 "/ip4 /10.0.2.4/ tcp /4001/ ipfs /12

D3KooWLpmehDqGZaDG8x11HGx3FZ7uvhrnfF3rK74otSznTQgH"

25 ],

26 "DNS": {

27 "Resolvers": {}

28 },
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5.2 Benchmarks and Datasets

In order to test our system accordingly, we used the FaaS workload functions developed (see Sec-

tion 4.3) to simulate typical FaaS scenarios: Content Hashing, Database Query, and Image Transforma-

tion. Our dataset consisted of submission and invocation requests of the three types of functions with

function memory allocation sizes of 128MB, 256MB, and 512MB, respecting the limits allowed by the

OpenWhisk platform. The function arguments used in the invocation requests were the same through-

out the test executions to allow us to perform an accurate comparison of the evaluation metrics between

the various executions. During an execution, all client nodes perform the same amount of requests in

parallel and the supplier nodes together offer enough resources to accommodate all these requests.

Listing 5.2 presents an example of the invocation commands performed for each function. Between

the first invocation request and the following, there is a small interval to encompass the extra time that

a cold start invocation may take. In the Database Query function, the first invocation request is always

the initialization of the database (line 5) and the following are requests for specific books (line 6).

Note that between executions a garbage collection sweep is executed on the supplier nodes’ IPFS

repository to ensure that any offer files that may be cached are completely removed.

Listing 5.2: Example of invocation commands through CLI.

1 #Content Hashing

2 ./faasedge invoke hash -r -a '{"data":"Loremipsum..."}' # Full data omitted.

3

4 #Database Query

5 ./faasedge invoke db -r -a '{"op":"init"}'

6 ./faasedge invoke db -r -a '{"op":"get", "book":"ISBN3"}'

7

8 #Image Transformation

9 ./faasedge invoke image -r -a

'{"url":"https://download.samplelib.com/jpeg/sample-clouds-400x300.jpg"}'

5.3 Metrics

During this evaluation, we are mainly trying to assess the overhead, derived from its distributed ar-

chitecture and algorithms, that our middleware will impose on the system when compared to a local

OpenWhisk deployment, and determine the feasibility and performance of FaaS@Edge on edge de-

vices. Therefore, the following metrics were considered to evaluate aspects regarding (1) our resource

discovery and scheduling algorithms; and (2) the FaaS performance of our solution.
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• Function latency: Used to evaluate the time it takes to execute the requests, separating Open-

Whisk’s execution time from the complete latency, to extract the time spent discovering the avail-

able resources.

• Bandwidth consumed per node: Used to evaluate if bandwidth consumed during execution is

cheap enough for the edge nodes.

• CPU usage per node: Used to evaluate if the processor cores of edge nodes are able to handle

the amount of load.

• Memory used per node: Used to evaluate if edge nodes need to use high values of RAM to run

the FaaS@Edge middleware.

• Request Success Rate: Used to evaluate the efficacy of our resource discovery and scheduling

algorithms in discovering a supplier node available to execute the request.

In addition, we will also assess if there are any relevant variations in these metrics depending on the

offering plan option chosen for the execution and analyze them in the discussion. The default offering

plan selected during the test executions was the Balanced plan.

5.4 Results

In this section, we will present the analysis and comparison of the evaluation results obtained during

the test executions. The tests were performed using a total of six different deployment setups. These

included:

1. Local deployment of OpenWhisk on a single node instance to compare the separate approaches;

2. Two node instances on remotely distant machines acting one as a client node, and another as a

supplier node;

3. Two node instances on the same physical machine also acting as one client node and one supplier

node;

4. Five node instances on the same physical machine with two supplier nodes and three client nodes

to compare the different loads put on the supplier nodes;

5. Ten node instances, nine of which are located on the same physical machine, with five of them

acting as supplier nodes and four as client nodes, and another client node running on a remote

machine;
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6. Fifteen node instances, fourteen of which are located on the same physical machine, with eight

of them acting as supplier nodes and six as client nodes, and another client node running on a

remote machine.

5.4.1 Function Latency

In terms of the time it takes to execute the requests, we present separate results for the submission

requests and invocation requests given that the former is where the discovery of resources to schedule

the function occurs, demanding more time but executed only once per instance, whereas during the

latter there is already a selected supplier node responsible for answering the requests related to the

user’s function (and each instance may be invoked multiple times). Note that during the test executions

in the single local deployment setup, the interaction with OpenWhisk was realized using the Go client

library for the OpenWhisk API, as it is done in our middleware.

Starting with the submission requests, Figure 5.1 presents the distribution of the latency times for

each of the deployments mentioned previously, measured since the client nodes sent the submission

requests until an answer was received, excluding the time it took the supplier node available to create

the function in OpenWhisk. Notice that the values observed are situated between the interval of 0.02s

and 0.1s, and there is no explicit difference between the results of each deployment. The only tendency

observed is that the lower latency values belong to the 2 nodes and 5 nodes deployments, and higher

values correspond to the 15 nodes deployment. This is further validated by Table 5.1 which contains an

overview of the latency times for each deployment.

Figure 5.1: Submission latency times per nodes (Box plot).
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95th %ile (s) 90th %ile (s) 75th %ile (s) Median (s) Average (s)
15 Nodes 0.0985 0.0965 0.0880 0.0715 0.0745
10 Nodes 0.0841 0.0811 0.0742 0.0618 0.0649
5 Nodes 0.0522 0.0504 0.0414 0.0369 0.0385
2 Nodes 0.0881 0.0829 0.0646 0.0528 0.0535
2 Nodes Remote 0.0944 0.0921 0.0693 0.0576 0.0654

Table 5.1: Submission latency times per nodes.

Regarding the different types of FaaS workload functions used in the execution requests, Figure 5.2

provides an overview of the average values for the total submission times, starting from the moment a

request is sent by a client node until a response is received, and the submission latency times obtained

for each of the function types. The time values proved to be similar for all function types, as expected

since the function’s source code has no influence on our resource discovery algorithms and the supplier

node’s resource availability, nor does it impact the function’s insertion time in OpenWhisk, resulting in

total submission times of approximately 0.11s and latency submission times of 0.058s-0.065s.

In contrast, the function memory values that can be specified in a submission request have an impor-

tant role in our algorithms to select the available provider to submit a user’s function, but as represented

in Figure 5.3, all possible memory values (128MB, 256MB, and 512MB) resulted in relatively close val-

ues of overhead time for each function type which indicates a leveled distribution of the different sizes of

resources as a result of our offering strategy.

Figure 5.2: Submission times per function type

With Figure 5.4 we provide a comparison between the submission times, detailed as total time and

latency time, obtained by FaaS@Edge’s client nodes located in a cluster machine, where the supplier

nodes are also running, and the client node that we established in a remote machine. The results

show that the remote client node needs ≈70% more time to fulfill the submission request than the

other clients, as demonstrated in Table 5.2, which we can determine and point out that is overhead

introduced during the resource discovery and/or exchanging of messages, given that the interaction with
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(a) Content Hashing (b) Database Query (c) Image Transformation

Figure 5.3: Submission times per function memory value.

Figure 5.4: Submission times comparison between client node in cluster machine and remote machine.

OpenWhisk presents equivalent times for both clients.

95th %ile (s) 90th %ile (s) 75th %ile (s) Median (s) Average (s)
Total Cluster 0.1154 0.1153 0.1152 0.1141 0.1134
Total Remote 0.2435 0.2416 0.2045 0.1870 0.1929
Latency Cluster 0.0714 0.0707 0.0667 0.0663 0.0660
Latency Remote 0.1876 0.1748 0.1656 0.1447 0.1468

Table 5.2: Submission times comparison between client node in cluster machine and remote machine.

Now focusing on the invocation requests, in Figure 5.5 we present the distribution of the latency

times obtained for each of the deployments, again, excluding the time it takes for the function to exe-

cute in OpenWhisk, and Table 5.3 provides an overview of these values. The results proved to be very

close together, fitting all within an interval of 0.04s and with no significant relation between the number

of nodes in the deployment and its results. This was predictable since the invocation request does not

demand the additional overhead that is introduced by the resource discovery and scheduling algorithms

because the information that the supplier node needs to access to fulfill the request was already pre-

viously stored during the function’s submission (recall the process described in Section 3.5). For the
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invocation requests, the majority of the total time is spent during the function’s execution in OpenWhisk

which is activated by the respective supplier node, whereas in the submission requests the main focus

is the time latency originated by our middleware’s algorithms.

Figure 5.5: Invocation latency times per nodes (Box plot).

95th %ile (s) 90th %ile (s) 75th %ile (s) Median (s) Average (s)
15 Nodes 0.0462 0.0428 0.0323 0.0228 0.0268
10 Nodes 0.0483 0.0427 0.0246 0.0181 0.0229
5 Nodes 0.0253 0.0221 0.0180 0.0164 0.0171
2 Nodes 0.0424 0.0335 0.0211 0.0184 0.0215
2 Nodes Remote 0.1757 0.1618 0.0253 0.0208 0.0405

Table 5.3: Invocation latency times per nodes.

Once again we provide a comparison of the total invocation times and the respective invocation

latency times for each FaaS workload function in Figure 5.6. In these results, we exclude the times

obtained for the first and, in some cases, the second invocations given that they reflect cold start invo-

cations which occur when there is no container already running the moment an invocation is requested.

Therefore, the values presented here only considered times from warm start invocations as a way to

normalize their averages. The results show a significantly higher total invocation time for the image

transformation function (that is more CPU demanding), compared to the content hashing and database

query functions, which is spent during its execution in OpenWhisk since all functions have equivalent

invocation latency times.

The function memory allocation limits imposed by the different memory values in the requests do

not demonstrate any significant implications on the total and latency invocation times, as indicated by
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Figure 5.7, considering all functions are capable of being executed without exceeding the memory limits

and the times do not strictly improve nor worsen proportionally to the memory values.

Figure 5.6: Invocation times per function type

(a) Content Hashing (b) Database Query (c) Image Transformation

Figure 5.7: Invocation times per function memory value.

Similarly to the submission requests case, Figure 5.8 demonstrates a comparison of the total and

latency invocation times gathered by FaaS@Edge’s client nodes running in a cluster machine and the

client node located in a remote machine. Contrary to what we witnessed with the submission times,

the values detailed in Table 5.4 show that the cluster and remote client nodes resulted in very similar

invocation times for both total and latency time aspects, with the remote client taking only 2.9% more

total time, which indicates that the physical distance between nodes can have an impact on IPFS’ lookup

protocol during the resource discovery but does not impose a lot of added time on the execution of

invocation requests (maintaining an acceptable network throughput).

95th %ile (s) 90th %ile (s) 75th %ile (s) Median (s) Average (s)
Total Cluster 0.0529 0.0522 0.0502 0.0485 0.0484
Total Remote 0.0532 0.0519 0.0503 0.0497 0.0498
Latency Cluster 0.0251 0.0249 0.0243 0.0232 0.0224
Latency Remote 0.0248 0.0246 0.0236 0.0227 0.0226

Table 5.4: Invocation times comparison between client node in cluster machine and remote machine.
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Figure 5.8: Invocation times comparison between client node in cluster machine and remote machine.

5.4.2 Bandwidth consumed per node

In terms of bandwidth consumed per node, in Figure 5.9 we present the values of bandwidth used by

the supplier nodes in each of the different deployments. This metric considers the overall bandwidth

consumption in the node instance, not solely consumed by the FaaS@Edge process, and was retrieved

periodically over time on each of the supplier nodes during test executions. The number of requests each

supplier node fulfilled is arbitrary as a result of our random sorting of providers during our scheduling

algorithm. Given the results demonstrated a non-symmetrical distribution, we analyze them considering

their median values to filter out possible outliers and their maximum and minimum values. The deploy-

ment using 5 nodes shows the largest amplitude of bandwidth and the lowest median value which is

still a positive indication seeing as in this deployment there are more client nodes, sending requests,

than supplier nodes, replying to requests, which could have caused a more expensive bandwidth usage.

Overall we can notice that the amplitude of bandwidth values decreases with the increase of nodes in

the deployment and the median values are all situated between 8659B and 9604B.

Figure 5.9: Bandwidth consumed per nodes.
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Figure 5.10 represents the bandwidth consumed per function memory value for the three FaaS work-

load function types which shows that all types have the same bandwidth consumption for functions with

256MB of memory, along with the 128MB database query functions and the 512MB content hashing

functions. As expected, the results returned demonstrate no relation between the function memory val-

ues and the bandwidth consumed by the nodes. However, by analyzing the bandwidth consumption

variation over time during the test executions for each function type we noticed some differences in the

results which are presented in Figure 5.11, and were obtained during one of the executions with 128MB

of function memory. Notice that the bandwidth consumption over time typically suffers 2-3 increases by

intervals of ≈3000B and this is caused by the values of the transmitted bandwidth while the received

bandwidth does not suffer any change, with the exception of the image transformation function’s execu-

tion which revealed an increase in the received data that is accompanied by a simultaneous increase

in the transmitted data. This is presumed to be caused by the HTTP request realized by this function

in order to retrieve the image data corresponding to the URL received in the function’s arguments. The

sudden increases in bandwidth consumption did not prove to be associated with the number of requests

each supplier node fulfilled.

Figure 5.10: Bandwidth consumed per node and memory value for each function type.

5.4.3 CPU usage per node

In this section, we assess the CPU usage per node during the execution of FaaS@Edge since the

edge devices volunteering their resources should be able to participate in the FaaS@Edge system

without exceeding their CPU computation limits, and also whilst still maintaining enough resources in

their devices for other desired purposes. This metric was retrieved periodically over time on both supplier

and client nodes, during each test execution. The percentages of CPU usage presented next refer to
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(a) Content Hashing (b) Database Query

(c) Image Transformation

Figure 5.11: Bandwidth consumption variation over execution time.

the 2 vCPUs you can recall each of the node instances was configured with.

Table 5.5 presents an overview of the CPU usage observed in supplier nodes, for each different de-

ployment and the respective client node averages. The higher values were witnessed in the deployment

with only 2 nodes, with the supplier averaging 5.61% CPU usage and the client 0.80%, and the values

gradually decreased as the number of nodes in the deployments increased indicating an efficient utiliza-

tion of the extra resources and good load balancing between the supplier nodes. The usage in client

nodes is also significantly lower than in supplier nodes seeing as the latter are the ones satisfying the

requests and running the OpenWhisk platform, which influences these metrics that are considering the

overall usage in the system and not exclusive to our FaaS@Edge process.

95th %ile 90th %ile 75th %ile Median Average Client
Avg

15 Nodes 2.60% 2.60% 2.40% 2.20% 2.31% 0.30%
10 Nodes 2.90% 2.90% 2.80% 2.70% 2.70% 0.30%
5 Nodes 4.40% 4.40% 4.30% 2.65% 2.91% 0.40%
2 Nodes 7.97% 7.67% 6.75% 5.20% 5.61% 0.80%

Table 5.5: CPU usage per nodes.
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In Figure 5.12 we present a comparison of the CPU usage per node for every function memory value

and the three FaaS workload function types. Regarding the function memory values, we can see that

the highest CPU usage per node is observed with 128MB of memory, followed by the 512MB value and

finally the functions with 256MB. As for the various function types, we cannot trace a clear correlation

between the results retrieved, noting that their average values fit within the small interval of 2.8%-3.0%

of CPU usage.

Figure 5.12: CPU usage per node and memory value for each function type.

5.4.4 Memory used per node

In this section, we will be looking at the memory used by each node that is running FaaS@Edge. Once

again, this metric was retrieved periodically over time on both supplier and client nodes, during each test

execution and reflects the amount of RAM being used by the system in order to also assess the memory

used by IPFS and OpenWhisk, in addition to the memory necessary to hold the data structures required

for our middleware.

Table 5.6 presents the maximum and minimum values, along with the average values retrieved for

the supplier nodes and client nodes, seeing as we did not verify any relation between the memory used

per node and the number of nodes in a deployment, we simply assess that these results are analogous

with acceptable memory usage values, according to the amount of memory typically present in edge

devices.

Minimum - Maximum Average
Supplier Node 557.70 MB - 752.44 MB 624.32 MB

Client Node 239.67 MB - 248.33 MB 246.27 MB

Table 5.6: Memory used per nodes.

62



Figure 5.13: Memory used per node and memory value for each function type.

In Figure 5.13 we present a comparison of the memory used per node for every function memory

value and FaaS workload function types. Concerning the function memory values, it is clearly no-

ticeable that the highest memory usage values are always registered for the requests with 128MB of

function memory across all function types, then the 512MB requests are closely followed by requests

with 256MB, which revealed to be the least memory expensive. By further analyzing the resource usage

of the running containers, we noticed that the containers that were limited to 128MB of function memory

allocation had to realize larger amounts of data swapping to read from and write to memory blocks on

the host device, compared to the other memory limits. This frequent data swapping to and from the disk

resulted in performance degradation and an increase in I/O that caused the system to provide a lower

quality of service with fewer resources.

5.4.5 Request Success Rate

In this section, we will analyze the request success rate which measures how many user requests to

submit and invoke a function the FaaS@Edge system was able to successfully fulfill. This measure will

directly translate in the resource discovery and scheduling algorithms’ efficacy and, in turn, the user’s

satisfaction. Table 5.7 represents the request success rate specified for each FaaS workload function

and function memory value used in the evaluation, as well as in the totality of requests executed during

the evaluation. Note that certain types of functions were more utilized in the test executions than others

(e.g. content hashing with 256MB was the default function used for performing assessments where the

function type was not relevant for comparison). As we can see, the user requests to submit or invoke

the image transformation function proved to be the most successful and the database query function

was the one that resulted in more failed requests. Regarding the amount of function memory, the
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success rate appears to decrease linearly with the memory values, contrarily to what we expected. The

invocation failures witnessed were usually a direct result of attempting to invoke a function that could not

be successfully submitted therefore it is not present in any supplier node (these cases happen in our

automatic testing but could be prevented in a real user scenario that would manually retry the submission

before requesting the invocation). Recall that during test executions, all the supplier nodes combined

were indicated to offer enough resources to fulfill all requests and their offering strategy prioritizes offers

with lower values, so the failures that occurred during submissions were less likely to be caused by

fragmentation of resources and more by the unavailability of the supplier node due to a process crash

during execution, but keeping in mind as well that other possible factors exterior to FaaS@Edge, such

as errors in IPFS or OpenWhisk’s normal execution, can also influence the success rates.

Request Success Rate
Function Type Submission Invocation

Content Hashing 99.49% 100.00%
Database Query 95.16% 94.98%

Image Transformation 100.00% 100.00%
Function Memory

128 MB 95.24% 97.28%
256 MB 99.49% 98.73%
512 MB 100.00% 100.00%

Total Requests 98.76% 98.69%

Table 5.7: Request Success Rates.

5.4.6 Comparison with Local Deployment and Discussion

Now we will present a comparison of FaaS@Edge’s function latency times with the results obtained

for a local deployment of OpenWhisk executed on a single machine. After this, we will discuss some

of the results obtained during the evaluation in order to highlight aspects that may have influenced

FaaS@Edge’s performance.

Table 5.8 represents the overview of the times obtained for the total time it took to submit/create

and invoke/activate a function1 in the FaaS@Edge system (10 node deployment), including the latency

imposed by the overhead of executing discovery and scheduling algorithms of our middleware, and in the

OpenWhisk deployment where execution is realized on the same machine that ordered it. The results

indicate that a submission using FaaS@Edge takes ≈90.9% longer than a simple local deployment

and an invocation averages closer by taking only around 25.5% more time to complete than in the

local deployment. Mind that the time spent interacting with the OpenWhisk platform did not present

a significant difference for the two, as expected since the functions and respective invocations were

1using 256MB function memory and all function types requested by client nodes in the cluster machines
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all made using the Go client library for the OpenWhisk API and the same submission and invocation

parameters.

Total Time (s) Latency (s)
Submission 95th %ile 90th %ile 75th %ile Median Average Average
FaaS@Edge 0.1575 0.1483 0.1349 0.1124 0.1150 0.0653
Local 0.0924 0.0918 0.0696 0.0569 0.0602 NA
Invocation
FaaS@Edge 0.2742 0.2606 0.2517 0.0485 0.1173 0.0224
Local 0.1707 0.1675 0.1610 0.0691 0.0934 NA

Table 5.8: Function Latency times comparison between FaaS@Edge and local OpenWhisk deployment.

One aspect that we would like to discuss is the occasional outlier values retrieved for the function in-

vocation times that occur during the first invocation of a submitted function which are not included in the

results presented previously due to falling into the cold start invocations. However, it is worth noting that,

in addition to the cold start ’s duration, which originated in OpenWhisk, sometimes we also witnessed a

large overhead in invocation latency times that surpassed 20s. For example, one initial invocation took

a total time of 40.20s with an overhead of 23.95s using the content hashing function in a deployment

with 10 nodes. From this, we can see that besides having a cold start that took around 16.25s, the

invocation still took longer than expected. This led us to take a closer look into what may be causing this

delay and we identified that the supplier node responsible for the function had been the node chosen

to concurrently invoke the functions from two other client nodes. The supplier node had sufficient re-

sources available to serve all those requests but, although concurrency is supported in our middleware,

it may give rise to these added latency situations since only one execution thread is allowed to access

the data structure that stores the user function’s information until the creation or invocation of a function

in OpenWhisk is completed. It is crucial to have this access control given that (1) it prevents a scenario

where a client node sends a submit function request that results in an update request for a previously

submitted function with the same name and in the same supplier node, while simultaneously sending an

invocation request for that function, we are unable to guarantee that the requests are executed atomi-

cally; (2) as of the time of writing, concurrency within a container instance of a user function that would

tolerate multiple invocations at the same time is only supported by OpenWhisk in the NodeJS language

and since we allow more languages, we have to prevent these concurrent invocations. Therefore, we

occasionally have to sacrifice the request’s execution time in order to guarantee the correct operation of

FaaS@Edge.

Another aspect we would like to highlight is that the manual configuration of the IPFS bootstrap

nodes seems to be an essential feature in the network’s scaling, discovering available offers in the

system and sharing the function’s source code with the supplier nodes, especially if the FaaS@Edge

nodes are geographically distributed in the network since IPFS tends to be heavily reliant on popular
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content providers and is less effective in finding specific content from less known nodes. The use of the

swarm key to create a private network is not imperative for FaaS@Edge’s use but it does help improve

the security properties in the network.

Furthermore, it is important to mention that the tests performed in order to compare the different

offering plans available did not demonstrate significant differences from each other and thus we refrained

from visually presenting them above. The offering plan has no noticeable influences on the bandwidth

consumption, CPU or memory usage, likely due to the fact that when a supplier node’s offers are updated

only one offer file is published in IPFS for each offer value. The results obtained for executions with the

same quantities of resources being offered and requested represented the same values for the request

success rates and function latencies, regardless of the offering plan chosen, since the demand and

supply were globally balanced and there was no horizontal scaling or churn in the network that could

have caused failures in the allocation of resources.

5.5 Summary

Having analyzed the evaluation results, we were able to draw the following conclusions:

• The Function Latency times obtained for the submission requests being close to double the time

it takes to execute a submission in a local deployment is still a time duration acceptable in a FaaS

scenario if it provides a less powerful edge node the capability to still benefit from the FaaS model

without depending on cloud providers.

• The Function Latency times for the invocation requests are almost equivalent to a local deployment,

which means there is very little performance loss in using FaaS@Edge, especially given the fact

that we predict a user would generally perform more invocation requests than submission requests.

• The Bandwidth consumed per node did not show any direct relation to the number of requests a

supplier node executed, thus we can simply conclude that the average consumption during the

program’s execution in an edge device is admissible and does not hinder the node’s performance.

• The CPU and Memory used per node proved to be reasonable considering that running the mid-

dleware would not waste a large amount of these resources in edge nodes, allowing the devices

to still be utilized by the user for other desired functionalities whilst they are participating in the

FaaS@Edge network.

• Request Success Rate proved to be very high according to the results, with the total requests

for both submissions and invocations having over 98% of success, which translates into a high

efficacy of our resource discovery and scheduling algorithms.
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In this work, we introduced FaaS@Edge, a decentralized system to implement the FaaS model in

Edge Computing environments by taking advantage of edge nodes’ resources to deploy user functions

in Apache OpenWhisk.

We started this work by introducing the emergence of the FaaS paradigm, and the benefits it brought

to simplify Cloud Computing, which has since been explored in distributed systems. This emergence

was contemporary to the expansion of the Internet of Things, which the cloud was insufficient to keep

up with, leading to the introduction of the Edge Computing paradigm designed to bring resources and

computing power to the edge of the network.

The integration of FaaS in Edge Computing devices presented a captivating subject of research on

how to respond to the growing demands to improve the capabilities and performance of edge devices

while managing distributed architectures, optimizing resources, and ensuring compatibility with hetero-

geneous edge devices.

Solutions in this area still depended on centralized architectures or were not able to operate on

edge environments, while others realized FaaS deployments at the edge but few managed to maximize

resource utilization and achieved good performance of edge applications.

Our proposed contributions were: survey state of the art and previous research to produce tax-

onomies for FaaS, Edge Computing, and P2P content, storage and distribution. Next, we proposed to

implement a prototype that leveraged volunteer resources for FaaS deployments on edge computing

nodes. And finally, we proposed to evaluate the prototype’s feasibility, efficiency, and performance.

We started designing our solution’s architecture by defining a group of desirable properties, such as

low latency, efficient resource utilization, or distributed and decentralized resource leveraging. Next, we

described the components needed for an edge node to run FaaS@Edge and, after this, presented the

operations it can perform. Then, we described the distributed architecture sitting on top of IPFS, and

how its approach relying on the Kademlia-based DHT was able to benefit our distributed and decentral-

ized resource discovery algorithms. IPFS is responsible for FaaS@Edge’s resource supplying process,

which can make use of different offering plan options, by publishing offer files, and for the discovery

process through its mechanism to lookup a file’s content identifier. The scheduling algorithm interacts

with Apache OpenWhisk to submit and invoke user functions in a volunteer supplier node. OpenWhisk

incorporates FaaS executions and flexibility to perform efficient resource utilization in edge nodes by

controlling the memory allocation, as well as compatibility with several programming languages.

Then, we covered the implementation of our FaaS@Edge prototype. We started by briefly describing

the code’s organization and main packages. Next, we moved on to the software architecture that ensured

the implementation and evaluation of our prototype, we detailed each of its components’ functionalities

and responsibilities, and how they interact with each other to employ the algorithms and protocols of our

architecture. Then, we detailed the CLI application implemented to use FaaS@Edge’s services, similar
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to the OpenWhisk CLI, and the FaaS workload functions we had to develop to evaluate our prototype.

Finally, we tested FaaS@Edge using deployments with different sets of supplier and client nodes,

running in local and remote geographical locations, and collected metrics regarding function latency,

bandwidth consumption, CPU and memory usages, and request success rate.

By analyzing the results and comparing them with the ones obtained with a single local deployment

of OpenWhisk we concluded that our middleware introduced an overhead of almost double the function

latency time to execute a submission request compared to the local deployment. However, the invocation

times were very similar which is favorable given there are usually more invocations than submissions

for each function. The bandwidth consumption, CPU and memory usage were considered to be within

acceptable values that can be supported by edge devices and FaaS@Edge proved to have a very high

success rate. Lastly, we concluded that the scalability and performance of the system seemed to be

very tied to IPFS’ capability to discover content and peers in the network, and is currently still very

limited compared to all the functionalities supported by OpenWhisk, nevertheless, FaaS@Edge was

successful in providing a distributed and decentralized alternative that realizes FaaS executions with

low latencies and efficient resource utilization and distribution, supported by devices in Edge Computing

environments.

6.1 Future Work

In this section, we provide a list of features and improvements that could expand FaaS@Edge’s func-

tionalities and help accomplish more desirable properties to enhance our system, such as compatibility

with more OpenWhisk services, network scalability, and overall security.

Looking at FaaS@Edge, the following set of further developments could be made:

• Integrate the automation of actions/invocations in response to events, using triggers, generated

from the common event sources supported by OpenWhisk (e.g. Message Queues, Databases,

Web Application interactions, Service APIs, etc). This process would include upgrading the CLI

tool to accommodate the new operations equivalently to OpenWhisk’s CLI.

• Develop a mechanism to allow the user to submit the functions using other deployment methods

besides the source code file and custom runtimes. This could include executables packaged as

Docker containers or a binary-compatible executable.

• Introduce the possibility to submit multiple functions at the same time and give the user the option

to request that they are all deployed in the same supplier node (for consolidation), or scattered

randomly through the network as is currently done for a single function. The same could be applied
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to request multiple invocations simultaneously. Submitting multiple functions could also give way

to introduce the processing pipelines that OpenWhisk calls a sequence.

• Improve the tolerance to failures with a message notification mechanism that would alert the client

node when a supplier node containing the client’s function crashed, which would prompt the user

to retry with a new submission request.

• Improve the testing on the FaaS@Edge system scalability which would be more focused on the

IPFS nodes’ ability to find peers providing the offer files and discover the geographical location of

peers where the content is cached and distributed, possibly resorting to publish-subscribe based

notifications [63].

• Develop user interfaces for the various devices that are typically used in edge environments to im-

prove user experience and thus improve user engagement and encourage resource volunteering.

• Improve security by changing the HTTP Web Server to use the Hypertext Transfer Protocol Secure

(HTTPS) protocol instead, with an Secure Sockets Layer (SSL)/Transport Layer Security (TLS) cer-

tificate that would allow to encrypt and digitally sign the HTTP requests and responses between

peers. Or even further, use the two-way TLS security protocol where both client and server au-

thenticate each other before establishing a connection. In production, the certificates could be

managed by open source software that automatically generates, renews, and manages them.

Take into account that this would improve security at the cost of higher latencies.

• Integrate content encryption in IPFS since it supports transport-encryption when data is sent from

one node to another but any peer that has the CID can download and view that data. IPFS allows

the developer to choose the preferred encryption method, as it already has been done in other

projects (e.g. Fission’s WNFS1 and Peergos2).

1https://fission.codes/ecosystem/wnfs/
2https://peergos.org/security
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